/* * Copyright (C) 2002 ARM Limited, All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Interrupt architecture for the GIC: * * o There is one Interrupt Distributor, which receives interrupts * from system devices and sends them to the Interrupt Controllers. * * o There is one CPU Interface per CPU, which sends interrupts sent * by the Distributor, and interrupts generated locally, to the * associated CPU. The base address of the CPU interface is usually * aliased so that the same address points to different chips depending * on the CPU it is accessed from. * * Note that IRQs 0-31 are special - they are local to each CPU. * As such, the enable set/clear, pending set/clear and active bit * registers are banked per-cpu for these sources. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "irq-gic-common.h" #include "irqchip.h" union gic_base { void __iomem *common_base; void __percpu * __iomem *percpu_base; }; struct gic_chip_data { union gic_base dist_base; union gic_base cpu_base; #ifdef CONFIG_CPU_PM u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)]; u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)]; u32 saved_spi_target[DIV_ROUND_UP(1020, 4)]; u32 __percpu *saved_ppi_enable; u32 __percpu *saved_ppi_conf; #endif struct irq_domain *domain; unsigned int gic_irqs; #ifdef CONFIG_GIC_NON_BANKED void __iomem *(*get_base)(union gic_base *); #endif }; static DEFINE_RAW_SPINLOCK(irq_controller_lock); /* * The GIC mapping of CPU interfaces does not necessarily match * the logical CPU numbering. Let's use a mapping as returned * by the GIC itself. */ #define NR_GIC_CPU_IF 8 static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly; /* * Supported arch specific GIC irq extension. * Default make them NULL. */ struct irq_chip gic_arch_extn = { .irq_eoi = NULL, .irq_mask = NULL, .irq_unmask = NULL, .irq_retrigger = NULL, .irq_set_type = NULL, .irq_set_wake = NULL, }; #ifndef MAX_GIC_NR #define MAX_GIC_NR 1 #endif static struct gic_chip_data gic_data[MAX_GIC_NR] __read_mostly; #ifdef CONFIG_GIC_NON_BANKED static void __iomem *gic_get_percpu_base(union gic_base *base) { return raw_cpu_read(*base->percpu_base); } static void __iomem *gic_get_common_base(union gic_base *base) { return base->common_base; } static inline void __iomem *gic_data_dist_base(struct gic_chip_data *data) { return data->get_base(&data->dist_base); } static inline void __iomem *gic_data_cpu_base(struct gic_chip_data *data) { return data->get_base(&data->cpu_base); } static inline void gic_set_base_accessor(struct gic_chip_data *data, void __iomem *(*f)(union gic_base *)) { data->get_base = f; } #else #define gic_data_dist_base(d) ((d)->dist_base.common_base) #define gic_data_cpu_base(d) ((d)->cpu_base.common_base) #define gic_set_base_accessor(d, f) #endif static inline void __iomem *gic_dist_base(struct irq_data *d) { struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d); return gic_data_dist_base(gic_data); } static inline void __iomem *gic_cpu_base(struct irq_data *d) { struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d); return gic_data_cpu_base(gic_data); } static inline unsigned int gic_irq(struct irq_data *d) { return d->hwirq; } /* * Routines to acknowledge, disable and enable interrupts */ static void gic_mask_irq(struct irq_data *d) { u32 mask = 1 << (gic_irq(d) % 32); raw_spin_lock(&irq_controller_lock); writel_relaxed(mask, gic_dist_base(d) + GIC_DIST_ENABLE_CLEAR + (gic_irq(d) / 32) * 4); if (gic_arch_extn.irq_mask) gic_arch_extn.irq_mask(d); raw_spin_unlock(&irq_controller_lock); } static