/* * Atmel maXTouch Touchscreen driver * * Copyright (C) 2010 Samsung Electronics Co.Ltd * Copyright (C) 2011-2014 Atmel Corporation * Copyright (C) 2012 Google, Inc. * * Author: Joonyoung Shim * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Firmware files */ #define MXT_FW_NAME "maxtouch.fw" #define MXT_CFG_NAME "maxtouch.cfg" #define MXT_CFG_MAGIC "OBP_RAW V1" /* Registers */ #define MXT_OBJECT_START 0x07 #define MXT_OBJECT_SIZE 6 #define MXT_INFO_CHECKSUM_SIZE 3 #define MXT_MAX_BLOCK_WRITE 256 /* Object types */ #define MXT_DEBUG_DIAGNOSTIC_T37 37 #define MXT_GEN_MESSAGE_T5 5 #define MXT_GEN_COMMAND_T6 6 #define MXT_GEN_POWER_T7 7 #define MXT_GEN_ACQUIRE_T8 8 #define MXT_GEN_DATASOURCE_T53 53 #define MXT_TOUCH_MULTI_T9 9 #define MXT_TOUCH_KEYARRAY_T15 15 #define MXT_TOUCH_PROXIMITY_T23 23 #define MXT_TOUCH_PROXKEY_T52 52 #define MXT_PROCI_GRIPFACE_T20 20 #define MXT_PROCG_NOISE_T22 22 #define MXT_PROCI_ONETOUCH_T24 24 #define MXT_PROCI_TWOTOUCH_T27 27 #define MXT_PROCI_GRIP_T40 40 #define MXT_PROCI_PALM_T41 41 #define MXT_PROCI_TOUCHSUPPRESSION_T42 42 #define MXT_PROCI_STYLUS_T47 47 #define MXT_PROCG_NOISESUPPRESSION_T48 48 #define MXT_SPT_COMMSCONFIG_T18 18 #define MXT_SPT_GPIOPWM_T19 19 #define MXT_SPT_SELFTEST_T25 25 #define MXT_SPT_CTECONFIG_T28 28 #define MXT_SPT_USERDATA_T38 38 #define MXT_SPT_DIGITIZER_T43 43 #define MXT_SPT_MESSAGECOUNT_T44 44 #define MXT_SPT_CTECONFIG_T46 46 #define MXT_TOUCH_MULTITOUCHSCREEN_T100 100 /* MXT_GEN_MESSAGE_T5 object */ #define MXT_RPTID_NOMSG 0xff /* MXT_GEN_COMMAND_T6 field */ #define MXT_COMMAND_RESET 0 #define MXT_COMMAND_BACKUPNV 1 #define MXT_COMMAND_CALIBRATE 2 #define MXT_COMMAND_REPORTALL 3 #define MXT_COMMAND_DIAGNOSTIC 5 /* Define for T6 status byte */ #define MXT_T6_STATUS_RESET (1 << 7) #define MXT_T6_STATUS_OFL (1 << 6) #define MXT_T6_STATUS_SIGERR (1 << 5) #define MXT_T6_STATUS_CAL (1 << 4) #define MXT_T6_STATUS_CFGERR (1 << 3) #define MXT_T6_STATUS_COMSERR (1 << 2) /* MXT_GEN_POWER_T7 field */ struct t7_config { u8 idle; u8 active; } __packed; #define MXT_POWER_CFG_RUN 0 #define MXT_POWER_CFG_DEEPSLEEP 1 /* MXT_TOUCH_MULTI_T9 field */ #define MXT_T9_CTRL 0 #define MXT_T9_ORIENT 9 #define MXT_T9_RANGE 18 /* MXT_TOUCH_MULTI_T9 status */ #define MXT_T9_UNGRIP (1 << 0) #define MXT_T9_SUPPRESS (1 << 1) #define MXT_T9_AMP (1 << 2) #define MXT_T9_VECTOR (1 << 3) #define MXT_T9_MOVE (1 << 4) #define MXT_T9_RELEASE (1 << 5) #define MXT_T9_PRESS (1 << 6) #define MXT_T9_DETECT (1 << 7) struct t9_range { __le16 x; __le16 y; } __packed; /* MXT_TOUCH_MULTI_T9 orient */ #define MXT_T9_ORIENT_SWITCH (1 << 0) /* MXT_SPT_COMMSCONFIG_T18 */ #define MXT_COMMS_CTRL 0 #define MXT_COMMS_CMD 1 /* Define for MXT_GEN_COMMAND_T6 */ #define MXT_BOOT_VALUE 0xa5 #define MXT_RESET_VALUE 0x01 #define MXT_BACKUP_VALUE 0x55 /* T100 Multiple Touch Touchscreen */ #define MXT_T100_CTRL 0 #define MXT_T100_CFG1 1 #define MXT_T100_TCHAUX 3 #define MXT_T100_XRANGE 13 #define MXT_T100_YRANGE 24 #define MXT_T100_CFG_SWITCHXY BIT(5) #define MXT_T100_TCHAUX_VECT BIT(0) #define MXT_T100_TCHAUX_AMPL BIT(1) #define MXT_T100_TCHAUX_AREA BIT(2) #define MXT_T100_DETECT BIT(7) #define MXT_T100_TYPE_MASK 0x70 enum t100_type { MXT_T100_TYPE_FINGER = 1, MXT_T100_TYPE_PASSIVE_STYLUS = 2, MXT_T100_TYPE_HOVERING_FINGER = 4, MXT_T100_TYPE_GLOVE = 5, MXT_T100_TYPE_LARGE_TOUCH = 6, }; #define MXT_DISTANCE_ACTIVE_TOUCH 0 #define MXT_DISTANCE_HOVERING 1 #define MXT_TOUCH_MAJOR_DEFAULT 1 #define MXT_PRESSURE_DEFAULT 1 /* Delay times */ #define MXT_BACKUP_TIME 50 /* msec */ #define MXT_RESET_TIME 200 /* msec */ #define MXT_RESET_TIMEOUT 3000 /* msec */ #define MXT_CRC_TIMEOUT 1000 /* msec */ #define MXT_FW_RESET_TIME 3000 /* msec */ #define MXT_FW_CHG_TIMEOUT 300 /* msec */ /* Command to unlock bootloader */ #define MXT_UNLOCK_CMD_MSB 0xaa #define MXT_UNLOCK_CMD_LSB 0xdc /* Bootloader mode status */ #define MXT_WAITING_BOOTLOAD_CMD 0xc0 /* valid 7 6 bit only */ #define MXT_WAITING_FRAME_DATA 0x80 /* valid 7 6 bit only */ #define MXT_FRAME_CRC_CHECK 0x02 #define MXT_FRAME_CRC_FAIL 0x03 #define MXT_FRAME_CRC_PASS 0x04 #define MXT_APP_CRC_FAIL 0x40 /* valid 7 8 bit only */ #define MXT_BOOT_STATUS_MASK 0x3f #define MXT_BOOT_EXTENDED_ID (1 << 5) #define MXT_BOOT_ID_MASK 0x1f /* Touchscreen absolute values */ #define MXT_MAX_AREA 0xff #define MXT_PIXELS_PER_MM 20 struct mxt_info { u8 family_id; u8 variant_id; u8 version; u8 build; u8 matrix_xsize; u8 matrix_ysize; u8 object_num; }; struct mxt_object { u8 type; u16 start_address; u8 size_minus_one; u8 instances_minus_one; u8 num_report_ids; } __packed; /* Each client has this additional data */ struct mxt_data { struct i2c_client *client; struct input_dev *input_dev; char phys[64]; /* device physical location */ const struct mxt_platform_data *pdata; struct mxt_object *object_table; struct mxt_info info; unsigned int irq; unsigned int max_x; unsigned int max_y; bool xy_switch; bool in_bootloader; u16 mem_size; u8 t100_aux_ampl; u8 t100_aux_area; u8 t100_aux_vect; u8 max_reportid; u32 config_crc; u32 info_crc; u8 bootloader_addr; u8 *msg_buf; u8 t6_status; bool update_input; u8 last_message_count; u8 num_touchids; u8 multitouch; struct t7_config t7_cfg; /* Cached parameters from object table */ u16 T5_address; u8 T5_msg_size; u8 T6_reportid; u16 T6_address; u16 T7_address; u8 T9_reportid_min; u8 T9_reportid_max; u8 T19_reportid; u16 T44_address; u8 T100_reportid_min; u8 T100_reportid_max; /* for fw update in bootloader */ struct completion bl_completion; /* for reset handling */ struct completion reset_completion; /* for config update handling */ struct completion crc_completion; }; static size_t mxt_obj_size(const struct mxt_object *obj) { return obj->size_minus_one + 1; } static size_t mxt_obj_instances(const struct mxt_object *obj) { return obj->instances_minus_one + 1; } static bool mxt_object_readable(unsigned int type) { switch (type) { case MXT_GEN_COMMAND_T6: case MXT_GEN_POWER_T7: case MXT_GEN_ACQUIRE_T8: case MXT_GEN_DATASOURCE_T53: case MXT_TOUCH_MULTI_T9: case MXT_TOUCH_KEYARRAY_T15: case MXT_TOUCH_PROXIMITY_T23: case MXT_TOUCH_PROXKEY_T52: case MXT_PROCI_GRIPFACE_T20: case MXT_PROCG_NOISE_T22: case MXT_PROCI_ONETOUCH_T24: case MXT_PROCI_TWOTOUCH_T27: case MXT_PROCI_GRIP_T40: case MXT_PROCI_PALM_T41: case MXT_PROCI_TOUCHSUPPRESSION_T42: case MXT_PROCI_STYLUS_T47: case MXT_PROCG_NOISESUPPRESSION_T48: case MXT_SPT_COMMSCONFIG_T18: case MXT_SPT_GPIOPWM_T19: case MXT_SPT_SELFTEST_T25: case MXT_SPT_CTECONFIG_T28: case MXT_SPT_USERDATA_T38: case MXT_SPT_DIGITIZER_T43: case MXT_SPT_CTECONFIG_T46: return true; default: return false; } } static void mxt_dump_message(struct mxt_data *data, u8 *message) { dev_dbg(&data->client->dev, "message: %*ph\n", data->T5_msg_size, message); } static int mxt_wait_for_completion(struct mxt_data *data, struct completion *comp, unsigned int timeout_ms) { struct device *dev = &data->client->dev; unsigned long timeout = msecs_to_jiffies(timeout_ms); long ret; ret = wait_for_completion_interruptible_timeout(comp, timeout); if (ret < 0) { return ret; } else if (ret == 0) { dev_err(dev, "Wait for completion timed out.