// SPDX-License-Identifier: GPL-2.0-only /* * A fairly generic DMA-API to IOMMU-API glue layer. * * Copyright (C) 2014-2015 ARM Ltd. * * based in part on arch/arm/mm/dma-mapping.c: * Copyright (C) 2000-2004 Russell King */ #include <linux/acpi_iort.h> #include <linux/atomic.h> #include <linux/crash_dump.h> #include <linux/device.h> #include <linux/dma-direct.h> #include <linux/dma-map-ops.h> #include <linux/gfp.h> #include <linux/huge_mm.h> #include <linux/iommu.h> #include <linux/iova.h> #include <linux/irq.h> #include <linux/list_sort.h> #include <linux/memremap.h> #include <linux/mm.h> #include <linux/mutex.h> #include <linux/of_iommu.h> #include <linux/pci.h> #include <linux/scatterlist.h> #include <linux/spinlock.h> #include <linux/swiotlb.h> #include <linux/vmalloc.h> #include "dma-iommu.h" struct iommu_dma_msi_page { struct list_head list; dma_addr_t iova; phys_addr_t phys; }; enum iommu_dma_cookie_type { IOMMU_DMA_IOVA_COOKIE, IOMMU_DMA_MSI_COOKIE, }; enum iommu_dma_queue_type { IOMMU_DMA_OPTS_PER_CPU_QUEUE, IOMMU_DMA_OPTS_SINGLE_QUEUE, }; struct iommu_dma_options { enum iommu_dma_queue_type qt; size_t fq_size; unsigned int fq_timeout; }; struct iommu_dma_cookie { enum iommu_dma_cookie_type type; union { /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ struct { struct iova_domain iovad; /* Flush queue */ union { struct iova_fq *single_fq; struct iova_fq __percpu *percpu_fq; }; /* Number of TLB flushes that have been started */ atomic64_t fq_flush_start_cnt; /* Number of TLB flushes that have been finished */ atomic64_t fq_flush_finish_cnt; /* Timer to regularily empty the flush queues */ struct timer_list fq_timer; /* 1 when timer is active, 0 when not */ atomic_t fq_timer_on; }; /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ dma_addr_t msi_iova; }; struct list_head msi_page_list; /* Domain for flush queue callback; NULL if flush queue not in use */ struct iommu_domain *fq_domain; /* Options for dma-iommu use */ struct iommu_dma_options options; struct mutex mutex; }; static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); bool iommu_dma_forcedac __read_mostly; static int __init iommu_dma_forcedac_setup(char *str) { int ret = kstrtobool(str, &iommu_dma_forcedac); if (!ret && iommu_dma_forcedac) pr_info("Forcing DAC for PCI devices\n"); return ret; } early_param("iommu.forcedac", iommu_dma_forcedac_setup); /* Number of entries per flush queue */ #define IOVA_DEFAULT_FQ_SIZE 256 #define IOVA_SINGLE_FQ_SIZE 32768 /* Timeout (in ms) after which entries are flushed from the queue */ #define IOVA_DEFAULT_FQ_TIMEOUT 10 #define IOVA_SINGLE_FQ_TIMEOUT 1000 /* Flush queue entry for deferred flushing */ struct iova_fq_entry { unsigned long iova_pfn; unsigned long pages; struct list_head freelist; u64 counter; /* Flush counter when this entry was added */ }; /* Per-CPU flush queue structure */ struct iova_fq { spinlock_t lock; unsigned int head, tail; unsigned int mod_mask; struct iova_fq_entry entries[]; }; #define fq_ring_for_each(i, fq) \ for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) & (fq)->mod_mask) static inline bool fq_full(struct iova_fq *fq) { assert_spin_locked(&fq->lock); return (((fq->tail + 1) & fq->mod_mask) == fq->head); } static inline unsigned int fq_ring_add(struct iova_fq *fq) { unsigned int idx = fq->tail; assert_spin_locked(&fq->lock); fq->tail = (idx + 1) & fq->mod_mask; return idx; } static void fq_ring_free_locked(struct iommu_dma_cookie *cookie, struct iova_fq *fq) { u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt); unsigned int idx; assert_spin_locked(&fq->lock); fq_ring_for_each(idx, fq) { if (fq->entries[idx].counter >= counter) break; put_pages_list(&fq->entries[idx].freelist); free_iova_fast(&cookie->iovad, fq->entries[idx].iova_pfn, fq->entries[idx].pages); fq->head = (fq->head + 1) & fq->mod_mask; } } static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq) { unsigned long flags; spin_lock_irqsave(&fq->lock, flags); fq_ring_free_locked(cookie, fq); spin_unlock_irqrestore(&fq->lock, flags); } static void fq_flush_iotlb(struct iommu_dma_cookie *cookie) { atomic64_inc(&cookie->fq_flush_start_cnt); cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain); atomic64_inc(&cookie->fq_flush_finish_cnt); } static void fq_flush_timeout(struct timer_list *t) { struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer); int cpu; atomic_set(&cookie->fq_timer_on, 0); fq_flush_iotlb(cookie); if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) { fq_ring_free(cookie, cookie->single_fq); } else { for_each_possible_cpu(cpu) fq_ring_free(cookie, per_cpu_ptr(cookie->percpu_fq, cpu)); } } static void queue_iova(struct iommu_dma_cookie *cookie, unsigned long pfn, unsigned long pages, struct list_head *freelist) { struct iova_fq *fq; unsigned long flags; unsigned int idx; /* * Order against the IOMMU driver's pagetable update from unmapping * @pte, to guarantee that fq_flush_iotlb() observes that if called * from a different CPU before we release the lock below. Full barrier * so it also pairs with iommu_dma_init_fq() to avoid seeing partially * written fq state here. */ smp_mb(); if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) fq = cookie->single_fq; else fq = raw_cpu_ptr(cookie->percpu_fq); spin_lock_irqsave(&fq->lock, flags); /* * First remove all entries from the flush queue that have already been * flushed out on another CPU. This makes the fq_full() check below less * likely to be true. */ fq_ring_free_locked(cookie, fq); if (fq_full(fq)) { fq_flush_iotlb(cookie); fq_ring_free_locked(cookie, fq); } idx = fq_ring_add(fq); fq->entries[idx].iova_pfn = pfn; fq->entries[idx].pages = pages; fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt); list_splice(freelist, &fq->entries[idx].freelist); spin_unlock_irqrestore(&fq->lock, flags); /* Avoid