// SPDX-License-Identifier: GPL-2.0-only /* * DRV260X haptics driver family * * Author: Dan Murphy * * Copyright: (C) 2014 Texas Instruments, Inc. */ #include #include #include #include #include #include #include #include #include #define DRV260X_STATUS 0x0 #define DRV260X_MODE 0x1 #define DRV260X_RT_PB_IN 0x2 #define DRV260X_LIB_SEL 0x3 #define DRV260X_WV_SEQ_1 0x4 #define DRV260X_WV_SEQ_2 0x5 #define DRV260X_WV_SEQ_3 0x6 #define DRV260X_WV_SEQ_4 0x7 #define DRV260X_WV_SEQ_5 0x8 #define DRV260X_WV_SEQ_6 0x9 #define DRV260X_WV_SEQ_7 0xa #define DRV260X_WV_SEQ_8 0xb #define DRV260X_GO 0xc #define DRV260X_OVERDRIVE_OFF 0xd #define DRV260X_SUSTAIN_P_OFF 0xe #define DRV260X_SUSTAIN_N_OFF 0xf #define DRV260X_BRAKE_OFF 0x10 #define DRV260X_A_TO_V_CTRL 0x11 #define DRV260X_A_TO_V_MIN_INPUT 0x12 #define DRV260X_A_TO_V_MAX_INPUT 0x13 #define DRV260X_A_TO_V_MIN_OUT 0x14 #define DRV260X_A_TO_V_MAX_OUT 0x15 #define DRV260X_RATED_VOLT 0x16 #define DRV260X_OD_CLAMP_VOLT 0x17 #define DRV260X_CAL_COMP 0x18 #define DRV260X_CAL_BACK_EMF 0x19 #define DRV260X_FEEDBACK_CTRL 0x1a #define DRV260X_CTRL1 0x1b #define DRV260X_CTRL2 0x1c #define DRV260X_CTRL3 0x1d #define DRV260X_CTRL4 0x1e #define DRV260X_CTRL5 0x1f #define DRV260X_LRA_LOOP_PERIOD 0x20 #define DRV260X_VBAT_MON 0x21 #define DRV260X_LRA_RES_PERIOD 0x22 #define DRV260X_MAX_REG 0x23 #define DRV260X_GO_BIT 0x01 /* Library Selection */ #define DRV260X_LIB_SEL_MASK 0x07 #define DRV260X_LIB_SEL_RAM 0x0 #define DRV260X_LIB_SEL_OD 0x1 #define DRV260X_LIB_SEL_40_60 0x2 #define DRV260X_LIB_SEL_60_80 0x3 #define DRV260X_LIB_SEL_100_140 0x4 #define DRV260X_LIB_SEL_140_PLUS 0x5 #define DRV260X_LIB_SEL_HIZ_MASK 0x10 #define DRV260X_LIB_SEL_HIZ_EN 0x01 #define DRV260X_LIB_SEL_HIZ_DIS 0 /* Mode register */ #define DRV260X_STANDBY (1 << 6) #define DRV260X_STANDBY_MASK 0x40 #define DRV260X_INTERNAL_TRIGGER 0x00 #define DRV260X_EXT_TRIGGER_EDGE 0x01 #define DRV260X_EXT_TRIGGER_LEVEL 0x02 #define DRV260X_PWM_ANALOG_IN 0x03 #define DRV260X_AUDIOHAPTIC 0x04 #define DRV260X_RT_PLAYBACK 0x05 #define DRV260X_DIAGNOSTICS 0x06 #define DRV260X_AUTO_CAL 0x07 /* Audio to Haptics Control */ #define DRV260X_AUDIO_HAPTICS_PEAK_10MS (0 << 2) #define DRV260X_AUDIO_HAPTICS_PEAK_20MS (1 << 2) #define DRV260X_AUDIO_HAPTICS_PEAK_30MS (2 << 2) #define DRV260X_AUDIO_HAPTICS_PEAK_40MS (3 << 2) #define DRV260X_AUDIO_HAPTICS_FILTER_100HZ 0x00 #define DRV260X_AUDIO_HAPTICS_FILTER_125HZ 0x01 #define DRV260X_AUDIO_HAPTICS_FILTER_150HZ 0x02 #define DRV260X_AUDIO_HAPTICS_FILTER_200HZ 0x03 /* Min/Max Input/Output Voltages */ #define DRV260X_AUDIO_HAPTICS_MIN_IN_VOLT 0x19 #define DRV260X_AUDIO_HAPTICS_MAX_IN_VOLT 0x64 #define DRV260X_AUDIO_HAPTICS_MIN_OUT_VOLT 0x19 #define DRV260X_AUDIO_HAPTICS_MAX_OUT_VOLT 0xFF /* Feedback register */ #define DRV260X_FB_REG_ERM_MODE 0x7f #define DRV260X_FB_REG_LRA_MODE (1 << 7) #define DRV260X_BRAKE_FACTOR_MASK 0x1f #define DRV260X_BRAKE_FACTOR_2X (1 << 0) #define DRV260X_BRAKE_FACTOR_3X (2 << 4) #define DRV260X_BRAKE_FACTOR_4X (3 << 4) #define DRV260X_BRAKE_FACTOR_6X (4 << 4) #define DRV260X_BRAKE_FACTOR_8X (5 << 4) #define DRV260X_BRAKE_FACTOR_16 (6 << 4) #define DRV260X_BRAKE_FACTOR_DIS (7 << 4) #define DRV260X_LOOP_GAIN_LOW 0xf3 #define DRV260X_LOOP_GAIN_MED (1 << 2) #define DRV260X_LOOP_GAIN_HIGH (2 << 2) #define DRV260X_LOOP_GAIN_VERY_HIGH (3 << 2) #define DRV260X_BEMF_GAIN_0 0xfc #define DRV260X_BEMF_GAIN_1 (1 << 0) #define DRV260X_BEMF_GAIN_2 (2 << 0) #define DRV260X_BEMF_GAIN_3 (3 << 0) /* Control 1 register */ #define DRV260X_AC_CPLE_EN (1 << 5) #define DRV260X_STARTUP_BOOST (1 << 7) /* Control 2 register */ #define DRV260X_IDISS_TIME_45 0 #define DRV260X_IDISS_TIME_75 (1 << 0) #define DRV260X_IDISS_TIME_150 (1 << 1) #define DRV260X_IDISS_TIME_225 0x03 #define DRV260X_BLANK_TIME_45 (0 << 2) #define DRV260X_BLANK_TIME_75 (1 << 2) #define DRV260X_BLANK_TIME_150 (2 << 2) #define DRV260X_BLANK_TIME_225 (3 << 2) #define DRV260X_SAMP_TIME_150 (0 << 4) #define DRV260X_SAMP_TIME_200 (1 << 4) #define DRV260X_SAMP_TIME_250 (2 << 4) #define DRV260X_SAMP_TIME_300 (3 << 4) #define DRV260X_BRAKE_STABILIZER (1 << 6) #define DRV260X_UNIDIR_IN (0 << 7) #define DRV260X_BIDIR_IN (1 << 7) /* Control 3 Register */ #define DRV260X_LRA_OPEN_LOOP (1 << 0) #define DRV260X_ANANLOG_IN (1 << 1) #define DRV260X_LRA_DRV_MODE (1 << 2) #define DRV260X_RTP_UNSIGNED_DATA (1 << 3) #define DRV260X_SUPPLY_COMP_DIS (1 << 4) #define DRV260X_ERM_OPEN_LOOP (1 << 5) #define DRV260X_NG_THRESH_0 (0 << 6) #define DRV260X_NG_THRESH_2 (1 << 6) #define DRV260X_NG_THRESH_4 (2 << 6) #define DRV260X_NG_THRESH_8 (3 << 6) /* Control 4 Register */ #define DRV260X_AUTOCAL_TIME_150MS (0 << 4) #define DRV260X_AUTOCAL_TIME_250MS (1 << 4) #define DRV260X_AUTOCAL_TIME_500MS (2 << 4) #define DRV260X_AUTOCAL_TIME_1000MS (3 << 4) /** * struct drv260x_data - * @input_dev: Pointer to the input device * @client: Pointer to the I2C client * @regmap: Register map of the device * @work: Work item used to off load the enable/disable of the vibration * @enable_gpio: Pointer to the gpio used for enable/disabling * @regulator: Pointer to the regulator for the IC * @magnitude: Magnitude of the vibration event * @mode: The operating mode of the IC (LRA_NO_CAL, ERM or LRA) * @library: The vibration library to be used * @rated_voltage: The rated_voltage of the actuator * @overdrive_voltage: The over drive voltage of the actuator **/ struct drv260x_data { struct input_dev *input_dev; struct i2c_client *client; struct regmap *regmap; struct work_struct work; struct gpio_desc *enable_gpio; struct regulator *regulator; u32 magnitude; u32 mode; u32 library; int rated_voltage; int overdrive_voltage; }; static const struct reg_default drv260x_reg_defs[] = { { DRV260X_STATUS, 0xe0 }, { DRV260X_MODE, 0x40 }, { DRV260X_RT_PB_IN, 0x00 }, { DRV260X_LIB_SEL, 0x00 }, { DRV260X_WV_SEQ_1, 0x01 }, { DRV260X_WV_SEQ_2, 0x00 }, { DRV260X_WV_SEQ_3, 0x00 }, { DRV260X_WV_SEQ_4, 0x00 }, { DRV260X_WV_SEQ_5, 0x00 }, { DRV260X_WV_SEQ_6, 0x00 }, { DRV260X_WV_SEQ_7, 0x00 }, { DRV260X_WV_SEQ_8, 0x00 }, { DRV260X_GO, 0x00 }, { DRV260X_OVERDRIVE_OFF, 0x00 }, { DRV260X_SUSTAIN_P_OFF, 0x00 }, { DRV260X_SUSTAIN_N_OFF, 0x00 }, { DRV260X_BRAKE_OFF, 0x00 }, { DRV260X_A_TO_V_CTRL, 0x05 }, { DRV260X_A_TO_V_MIN_INPUT, 0x19 }, { DRV260X_A_TO_V_MAX_INPUT, 0xff }, { DRV260X_A_TO_V_MIN_OUT, 0x19 }, { DRV260X_A_TO_V_MAX_OUT, 0xff }, { DRV260X_RATED_VOLT, 0x3e }, { DRV260X_OD_CLAMP_VOLT, 0x8c }, { DRV260X_CAL_COMP, 0x0c }, { DRV260X_CAL_BACK_EMF, 0x6c }, { DRV260X_FEEDBACK_CTRL, 0x36 }, { DRV260X_CTRL1, 0x93 }, { DRV260X_CTRL2, 0xfa }, { DRV260X_CTRL3, 0xa0 }, { DRV260X_CTRL4, 0x20 }, { DRV260X_CTRL5, 0x80 }, { DRV260X_LRA_LOOP_PERIOD, 0x33 }, { DRV260X_VBAT_MON, 0x00 }, { DRV260X_LRA_RES_PERIOD, 0x00 }, }; #define DRV260X_DEF_RATED_VOLT 0x90 #define DRV260X_DEF_OD_CLAMP_VOLT 0x90 /* * Rated and Overdriver Voltages: * Calculated using the formula r = v * 255 / 5.6 * where r is what will be written to the register * and v is the rated or overdriver voltage of the actuator */ static int drv260x_calculate_voltage(unsigned int voltage) { return (voltage * 255 / 5600); } static void drv260x_worker(struct work_struct *work) { struct drv260x_data *haptics = container_of(work, struct drv260x_data, work); int error; gpiod_set_value(haptics->enable_gpio, 1); /* Data sheet says to wait 250us before trying to communicate */ udelay(250); error = regmap_write(haptics->regmap, DRV260X_MODE, DRV260X_RT_PLAYBACK); if (error) { dev_err(&haptics->client->dev, "Failed to write set mode: %d\n", error); } else { error = regmap_write(haptics->regmap, DRV260X_RT_PB_IN, haptics->magnitude); if (error) dev_err(&haptics->client->dev, "Failed to set magnitude: %d\n", error); } } static int drv260x_haptics_play(struct input_dev *input, void *data, struct ff_effect *effect) { struct drv260x_data *haptics = input_get_drvdata(input); haptics->mode = DRV260X_LRA_NO_CAL_MODE; if (effect->u.rumble.strong_magnitude > 0) haptics->magnitude = effect->u.rumble.strong_magnitude; else if (effect->u.rumble.weak_magnitude > 0) haptics->magnitude = effect->u.rumble.weak_magnitude; else haptics->magnitude = 0; schedule_work(&haptics->work); return 0; } static void drv260x_close(struct input_dev *input) { struct drv260x_data *haptics = input_get_drvdata(input); int error; cancel_work_sync(&haptics->work); error = regmap_write(haptics->regmap, DRV260X_MODE, DRV260X_STANDBY); if (error) dev_err(&haptics->client->dev, "Failed to enter standby mode: %d\n", error); gpiod_set_value(haptics->enable_gpio, 0); } static const struct reg_sequence drv260x_lra_cal_regs[] = { { DRV260X_MODE, DRV260X_AUTO_CAL }, { DRV260X_CTRL3, DRV260X_NG_THRESH_2 }, { DRV260X_FEEDBACK_CTRL, DRV260X_FB_REG_LRA_MODE | DRV260X_BRAKE_FACTOR_4X | DRV260X_LOOP_GAIN_HIGH }, }; static const struct reg_sequence drv260x_lra_init_regs[] = { { DRV260X_MODE, DRV260X_RT_PLAYBACK }, { DRV260X_A_TO_V_CTRL, DRV260X_AUDIO_HAPTICS_PEAK_20MS | DRV260X_AUDIO_HAPTICS_FILTER_125HZ }, { DRV260X_A_TO_V_MIN_INPUT, DRV260X_AUDIO_HAPTICS_MIN_IN_VOLT }, { DRV260X_A_TO_V_MAX_INPUT, DRV260X_AUDIO_HAPTICS_MAX_IN_VOLT }, { DRV260X_A_TO_V_MIN_OUT, DRV260X_AUDIO_HAPTICS_MIN_OUT_VOLT }, { DRV260X_A_TO_V_MAX_OUT, DRV260X_AUDIO_HAPTICS_MAX_OUT_VOLT }, { DRV260X_FEEDBACK_CTRL, DRV260X_FB_REG_LRA_MODE | DRV260X_BRAKE_FACTOR_2X | DRV260X_LOOP_GAIN_MED | DRV260X_BEMF_GAIN_3 }, { DRV260X_CTRL1, DRV260X_STARTUP_BOOST }, { DRV260X_CTRL2, DRV260X_SAMP_TIME_250 }, { DRV260X_CTRL3, DRV260X_NG_THRESH_2 | DRV260X_ANANLOG_IN }, { DRV260X_CTRL4, DRV260X_AUTOCAL_TIME_500MS }, }; static const struct reg_sequence drv260x_erm_cal_regs[] = { { DRV260X_MODE, DRV260X_AUTO_CAL }, { DRV260X_A_TO_V_MIN_INPUT, DRV260X_AUDIO_HAPTICS_MIN_IN_VOLT }, { DRV260X_A_TO_V_MAX_INPUT, DRV260X_AUDIO_HAPTICS_MAX_IN_VOLT }, { DRV260X_A_TO_V_MIN_OUT, DRV260X_AUDIO_HAPTICS_MIN_OUT_VOLT }, { DRV260X_A_TO_V_MAX_OUT, DRV260X_AUDIO_HAPTICS_MAX_OUT_VOLT }, { DRV260X_FEEDBACK_CTRL, DRV260X_BRAKE_FACTOR_3X | DRV260X_LOOP_GAIN_MED | DRV260X_BEMF_GAIN_2 }, { DRV260X_CTRL1, DRV260X_STARTUP_BOOST }, { DRV260X_CTRL2, DRV260X_SAMP_TIME_250 | DRV260X_BLANK_TIME_75 | DRV260X_IDISS_TIME_75 }, { DRV260X_CTRL3, DRV260X_NG_THRESH_2 | DRV260X_ERM_OPEN_LOOP }, { DRV260X_CTRL4, DRV260X_AUTOCAL_TIME_500MS }, }; static int drv260x_init(struct drv260x_data *haptics) { int error; unsigned int cal_buf; error = regmap_write(haptics->regmap, DRV260X_RATED_VOLT, haptics->rated_voltage); if (error) { dev_err(&haptics->client->dev, "Failed to write DRV260X_RATED_VOLT register: %d\n", error); return error; } error = regmap_write(haptics->regmap, DRV260X_OD_CLAMP_VOLT, haptics->overdrive_voltage); if (error) { dev_err(&haptics->client->dev, "Failed to write DRV260X_OD_CLAMP_VOLT register: %d\n", error); return error; } switch (haptics->mode) { case DRV260X_LRA_MODE: error = regmap_register_patch(haptics->regmap, drv260x_lra_cal_regs, ARRAY_SIZE(drv260x_lra_cal_regs)); if (error) { dev_err(&haptics->client->dev, "Failed to write LRA calibration registers: %d\n", error); return error; } break; case DRV260X_ERM_MODE: error = regmap_register_patch(haptics->regmap, drv260x_erm_cal_regs, ARRAY_SIZE(drv260x_erm_cal_regs)); if (error) { dev_err(&haptics->client->dev, "Failed to write ERM calibration registers: %d\n", error); return error; } error = regmap_update_bits(haptics->regmap, DRV260X_LIB_SEL, DRV260X_LIB_SEL_MASK, haptics->library); if (error) { dev_err(&haptics->client->dev, "Failed to write DRV260X_LIB_SEL register: %d\n", error); return error; } break; default: error = regmap_register_patch(haptics->regmap, drv260x_lra_init_regs, ARRAY_SIZE(drv260x_lra_init_regs)); if (error) { dev_err(&haptics->client->dev, "Failed to write LRA init registers: %d\n", error); return error; } error = regmap_update_bits(haptics->regmap, DRV260X_LIB_SEL, DRV260X_LIB_SEL_MASK, haptics->library); if (error) { dev_err(&haptics->client->dev, "Failed to write DRV260X_LIB_SEL register: %d\n", error); return error; } /* No need to set GO bit here */ return 0; } error = regmap_write(haptics->regmap, DRV260X_GO, DRV260X_GO_BIT); if (error) { dev_err(&haptics->client->dev, "Failed to write GO register: %d\n", error); return error; } do { error = regmap_read(haptics->regmap, DRV260X_GO, &cal_buf); if (error) { dev_err(&haptics->client->dev, "Failed to read GO register: %d\n", error); return error; } } while (cal_buf == DRV260X_GO_BIT); return 0; } static const struct regmap_config drv260x_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = DRV260X_MAX_REG, .reg_defaults = drv260x_reg_defs, .num_reg_defaults = ARRAY_SIZE(drv260x_reg_defs), .cache_type = REGCACHE_NONE, }; static int drv260x_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device *dev = &client->dev; struct drv260x_data *haptics; u32 voltage; int error; haptics = devm_kzalloc(dev, sizeof(*haptics), GFP_KERNEL); if (!haptics) return -ENOMEM; error = device_property_read_u32(dev, "mode", &haptics->mode); if (error) { dev_err(dev, "Can't fetch 'mode' property: %d\n", error); return error; } if (haptics->mode < DRV260X_LRA_MODE || haptics->mode > DRV260X_ERM_MODE) { dev_err(dev, "Vibrator mode is invalid: %i\n", haptics->mode); return -EINVAL; } error = device_property_read_u32(dev, "library-sel", &haptics->library); if (error) { dev_err(dev, "Can't fetch 'library-sel' property: %d\n", error); return error; } if (haptics->library < DRV260X_LIB_EMPTY || haptics->library > DRV260X_ERM_LIB_F) { dev_err(dev, "Library value is invalid: %i\n", haptics->library); return -EINVAL; } if (haptics->mode == DRV260X_LRA_MODE && haptics->library != DRV260X_LIB_EMPTY && haptics->library != DRV260X_LIB_LRA) { dev_err(dev, "LRA Mode with ERM Library mismatch\n"); return -EINVAL; } if (haptics->mode == DRV260X_ERM_MODE && (haptics->library == DRV260X_LIB_EMPTY || haptics->library == DRV260X_LIB_LRA)) { dev_err(dev, "ERM Mode with LRA Library mismatch\n"); return -EINVAL; } error = device_property_read_u32(dev, "vib-rated-mv", &voltage); haptics->rated_voltage = error ? DRV260X_DEF_RATED_VOLT : drv260x_calculate_voltage(voltage); error = device_property_read_u32(dev, "vib-overdrive-mv", &voltage); haptics->overdrive_voltage = error ? DRV260X_DEF_OD_CLAMP_VOLT : drv260x_calculate_voltage(voltage); haptics->regulator = devm_regulator_get(dev, "vbat"); if (IS_ERR(haptics->regulator)) { error = PTR_ERR(haptics->regulator); dev_err(dev, "unable to get regulator, error: %d\n", error); return error; } haptics->enable_gpio = devm_gpiod_get_optional(dev, "enable", GPIOD_OUT_HIGH); if (IS_ERR(haptics->enable_gpio)) return PTR_ERR(haptics->enable_gpio); haptics->input_dev = devm_input_allocate_device(dev); if (!haptics->input_dev) { dev_err(dev, "Failed to allocate input device\n"); return -ENOMEM; } haptics->input_dev->name = "drv260x:haptics"; haptics->input_dev->close = drv260x_close; input_set_drvdata(haptics->input_dev, haptics); input_set_capability(haptics->input_dev, EV_FF, FF_RUMBLE); error = input_ff_create_memless(haptics->input_dev, NULL, drv260x_haptics_play); if (error) { dev_err(dev, "input_ff_create() failed: %d\n", error); return error; } INIT_WORK(&haptics->work, drv260x_worker); haptics->client = client; i2c_set_clientdata(client, haptics); haptics->regmap = devm_regmap_init_i2c(client, &drv260x_regmap_config); if (IS_ERR(haptics->regmap)) { error = PTR_ERR(haptics->regmap); dev_err(dev, "Failed to allocate register map: %d\n", error); return error; } error = drv260x_init(haptics); if (error) { dev_err(dev, "Device init failed: %d\n", error); return error; } error = input_register_device(haptics->input_dev); if (error) { dev_err(dev, "couldn't register input device: %d\n", error); return error; } return 0; } static int __maybe_unused drv260x_suspend(struct device *dev) { struct drv260x_data *haptics = dev_get_drvdata(dev); int ret = 0; mutex_lock(&haptics->input_dev->mutex); if (haptics->input_dev->users) { ret = regmap_update_bits(haptics->regmap, DRV260X_MODE, DRV260X_STANDBY_MASK, DRV260X_STANDBY); if (ret) { dev_err(dev, "Failed to set standby mode\n"); goto out; } gpiod_set_value(haptics->enable_gpio, 0); ret = regulator_disable(haptics->regulator); if (ret) { dev_err(dev, "Failed to disable regulator\n"); regmap_update_bits(haptics->regmap, DRV260X_MODE, DRV260X_STANDBY_MASK, 0); } } out: mutex_unlock(&haptics->input_dev->mutex); return ret; } static int __maybe_unused drv260x_resume(struct device *dev) { struct drv260x_data *haptics = dev_get_drvdata(dev); int ret = 0; mutex_lock(&haptics->input_dev->mutex); if (haptics->input_dev->users) { ret = regulator_enable(haptics->regulator); if (ret) { dev_err(dev, "Failed to enable regulator\n"); goto out; } ret = regmap_update_bits(haptics->regmap, DRV260X_MODE, DRV260X_STANDBY_MASK, 0); if (ret) { dev_err(dev, "Failed to unset standby mode\n"); regulator_disable(haptics->regulator); goto out; } gpiod_set_value(haptics->enable_gpio, 1); } out: mutex_unlock(&haptics->input_dev->mutex); return ret; } static SIMPLE_DEV_PM_OPS(drv260x_pm_ops, drv260x_suspend, drv260x_resume); static const struct i2c_device_id drv260x_id[] = { { "drv2605l", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, drv260x_id); static const struct of_device_id drv260x_of_match[] = { { .compatible = "ti,drv2604", }, { .compatible = "ti,drv2604l", }, { .compatible = "ti,drv2605", }, { .compatible = "ti,drv2605l", }, { } }; MODULE_DEVICE_TABLE(of, drv260x_of_match); static struct i2c_driver drv260x_driver = { .probe = drv260x_probe, .driver = { .name = "drv260x-haptics", .of_match_table = drv260x_of_match, .pm = &drv260x_pm_ops, }, .id_table = drv260x_id, }; module_i2c_driver(drv260x_driver); MODULE_DESCRIPTION("TI DRV260x haptics driver"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Dan Murphy ");