\n"); return -ETIMEDOUT; } return 0; } static int mxt_bootloader_read(struct mxt_data *data, u8 *val, unsigned int count) { int ret; struct i2c_msg msg; msg.addr = data->bootloader_addr; msg.flags = data->client->flags & I2C_M_TEN; msg.flags |= I2C_M_RD; msg.len = count; msg.buf = val; ret = i2c_transfer(data->client->adapter, &msg, 1); if (ret == 1) { ret = 0; } else { ret = ret < 0 ? ret : -EIO; dev_err(&data->client->dev, "%s: i2c recv failed (%d)\n", __func__, ret); } return ret; } static int mxt_bootloader_write(struct mxt_data *data, const u8 * const val, unsigned int count) { int ret; struct i2c_msg msg; msg.addr = data->bootloader_addr; msg.flags = data->client->flags & I2C_M_TEN; msg.len = count; msg.buf = (u8 *)val; ret = i2c_transfer(data->client->adapter, &msg, 1); if (ret == 1) { ret = 0; } else { ret = ret < 0 ? ret : -EIO; dev_err(&data->client->dev, "%s: i2c send failed (%d)\n", __func__, ret); } return ret; } static int mxt_lookup_bootloader_address(struct mxt_data *data, bool retry) { u8 appmode = data->client->addr; u8 bootloader; switch (appmode) { case 0x4a: case 0x4b: /* Chips after 1664S use different scheme */ if (retry || data->info.family_id >= 0xa2) { bootloader = appmode - 0x24; break; } /* Fall through for normal case */ case 0x4c: case 0x4d: case 0x5a: case 0x5b: bootloader = appmode - 0x26; break; default: dev_err(&data->client->dev, "Appmode i2c address 0x%02x not found\n", appmode); return -EINVAL; } data->bootloader_addr = bootloader; return 0; } static int mxt_probe_bootloader(struct mxt_data *data, bool alt_address) { struct device *dev = &data->client->dev; int error; u8 val; bool crc_failure; error = mxt_lookup_bootloader_address(data, alt_address); if (error) return error; error = mxt_bootloader_read(data, &val, 1); if (error) return error; /* Check app crc fail mode */ crc_failure = (val & ~MXT_BOOT_STATUS_MASK) == MXT_APP_CRC_FAIL; dev_err(dev, "Detected bootloader, status:%02X%s\n", val, crc_failure ? ", APP_CRC_FAIL" : ""); return 0; } static u8 mxt_get_bootloader_version(struct mxt_data *data, u8 val) { struct device *dev = &data->client->dev; u8 buf[3]; if (val & MXT_BOOT_EXTENDED_ID) { if (mxt_bootloader_read(data, &buf[0], 3) != 0) { dev_err(dev, "%s: i2c failure\n", __func__); return val; } dev_dbg(dev, "Bootloader ID:%d Version:%d\n", buf[1], buf[2]); return buf[0]; } else { dev_dbg(dev, "Bootloader ID:%d\n", val & MXT_BOOT_ID_MASK); return val; } } static int mxt_check_bootloader(struct mxt_data *data, unsigned int state, bool wait) { struct device *dev = &data->client->dev; u8 val; int ret; recheck: if (wait) { /* * In application update mode, the interrupt * line signals state transitions. We must wait for the * CHG assertion before reading the status byte. * Once the status byte has been read, the line is deasserted. */ ret = mxt_wait_for_completion(data, &data->bl_completion, MXT_FW_CHG_TIMEOUT); if (ret) { /* * TODO: handle -ERESTARTSYS better by terminating * fw update process before returning to userspace * by writing length 0x000 to device (iff we are in * WAITING_FRAME_DATA state). */ dev_err(dev, "Update wait error %d\n", ret); return ret; } } ret = mxt_bootloader_read(data, &val, 1); if (ret) return ret; if (state == MXT_WAITING_BOOTLOAD_CMD) val = mxt_get_bootloader_version(data, val); switch (state) { case MXT_WAITING_BOOTLOAD_CMD: case MXT_WAITING_FRAME_DATA: case MXT_APP_CRC_FAIL: val &= ~MXT_BOOT_STATUS_MASK; break; case MXT_FRAME_CRC_PASS: if (val == MXT_FRAME_CRC_CHECK) { goto recheck; } else if (val == MXT_FRAME_CRC_FAIL) { dev_err(dev, "Bootloader CRC fail\n"); return -EINVAL; } break; default: return -EINVAL; } if (val != state) { dev_err(dev, "Invalid bootloader state %02X != %02X\n", val, state); return -EINVAL; } return 0; } static int mxt_send_bootloader_cmd(struct mxt_data *data, bool unlock) { int ret; u8 buf[2]; if (unlock) { buf[0] = MXT_UNLOCK_CMD_LSB; buf[1] = MXT_UNLOCK_CMD_MSB; } else { buf[0] = 0x01; buf[1] = 0x01; } ret = mxt_bootloader_write(data, buf, 2); if (ret) return ret; return 0; } static int __mxt_read_reg(struct i2c_client *client, u16 reg, u16 len, void *val) { struct i2c_msg xfer[2]; u8 buf[2]; int ret; buf[0] = reg & 0xff; buf[1] = (reg >> 8) & 0xff; /* Write register */ xfer[0].addr = client->addr; xfer[0].flags = 0; xfer[0].len = 2; xfer[0].buf = buf; /* Read data */ xfer[1].addr = client->addr; xfer[1].flags = I2C_M_RD; xfer[1].len = len; xfer[1].buf = val; ret = i2c_transfer(client->adapter, xfer, 2); if (ret == 2) { ret = 0; } else { if (ret >= 0) ret = -EIO; dev_err(&client->dev, "%s: i2c transfer failed (%d)\n", __func__, ret); } return ret; } static int __mxt_write_reg(struct i2c_client *client, u16 reg, u16 len, const void *val) { u8 *buf; size_t count; int ret; count = len + 2; buf = kmalloc(count, GFP_KERNEL); if (!buf) return -ENOMEM; buf[0] = reg & 0xff; buf[1] = (reg >> 8) & 0xff; memcpy(&buf[2], val, len); ret = i2c_master_send(client, buf, count); if (ret == count) { ret = 0; } else { if (ret >= 0) ret = -EIO; dev_err(&client->dev, "%s: i2c send failed (%d)\n", __func__, ret); } kfree(buf); return ret; } static int mxt_write_reg(struct i2c_client *client, u16 reg, u8 val) { return __mxt_write_reg(client, reg, 1, &val); } static struct mxt_object * mxt_get_object(struct mxt_data *data, u8 type) { struct mxt_object *object; int i; for (i = 0; i < data->info.object_num; i++) { object = data->object_table + i; if (object->type == type) return object; } dev_warn(&data->client->dev, "Invalid object type T%u\n", type); return NULL; } static void mxt_proc_t6_messages(struct mxt_data *data, u8 *msg) { struct device *dev = &data->client->dev; u8 status = msg[1]; u32 crc = msg[2] | (msg[3] << 8) | (msg[4] << 16); complete(&data->crc_completion); if (crc != data->config_crc) { data->config_crc = crc; dev_dbg(dev, "T6 Config Checksum: 0x%06X\n", crc); } /* Detect reset */ if (status & MXT_T6_STATUS_RESET) complete(&data->reset_completion); /* Output debug if status has changed */ if (status != data->t6_status) dev_dbg(dev, "T6 Status 0x%02X%s%s%s%s%s%s%s\n", status, status == 0 ? " OK" : "", status & MXT_T6_STATUS_RESET ? " RESET" : "", status & MXT_T6_STATUS_OFL ? " OFL" : "", status & MXT_T6_STATUS_SIGERR ? " SIGERR" : "", status & MXT_T6_STATUS_CAL ? " CAL" : "", status & MXT_T6_STATUS_CFGERR ? " CFGERR" : "", status & MXT_T6_STATUS_COMSERR ? " COMSERR" : ""); /* Save current status */ data->t6_status = status; } static int mxt_write_object(struct mxt_data *data, u8 type, u8 offset, u8 val) { struct mxt_object *object; u16 reg; object = mxt_get_object(data, type); if (!object || offset >= mxt_obj_size(object)) return -EINVAL; reg = object->start_address; return mxt_write_reg(data->client, reg + offset, val); } static void mxt_input_button(struct mxt_data *data, u8 *message) { struct input_dev *input = data->input_dev; const struct mxt_platform_data *pdata = data->pdata; int i; for (i = 0; i < pdata->t19_num_keys; i++) { if (pdata->t19_keymap[i] == KEY_RESERVED) continue; /* Active-low switch */ input_report_key(input, pdata->t19_keymap[i], !(message[1] & BIT(i))); } } static void mxt_input_sync(struct mxt_data *data) { input_mt_report_pointer_emulation(data->input_dev, data->pdata->t19_num_keys); input_sync(data->input_dev); } static void mxt_proc_t9_message(struct mxt_data *data, u8 *message) { struct device *dev = &data->client->dev; struct input_dev *input_dev = data->input_dev; int id; u8 status; int x; int y; int area; int amplitude; id = message[0] - data->T9_reportid_min; status = message[1]; x = (message[2] << 4) | ((message[4] >> 4) & 0xf); y = (message[3] << 4) | ((message[4] & 0xf)); /* Handle 10/12 bit switching */ if (data->max_x < 1024) x >>= 2; if (data->max_y < 1024) y >>= 2; area = message[5]; amplitude = message[6]; dev_dbg(dev, "[%u] %c%c%c%c%c%c%c%c x: %5u y: %5u area: %3u amp: %3u\n", id, (status & MXT_T9_DETECT) ? 