false sharing as much as possible. */ if (!atomic_read(&cookie->fq_timer_on) && !atomic_xchg(&cookie->fq_timer_on, 1)) mod_timer(&cookie->fq_timer, jiffies + msecs_to_jiffies(cookie->options.fq_timeout)); } static void iommu_dma_free_fq_single(struct iova_fq *fq) { int idx; fq_ring_for_each(idx, fq) put_pages_list(&fq->entries[idx].freelist); vfree(fq); } static void iommu_dma_free_fq_percpu(struct iova_fq __percpu *percpu_fq) { int cpu, idx; /* The IOVAs will be torn down separately, so just free our queued pages */ for_each_possible_cpu(cpu) { struct iova_fq *fq = per_cpu_ptr(percpu_fq, cpu); fq_ring_for_each(idx, fq) put_pages_list(&fq->entries[idx].freelist); } free_percpu(percpu_fq); } static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie) { if (!cookie->fq_domain) return; del_timer_sync(&cookie->fq_timer); if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) iommu_dma_free_fq_single(cookie->single_fq); else iommu_dma_free_fq_percpu(cookie->percpu_fq); } static void iommu_dma_init_one_fq(struct iova_fq *fq, size_t fq_size) { int i; fq->head = 0; fq->tail = 0; fq->mod_mask = fq_size - 1; spin_lock_init(&fq->lock); for (i = 0; i < fq_size; i++) INIT_LIST_HEAD(&fq->entries[i].freelist); } static int iommu_dma_init_fq_single(struct iommu_dma_cookie *cookie) { size_t fq_size = cookie->options.fq_size; struct iova_fq *queue; queue = vmalloc(struct_size(queue, entries, fq_size)); if (!queue) return -ENOMEM; iommu_dma_init_one_fq(queue, fq_size); cookie->single_fq = queue; return 0; } static int iommu_dma_init_fq_percpu(struct iommu_dma_cookie *cookie) { size_t fq_size = cookie->options.fq_size; struct iova_fq __percpu *queue; int cpu; queue = __alloc_percpu(struct_size(queue, entries, fq_size), __alignof__(*queue)); if (!queue) return -ENOMEM; for_each_possible_cpu(cpu) iommu_dma_init_one_fq(per_cpu_ptr(queue, cpu), fq_size); cookie->percpu_fq = queue; return 0; } /* sysfs updates are serialised by the mutex of the group owning @domain */ int iommu_dma_init_fq(struct iommu_domain *domain) { struct iommu_dma_cookie *cookie = domain->iova_cookie; int rc; if (cookie->fq_domain) return 0; atomic64_set(&cookie->fq_flush_start_cnt, 0); atomic64_set(&cookie->fq_flush_finish_cnt, 0); if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) rc = iommu_dma_init_fq_single(cookie); else rc = iommu_dma_init_fq_percpu(cookie); if (rc) { pr_warn("iova flush queue initialization failed\n"); return -ENOMEM; } timer_setup(&cookie->fq_timer, fq_flush_timeout, 0); atomic_set(&cookie->fq_timer_on, 0); /* * Prevent incomplete fq state being observable. Pairs with path from * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova() */ smp_wmb(); WRITE_ONCE(cookie->fq_domain, domain); return 0; } static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) { if (cookie->type == IOMMU_DMA_IOVA_COOKIE) return cookie->iovad.granule; return PAGE_SIZE; } static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) { struct iommu_dma_cookie *cookie; cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); if (cookie) { INIT_LIST_HEAD(&cookie->msi_page_list); cookie->type = type; } return cookie; } /** * iommu_get_dma_cookie - Acquire DMA-API resources for a domain * @domain: IOMMU domain to prepare for DMA-API usage */ int iommu_get_dma_cookie(struct iommu_domain *domain) { if (domain->iova_cookie) return -EEXIST; domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); if (!domain->iova_cookie) return -ENOMEM; mutex_init(&domain->iova_cookie->mutex); return 0; } /** * iommu_get_msi_cookie - Acquire just MSI remapping resources * @domain: IOMMU domain to prepare * @base: Start address of IOVA region for MSI mappings * * Users who manage their own IOVA allocation and do not want DMA API support, * but would still like to take advantage of automatic MSI remapping, can use * this to initialise their own domain appropriately. Users should reserve a * contiguous IOVA region, starting at @base, large enough to accommodate the * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address * used by the devices attached to @domain. */ int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) { struct iommu_dma_cookie *cookie; if (domain->type != IOMMU_DOMAIN_UNMANAGED) return -EINVAL; if (domain->iova_cookie) return -EEXIST; cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); if (!cookie) return -ENOMEM; cookie->msi_iova = base; domain->iova_cookie = cookie; return 0; } EXPORT_SYMBOL(iommu_get_msi_cookie); /** * iommu_put_dma_cookie - Release a domain's DMA mapping resources * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or * iommu_get_msi_cookie() */ void iommu_put_dma_cookie(struct iommu_domain *domain) { struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iommu_dma_msi_page *msi, *tmp; if (!cookie) return; if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) { iommu_dma_free_fq(cookie); put_iova_domain(&cookie->iovad); } list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { list_del(&msi->list); kfree(msi); } kfree(cookie); domain->iova_cookie = NULL; } /** * iommu_dma_get_resv_regions - Reserved region driver helper * @dev: Device from iommu_get_resv_regions() * @list: Reserved region list from iommu_get_resv_regions() * * IOMMU drivers can use this to implement their .get_resv_regions callback * for general non-IOMMU-specific reservations. Currently, this covers GICv3 * ITS region reservation on ACPI based ARM platforms that may require HW MSI * reservation. */ void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) { if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) iort_iommu_get_resv_regions(dev, list); if (dev->of_node) of_iommu_get_resv_regions(dev, list); } EXPORT_SYMBOL(iommu_dma_get_resv_regions); static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, phys_addr_t