void gic_unmask_irq(struct irq_data *d) { u32 mask = 1 << (gic_irq(d) % 32); raw_spin_lock(&irq_controller_lock); if (gic_arch_extn.irq_unmask) gic_arch_extn.irq_unmask(d); writel_relaxed(mask, gic_dist_base(d) + GIC_DIST_ENABLE_SET + (gic_irq(d) / 32) * 4); raw_spin_unlock(&irq_controller_lock); } static void gic_eoi_irq(struct irq_data *d) { if (gic_arch_extn.irq_eoi) { raw_spin_lock(&irq_controller_lock); gic_arch_extn.irq_eoi(d); raw_spin_unlock(&irq_controller_lock); } writel_relaxed(gic_irq(d), gic_cpu_base(d) + GIC_CPU_EOI); } static int gic_set_type(struct irq_data *d, unsigned int type) { void __iomem *base = gic_dist_base(d); unsigned int gicirq = gic_irq(d); int ret; /* Interrupt configuration for SGIs can't be changed */ if (gicirq < 16) return -EINVAL; /* SPIs have restrictions on the supported types */ if (gicirq >= 32 && type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING) return -EINVAL; raw_spin_lock(&irq_controller_lock); if (gic_arch_extn.irq_set_type) gic_arch_extn.irq_set_type(d, type); ret = gic_configure_irq(gicirq, type, base, NULL); raw_spin_unlock(&irq_controller_lock); return ret; } static int gic_retrigger(struct irq_data *d) { if (gic_arch_extn.irq_retrigger) return gic_arch_extn.irq_retrigger(d); /* the genirq layer expects 0 if we can't retrigger in hardware */ return 0; } #ifdef CONFIG_SMP static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val, bool force) { void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + (gic_irq(d) & ~3); unsigned int cpu, shift = (gic_irq(d) % 4) * 8; u32 val, mask, bit; if (!force) cpu = cpumask_any_and(mask_val, cpu_online_mask); else cpu = cpumask_first(mask_val); if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids) return -EINVAL; raw_spin_lock(&irq_controller_lock); mask = 0xff << shift; bit = gic_cpu_map[cpu] << shift; val = readl_relaxed(reg) & ~mask; writel_relaxed(val | bit, reg); raw_spin_unlock(&irq_controller_lock); return IRQ_SET_MASK_OK; } #endif #ifdef CONFIG_PM static int gic_set_wake(struct irq_data *d, unsigned int on) { int ret = -ENXIO; if (gic_arch_extn.irq_set_wake) ret = gic_arch_extn.irq_set_wake(d, on); return ret; } #else #define gic_set_wake NULL #endif static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs) { u32 irqstat, irqnr; struct gic_chip_data *gic = &gic_data[0]; void __iomem *cpu_base = gic_data_cpu_base(gic); do { irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK); irqnr = irqstat & GICC_IAR_INT_ID_MASK; if (likely(irqnr > 15 && irqnr < 1021)) { handle_domain_irq(gic->domain, irqnr, regs); continue; } if (irqnr < 16) { writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI); #ifdef CONFIG_SMP handle_IPI(irqnr, regs); #endif continue; } break; } while (1); } static void gic_handle_cascade_irq(unsigned int irq, struct irq_desc *desc) { struct gic_chip_data *chip_data = irq_get_handler_data(irq); struct irq_chip *chip = irq_get_chip(irq); unsigned int cascade_irq, gic_irq; unsigned long status; chained_irq_enter(chip, desc); raw_spin_lock(&irq_controller_lock); status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK); raw_spin_unlock(&irq_controller_lock); gic_irq = (status & GICC_IAR_INT_ID_MASK); if (gic_irq == GICC_INT_SPURIOUS) goto out; cascade_irq = irq_find_mapping(chip_data->domain, gic_irq); if (unlikely(gic_irq < 32 || gic_irq > 1020)) handle_bad_irq(cascade_irq, desc); else generic_handle_irq(cascade_irq); out: chained_irq_exit(chip, desc); } static struct irq_chip gic_chip = { .name = "GIC", .irq_mask = gic_mask_irq, .irq_unmask = gic_unmask_irq, .irq_eoi = gic_eoi_irq, .irq_set_type = gic_set_type, .irq_retrigger = gic_retrigger, #ifdef CONFIG_SMP .irq_set_affinity = gic_set_affinity, #endif .irq_set_wake = gic_set_wake, }; void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq) { if (gic_nr >= MAX_GIC_NR) BUG(); if (irq_set_handler_data(irq, &gic_data[gic_nr]) != 0) BUG(); irq_set_chained_handler(irq, gic_handle_cascade_irq); } static u8 gic_get_cpumask(struct gic_chip_data *gic) { void __iomem *base = gic_data_dist_base(gic); u32 mask, i; for (i = mask = 0; i < 32; i += 4) { mask = readl_relaxed(base + GIC_DIST_TARGET + i); mask |= mask >> 16; mask |= mask >> 8; if (mask) break; } if (!mask && num_possible_cpus() > 1) pr_crit("GIC CPU mask not found - kernel will fail to boot.\n"); return mask; } static void gic_cpu_if_up(void) { void __iomem *cpu_base = gic_data_cpu_base(&gic_data[0]); u32 bypass = 0; /* * Preserve bypass disable bits to be written back later */ bypass = readl(cpu_base + GIC_CPU_CTRL); bypass &= GICC_DIS_BYPASS_MASK; writel_relaxed(bypass | GICC_ENABLE, cpu_base + GIC_CPU_CTRL); } static void __init gic_dist_init(struct gic_chip_data *gic) { unsigned int i; u32 cpumask; unsigned int gic_irqs = gic->gic_irqs; void __iomem *base = gic_data_dist_base(gic); writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL); /* * Set all global interrupts to this CPU only. */ cpumask = gic_get_cpumask(gic); cpumask |= cpumask << 8; cpumask |= cpumask << 16; for (i = 32; i < gic_irqs; i += 4) writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4); gic_dist_config(base, gic_irqs, NULL); writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL); } static void gic_cpu_init(struct gic_chip_data *gic) { void __iomem *dist_base = gic_data_dist_base(gic); void __iomem *base = gic_data_cpu_base(gic); unsigned int cpu_mask, cpu = smp_processor_id(); int i; /* * Get what the GIC says our CPU mask is. */ BUG_ON(cpu >= NR_GIC_CPU_IF); cpu_mask = gic_get_cpumask(gic); gic_cpu_map[cpu] = cpu_mask; /* * Clear our mask from the other map entries in case they're * still undefined. */ for (i = 0; i < NR_GIC_CPU_IF; i++) if (i != cpu) gic_cpu_map[i] &= ~cpu_mask; gic_cpu_config(dist_base, NULL); writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK); gic_cpu_if_up(); } void gic_cpu_if_down(void) { void __iomem *cpu_base = gic_data_cpu_base(&gic_data[0]); u32 val = 0; val = readl(cpu_base + GIC_CPU_CTRL); val &= ~GICC_ENABLE; writel_relaxed(val, cpu_base + GIC_CPU_CTRL); } #ifdef CONFIG_CPU_PM /* * Saves the GIC distributor registers during suspend or idle. Must be called * with interrupts disabled but before powering down the GIC. After calling * this function, no interrupts will be delivered by the GIC, and another * platform-specific wakeup source must be enabled. */ static void gic_dist_save(unsigned int gic_nr) { unsigned int gic_irqs; void __iomem *dist_base; int i; if (gic_nr >= MAX_GIC_NR) BUG(); gic_irqs = gic_data[gic_nr].gic_irqs; dist_base = gic_data_dist_base(&gic_data[gic_nr]); if (!dist_base) return; for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++) gic_data[gic_nr].saved_spi_conf[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4); for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++) gic_data[gic_nr].saved_spi_target[i] = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4); for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) gic_data[gic_nr].saved_spi_enable[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4); } /* * Restores the GIC distributor registers