'D' : '.', (status & MXT_T9_PRESS) ? 'P' : '.', (status & MXT_T9_RELEASE) ? 'R' : '.', (status & MXT_T9_MOVE) ? 'M' : '.', (status & MXT_T9_VECTOR) ? 'V' : '.', (status & MXT_T9_AMP) ? 'A' : '.', (status & MXT_T9_SUPPRESS) ? 'S' : '.', (status & MXT_T9_UNGRIP) ? 'U' : '.', x, y, area, amplitude); input_mt_slot(input_dev, id); if (status & MXT_T9_DETECT) { /* * Multiple bits may be set if the host is slow to read * the status messages, indicating all the events that * have happened. */ if (status & MXT_T9_RELEASE) { input_mt_report_slot_state(input_dev, MT_TOOL_FINGER, 0); mxt_input_sync(data); } /* Touch active */ input_mt_report_slot_state(input_dev, MT_TOOL_FINGER, 1); input_report_abs(input_dev, ABS_MT_POSITION_X, x); input_report_abs(input_dev, ABS_MT_POSITION_Y, y); input_report_abs(input_dev, ABS_MT_PRESSURE, amplitude); input_report_abs(input_dev, ABS_MT_TOUCH_MAJOR, area); } else { /* Touch no longer active, close out slot */ input_mt_report_slot_state(input_dev, MT_TOOL_FINGER, 0); } data->update_input = true; } static void mxt_proc_t100_message(struct mxt_data *data, u8 *message) { struct device *dev = &data->client->dev; struct input_dev *input_dev = data->input_dev; int id; u8 status; u8 type = 0; u16 x; u16 y; int distance = 0; int tool = 0; u8 major = 0; u8 pressure = 0; u8 orientation = 0; id = message[0] - data->T100_reportid_min - 2; /* ignore SCRSTATUS events */ if (id < 0) return; status = message[1]; x = get_unaligned_le16(&message[2]); y = get_unaligned_le16(&message[4]); if (status & MXT_T100_DETECT) { type = (status & MXT_T100_TYPE_MASK) >> 4; switch (type) { case MXT_T100_TYPE_HOVERING_FINGER: tool = MT_TOOL_FINGER; distance = MXT_DISTANCE_HOVERING; if (data->t100_aux_vect) orientation = message[data->t100_aux_vect]; break; case MXT_T100_TYPE_FINGER: case MXT_T100_TYPE_GLOVE: tool = MT_TOOL_FINGER; distance = MXT_DISTANCE_ACTIVE_TOUCH; if (data->t100_aux_area) major = message[data->t100_aux_area]; if (data->t100_aux_ampl) pressure = message[data->t100_aux_ampl]; if (data->t100_aux_vect) orientation = message[data->t100_aux_vect]; break; case MXT_T100_TYPE_PASSIVE_STYLUS: tool = MT_TOOL_PEN; /* * Passive stylus is reported with size zero so * hardcode. */ major = MXT_TOUCH_MAJOR_DEFAULT; if (data->t100_aux_ampl) pressure = message[data->t100_aux_ampl]; break; case MXT_T100_TYPE_LARGE_TOUCH: /* Ignore suppressed touch */ break; default: dev_dbg(dev, "Unexpected T100 type\n"); return; } } /* * Values reported should be non-zero if tool is touching the * device */ if (!pressure && type != MXT_T100_TYPE_HOVERING_FINGER) pressure = MXT_PRESSURE_DEFAULT; input_mt_slot(input_dev, id); if (status & MXT_T100_DETECT) { dev_dbg(dev, "[%u] type:%u x:%u y:%u a:%02X p:%02X v:%02X\n", id, type, x, y, major, pressure, orientation); input_mt_report_slot_state(input_dev, tool, 1); input_report_abs(input_dev, ABS_MT_POSITION_X, x); input_report_abs(input_dev, ABS_MT_POSITION_Y, y); input_report_abs(input_dev, ABS_MT_TOUCH_MAJOR, major); input_report_abs(input_dev, ABS_MT_PRESSURE, pressure); input_report_abs(input_dev, ABS_MT_DISTANCE, distance); input_report_abs(input_dev, ABS_MT_ORIENTATION, orientation); } else { dev_dbg(dev, "[%u] release\n", id); /* close out slot */ input_mt_report_slot_state(input_dev, 0, 0); } data->update_input = true; } static int mxt_proc_message(struct mxt_data *data, u8 *message) { u8 report_id = message[0]; if (report_id == MXT_RPTID_NOMSG) return 0; if (report_id == data->T6_reportid) { mxt_proc_t6_messages(data, message); } else if (!data->input_dev) { /* * Do not report events if input device * is not yet registered. */ mxt_dump_message(data, message); } else if (report_id >= data->T9_reportid_min && report_id <= data->T9_reportid_max) { mxt_proc_t9_message(data, message); } else if (report_id >= data->T100_reportid_min && report_id <= data->T100_reportid_max) { mxt_proc_t100_message(data, message); } else if (report_id == data->T19_reportid) { mxt_input_button(data, message); data->update_input = true; } else { mxt_dump_message(data, message); } return 1; } static int mxt_read_and_process_messages(struct mxt_data *data, u8 count) { struct device *dev = &data->client->dev; int ret; int i; u8 num_valid = 0; /* Safety check for msg_buf */ if (count > data->max_reportid) return -EINVAL; /* Process remaining messages if necessary */ ret = __mxt_read_reg(data->client, data->T5_address, data->T5_msg_size * count, data->msg_buf); if (ret) { dev_err(dev, "Failed to read %u messages (%d)\n", count, ret); return ret; } for (i = 0; i < count; i++) { ret = mxt_proc_message(data, data->msg_buf + data->T5_msg_size * i); if (ret == 1) num_valid++; } /* return number of messages read */ return num_valid; } static irqreturn_t mxt_process_messages_t44(struct mxt_data *data) { struct device *dev = &data->client->dev; int ret; u8 count, num_left; /* Read T44 and T5 together */ ret = __mxt_read_reg(data->client, data->T44_address, data->T5_msg_size + 1, data->msg_buf); if (ret) { dev_err(dev, "Failed to read T44 and T5 (%d)\n", ret); return IRQ_NONE; } count = data->msg_buf[0]; /* * This condition may be caused by the CHG line being configured in * Mode 0. It results in unnecessary I2C operations but it is benign. */ if (count == 0) return IRQ_NONE; if (count > data->max_reportid) { dev_warn(dev, "T44 count %d exceeded max report id\n", count); count = data->max_reportid; } /* Process first message */ ret = mxt_proc_message(data, data->msg_buf + 1); if (ret < 0) { dev_warn(dev, "Unexpected invalid message\n"); return IRQ_NONE; } num_left = count - 1; /* Process remaining messages if necessary */ if (num_left) { ret = mxt_read_and_process_messages(data, num_left); if (ret < 0) goto end; else if (ret != num_left) dev_warn(dev, "Unexpected invalid message\n"); } end: if (data->update_input) { mxt_input_sync(data); data->update_input = false; } return IRQ_HANDLED; } static int mxt_process_messages_until_invalid(struct mxt_data *data) { struct device *dev = &data->client->dev; int count, read; u8 tries = 2; count = data->max_reportid; /* Read messages until we force an invalid */ do { read = mxt_read_and_process_messages(data, count); if (read < count) return 0; } while (--tries); if (data->update_input) { mxt_input_sync(data); data->update_input = false; } dev_err(dev, "CHG pin isn't cleared\n"); return -EBUSY; } static irqreturn_t mxt_process_messages(struct mxt_data *data) { int total_handled, num_handled; u8 count = data->last_message_count; if (count < 1 || count > data->max_reportid) count = 1; /* include final invalid message */ total_handled = mxt_read_and_process_messages(data, count + 1); if (total_handled < 0) return IRQ_NONE; /* if there were invalid messages, then we are done */ else if (total_handled <= count) goto update_count; /* keep reading two msgs until one is invalid or reportid limit */ do { num_handled = mxt_read_and_process_messages(data, 2); if (num_handled < 0) return IRQ_NONE; total_handled += num_handled; if (num_handled < 2) break; } while (total_handled < data->num_touchids); update_count: data->last_message_count = total_handled; if (data->update_input) { mxt_input_sync(data); data->update_input = false; } return IRQ_HANDLED; } static irqreturn_t mxt_interrupt(int irq, void *dev_id) { struct mxt_data *data = dev_id; if (data->in_bootloader) { /* bootloader state transition completion */ complete(&data->bl_completion); return IRQ_HANDLED; } if (!data->object_table) return IRQ_HANDLED; if (data->T44_address) { return mxt_process_messages_t44(data); } else { return mxt_process_messages(data); } } static int mxt_t6_command(struct mxt_data *data, u16 cmd_offset, u8 value, bool wait) { u16 reg; u8 command_register; int timeout_counter = 0; int ret; reg = data->T6_address + cmd_offset; ret = mxt_write_reg(data->client, reg, value); if (ret) return ret; if (!wait) return 0; do { msleep(20); ret = __mxt_read_reg(data->client, reg, 1, &command_register); if (ret) return ret; } while (command_register != 0 && timeout_counter++ <= 100); if (timeout_counter > 100) { dev_err(&data->client->dev, "Command failed!