/* * HP i8042 SDC + MSM-58321 BBRTC driver. * * Copyright (c) 2001 Brian S. Julin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL"). * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * * References: * System Device Controller Microprocessor Firmware Theory of Operation * for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2 * efirtc.c by Stephane Eranian/Hewlett Packard * */ #include <linux/hp_sdc.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/init.h> #include <linux/module.h> #include <linux/time.h> #include <linux/miscdevice.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/poll.h> #include <linux/rtc.h> #include <linux/mutex.h> #include <linux/semaphore.h> MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>"); MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver"); MODULE_LICENSE("Dual BSD/GPL"); #define RTC_VERSION "1.10d" static unsigned long epoch = 2000; static struct semaphore i8042tregs; static void hp_sdc_rtc_isr (int irq, void *dev_id, uint8_t status, uint8_t data) { return; } static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm) { struct semaphore tsem; hp_sdc_transaction t; uint8_t tseq[91]; int i; i = 0; while (i < 91) { tseq[i++] = HP_SDC_ACT_DATAREG | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN; tseq[i++] = 0x01; /* write i8042[0x70] */ tseq[i] = i / 7; /* BBRTC reg address */ i++; tseq[i++] = HP_SDC_CMD_DO_RTCR; /* Trigger command */ tseq[i++] = 2; /* expect 1 stat/dat pair back. */ i++; i++; /* buffer for stat/dat pair */ } tseq[84] |= HP_SDC_ACT_SEMAPHORE; t.endidx = 91; t.seq = tseq; t.act.semaphore = &tsem; sema_init(&tsem, 0); if (hp_sdc_enqueue_transaction(&t)) return -1; /* Put ourselves to sleep for results. */ if (WARN_ON(down_interruptible(&tsem))) return -1; /* Check for nonpresence of BBRTC */ if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] | tseq[55] | tseq[62] | tseq[34] | tseq[41] | tseq[20] | tseq[27] | tseq[6] | tseq[13]) & 0x0f)) return -1; memset(rtctm, 0, sizeof(struct rtc_time)); rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10; rtctm->tm_mon = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10; rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10; rtctm->tm_wday = (tseq[48] & 0x0f); rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10; rtctm->tm_min = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10; rtctm->tm_sec = (tseq[6] & 0x0f) + (tseq[13] & 0x0f) * 10; return 0; } static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm) { struct rtc_time tm, tm_last; int i = 0; /* MSM-58321 has no read latch, so must read twice and compare. */ if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1; if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1; while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) { if (i++ > 4) return -1; memcpy(&tm_last, &tm, sizeof(struct rtc_time)); if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1; } memcpy(rtctm, &tm, sizeof(struct rtc_time)); return 0; } static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg) { hp_sdc_transaction t; uint8_t tseq[26] = { HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 0, HP_SDC_CMD_READ_T1, 2, 0, 0, HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, HP_SDC_CMD_READ_T2, 2, 0, 0, HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, HP_SDC_CMD_READ_T3, 2, 0, 0, HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, HP_SDC_CMD_READ_T4, 2, 0, 0, HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, HP_SDC_CMD_READ_T5, 2, 0, 0 }; t.endidx = numreg * 5; tseq[1] = loadcmd; tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */ t.seq = tseq; t.act.semaphore = &i8042tregs; /* Sleep if output regs in use. */ if (WARN_ON(down_interruptible(&i8042tregs))) return -1; if (hp_sdc_enqueue_transaction(&t)) { up(&i8042tregs); return -1; } /* Sleep until results come back. */ if (WARN_ON(down_interruptible(&i8042tregs))) return -1; up(&i8042tregs); return (tseq[5] | ((uint64_t)(tseq[10]) << 8) | ((uint64_t)(tseq[15]) << 16) | ((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32)); } /* Read the i8042 real-time