during resume or when coming out of * idle. Must be called before enabling interrupts. If a level interrupt * that occured while the GIC was suspended is still present, it will be * handled normally, but any edge interrupts that occured will not be seen by * the GIC and need to be handled by the platform-specific wakeup source. */ static void gic_dist_restore(unsigned int gic_nr) { unsigned int gic_irqs; unsigned int i; void __iomem *dist_base; if (gic_nr >= MAX_GIC_NR) BUG(); gic_irqs = gic_data[gic_nr].gic_irqs; dist_base = gic_data_dist_base(&gic_data[gic_nr]); if (!dist_base) return; writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL); for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++) writel_relaxed(gic_data[gic_nr].saved_spi_conf[i], dist_base + GIC_DIST_CONFIG + i * 4); for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++) writel_relaxed(GICD_INT_DEF_PRI_X4, dist_base + GIC_DIST_PRI + i * 4); for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++) writel_relaxed(gic_data[gic_nr].saved_spi_target[i], dist_base + GIC_DIST_TARGET + i * 4); for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) writel_relaxed(gic_data[gic_nr].saved_spi_enable[i], dist_base + GIC_DIST_ENABLE_SET + i * 4); writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL); } static void gic_cpu_save(unsigned int gic_nr) { int i; u32 *ptr; void __iomem *dist_base; void __iomem *cpu_base; if (gic_nr >= MAX_GIC_NR) BUG(); dist_base = gic_data_dist_base(&gic_data[gic_nr]); cpu_base = gic_data_cpu_base(&gic_data[gic_nr]); if (!dist_base || !cpu_base) return; ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_enable); for (i = 0; i < DIV_ROUND_UP(32, 32); i++) ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4); ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_conf); for (i = 0; i < DIV_ROUND_UP(32, 16); i++) ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4); } static void gic_cpu_restore(unsigned int gic_nr) { int i; u32 *ptr; void __iomem *dist_base; void __iomem *cpu_base; if (gic_nr >= MAX_GIC_NR) BUG(); dist_base = gic_data_dist_base(&gic_data[gic_nr]); cpu_base = gic_data_cpu_base(&gic_data[gic_nr]); if (!dist_base || !cpu_base) return; ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_enable); for (i = 0; i < DIV_ROUND_UP(32, 32); i++) writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4); ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_conf); for (i = 0; i < DIV_ROUND_UP(32, 16); i++) writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4); for (i = 0; i < DIV_ROUND_UP(32, 4); i++) writel_relaxed(GICD_INT_DEF_PRI_X4, dist_base + GIC_DIST_PRI + i * 4); writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK); gic_cpu_if_up(); } static int gic_notifier(struct notifier_block *self, unsigned long cmd, void *v) { int i; for (i = 0; i < MAX_GIC_NR; i++) { #ifdef CONFIG_GIC_NON_BANKED /* Skip over unused GICs */ if (!gic_data[i].get_base) continue; #endif switch (cmd) { case CPU_PM_ENTER: gic_cpu_save(i); break; case CPU_PM_ENTER_FAILED: case CPU_PM_EXIT: gic_cpu_restore(i); break; case CPU_CLUSTER_PM_ENTER: gic_dist_save(i); break; case CPU_CLUSTER_PM_ENTER_FAILED: case CPU_CLUSTER_PM_EXIT: gic_dist_restore(i); break; } } return NOTIFY_OK; } static struct notifier_block gic_notifier_block = { .notifier_call = gic_notifier, }; static void __init gic_pm_init(struct gic_chip_data *gic) { gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4, sizeof(u32)); BUG_ON(!gic->saved_ppi_enable); gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4, sizeof(u32)); BUG_ON(!gic->saved_ppi_conf); if (gic == &gic_data[0]) cpu_pm_register_notifier(&gic_notifier_block); } #else static void __init gic_pm_init(struct gic_chip_data *gic) { } #endif #ifdef CONFIG_SMP static void gic_raise_softirq(const struct cpumask *mask, unsigned int irq) { int cpu; unsigned long flags, map = 0; raw_spin_lock_irqsave(&irq_controller_lock, flags); /* Convert our logical CPU mask into a physical one. */ for_each_cpu(cpu, mask) map |= gic_cpu_map[cpu]; /* * Ensure that stores to Normal memory are visible to the * other CPUs before they observe us issuing the IPI. */ dmb(ishst); /* this always happens on GIC0 */ writel_relaxed(map << 16 | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT); raw_spin_unlock_irqrestore(&irq_controller_lock, flags); } #endif #ifdef CONFIG_BL_SWITCHER /* * gic_send_sgi - send a SGI directly to given CPU interface number * * cpu_id: the ID for the destination CPU interface * irq: the IPI number to send a SGI for */ void gic_send_sgi(unsigned int cpu_id, unsigned int irq) { BUG_ON(cpu_id >= NR_GIC_CPU_IF); cpu_id = 1 << cpu_id; /* this always happens on GIC0 */ writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT); } /* * gic_get_cpu_id - get the CPU interface ID for the specified CPU * * @cpu: the logical CPU number to get the GIC ID for. * * Return the CPU interface ID for the given logical CPU number, * or -1 if the CPU number is too large or the interface ID is * unknown (more than one bit set). */ int gic_get_cpu_id(unsigned int cpu) { unsigned int cpu_bit; if (cpu >= NR_GIC_CPU_IF) return -1; cpu_bit = gic_cpu_map[cpu]; if (cpu_bit & (cpu_bit - 1)) return -1; return __ffs(cpu_bit); } /* * gic_migrate_target - migrate IRQs to another CPU interface * * @new_cpu_id: the CPU target ID to migrate IRQs to * * Migrate all peripheral interrupts with a target matching the current CPU * to the interface corresponding to @new_cpu_id. The CPU interface mapping * is also updated. Targets to other CPU interfaces are unchanged. * This must be called with IRQs locally disabled. */ void gic_migrate_target(unsigned int new_cpu_id) { unsigned int cur_cpu_id, gic_irqs, gic_nr = 0; void __iomem *dist_base; int i, ror_val, cpu = smp_processor_id(); u32 val, cur_target_mask, active_mask; if (gic_nr >= MAX_GIC_NR) BUG(); dist_base = gic_data_dist_base(&gic_data[gic_nr]); if (!dist_base) return; gic_irqs = gic_data[gic_nr].gic_irqs; cur_cpu_id = __ffs(gic_cpu_map[cpu]); cur_target_mask = 0x01010101 << cur_cpu_id; ror_val = (cur_cpu_id - new_cpu_id) & 31; raw_spin_lock(&irq_controller_lock); /* Update the target interface for this logical CPU */ gic_cpu_map[cpu] = 1 << new_cpu_id; /* * Find all the peripheral interrupts targetting the current * CPU interface and migrate them to the new CPU interface. * We skip DIST_TARGET 0 to 7 as they are read-only. */ for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) { val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4); active_mask = val & cur_target_mask; if (active_mask) { val &= ~active_mask; val |= ror32(active_mask, ror_val); writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4); } } raw_spin_unlock(&irq_controller_lock); /* * Now let's migrate and clear any potential SGIs that might be * pending for us (cur_cpu_id). Since GIC_DIST_SGI_PENDING_SET * is a banked register, we can only forward the SGI using * GIC_DIST_SOFTINT. The original SGI source is lost but Linux * doesn't use that information anyway. * * For the same reason we do not adjust SGI source information * for