\n"); return -EIO; } return 0; } static int mxt_soft_reset(struct mxt_data *data) { struct device *dev = &data->client->dev; int ret = 0; dev_info(dev, "Resetting device\n"); disable_irq(data->irq); reinit_completion(&data->reset_completion); ret = mxt_t6_command(data, MXT_COMMAND_RESET, MXT_RESET_VALUE, false); if (ret) return ret; /* Ignore CHG line for 100ms after reset */ msleep(100); enable_irq(data->irq); ret = mxt_wait_for_completion(data, &data->reset_completion, MXT_RESET_TIMEOUT); if (ret) return ret; return 0; } static void mxt_update_crc(struct mxt_data *data, u8 cmd, u8 value) { /* * On failure, CRC is set to 0 and config will always be * downloaded. */ data->config_crc = 0; reinit_completion(&data->crc_completion); mxt_t6_command(data, cmd, value, true); /* * Wait for crc message. On failure, CRC is set to 0 and config will * always be downloaded. */ mxt_wait_for_completion(data, &data->crc_completion, MXT_CRC_TIMEOUT); } static void mxt_calc_crc24(u32 *crc, u8 firstbyte, u8 secondbyte) { static const unsigned int crcpoly = 0x80001B; u32 result; u32 data_word; data_word = (secondbyte << 8) | firstbyte; result = ((*crc << 1) ^ data_word); if (result & 0x1000000) result ^= crcpoly; *crc = result; } static u32 mxt_calculate_crc(u8 *base, off_t start_off, off_t end_off) { u32 crc = 0; u8 *ptr = base + start_off; u8 *last_val = base + end_off - 1; if (end_off < start_off) return -EINVAL; while (ptr < last_val) { mxt_calc_crc24(&crc, *ptr, *(ptr + 1)); ptr += 2; } /* if len is odd, fill the last byte with 0 */ if (ptr == last_val) mxt_calc_crc24(&crc, *ptr, 0); /* Mask to 24-bit */ crc &= 0x00FFFFFF; return crc; } static int mxt_prepare_cfg_mem(struct mxt_data *data, const struct firmware *cfg, unsigned int data_pos, unsigned int cfg_start_ofs, u8 *config_mem, size_t config_mem_size) { struct device *dev = &data->client->dev; struct mxt_object *object; unsigned int type, instance, size, byte_offset; int offset; int ret; int i; u16 reg; u8 val; while (data_pos < cfg->size) { /* Read type, instance, length */ ret = sscanf(cfg->data + data_pos, "%x %x %x%n", &type, &instance, &size, &offset); if (ret == 0) { /* EOF */ break; } else if (ret != 3) { dev_err(dev, "Bad format: failed to parse object\n"); return -EINVAL; } data_pos += offset; object = mxt_get_object(data, type); if (!object) { /* Skip object */ for (i = 0; i < size; i++) { ret = sscanf(cfg->data + data_pos, "%hhx%n", &val, &offset); if (ret != 1) { dev_err(dev, "Bad format in T%d at %d\n", type, i); return -EINVAL; } data_pos += offset; } continue; } if (size > mxt_obj_size(object)) { /* * Either we are in fallback mode due to wrong * config or config from a later fw version, * or the file is corrupt or hand-edited. */ dev_warn(dev, "Discarding %zu byte(s) in T%u\n", size - mxt_obj_size(object), type); } else if (mxt_obj_size(object) > size) { /* * If firmware is upgraded, new bytes may be added to * end of objects. It is generally forward compatible * to zero these bytes - previous behaviour will be * retained. However this does invalidate the CRC and * will force fallback mode until the configuration is * updated. We warn here but do nothing else - the * malloc has zeroed the entire configuration. */ dev_warn(dev, "Zeroing %zu byte(s) in T%d\n", mxt_obj_size(object) - size, type); } if (instance >= mxt_obj_instances(object)) { dev_err(dev, "Object instances exceeded!\n"); return -EINVAL; } reg = object->start_address + mxt_obj_size(object) * instance; for (i = 0; i < size; i++) { ret = sscanf(cfg->data + data_pos, "%hhx%n", &val, &offset); if (ret != 1) { dev_err(dev, "Bad format in T%d at %d\n", type, i); return -EINVAL; } data_pos += offset; if (i > mxt_obj_size(object)) continue; byte_offset = reg + i - cfg_start_ofs; if (byte_offset >= 0 && byte_offset < config_mem_size) { *(config_mem + byte_offset) = val; } else { dev_err(dev, "Bad object: reg:%d, T%d, ofs=%d\n", reg, object->type, byte_offset); return -EINVAL; } } } return 0; } static int mxt_upload_cfg_mem(struct mxt_data *data, unsigned int cfg_start, u8 *config_mem, size_t config_mem_size) { unsigned int byte_offset = 0; int error; /* Write configuration as blocks */ while (byte_offset < config_mem_size) { unsigned int size = config_mem_size - byte_offset; if (size > MXT_MAX_BLOCK_WRITE) size = MXT_MAX_BLOCK_WRITE; error = __mxt_write_reg(data->client, cfg_start + byte_offset, size, config_mem + byte_offset); if (error) { dev_err(&data->client->dev, "Config write error, ret=%d\n", error); return error; } byte_offset += size; } return 0; } static int mxt_init_t7_power_cfg(struct mxt_data *data); /* * mxt_update_cfg - download configuration to chip * * Atmel Raw Config File Format * * The first four lines of the raw config file contain: * 1) Version * 2) Chip ID Information (first 7 bytes of device memory) * 3) Chip Information Block 24-bit CRC Checksum * 4) Chip Configuration 24-bit CRC Checksum * * The rest of the file consists of one line per object instance: * * * - 2-byte object type as hex * - 2-byte object instance number as hex * - 2-byte object size as hex * - array of 1-byte hex values */ static int mxt_update_cfg(struct mxt_data *data, const struct firmware *cfg) { struct device *dev = &data->client->dev; struct mxt_info cfg_info; int ret; int offset; int data_pos; int i; int cfg_start_ofs; u32 info_crc, config_crc, calculated_crc; u8 *config_mem; size_t config_mem_size; mxt_update_crc(data, MXT_COMMAND_REPORTALL, 1); if (strncmp(cfg->data, MXT_CFG_MAGIC, strlen(MXT_CFG_MAGIC))) { dev_err(dev, "Unrecognised config file\n"); return -EINVAL; } data_pos = strlen(MXT_CFG_MAGIC); /* Load information block and check */ for (i = 0; i < sizeof(struct mxt_info); i++) { ret = sscanf(cfg->data + data_pos, "%hhx%n", (unsigned char *)&cfg_info + i, &offset); if (ret != 1) { dev_err(dev, "Bad format\n"); return -EINVAL; } data_pos += offset; } if (cfg_info.family_id != data->info.family_id) { dev_err(dev, "Family ID mismatch!\n"); return -EINVAL; } if (cfg_info.variant_id != data->info.variant_id) { dev_err(dev, "Variant ID mismatch!