clock */ static inline int hp_sdc_rtc_read_rt(struct timespec64 *res) { int64_t raw; uint32_t tenms; unsigned int days; raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5); if (raw < 0) return -1; tenms = (uint32_t)raw & 0xffffff; days = (unsigned int)(raw >> 24) & 0xffff; res->tv_nsec = (long)(tenms % 100) * 10000 * 1000; res->tv_sec = (tenms / 100) + (time64_t)days * 86400; return 0; } /* Read the i8042 fast handshake timer */ static inline int hp_sdc_rtc_read_fhs(struct timespec64 *res) { int64_t raw; unsigned int tenms; raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2); if (raw < 0) return -1; tenms = (unsigned int)raw & 0xffff; res->tv_nsec = (long)(tenms % 100) * 10000 * 1000; res->tv_sec = (time64_t)(tenms / 100); return 0; } /* Read the i8042 match timer (a.k.a. alarm) */ static inline int hp_sdc_rtc_read_mt(struct timespec64 *res) { int64_t raw; uint32_t tenms; raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3); if (raw < 0) return -1; tenms = (uint32_t)raw & 0xffffff; res->tv_nsec = (long)(tenms % 100) * 10000 * 1000; res->tv_sec = (time64_t)(tenms / 100); return 0; } /* Read the i8042 delay timer */ static inline int hp_sdc_rtc_read_dt(struct timespec64 *res) { int64_t raw; uint32_t tenms; raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3); if (raw < 0) return -1; tenms = (uint32_t)raw & 0xffffff; res->tv_nsec = (long)(tenms % 100) * 10000 * 1000; res->tv_sec = (time64_t)(tenms / 100); return 0; } /* Read the i8042 cycle timer (a.k.a. periodic) */ static inline int hp_sdc_rtc_read_ct(struct timespec64 *res) { int64_t raw; uint32_t tenms; raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3); if (raw < 0) return -1; tenms = (uint32_t)raw & 0xffffff; res->tv_nsec = (long)(tenms % 100) * 10000 * 1000; res->tv_sec = (time64_t)(tenms / 100); return 0; } static int hp_sdc_rtc_proc_show(struct seq_file *m, void *v) { #define YN(bit) ("no") #define NY(bit) ("yes") struct rtc_time tm; struct timespec64 tv; memset(&tm, 0, sizeof(struct rtc_time)); if (hp_sdc_rtc_read_bbrtc(&tm)) { seq_puts(m, "BBRTC\t\t: READ FAILED!\n"); } else { seq_printf(m, "rtc_time\t: %ptRt\n" "rtc_date\t: %ptRd\n" "rtc_epoch\t: %04lu\n", &tm, &tm, epoch); } if (hp_sdc_rtc_read_rt(&tv)) { seq_puts(m, "i8042 rtc\t: READ FAILED!\n"); } else { seq_printf(m, "i8042 rtc\t: %lld.%02ld seconds\n", (s64)tv.tv_sec, (long)tv.tv_nsec/1000000L); } if (hp_sdc_rtc_read_fhs(&tv)) { seq_puts(m, "handshake\t: READ FAILED!\n"); } else { seq_printf(m, "handshake\t: %lld.%02ld seconds\n", (s64)tv.tv_sec, (long)tv.tv_nsec/1000000L); } if (hp_sdc_rtc_read_mt(&tv)) { seq_puts(m, "alarm\t\t: READ FAILED!\n"); } else { seq_printf(m, "alarm\t\t: %lld.%02ld seconds\n", (s64)tv.tv_sec, (long)tv.tv_nsec/1000000L); } if (hp_sdc_rtc_read_dt(&tv)) { seq_puts(m, "delay\t\t: READ FAILED!\n"); } else { seq_printf(m, "delay\t\t: %lld.%02ld seconds\n", (s64)tv.tv_sec, (long)tv.tv_nsec/1000000L); } if (hp_sdc_rtc_read_ct(&tv)) { seq_puts(m, "periodic\t: READ FAILED!\n"); } else { seq_printf(m, "periodic\t: %lld.%02ld seconds\n", (s64)tv.tv_sec, (long)tv.tv_nsec/1000000L); } seq_printf(m, "DST_enable\t: %s\n" "BCD\t\t: %s\n" "24hr\t\t: %s\n" "square_wave\t: %s\n" "alarm_IRQ\t: %s\n" "update_IRQ\t: %s\n" "periodic_IRQ\t: %s\n" "periodic_freq\t: %ld\n" "batt_status\t: %s\n", YN(RTC_DST_EN), NY(RTC_DM_BINARY), YN(RTC_24H), YN(RTC_SQWE), YN(RTC_AIE), YN(RTC_UIE), YN(RTC_PIE), 1UL, 1 ? "okay" : "dead"); return 0; #undef YN #undef NY } static int __init hp_sdc_rtc_init(void) { int ret; #ifdef __mc68000__ if (!MACH_IS_HP300) return -ENODEV; #endif sema_init(&i8042tregs, 1); if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr))) return ret; proc_create_single("driver/rtc", 0, NULL, hp_sdc_rtc_proc_show); printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded " "(RTC v " RTC_VERSION ")\n"); return 0; } static void __exit hp_sdc_rtc_exit(void) { remove_proc_entry ("driver/rtc", NULL); hp_sdc_release_timer_irq(hp_sdc_rtc_isr); printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n"); } module_init(hp_sdc_rtc_init); module_exit(hp_sdc_rtc_exit);