start, phys_addr_t end) { struct iova_domain *iovad = &cookie->iovad; struct iommu_dma_msi_page *msi_page; int i, num_pages; start -= iova_offset(iovad, start); num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); for (i = 0; i < num_pages; i++) { msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); if (!msi_page) return -ENOMEM; msi_page->phys = start; msi_page->iova = start; INIT_LIST_HEAD(&msi_page->list); list_add(&msi_page->list, &cookie->msi_page_list); start += iovad->granule; } return 0; } static int iommu_dma_ranges_sort(void *priv, const struct list_head *a, const struct list_head *b) { struct resource_entry *res_a = list_entry(a, typeof(*res_a), node); struct resource_entry *res_b = list_entry(b, typeof(*res_b), node); return res_a->res->start > res_b->res->start; } static int iova_reserve_pci_windows(struct pci_dev *dev, struct iova_domain *iovad) { struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); struct resource_entry *window; unsigned long lo, hi; phys_addr_t start = 0, end; resource_list_for_each_entry(window, &bridge->windows) { if (resource_type(window->res) != IORESOURCE_MEM) continue; lo = iova_pfn(iovad, window->res->start - window->offset); hi = iova_pfn(iovad, window->res->end - window->offset); reserve_iova(iovad, lo, hi); } /* Get reserved DMA windows from host bridge */ list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort); resource_list_for_each_entry(window, &bridge->dma_ranges) { end = window->res->start - window->offset; resv_iova: if (end > start) { lo = iova_pfn(iovad, start); hi = iova_pfn(iovad, end); reserve_iova(iovad, lo, hi); } else if (end < start) { /* DMA ranges should be non-overlapping */ dev_err(&dev->dev, "Failed to reserve IOVA [%pa-%pa]\n", &start, &end); return -EINVAL; } start = window->res->end - window->offset + 1; /* If window is last entry */ if (window->node.next == &bridge->dma_ranges && end != ~(phys_addr_t)0) { end = ~(phys_addr_t)0; goto resv_iova; } } return 0; } static int iova_reserve_iommu_regions(struct device *dev, struct iommu_domain *domain) { struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iova_domain *iovad = &cookie->iovad; struct iommu_resv_region *region; LIST_HEAD(resv_regions); int ret = 0; if (dev_is_pci(dev)) { ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); if (ret) return ret; } iommu_get_resv_regions(dev, &resv_regions); list_for_each_entry(region, &resv_regions, list) { unsigned long lo, hi; /* We ARE the software that manages these! */ if (region->type == IOMMU_RESV_SW_MSI) continue; lo = iova_pfn(iovad, region->start); hi = iova_pfn(iovad, region->start + region->length - 1); reserve_iova(iovad, lo, hi); if (region->type == IOMMU_RESV_MSI) ret = cookie_init_hw_msi_region(cookie, region->start, region->start + region->length); if (ret) break; } iommu_put_resv_regions(dev, &resv_regions); return ret; } static bool dev_is_untrusted(struct device *dev) { return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; } static bool dev_use_swiotlb(struct device *dev, size_t size, enum dma_data_direction dir) { return IS_ENABLED(CONFIG_SWIOTLB) && (dev_is_untrusted(dev) || dma_kmalloc_needs_bounce(dev, size, dir)); } static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { struct scatterlist *s; int i; if (!IS_ENABLED(CONFIG_SWIOTLB)) return false; if (dev_is_untrusted(dev)) return true; /* * If kmalloc() buffers are not DMA-safe for this device and * direction, check the individual lengths in the sg list. If any * element is deemed unsafe, use the swiotlb for bouncing. */ if (!dma_kmalloc_safe(dev, dir)) { for_each_sg(sg, s, nents, i) if (!dma_kmalloc_size_aligned(s->length)) return true; } return false; } /** * iommu_dma_init_options - Initialize dma-iommu options * @options: The options to be initialized * @dev: Device the options are set for * * This allows tuning dma-iommu specific to device properties */ static void iommu_dma_init_options(struct iommu_dma_options *options, struct device *dev) { /* Shadowing IOTLB flushes do better with a single large queue */ if (dev->iommu->shadow_on_flush) { options->qt = IOMMU_DMA_OPTS_SINGLE_QUEUE; options->fq_timeout = IOVA_SINGLE_FQ_TIMEOUT; options->fq_size = IOVA_SINGLE_FQ_SIZE; } else { options->qt = IOMMU_DMA_OPTS_PER_CPU_QUEUE; options->fq_size = IOVA_DEFAULT_FQ_SIZE; options->fq_timeout = IOVA_DEFAULT_FQ_TIMEOUT; } } /** * iommu_dma_init_domain - Initialise a DMA mapping domain * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() * @base: IOVA at which the mappable address space starts * @limit: Last address of the IOVA space * @dev: Device the domain is being initialised for * * @base and @limit + 1 should be exact multiples of IOMMU page granularity to * avoid rounding surprises. If necessary, we reserve the page at address 0 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but * any change which could make prior IOVAs invalid will fail. */ static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, dma_addr_t limit, struct device *dev) { struct iommu_dma_cookie *cookie = domain->iova_cookie; unsigned long order, base_pfn; struct iova_domain *iovad; int ret; if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) return -EINVAL; iovad = &cookie->iovad; /* Use the smallest supported page size for IOVA granularity */ order = __ffs(domain->pgsize_bitmap); base_pfn = max_t(unsigned long, 1, base >> order); /* Check the domain allows at least some access to the device... */ if (domain->geometry.force_aperture) { if (base > domain->geometry.aperture_end || limit < domain->geometry.aperture_start) { pr_warn("specified DMA range outside IOMMU capability\n"); return -EFAULT; } /* ...then finally give it a kicking to make sure it fits */ base_pfn = max_t(unsigned long, base_pfn, domain->geometry.aperture_start >> order); } /* start_pfn is always nonzero for an already-initialised domain */ mutex_lock(&cookie->mutex); if (iovad->start_pfn) { if (1UL << order != iovad->granule || base_pfn != iovad->start_pfn) { pr_warn("Incompatible range for DMA domain\n"); ret = -EFAULT; goto done_unlock; } ret = 0; goto done_unlock; } init_iova_domain(iovad, 1UL << order, base_pfn); ret = iova_domain_init_rcaches(iovad); if (ret) goto done_unlock; iommu_dma_init_options(&cookie->options, dev); /* If the FQ fails we can simply fall back to strict mode */ if (domain->type == IOMMU_DOMAIN_DMA_FQ && (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain))) domain->type = IOMMU_DOMAIN_DMA; ret = iova_reserve_iommu_regions(dev, domain); done_unlock: mutex_unlock(&cookie->mutex); return ret; } /** * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API * page flags. * @dir: Direction of DMA transfer * @coherent: Is the DMA master cache-coherent? * @attrs: DMA attributes for the mapping * * Return: corresponding IOMMU API page protection flags */ static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, unsigned long attrs) { int prot = coherent ? IOMMU_CACHE : 0; if (attrs & DMA_ATTR_PRIVILEGED) prot |= IOMMU_PRIV; switch (dir) { case DMA_BIDIRECTIONAL: return prot | IOMMU_READ | IOMMU_WRITE; case DMA_TO_DEVICE: return prot | IOMMU_READ; case DMA_FROM_DEVICE: return prot | IOMMU_WRITE; default: return 0; } } static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, size_t size, u64 dma_limit, struct device *dev) { struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iova_domain *iovad = &cookie->iovad; unsigned long shift, iova_len, iova; if (cookie->type == IOMMU_DMA_MSI_COOKIE) { cookie->msi_iova += size; return cookie->msi_iova - size; } shift = iova_shift(iovad); iova_len = size >> shift; dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); if (domain->geometry.force_aperture) dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); /* * Try to use all the 32-bit PCI addresses first. The original SAC vs. * DAC reasoning loses relevance with PCIe, but enough hardware and * firmware bugs are still lurking out there that it's safest not to * venture into the 64-bit space until necessary. * * If your device goes wrong after seeing the notice then likely either * its driver is not setting DMA masks accurately, the hardware has * some inherent bug in handling >32-bit addresses, or not all the * expected address bits are wired up between the device and the IOMMU. */ if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) { iova = alloc_iova_fast(iovad, iova_len, DMA_BIT_MASK(32) >> shift, false); if (iova) goto done; dev->iommu->pci_32bit_workaround = false; dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit)); } iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true); done: return (dma_addr_t)iova << shift; } static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather) { struct iova_domain *iovad = &cookie->iovad; /* The MSI case is only ever cleaning up its most recent allocation */ if (cookie->type == IOMMU_DMA_MSI_COOKIE) cookie->msi_iova -= size; else if (gather && gather->queued) queue_iova(cookie, iova_pfn(iovad, iova), size >> iova_shift(iovad), &gather->freelist); else free_iova_fast(iovad, iova_pfn(iovad, iova), size >> iova_shift(iovad)); } static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t size) { struct iommu_domain *domain = iommu_get_dma_domain(dev); struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iova_domain *iovad = &cookie->iovad; size_t iova_off = iova_offset(iovad, dma_addr); struct iommu_iotlb_gather iotlb_gather; size_t unmapped; dma_addr -= iova_off; size = iova_align(iovad, size + iova_off); iommu_iotlb_gather_init(&iotlb_gather); iotlb_gather.queued = READ_ONCE(cookie->fq_domain); unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); WARN_ON(unmapped != size); if (!iotlb_gather.queued) iommu_iotlb_sync(domain, &iotlb_gather); iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather); } static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, size_t size, int prot, u64 dma_mask) { struct iommu_domain *domain = iommu_get_dma_domain(dev); struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iova_domain *iovad = &cookie->iovad; size_t iova_off = iova_offset(iovad, phys); dma_addr_t iova; if (static_branch_unlikely(&iommu_deferred_attach_enabled) && iommu_deferred_attach(dev, domain)) return DMA_MAPPING_ERROR; size = iova_align(iovad, size + iova_off); iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); if (!iova) return DMA_MAPPING_ERROR; if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) { iommu_dma_free_iova(cookie, iova, size, NULL); return DMA_MAPPING_ERROR; } return iova + iova_off; } static void __iommu_dma_free_pages(struct page **pages, int count) { while (count--) __free_page(pages[count]); kvfree(pages); } static struct page **__iommu_dma_alloc_pages(struct device *dev, unsigned int count, unsigned long order_mask, gfp_t gfp) { struct page **pages; unsigned int i = 0, nid = dev_to_node(dev); order_mask &= GENMASK(MAX_ORDER, 0); if (!order_mask) return NULL; pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); if (!pages) return NULL; /* IOMMU can map any pages, so himem can also be used here */ gfp |= __GFP_NOWARN | __GFP_HIGHMEM; while (count) { struct page *page = NULL; unsigned int order_size; /* * Higher-order allocations are a convenience rather * than a necessity, hence using __GFP_NORETRY until * falling back to minimum-order allocations. */ for (order_mask &= GENMASK(__fls(count), 0); order_mask; order_mask &= ~order_size) { unsigned int order = __fls(order_mask); gfp_t alloc_flags = gfp; order_size = 1U << order; if (order_mask > order_size) alloc_flags |= __GFP_NORETRY; page = alloc_pages_node(nid, alloc_flags, order); if (!page) continue; if (order) split_page(page, order); break; } if (!page) { __iommu_dma_free_pages(pages, i); return NULL; } count -= order_size; while (order_size--) pages[i++] = page++; } return pages; } /* * If size is less than PAGE_SIZE, then a full CPU page will be allocated, * but an IOMMU which supports smaller pages might not map the whole thing. */ static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot, unsigned long attrs) { struct iommu_domain *domain = iommu_get_dma_domain(dev); struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iova_domain *iovad = &cookie->iovad; bool coherent = dev_is_dma_coherent(dev); int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; struct page **pages; dma_addr_t iova; ssize_t ret; if (static_branch_unlikely(&iommu_deferred_attach_enabled) && iommu_deferred_attach(dev, domain)) return NULL; min_size = alloc_sizes & -alloc_sizes; if (min_size < PAGE_SIZE) { min_size = PAGE_SIZE; alloc_sizes |= PAGE_SIZE; } else { size = ALIGN(size, min_size); } if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) alloc_sizes = min_size; count = PAGE_ALIGN(size) >> PAGE_SHIFT; pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, gfp); if (!pages) return NULL; size = iova_align(iovad, size); iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); if (!iova) goto out_free_pages; /* * Remove the zone/policy flags from the GFP - these are applied to the * __iommu_dma_alloc_pages() but are not used for the supporting * internal allocations that follow. */ gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP); if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp)) goto out_free_iova; if (!(ioprot & IOMMU_CACHE)) { struct scatterlist *sg; int i; for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) arch_dma_prep_coherent(sg_page(sg), sg->length); } ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot, gfp); if (ret < 0 || ret < size) goto out_free_sg; sgt->sgl->dma_address = iova; sgt->sgl->dma_length = size; return pages; out_free_sg: sg_free_table(sgt); out_free_iova: iommu_dma_free_iova(cookie, iova, size, NULL); out_free_pages: __iommu_dma_free_pages(pages, count); return NULL; } static void *iommu_dma_alloc_remap(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot, unsigned long attrs) { struct page **pages; struct sg_table sgt; void *vaddr; pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot, attrs); if (!pages) return NULL; *dma_handle = sgt.sgl->dma_address; sg_free_table(&sgt); vaddr = dma_common_pages_remap(pages, size, prot, __builtin_return_address(0)); if (!vaddr) goto out_unmap; return vaddr; out_unmap: __iommu_dma_unmap(dev, *dma_handle, size); __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); return NULL; } static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, size_t size, enum dma_data_direction dir, gfp_t gfp, unsigned long attrs) { struct dma_sgt_handle *sh; sh = kmalloc(sizeof(*sh), gfp); if (!sh) return NULL; sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, PAGE_KERNEL, attrs); if (!sh->pages) { kfree(sh); return NULL; } return &sh->sgt; } static void iommu_dma_free_noncontiguous(struct device *dev, size_t size, struct sg_table *sgt, enum dma_data_direction dir) { struct dma_sgt_handle *sh = sgt_handle(sgt); __iommu_dma_unmap(dev, sgt->sgl->dma_address, size); __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); sg_free_table(&sh->sgt); kfree(sh); } static void iommu_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) { phys_addr_t phys; if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) return; phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_cpu(phys, size, dir); if (is_swiotlb_buffer(dev, phys)) swiotlb_sync_single_for_cpu(dev, phys, size, dir); } static void iommu_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) { phys_addr_t phys; if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) return; phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); if (is_swiotlb_buffer(dev, phys)) swiotlb_sync_single_for_device(dev, phys, size, dir); if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_device(phys, size, dir); } static void iommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir) { struct scatterlist *sg; int i; if (sg_dma_is_swiotlb(sgl)) for_each_sg(sgl, sg, nelems, i) iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg), sg->length, dir); else if (!dev_is_dma_coherent(dev)) for_each_sg(sgl, sg, nelems, i) arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); } static void iommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir) { struct scatterlist *sg; int i; if (sg_dma_is_swiotlb(sgl)) for_each_sg(sgl, sg, nelems, i) iommu_dma_sync_single_for_device(dev, sg_dma_address(sg), sg->length, dir); else if (!dev_is_dma_coherent(dev)) for_each_sg(sgl, sg, nelems, i) arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); } static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { phys_addr_t phys = page_to_phys(page) + offset; bool coherent = dev_is_dma_coherent(dev); int prot = dma_info_to_prot(dir, coherent, attrs); struct iommu_domain *domain = iommu_get_dma_domain(dev); struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iova_domain *iovad = &cookie->iovad; dma_addr_t iova, dma_mask = dma_get_mask(dev); /* * If both the physical buffer start address and size are * page aligned, we don't need to use a bounce page. */ if (dev_use_swiotlb(dev, size, dir) && iova_offset(iovad, phys | size)) { void *padding_start; size_t padding_size, aligned_size; if (!is_swiotlb_active(dev)) { dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n"); return DMA_MAPPING_ERROR; } aligned_size = iova_align(iovad, size); phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size, iova_mask(iovad), dir, attrs); if (phys == DMA_MAPPING_ERROR) return DMA_MAPPING_ERROR; /* Cleanup the padding area. */ padding_start = phys_to_virt(phys); padding_size = aligned_size; if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) { padding_start += size; padding_size -= size; } memset(padding_start, 0, padding_size); } if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) arch_sync_dma_for_device(phys, size, dir); iova = __iommu_dma_map(dev, phys, size, prot, dma_mask); if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys)) swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); return iova; } static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir, unsigned long attrs) { struct iommu_domain *domain = iommu_get_dma_domain(dev); phys_addr_t phys; phys = iommu_iova_to_phys(domain, dma_handle); if (WARN_ON(!phys)) return; if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev)) arch_sync_dma_for_cpu(phys, size, dir); __iommu_dma_unmap(dev, dma_handle, size); if (unlikely(is_swiotlb_buffer(dev, phys))) swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); } /* * Prepare a successfully-mapped scatterlist to give back to the caller. * * At this point the segments are already laid out by iommu_dma_map_sg() to * avoid individually crossing any boundaries, so we merely need to check a * segment's start address to avoid concatenating across one. */ static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, dma_addr_t dma_addr) { struct scatterlist *s, *cur = sg; unsigned long seg_mask = dma_get_seg_boundary(dev); unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); int i, count = 0; for_each_sg(sg, s, nents, i) { /* Restore this segment's original unaligned fields first */ dma_addr_t s_dma_addr = sg_dma_address(s); unsigned int s_iova_off = sg_dma_address(s); unsigned int s_length = sg_dma_len(s); unsigned int s_iova_len = s->length; sg_dma_address(s) = DMA_MAPPING_ERROR; sg_dma_len(s) = 0; if (sg_dma_is_bus_address(s)) { if (i > 0) cur = sg_next(cur); sg_dma_unmark_bus_address(s); sg_dma_address(cur) = s_dma_addr; sg_dma_len(cur) = s_length; sg_dma_mark_bus_address(cur); count++; cur_len = 0; continue; } s->offset += s_iova_off; s->length = s_length; /* * Now fill in the real DMA data. If... * - there is a valid output segment to append to * - and this segment starts on an IOVA page boundary * - but doesn't fall at a segment boundary * - and wouldn't make the resulting output segment too long */ if (cur_len && !s_iova_off && (dma_addr & seg_mask) && (max_len - cur_len >= s_length)) { /* ...then concatenate it with the previous one */ cur_len += s_length; } else { /* Otherwise start the next output segment */ if (i > 0) cur = sg_next(cur); cur_len = s_length; count++; sg_dma_address(cur) = dma_addr + s_iova_off; } sg_dma_len(cur) = cur_len; dma_addr += s_iova_len; if (s_length + s_iova_off < s_iova_len) cur_len = 0; } return count; } /* * If mapping failed, then just restore the original list, * but making sure the DMA fields are invalidated. */ static void __invalidate_sg(struct scatterlist *sg, int nents) { struct scatterlist *s; int i; for_each_sg(sg, s, nents, i) { if (sg_dma_is_bus_address(s)) { sg_dma_unmark_bus_address(s); } else { if (sg_dma_address(s) != DMA_MAPPING_ERROR) s->offset += sg_dma_address(s); if (sg_dma_len(s)) s->length = sg_dma_len(s); } sg_dma_address(s) = DMA_MAPPING_ERROR; sg_dma_len(s) = 0; } } static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs) { struct scatterlist *s; int i; for_each_sg(sg, s, nents, i) iommu_dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); } static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs) { struct scatterlist *s; int i; sg_dma_mark_swiotlb(sg); for_each_sg(sg, s, nents, i) { sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s), s->offset, s->length, dir, attrs); if (sg_dma_address(s) == DMA_MAPPING_ERROR) goto out_unmap; sg_dma_len(s) = s->length; } return nents; out_unmap: iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); return -EIO; } /* * The DMA API client is passing in a scatterlist which could describe * any old buffer layout, but the IOMMU API requires everything to be * aligned to IOMMU pages. Hence the need for this complicated bit of * impedance-matching, to be able to hand off a suitably-aligned list, * but still preserve the original offsets and sizes for the caller. */ static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs) { struct iommu_domain *domain = iommu_get_dma_domain(dev); struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iova_domain *iovad = &cookie->iovad; struct scatterlist *s, *prev = NULL; int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); struct pci_p2pdma_map_state p2pdma_state = {}; enum pci_p2pdma_map_type map; dma_addr_t iova; size_t iova_len = 0; unsigned long mask = dma_get_seg_boundary(dev); ssize_t ret; int i; if (static_branch_unlikely(&iommu_deferred_attach_enabled)) { ret = iommu_deferred_attach(dev, domain); if (ret) goto out; } if (dev_use_sg_swiotlb(dev, sg, nents, dir)) return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) iommu_dma_sync_sg_for_device(dev, sg, nents, dir); /* * Work out how much IOVA space we need, and align the segments to * IOVA granules for the IOMMU driver to handle. With some clever * trickery we can modify the list in-place, but reversibly, by * stashing the unaligned parts in the as-yet-unused DMA fields. */ for_each_sg(sg, s, nents, i) { size_t s_iova_off = iova_offset(iovad, s->offset); size_t s_length = s->length; size_t pad_len = (mask - iova_len + 1) & mask; if (is_pci_p2pdma_page(sg_page(s))) { map = pci_p2pdma_map_segment(&p2pdma_state, dev, s); switch (map) { case PCI_P2PDMA_MAP_BUS_ADDR: /* * iommu_map_sg() will skip this segment as * it is marked as a bus address, * __finalise_sg() will copy the dma address * into the output segment. */ continue; case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: /* * Mapping through host bridge should be * mapped with regular IOVAs, thus we * do nothing here and continue below. */ break; default: ret = -EREMOTEIO; goto out_restore_sg; } } sg_dma_address(s) = s_iova_off; sg_dma_len(s) = s_length; s->offset -= s_iova_off; s_length = iova_align(iovad, s_length + s_iova_off); s->length = s_length; /* * Due to the alignment of our single IOVA allocation, we can * depend on these assumptions about the segment boundary mask: * - If mask size >= IOVA size, then the IOVA range cannot * possibly fall across a boundary, so we don't care. * - If mask size < IOVA size, then the IOVA range must start * exactly on a boundary, therefore we can lay things out * based purely on segment lengths without needing to know * the actual addresses beforehand. * - The mask must be a power of 2, so pad_len == 0 if * iova_len == 0, thus we cannot dereference prev the first * time through here (i.e. before it has a meaningful value). */ if (pad_len && pad_len < s_length - 1) { prev->length += pad_len; iova_len += pad_len; } iova_len += s_length; prev = s; } if (!iova_len) return __finalise_sg(dev, sg, nents, 0); iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); if (!iova) { ret = -ENOMEM; goto out_restore_sg; } /* * We'll leave any physical concatenation to the IOMMU driver's * implementation - it knows better than we do. */ ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); if (ret < 0 || ret < iova_len) goto out_free_iova; return __finalise_sg(dev, sg, nents, iova); out_free_iova: iommu_dma_free_iova(cookie, iova, iova_len, NULL); out_restore_sg: __invalidate_sg(sg, nents); out: if (ret != -ENOMEM && ret != -EREMOTEIO) return -EINVAL; return ret; } static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs) { dma_addr_t end = 0, start; struct scatterlist *tmp; int i; if (sg_dma_is_swiotlb(sg)) { iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); return; } if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); /* * The scatterlist segments are mapped into a single * contiguous IOVA allocation, the start and end points * just have to be determined. */ for_each_sg(sg, tmp, nents, i) { if (sg_dma_is_bus_address(tmp)) { sg_dma_unmark_bus_address(tmp); continue; } if (sg_dma_len(tmp) == 0) break; start = sg_dma_address(tmp); break; } nents -= i; for_each_sg(tmp, tmp, nents, i) { if (sg_dma_is_bus_address(tmp)) { sg_dma_unmark_bus_address(tmp); continue; } if (sg_dma_len(tmp) == 0) break; end = sg_dma_address(tmp) + sg_dma_len(tmp); } if (end) __iommu_dma_unmap(dev, start, end - start); } static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, size_t size, enum dma_data_direction dir, unsigned long attrs) { return __iommu_dma_map(dev, phys, size, dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, dma_get_mask(dev)); } static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, size_t size, enum dma_data_direction dir, unsigned long attrs) { __iommu_dma_unmap(dev, handle, size); } static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) { size_t alloc_size = PAGE_ALIGN(size); int count = alloc_size >> PAGE_SHIFT; struct page *page = NULL, **pages = NULL; /* Non-coherent atomic allocation? Easy */ if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && dma_free_from_pool(dev, cpu_addr, alloc_size)) return; if (is_vmalloc_addr(cpu_addr)) { /* * If it the address is remapped, then it's either non-coherent * or highmem CMA, or an iommu_dma_alloc_remap() construction. */ pages = dma_common_find_pages(cpu_addr); if (!pages) page = vmalloc_to_page(cpu_addr); dma_common_free_remap(cpu_addr, alloc_size); } else { /* Lowmem means a coherent atomic or CMA allocation */ page = virt_to_page(cpu_addr); } if (pages) __iommu_dma_free_pages(pages, count); if (page) dma_free_contiguous(dev, page, alloc_size); } static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle, unsigned long attrs) { __iommu_dma_unmap(dev, handle, size); __iommu_dma_free(dev, size, cpu_addr); } static void *iommu_dma_alloc_pages(struct device *dev, size_t size, struct page **pagep, gfp_t gfp, unsigned long attrs) { bool coherent = dev_is_dma_coherent(dev); size_t alloc_size = PAGE_ALIGN(size); int node = dev_to_node(dev); struct page *page = NULL; void *cpu_addr; page = dma_alloc_contiguous(dev, alloc_size, gfp); if (!page) page = alloc_pages_node(node, gfp, get_order(alloc_size)); if (!page) return NULL; if (!coherent || PageHighMem(page)) { pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); cpu_addr = dma_common_contiguous_remap(page, alloc_size, prot, __builtin_return_address(0)); if (!cpu_addr) goto out_free_pages; if (!coherent) arch_dma_prep_coherent(page, size); } else { cpu_addr = page_address(page); } *pagep = page; memset(cpu_addr, 0, alloc_size); return cpu_addr; out_free_pages: dma_free_contiguous(dev, page, alloc_size); return NULL; } static void *iommu_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, unsigned long attrs) { bool coherent = dev_is_dma_coherent(dev); int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); struct page *page = NULL; void *cpu_addr; gfp |= __GFP_ZERO; if (gfpflags_allow_blocking(gfp) && !