\n"); return -EINVAL; } /* Read CRCs */ ret = sscanf(cfg->data + data_pos, "%x%n", &info_crc, &offset); if (ret != 1) { dev_err(dev, "Bad format: failed to parse Info CRC\n"); return -EINVAL; } data_pos += offset; ret = sscanf(cfg->data + data_pos, "%x%n", &config_crc, &offset); if (ret != 1) { dev_err(dev, "Bad format: failed to parse Config CRC\n"); return -EINVAL; } data_pos += offset; /* * The Info Block CRC is calculated over mxt_info and the object * table. If it does not match then we are trying to load the * configuration from a different chip or firmware version, so * the configuration CRC is invalid anyway. */ if (info_crc == data->info_crc) { if (config_crc == 0 || data->config_crc == 0) { dev_info(dev, "CRC zero, attempting to apply config\n"); } else if (config_crc == data->config_crc) { dev_dbg(dev, "Config CRC 0x%06X: OK\n", data->config_crc); return 0; } else { dev_info(dev, "Config CRC 0x%06X: does not match file 0x%06X\n", data->config_crc, config_crc); } } else { dev_warn(dev, "Warning: Info CRC error - device=0x%06X file=0x%06X\n", data->info_crc, info_crc); } /* Malloc memory to store configuration */ cfg_start_ofs = MXT_OBJECT_START + data->info.object_num * sizeof(struct mxt_object) + MXT_INFO_CHECKSUM_SIZE; config_mem_size = data->mem_size - cfg_start_ofs; config_mem = kzalloc(config_mem_size, GFP_KERNEL); if (!config_mem) { dev_err(dev, "Failed to allocate memory\n"); return -ENOMEM; } ret = mxt_prepare_cfg_mem(data, cfg, data_pos, cfg_start_ofs, config_mem, config_mem_size); if (ret) goto release_mem; /* Calculate crc of the received configs (not the raw config file) */ if (data->T7_address < cfg_start_ofs) { dev_err(dev, "Bad T7 address, T7addr = %x, config offset %x\n", data->T7_address, cfg_start_ofs); ret = 0; goto release_mem; } calculated_crc = mxt_calculate_crc(config_mem, data->T7_address - cfg_start_ofs, config_mem_size); if (config_crc > 0 && config_crc != calculated_crc) dev_warn(dev, "Config CRC error, calculated=%06X, file=%06X\n", calculated_crc, config_crc); ret = mxt_upload_cfg_mem(data, cfg_start_ofs, config_mem, config_mem_size); if (ret) goto release_mem; mxt_update_crc(data, MXT_COMMAND_BACKUPNV, MXT_BACKUP_VALUE); ret = mxt_soft_reset(data); if (ret) goto release_mem; dev_info(dev, "Config successfully updated\n"); /* T7 config may have changed */ mxt_init_t7_power_cfg(data); release_mem: kfree(config_mem); return ret; } static int mxt_acquire_irq(struct mxt_data *data) { int error; enable_irq(data->irq); error = mxt_process_messages_until_invalid(data); if (error) return error; return 0; } static int mxt_get_info(struct mxt_data *data) { struct i2c_client *client = data->client; struct mxt_info *info = &data->info; int error; /* Read 7-byte info block starting at address 0 */ error = __mxt_read_reg(client, 0, sizeof(*info), info); if (error) return error; return 0; } static void mxt_free_input_device(struct mxt_data *data) { if (data->input_dev) { input_unregister_device(data->input_dev); data->input_dev = NULL; } } static void mxt_free_object_table(struct mxt_data *data) { kfree(data->object_table); data->object_table = NULL; kfree(data->msg_buf); data->msg_buf = NULL; data->T5_address = 0; data->T5_msg_size = 0; data->T6_reportid = 0; data->T7_address = 0; data->T9_reportid_min = 0; data->T9_reportid_max = 0; data->T19_reportid = 0; data->T44_address = 0; data->T100_reportid_min = 0; data->T100_reportid_max = 0; data->max_reportid = 0; } static int mxt_get_object_table(struct mxt_data *data) { struct i2c_client *client = data->client; size_t table_size; struct mxt_object *object_table; int error; int i; u8 reportid; u16 end_address; table_size = data->info.object_num * sizeof(struct mxt_object); object_table = kzalloc(table_size, GFP_KERNEL); if (!object_table) { dev_err(&data->client->dev, "Failed to allocate memory\n"); return -ENOMEM; } error = __mxt_read_reg(client, MXT_OBJECT_START, table_size, object_table); if (error) { kfree(object_table); return error; } /* Valid Report IDs start counting from 1 */ reportid = 1; data->mem_size = 0; for (i = 0; i < data->info.object_num; i++) { struct mxt_object *object = object_table + i; u8 min_id, max_id; le16_to_cpus(&object->start_address); if (object->num_report_ids) { min_id = reportid; reportid += object->num_report_ids * mxt_obj_instances(object); max_id = reportid - 1; } else { min_id = 0; max_id = 0; } dev_dbg(&data->client->dev, "T%u Start:%u Size:%zu Instances:%zu Report IDs:%u-%u\n", object->type, object->start_address, mxt_obj_size(object), mxt_obj_instances(object), min_id, max_id); switch (object->type) { case MXT_GEN_MESSAGE_T5: if (data->info.family_id == 0x80 && data->info.version < 0x20) { /* * On mXT224 firmware versions prior to V2.0 * read and discard unused CRC byte otherwise * DMA reads are misaligned. */ data->T5_msg_size = mxt_obj_size(object); } else { /* CRC not enabled, so skip last byte */ data->T5_msg_size = mxt_obj_size(object) - 1; } data->T5_address = object->start_address; break; case MXT_GEN_COMMAND_T6: data->T6_reportid = min_id; data->T6_address = object->start_address; break; case MXT_GEN_POWER_T7: data->T7_address = object->start_address; break; case MXT_TOUCH_MULTI_T9: data->multitouch = MXT_TOUCH_MULTI_T9; data->T9_reportid_min = min_id; data->T9_reportid_max = max_id; data->num_touchids = object->num_report_ids * mxt_obj_instances(object); break; case MXT_SPT_MESSAGECOUNT_T44: data->T44_address = object->start_address; break; case MXT_SPT_GPIOPWM_T19: data->T19_reportid = min_id; break; case MXT_TOUCH_MULTITOUCHSCREEN_T100: data->multitouch = MXT_TOUCH_MULTITOUCHSCREEN_T100; data->T100_reportid_min = min_id; data->T100_reportid_max = max_id; /* first two report IDs reserved */ data->num_touchids = object->num_report_ids - 2; break; } end_address = object->start_address + mxt_obj_size(object) * mxt_obj_instances(object) - 1; if (end_address >= data->mem_size) data->mem_size = end_address + 1; } /* Store maximum reportid */ data->max_reportid = reportid; /* If T44 exists, T5 position has to be directly after */ if (data->T44_address && (data->T5_address != data->T44_address + 1)) { dev_err(&client->dev, "Invalid T44 position\n"); error = -EINVAL; goto free_object_table; } data->msg_buf = kcalloc(data->max_reportid, data->T5_msg_size, GFP_KERNEL); if (!data->msg_buf) { dev_err(&client->dev, "Failed to allocate message buffer\n"); error = -ENOMEM; goto free_object_table; } data->object_table = object_table; return 0; free_object_table: mxt_free_object_table(data); return error; } static int mxt_read_t9_resolution(struct mxt_data *data) { struct i2c_client *client = data->client; int error; struct t9_range range; unsigned char orient; struct mxt_object *object; object = mxt_get_object(data, MXT_TOUCH_MULTI_T9); if (!object) return -EINVAL; error = __mxt_read_reg(client, object->start_address + MXT_T9_RANGE, sizeof(range), &range); if (error) return error; data->max_x = get_unaligned_le16(&range.x); data->max_y = get_unaligned_le16(&range.y); error = __mxt_read_reg(client, object->start_address + MXT_T9_ORIENT, 1, &orient); if (error) return error; data->xy_switch = orient & MXT_T9_ORIENT_SWITCH; return 0; } static int mxt_read_t100_config(struct mxt_data *data) { struct i2c_client *client = data->client; int error; struct mxt_object *object; u16 range_x, range_y; u8 cfg, tchaux; u8 aux; object = mxt_get_object(data, MXT_TOUCH_MULTITOUCHSCREEN_T100); if (!object) return -EINVAL; /* read touchscreen dimensions */ error = __mxt_read_reg(client, object->start_address + MXT_T100_XRANGE, sizeof(range_x), &range_x); if (error) return error; data->max_x = get_unaligned_le16(&range_x); error = __mxt_read_reg(client, object->start_address + MXT_T100_YRANGE, sizeof(range_y), &range_y); if (error) return error; data->max_y = get_unaligned_le16(&range_y); /* read orientation config */ error = __mxt_read_reg(client, object->start_address + MXT_T100_CFG1, 1, &cfg); if (error) return error; data->xy_switch = cfg & MXT_T100_CFG_SWITCHXY; /* allocate aux bytes */ error = __mxt_read_reg(client, object->start_address + MXT_T100_TCHAUX, 1, &tchaux); if (error) return error; aux = 6; if (tchaux & MXT_T100_TCHAUX_VECT) data->t100_aux_vect = aux++; if (tchaux & MXT_T100_TCHAUX_AMPL) data->t100_aux_ampl = aux++; if (tchaux & MXT_T100_TCHAUX_AREA) data->t100_aux_area = aux++; dev_dbg(&client->dev, "T100 aux mappings vect:%u ampl:%u area:%u\n", data->t100_aux_vect, data->t100_aux_ampl, data->t100_aux_area); return 0; } static int mxt_input_open(struct input_dev *dev); static void mxt_input_close(struct input_dev *dev); static void mxt_set_up_as_touchpad(struct input_dev *input_dev, struct mxt_data *data) { const struct mxt_platform_data *pdata = data->pdata; int i; input_dev->name = "Atmel maXTouch Touchpad"; __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit); input_abs_set_res(input_dev, ABS_X, MXT_PIXELS_PER_MM); input_abs_set_res(input_dev, ABS_Y, MXT_PIXELS_PER_MM); input_abs_set_res(input_dev, ABS_MT_POSITION_X, MXT_PIXELS_PER_MM); input_abs_set_res(input_dev, ABS_MT_POSITION_Y, MXT_PIXELS_PER_MM); for (i = 0; i < pdata->t19_num_keys; i++) if (pdata->t19_keymap[i] != KEY_RESERVED) input_set_capability(input_dev, EV_KEY, pdata->t19_keymap[i]); } static int mxt_initialize_input_device(struct mxt_data *data) { const struct mxt_platform_data *pdata = data->pdata; struct device *dev = &data->client->dev; struct input_dev *input_dev; int error; unsigned int num_mt_slots; unsigned int mt_flags = 0; switch (data->multitouch) { case MXT_TOUCH_MULTI_T9: num_mt_slots = data->T9_reportid_max - data->T9_reportid_min + 1; error = mxt_read_t9_resolution(data); if (error) dev_warn(dev, "Failed to initialize T9 resolution\n"); break; case MXT_TOUCH_MULTITOUCHSCREEN_T100: num_mt_slots = data->num_touchids; error = mxt_read_t100_config(data); if (error) dev_warn(dev, "Failed to read T100 config\n"); break; default: dev_err(dev, "Invalid multitouch object\n"); return -EINVAL; } /* Handle default values and orientation switch */ if (data->max_x == 0) data->max_x = 1023; if (data->max_y == 0) data->max_y = 1023; if (data->xy_switch) swap(data->max_x, data->max_y); dev_info(dev, "Touchscreen size X%uY%u\n", data->max_x, data->max_y); /* Register input device */ input_dev = input_allocate_device(); if (!input_dev) { dev_err(dev, "Failed to allocate memory\n"); return -ENOMEM; } input_dev->name = "Atmel maXTouch Touchscreen"; input_dev->phys = data->phys; input_dev->id.bustype = BUS_I2C; input_dev->dev.parent = dev; input_dev->open = mxt_input_open; input_dev->close = mxt_input_close; input_set_capability(input_dev, EV_KEY, BTN_TOUCH); /* For single touch */ input_set_abs_params(input_dev, ABS_X, 0, data->max_x, 0, 0); input_set_abs_params(input_dev, ABS_Y, 0, data->max_y, 0, 0); if (data->multitouch == MXT_TOUCH_MULTI_T9 || (data->multitouch == MXT_TOUCH_MULTITOUCHSCREEN_T100 && data->t100_aux_ampl)) { input_set_abs_params(input_dev, ABS_PRESSURE, 0, 255, 0, 0); } /* If device has buttons we assume it is a touchpad */ if (pdata->t19_num_keys) { mxt_set_up_as_touchpad(input_dev, data); mt_flags |= INPUT_MT_POINTER; } else { mt_flags |= INPUT_MT_DIRECT; } /* For multi touch */ error = input_mt_init_slots(input_dev, num_mt_slots, mt_flags); if (error) { dev_err(dev, "Error %d initialising slots\n", error); goto err_free_mem; } if (data->multitouch == MXT_TOUCH_MULTITOUCHSCREEN_T100) { input_set_abs_params(input_dev, ABS_MT_TOOL_TYPE, 0, MT_TOOL_MAX, 0, 0); input_set_abs_params(input_dev, ABS_MT_DISTANCE, MXT_DISTANCE_ACTIVE_TOUCH, MXT_DISTANCE_HOVERING, 0, 0); } input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, data->max_x, 0, 0); input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, data->max_y, 0, 0); if (data->multitouch == MXT_TOUCH_MULTI_T9 || (data->multitouch == MXT_TOUCH_MULTITOUCHSCREEN_T100 && data->t100_aux_area)) { input_set_abs_params(input_dev, ABS_MT_TOUCH_MAJOR, 0, MXT_MAX_AREA, 0, 0); } if (data->multitouch == MXT_TOUCH_MULTI_T9 || (data->multitouch == MXT_TOUCH_MULTITOUCHSCREEN_T100 && data->t100_aux_ampl)) { input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 255, 0, 0); } if (data->multitouch == MXT_TOUCH_MULTITOUCHSCREEN_T100 && data->t100_aux_vect) { input_set_abs_params(input_dev, ABS_MT_ORIENTATION, 0, 255, 0, 0); } if (data->multitouch == MXT_TOUCH_MULTITOUCHSCREEN_T100 && data->t100_aux_ampl) { input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 255, 0, 0); } if (data->multitouch == MXT_TOUCH_MULTITOUCHSCREEN_T100 && data->t100_aux_vect) { input_set_abs_params(input_dev, ABS_MT_ORIENTATION, 0, 255, 0, 0); } input_set_drvdata(input_dev, data); error = input_register_device(input_dev); if (error) { dev_err(dev, "Error %d registering input device\n", error); goto err_free_mem; } data->input_dev = input_dev; return 0; err_free_mem: input_free_device(input_dev); return error; } static int mxt_configure_objects(struct mxt_data *data, const struct firmware *cfg); static void mxt_config_cb(const struct firmware *cfg, void *ctx) { mxt_configure_objects(ctx, cfg); release_firmware(cfg); } static int mxt_initialize(struct mxt_data *data) { struct i2c_client *client = data->client; int recovery_attempts = 0; int error; while (1) { error = mxt_get_info(data); if (!error) break; /* Check bootloader state */ error = mxt_probe_bootloader(data, false); if (error) { dev_info(&client->dev, "Trying alternate bootloader address\n"); error = mxt_probe_bootloader(data, true); if (error) { /* Chip is not in appmode or bootloader mode */ return error; } } /* OK, we are in bootloader, see if we can recover */ if (++recovery_attempts > 1) { dev_err(&client->dev, "Could not recover from bootloader mode\n"); /* * We can reflash from this state, so do not * abort initialization. */ data->in_bootloader = true; return 0; } /* Attempt to exit bootloader into app mode */ mxt_send_bootloader_cmd(data, false); msleep(MXT_FW_RESET_TIME); } /* Get object table information */ error = mxt_get_object_table(data); if (error) { dev_err(&client->dev, "Error %d reading object table\n", error); return error; } error = mxt_acquire_irq(data); if (error) goto err_free_object_table; error = request_firmware_nowait(THIS_MODULE, true, MXT_CFG_NAME, &client->dev, GFP_KERNEL, data, mxt_config_cb); if (error) { dev_err(&client->dev, "Failed to invoke firmware loader: %d\n", error); goto err_free_object_table; } return 0; err_free_object_table: mxt_free_object_table(data); return error; } static int mxt_set_t7_power_cfg(struct mxt_data *data, u8 sleep) { struct device *dev = &data->client->dev; int error; struct t7_config *new_config; struct t7_config deepsleep = { .active = 0, .idle = 0 }; if (sleep == MXT_POWER_CFG_DEEPSLEEP) new_config = &deepsleep; else new_config = &data->t7_cfg; error = __mxt_write_reg(data->client, data->T7_address, sizeof(data->t7_cfg), new_config); if (error) return error; dev_dbg(dev, "Set T7 ACTV:%d IDLE:%d\n", new_config->active, new_config->idle); return 0; } static int