previously sent SGIs by us to other CPUs either. */ for (i = 0; i < 16; i += 4) { int j; val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i); if (!val) continue; writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i); for (j = i; j < i + 4; j++) { if (val & 0xff) writel_relaxed((1 << (new_cpu_id + 16)) | j, dist_base + GIC_DIST_SOFTINT); val >>= 8; } } } /* * gic_get_sgir_physaddr - get the physical address for the SGI register * * REturn the physical address of the SGI register to be used * by some early assembly code when the kernel is not yet available. */ static unsigned long gic_dist_physaddr; unsigned long gic_get_sgir_physaddr(void) { if (!gic_dist_physaddr) return 0; return gic_dist_physaddr + GIC_DIST_SOFTINT; } void __init gic_init_physaddr(struct device_node *node) { struct resource res; if (of_address_to_resource(node, 0, &res) == 0) { gic_dist_physaddr = res.start; pr_info("GIC physical location is %#lx\n", gic_dist_physaddr); } } #else #define gic_init_physaddr(node) do { } while (0) #endif static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq, irq_hw_number_t hw) { if (hw < 32) { irq_set_percpu_devid(irq); irq_domain_set_info(d, irq, hw, &gic_chip, d->host_data, handle_percpu_devid_irq, NULL, NULL); set_irq_flags(irq, IRQF_VALID | IRQF_NOAUTOEN); } else { irq_domain_set_info(d, irq, hw, &gic_chip, d->host_data, handle_fasteoi_irq, NULL, NULL); set_irq_flags(irq, IRQF_VALID | IRQF_PROBE); gic_routable_irq_domain_ops->map(d, irq, hw); } return 0; } static void gic_irq_domain_unmap(struct irq_domain *d, unsigned int irq) { gic_routable_irq_domain_ops->unmap(d, irq); } static int gic_irq_domain_xlate(struct irq_domain *d, struct device_node *controller, const u32 *intspec, unsigned int intsize, unsigned long *out_hwirq, unsigned int *out_type) { unsigned long ret = 0; if (d->of_node != controller) return -EINVAL; if (intsize < 3) return -EINVAL; /* Get the interrupt number and add 16 to skip over SGIs */ *out_hwirq = intspec[1] + 16; /* For SPIs, we need to add 16 more to get the GIC irq ID number */ if (!intspec[0]) { ret = gic_routable_irq_domain_ops->xlate(d, controller, intspec, intsize, out_hwirq, out_type); if (IS_ERR_VALUE(ret)) return ret; } *out_type = intspec[2] & IRQ_TYPE_SENSE_MASK; return ret; } #ifdef CONFIG_SMP static int gic_secondary_init(struct notifier_block *nfb, unsigned long action, void *hcpu) { if (action == CPU_STARTING || action == CPU_STARTING_FROZEN) gic_cpu_init(&gic_data[0]); return NOTIFY_OK; } /* * Notifier for enabling the GIC CPU interface. Set an arbitrarily high * priority because the GIC needs to be up before the ARM generic timers. */ static struct notifier_block gic_cpu_notifier = { .notifier_call = gic_secondary_init, .priority = 100, }; #endif static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg) { int i, ret; irq_hw_number_t hwirq; unsigned int type = IRQ_TYPE_NONE; struct of_phandle_args *irq_data = arg; ret = gic_irq_domain_xlate(domain, irq_data->np, irq_data->args, irq_data->args_count, &hwirq, &type); if (ret) return ret; for (i = 0; i < nr_irqs; i++) gic_irq_domain_map(domain, virq + i, hwirq + i); return 0; } static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = { .xlate = gic_irq_domain_xlate, .alloc = gic_irq_domain_alloc, .free = irq_domain_free_irqs_top, }; static const struct irq_domain_ops gic_irq_domain_ops = { .map = gic_irq_domain_map, .unmap = gic_irq_domain_unmap, .xlate = gic_irq_domain_xlate, }; /* Default functions for routable irq domain */ static int gic_routable_irq_domain_map(struct