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { return iommu_dma_alloc_remap(dev, size, handle, gfp, dma_pgprot(dev, PAGE_KERNEL, attrs), attrs); } if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !gfpflags_allow_blocking(gfp) && !coherent) page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, gfp, NULL); else cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); if (!cpu_addr) return NULL; *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, dev->coherent_dma_mask); if (*handle == DMA_MAPPING_ERROR) { __iommu_dma_free(dev, size, cpu_addr); return NULL; } return cpu_addr; } static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; unsigned long pfn, off = vma->vm_pgoff; int ret; vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) return ret; if (off >= nr_pages || vma_pages(vma) > nr_pages - off) return -ENXIO; if (is_vmalloc_addr(cpu_addr)) { struct page **pages = dma_common_find_pages(cpu_addr); if (pages) return vm_map_pages(vma, pages, nr_pages); pfn = vmalloc_to_pfn(cpu_addr); } else { pfn = page_to_pfn(virt_to_page(cpu_addr)); } return remap_pfn_range(vma, vma->vm_start, pfn + off, vma->vm_end - vma->vm_start, vma->vm_page_prot); } static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { struct page *page; int ret; if (is_vmalloc_addr(cpu_addr)) { struct page **pages = dma_common_find_pages(cpu_addr); if (pages) { return sg_alloc_table_from_pages(sgt, pages, PAGE_ALIGN(size) >> PAGE_SHIFT, 0, size, GFP_KERNEL); } page = vmalloc_to_page(cpu_addr); } else { page = virt_to_page(cpu_addr); } ret = sg_alloc_table(sgt, 1, GFP_KERNEL); if (!ret) sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); return ret; } static unsigned long iommu_dma_get_merge_boundary(struct device *dev) { struct iommu_domain *domain = iommu_get_dma_domain(dev); return (1UL << __ffs(domain->pgsize_bitmap)) - 1; } static size_t iommu_dma_opt_mapping_size(void) { return iova_rcache_range(); } static const struct dma_map_ops iommu_dma_ops = { .flags = DMA_F_PCI_P2PDMA_SUPPORTED, .alloc = iommu_dma_alloc, .free = iommu_dma_free, .alloc_pages = dma_common_alloc_pages, .free_pages = dma_common_free_pages, .alloc_noncontiguous = iommu_dma_alloc_noncontiguous, .free_noncontiguous = iommu_dma_free_noncontiguous, .mmap = iommu_dma_mmap, .get_sgtable = iommu_dma_get_sgtable, .map_page = iommu_dma_map_page, .unmap_page = iommu_dma_unmap_page, .map_sg = iommu_dma_map_sg, .unmap_sg = iommu_dma_unmap_sg, .sync_single_for_cpu = iommu_dma_sync_single_for_cpu, .sync_single_for_device = iommu_dma_sync_single_for_device, .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu, .sync_sg_for_device = iommu_dma_sync_sg_for_device, .map_resource = iommu_dma_map_resource, .unmap_resource = iommu_dma_unmap_resource, .get_merge_boundary = iommu_dma_get_merge_boundary, .opt_mapping_size = iommu_dma_opt_mapping_size, }; /* * The IOMMU core code allocates the default DMA domain, which the underlying * IOMMU driver needs to support via the dma-iommu layer. */ void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit) { struct iommu_domain *domain = iommu_get_domain_for_dev(dev); if (!domain) goto out_err; /* * The IOMMU core code allocates the default DMA domain, which the * underlying IOMMU driver needs to support via the dma-iommu layer. */ if (iommu_is_dma_domain(domain)) { if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev)) goto out_err; dev->dma_ops = &iommu_dma_ops; } return; out_err: pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", dev_name(dev)); } EXPORT_SYMBOL_GPL(iommu_setup_dma_ops); static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, phys_addr_t msi_addr, struct iommu_domain *domain) { struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iommu_dma_msi_page *msi_page; dma_addr_t iova; int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; size_t size = cookie_msi_granule(cookie); msi_addr &= ~(phys_addr_t)(size - 1); list_for_each_entry(msi_page, &cookie->msi_page_list, list) if (msi_page->phys == msi_addr) return msi_page; msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); if (!msi_page) return NULL; iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); if (!iova) goto out_free_page; if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL)) goto out_free_iova; INIT_LIST_HEAD(&msi_page->list); msi_page->phys = msi_addr; msi_page->iova = iova; list_add(&msi_page->list, &cookie->msi_page_list); return msi_page; out_free_iova: iommu_dma_free_iova(cookie, iova, size, NULL); out_free_page: kfree(msi_page); return NULL; } /** * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain * @desc: MSI descriptor, will store the MSI page * @msi_addr: MSI target address to be mapped * * Return: 0 on success or negative error code if the mapping failed. */ int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) { struct device *dev = msi_desc_to_dev(desc); struct iommu_domain *domain = iommu_get_domain_for_dev(dev); struct iommu_dma_msi_page *msi_page; static DEFINE_MUTEX(msi_prepare_lock); /* see below */ if (!domain || !domain->iova_cookie) { desc->iommu_cookie = NULL; return 0; } /* * In fact the whole prepare operation should already be serialised by * irq_domain_mutex further up the callchain, but that's pretty subtle * on its own, so consider this locking as failsafe documentation... */ mutex_lock(&msi_prepare_lock); msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); mutex_unlock(&msi_prepare_lock); msi_desc_set_iommu_cookie(desc, msi_page); if (!msi_page) return -ENOMEM; return 0; } /** * iommu_dma_compose_msi_msg() - Apply translation to an MSI message * @desc: MSI descriptor prepared by iommu_dma_prepare_msi() * @msg: MSI message containing target physical address */ void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg) { struct device *dev = msi_desc_to_dev(desc); const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); const struct iommu_dma_msi_page *msi_page; msi_page = msi_desc_get_iommu_cookie(desc); if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) return; msg->address_hi = upper_32_bits(msi_page->iova); msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; msg->address_lo += lower_32_bits(msi_page->iova); } static int iommu_dma_init(void) { if (is_kdump_kernel()) static_branch_enable(&iommu_deferred_attach_enabled); return iova_cache_get(); } arch_initcall(iommu_dma_init);