mxt_init_t7_power_cfg(struct mxt_data *data) { struct device *dev = &data->client->dev; int error; bool retry = false; recheck: error = __mxt_read_reg(data->client, data->T7_address, sizeof(data->t7_cfg), &data->t7_cfg); if (error) return error; if (data->t7_cfg.active == 0 || data->t7_cfg.idle == 0) { if (!retry) { dev_dbg(dev, "T7 cfg zero, resetting\n"); mxt_soft_reset(data); retry = true; goto recheck; } else { dev_dbg(dev, "T7 cfg zero after reset, overriding\n"); data->t7_cfg.active = 20; data->t7_cfg.idle = 100; return mxt_set_t7_power_cfg(data, MXT_POWER_CFG_RUN); } } dev_dbg(dev, "Initialized power cfg: ACTV %d, IDLE %d\n", data->t7_cfg.active, data->t7_cfg.idle); return 0; } static int mxt_configure_objects(struct mxt_data *data, const struct firmware *cfg) { struct device *dev = &data->client->dev; struct mxt_info *info = &data->info; int error; error = mxt_init_t7_power_cfg(data); if (error) { dev_err(dev, "Failed to initialize power cfg\n"); return error; } if (cfg) { error = mxt_update_cfg(data, cfg); if (error) dev_warn(dev, "Error %d updating config\n", error); } if (data->multitouch) { error = mxt_initialize_input_device(data); if (error) return error; } else { dev_warn(dev, "No touch object detected\n"); } dev_info(dev, "Family: %u Variant: %u Firmware V%u.%u.%02X Objects: %u\n", info->family_id, info->variant_id, info->version >> 4, info->version & 0xf, info->build, info->object_num); return 0; } /* Firmware Version is returned as Major.Minor.Build */ static ssize_t mxt_fw_version_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mxt_data *data = dev_get_drvdata(dev); struct mxt_info *info = &data->info; return scnprintf(buf, PAGE_SIZE, "%u.%u.%02X\n", info->version >> 4, info->version & 0xf, info->build); } /* Hardware Version is returned as FamilyID.VariantID */ static ssize_t mxt_hw_version_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mxt_data *data = dev_get_drvdata(dev); struct mxt_info *info = &data->info; return scnprintf(buf, PAGE_SIZE, "%u.%u\n", info->family_id, info->variant_id); } static ssize_t mxt_show_instance(char *buf, int count, struct mxt_object *object, int instance, const u8 *val) { int i; if (mxt_obj_instances(object) > 1) count += scnprintf(buf + count, PAGE_SIZE - count, "Instance %u\n", instance); for (i = 0; i < mxt_obj_size(object); i++) count += scnprintf(buf + count, PAGE_SIZE - count, "\t[%2u]: %02x (%d)\n", i, val[i], val[i]); count += scnprintf(buf + count, PAGE_SIZE - count, "\n"); return count; } static ssize_t mxt_object_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mxt_data *data = dev_get_drvdata(dev); struct mxt_object *object; int count = 0; int i, j; int error; u8 *obuf; /* Pre-allocate buffer large enough to hold max sized object. */ obuf = kmalloc(256, GFP_KERNEL); if (!obuf) return -ENOMEM; error = 0; for (i = 0; i < data->info.object_num; i++) { object = data->object_table + i; if (!mxt_object_readable(object->type)) continue; count += scnprintf(buf + count, PAGE_SIZE - count, "T%u:\n", object->type); for (j = 0; j < mxt_obj_instances(object); j++) { u16 size = mxt_obj_size(object); u16 addr = object->start_address + j * size; error = __mxt_read_reg(data->client, addr, size, obuf); if (error) goto done; count = mxt_show_instance(buf, count, object, j, obuf); } } done: kfree(obuf); return error ?: count; } static int mxt_check_firmware_format(struct device *dev, const struct firmware *fw) { unsigned int pos = 0; char c; while (pos < fw->size) { c = *(fw->data + pos); if (c < '0' || (c > '9' && c < 'A') || c > 'F') return 0; pos++; } /* * To convert file try: * xxd -r -p mXTXXX__APP_VX-X-XX.enc > maxtouch.fw */ dev_err(dev, "Aborting: firmware file must be in binary format\n"); return -EINVAL; } static int mxt_load_fw(struct device *dev, const char *fn) { struct mxt_data *data = dev_get_drvdata(dev); const struct firmware *fw = NULL; unsigned int frame_size; unsigned int pos = 0; unsigned int retry = 0; unsigned int frame = 0; int ret; ret = request_firmware(&fw, fn, dev); if (ret) { dev_err(dev, "Unable to open firmware %s\n", fn); return ret; } /* Check for incorrect enc file */ ret = mxt_check_firmware_format(dev, fw); if (ret) goto release_firmware; if (!data->in_bootloader) { /* Change to the bootloader mode */ data->in_bootloader = true; ret = mxt_t6_command(data, MXT_COMMAND_RESET, MXT_BOOT_VALUE, false); if (ret) goto release_firmware; msleep(MXT_RESET_TIME); /* Do not need to scan since we know family ID */ ret = mxt_lookup_bootloader_address(data, 0); if (ret) goto release_firmware; mxt_free_input_device(data); mxt_free_object_table(data); } else { enable_irq(data->irq); } reinit_completion(&data->bl_completion); ret = mxt_check_bootloader(data, MXT_WAITING_BOOTLOAD_CMD, false); if (ret) { /* Bootloader may still be unlocked from previous attempt */ ret = mxt_check_bootloader(data, MXT_WAITING_FRAME_DATA, false); if (ret) goto disable_irq; } else { dev_info(dev, "Unlocking bootloader\n"); /* Unlock bootloader */ ret = mxt_send_bootloader_cmd(data, true); if (ret) goto disable_irq; } while (pos < fw->size) { ret = mxt_check_bootloader(data, MXT_WAITING_FRAME_DATA, true); if (ret) goto disable_irq; frame_size = ((*(fw->data + pos) << 8) | *(fw->data + pos + 1)); /* Take account of CRC bytes */ frame_size += 2; /* Write one frame to device */ ret = mxt_bootloader_write(data, fw->data + pos, frame_size); if (ret) goto disable_irq; ret = mxt_check_bootloader(data, MXT_FRAME_CRC_PASS, true); if (ret) { retry++; /* Back off by 20ms per retry */ msleep(retry * 20); if (retry > 20) { dev_err(dev, "Retry count exceeded\n"); goto disable_irq; } } else { retry = 0; pos += frame_size; frame++; } if (frame % 50 == 0) dev_dbg(dev, "Sent %d frames, %d/%zd bytes\n", frame, pos, fw->size); } /* Wait for flash. */ ret = mxt_wait_for_completion(data, &data->bl_completion, MXT_FW_RESET_TIME); if (ret) goto disable_irq; dev_dbg(dev, "Sent %d frames, %d bytes\n", frame, pos); /* * Wait for device to reset. Some bootloader versions do not assert * the CHG line after bootloading has finished, so ignore potential * errors. */ mxt_wait_for_completion(data, &data->bl_completion, MXT_FW_RESET_TIME); data->in_bootloader = false; disable_irq: disable_irq(data->irq); release_firmware: release_firmware(fw); return ret; } static ssize_t mxt_update_fw_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mxt_data *data = dev_get_drvdata(dev); int error; error = mxt_load_fw(dev, MXT_FW_NAME); if (error) { dev_err(dev, "The firmware update failed(%d)\n", error); count = error; } else { dev_info(dev, "The firmware update succeeded\n"); error = mxt_initialize(data); if (error) return error; } return count; } static DEVICE_ATTR(fw_version, S_IRUGO, mxt_fw_version_show, NULL); static DEVICE_ATTR(hw_version, S_IRUGO, mxt_hw_version_show, NULL); static DEVICE_ATTR(object, S_IRUGO, mxt_object_show, NULL); static DEVICE_ATTR(update_fw, S_IWUSR, NULL, mxt_update_fw_store); static struct attribute *mxt_attrs[] = { &dev_attr_fw_version.attr, &dev_attr_hw_version.attr, &dev_attr_object.attr, &dev_attr_update_fw.attr, NULL }; static const struct attribute_group mxt_attr_group = { .attrs = mxt_attrs, }; static void mxt_start(struct mxt_data *data) { switch (data->pdata->suspend_mode) { case MXT_SUSPEND_T9_CTRL: mxt_soft_reset(data); /* Touch enable */ /* 0x83 = SCANEN | RPTEN | ENABLE */ mxt_write_object(data, MXT_TOUCH_MULTI_T9, MXT_T9_CTRL, 0x83); break; case MXT_SUSPEND_DEEP_SLEEP: default: mxt_set_t7_power_cfg(data, MXT_POWER_CFG_RUN); /* Recalibrate since chip has been in deep sleep */ mxt_t6_command(data, MXT_COMMAND_CALIBRATE, 1, false); break; } } static void mxt_stop(struct mxt_data *data) { switch (data->pdata->suspend_mode) { case MXT_SUSPEND_T9_CTRL: /* Touch disable */ mxt_write_object(data, MXT_TOUCH_MULTI_T9, MXT_T9_CTRL, 0); break; case MXT_SUSPEND_DEEP_SLEEP: default: mxt_set_t7_power_cfg(data, MXT_POWER_CFG_DEEPSLEEP); break; } } static int mxt_input_open(struct input_dev *dev) { struct mxt_data *data = input_get_drvdata(dev); mxt_start(data); return 0; } static void mxt_input_close(struct input_dev *dev) { struct mxt_data *data = input_get_drvdata(dev); mxt_stop(data); } #ifdef CONFIG_OF static const struct mxt_platform_data *mxt_parse_dt(struct i2c_client *client) { struct mxt_platform_data *pdata; struct device_node *np = client->dev.of_node; u32 *keymap; int proplen, ret; if (!np) return ERR_PTR(-ENOENT); pdata = devm_kzalloc(&client->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return ERR_PTR(-ENOMEM); if (of_find_property(np, "linux,gpio-keymap", &proplen)) { pdata->t19_num_keys = proplen / sizeof(u32); keymap = devm_kzalloc(&client->dev, pdata->t19_num_keys * sizeof(keymap[0]), GFP_KERNEL); if (!keymap) return ERR_PTR(-ENOMEM); ret = of_property_read_u32_array(np, "linux,gpio-keymap", keymap, pdata->t19_num_keys); if (ret) dev_warn(&client->dev, "Couldn't read linux,gpio-keymap: %d\n", ret); pdata->t19_keymap = keymap; } pdata->suspend_mode = MXT_SUSPEND_DEEP_SLEEP; return pdata; } #else static const struct mxt_platform_data *mxt_parse_dt(struct i2c_client *client) { return ERR_PTR(-ENOENT); } #endif #ifdef CONFIG_ACPI struct mxt_acpi_platform_data { const char *hid; struct mxt_platform_data pdata; }; static unsigned int samus_touchpad_buttons[] = { KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, BTN_LEFT }; static struct mxt_acpi_platform_data samus_platform_data[] = { { /* Touchpad */ .hid = "ATML0000", .pdata = { .t19_num_keys = ARRAY_SIZE(samus_touchpad_buttons), .t19_keymap = samus_touchpad_buttons, }, }, { /* Touchscreen */ .hid = "ATML0001", }, { } }; static const struct dmi_system_id mxt_dmi_table[] = { { /* 2015 Google Pixel */ .ident = "Chromebook Pixel 2", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "GOOGLE"), DMI_MATCH(DMI_PRODUCT_NAME, "Samus"), }, .driver_data = samus_platform_data, }, { } }; static const struct mxt_platform_data *mxt_parse_acpi(struct i2c_client *client) { struct acpi_device *adev; const struct dmi_system_id *system_id; const struct mxt_acpi_platform_data *acpi_pdata; /* * Ignore ACPI devices representing bootloader mode. * * This is a bit of a hack: Google Chromebook BIOS creates ACPI * devices for both application and bootloader modes, but we are * interested in application mode only (if device is in bootloader * mode we'll end up switching into application anyway). So far * application mode addresses were all above 0x40, so we'll use it * as a threshold. */ if (client->addr < 0x40) return ERR_PTR(-ENXIO); adev = ACPI_COMPANION(&client->dev); if (!adev) return ERR_PTR(-ENOENT); system_id = dmi_first_match(mxt_dmi_table); if (!system_id) return ERR_PTR(-ENOENT); acpi_pdata = system_id->driver_data; if (!acpi_pdata) return ERR_PTR(-ENOENT); while (acpi_pdata->hid) { if (!strcmp(acpi_device_hid(adev), acpi_pdata->hid)) return &acpi_pdata->pdata; acpi_pdata++; } return ERR_PTR(-ENOENT); } #else static const struct mxt_platform_data *mxt_parse_acpi(struct i2c_client *client) { return ERR_PTR(-ENOENT); } #endif static const struct mxt_platform_data * mxt_get_platform_data(struct i2c_client *client) { const struct mxt_platform_data *pdata; pdata = dev_get_platdata(&client->dev); if (pdata) return pdata; pdata = mxt_parse_dt(client); if (!IS_ERR(pdata) || PTR_ERR(pdata) != -ENOENT) return pdata; pdata = mxt_parse_acpi(client); if (!IS_ERR(pdata) || PTR_ERR(pdata) != -ENOENT) return pdata; dev_err(&client->dev, "No platform data specified\n"); return ERR_PTR(-EINVAL); } static int mxt_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct mxt_data *data; const struct mxt_platform_data *pdata; int error; pdata = mxt_get_platform_data(client); if (IS_ERR(pdata)) return PTR_ERR(pdata); data = kzalloc(sizeof(struct mxt_data), GFP_KERNEL); if (!data) { dev_err(&client->dev, "Failed to allocate memory\n"); return -ENOMEM; } snprintf(data->phys, sizeof(data->phys), "i2c-%u-%04x/input0", client->adapter->nr, client->addr); data->client = client; data->pdata = pdata; data->irq = client->irq; i2c_set_clientdata(client, data); init_completion(&data->bl_completion); init_completion(&data->reset_completion); init_completion(&data->crc_completion); error = request_threaded_irq(client->irq, NULL, mxt_interrupt, pdata->irqflags | IRQF_ONESHOT, client->name, data); if (error) { dev_err(&client->dev, "Failed to register interrupt\n"); goto err_free_mem; } disable_irq(client->irq); error = mxt_initialize(data); if (error) goto err_free_irq; error = sysfs_create_group(&client->dev.kobj, &mxt_attr_group); if (error) { dev_err(&client->dev, "Failure %d creating sysfs group\n", error); goto err_free_object; } return 0; err_free_object: mxt_free_input_device(data); mxt_free_object_table(data); err_free_irq: free_irq(client->irq, data); err_free_mem: kfree(data); return error; } static int mxt_remove(struct i2c_client *client) { struct mxt_data *data = i2c_get_clientdata(client); sysfs_remove_group(&client->dev.kobj, &mxt_attr_group); free_irq(data->irq, data); mxt_free_input_device(data); mxt_free_object_table(data); kfree(data); return 0; } static int __maybe_unused mxt_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct mxt_data *data = i2c_get_clientdata(client); struct input_dev *input_dev = data->input_dev; if (!input_dev) return 0; mutex_lock(&input_dev->mutex); if (input_dev->users) mxt_stop(data); mutex_unlock(&input_dev->mutex); return 0; } static int __maybe_unused mxt_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct mxt_data *data = i2c_get_clientdata(client); struct input_dev *input_dev = data->input_dev; if (!input_dev) return 0; mutex_lock(&input_dev->mutex); if (input_dev->users) mxt_start(data); mutex_unlock(&input_dev->mutex); return 0; } static SIMPLE_DEV_PM_OPS(mxt_pm_ops, mxt_suspend, mxt_resume); static const struct of_device_id mxt_of_match[] = { { .compatible = "atmel,maxtouch", }, {}, }; MODULE_DEVICE_TABLE(of, mxt_of_match); #ifdef CONFIG_ACPI static const struct acpi_device_id mxt_acpi_id[] = { { "ATML0000", 0 }, /* Touchpad */ { "ATML0001", 0 }, /* Touchscreen */ { } }; MODULE_DEVICE_TABLE(acpi, mxt_acpi_id); #endif static const struct i2c_device_id mxt_id[] = { { "qt602240_ts", 0 }, { "atmel_mxt_ts", 0 }, { "atmel_mxt_tp", 0 }, { "mXT224", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, mxt_id); static struct i2c_driver mxt_driver = { .driver = { .name = "atmel_mxt_ts", .of_match_table = of_match_ptr(mxt_of_match), .acpi_match_table = ACPI_PTR(mxt_acpi_id), .pm = &mxt_pm_ops, }, .probe = mxt_probe, .remove = mxt_remove, .id_table = mxt_id, }; module_i2c_driver(mxt_driver); /* Module information */ MODULE_AUTHOR("Joonyoung Shim "); MODULE_DESCRIPTION("Atmel maXTouch Touchscreen driver"); MODULE_LICENSE("GPL");