irq_domain *d, unsigned int irq, irq_hw_number_t hw) { return 0; } static void gic_routable_irq_domain_unmap(struct irq_domain *d, unsigned int irq) { } static int gic_routable_irq_domain_xlate(struct irq_domain *d, struct device_node *controller, const u32 *intspec, unsigned int intsize, unsigned long *out_hwirq, unsigned int *out_type) { *out_hwirq += 16; return 0; } static const struct irq_domain_ops gic_default_routable_irq_domain_ops = { .map = gic_routable_irq_domain_map, .unmap = gic_routable_irq_domain_unmap, .xlate = gic_routable_irq_domain_xlate, }; const struct irq_domain_ops *gic_routable_irq_domain_ops = &gic_default_routable_irq_domain_ops; void __init gic_init_bases(unsigned int gic_nr, int irq_start, void __iomem *dist_base, void __iomem *cpu_base, u32 percpu_offset, struct device_node *node) { irq_hw_number_t hwirq_base; struct gic_chip_data *gic; int gic_irqs, irq_base, i; int nr_routable_irqs; BUG_ON(gic_nr >= MAX_GIC_NR); gic = &gic_data[gic_nr]; #ifdef CONFIG_GIC_NON_BANKED if (percpu_offset) { /* Frankein-GIC without banked registers... */ unsigned int cpu; gic->dist_base.percpu_base = alloc_percpu(void __iomem *); gic->cpu_base.percpu_base = alloc_percpu(void __iomem *); if (WARN_ON(!gic->dist_base.percpu_base || !gic->cpu_base.percpu_base)) { free_percpu(gic->dist_base.percpu_base); free_percpu(gic->cpu_base.percpu_base); return; } for_each_possible_cpu(cpu) { u32 mpidr = cpu_logical_map(cpu); u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); unsigned long offset = percpu_offset * core_id; *per_cpu_ptr(gic->dist_base.percpu_base, cpu) = dist_base + offset; *per_cpu_ptr(gic->cpu_base.percpu_base, cpu) = cpu_base + offset; } gic_set_base_accessor(gic, gic_get_percpu_base); } else #endif { /* Normal, sane GIC... */ WARN(percpu_offset, "GIC_NON_BANKED not enabled, ignoring %08x offset!", percpu_offset); gic->dist_base.common_base = dist_base; gic->cpu_base.common_base = cpu_base; gic_set_base_accessor(gic, gic_get_common_base); } /* * Initialize the CPU interface map to all CPUs. * It will be refined as each CPU probes its ID. */ for (i = 0; i < NR_GIC_CPU_IF; i++) gic_cpu_map[i] = 0xff; /* * Find out how many interrupts are supported. * The GIC only supports up to 1020 interrupt sources. */ gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f; gic_irqs = (gic_irqs + 1) * 32; if (gic_irqs > 1020) gic_irqs = 1020; gic->gic_irqs = gic_irqs; if (node) { /* DT case */ const struct irq_domain_ops *ops = &gic_irq_domain_hierarchy_ops; if (!of_property_read_u32(node, "arm,routable-irqs", &nr_routable_irqs)) { ops = &gic_irq_domain_ops; gic_irqs = nr_routable_irqs; } gic->domain = irq_domain_add_linear(node, gic_irqs, ops, gic); } else { /* Non-DT case */ /* * For primary GICs, skip over SGIs. * For secondary GICs, skip over PPIs, too. */ if (gic_nr == 0 && (irq_start & 31) > 0) { hwirq_base = 16; if (irq_start != -1) irq_start = (irq_start & ~31) + 16; } else { hwirq_base = 32; } gic_irqs -= hwirq_base; /* calculate # of irqs to allocate */ irq_base = irq_alloc_descs(irq_start, 16, gic_irqs, numa_node_id()); if (IS_ERR_VALUE(irq_base)) { WARN(1, "Cannot allocate irq_descs @ IRQ%d, assuming pre-allocated\n", irq_start); irq_base = irq_start; } gic->domain = irq_domain_add_legacy(node, gic_irqs, irq_base, hwirq_base, &gic_irq_domain_ops, gic); } if (WARN_ON(!gic->domain)) return; if (gic_nr == 0) { #ifdef CONFIG_SMP set_smp_cross_call(gic_raise_softirq); register_cpu_notifier(&gic_cpu_notifier); #endif set_handle_irq(gic_handle_irq); } gic_chip.flags |= gic_arch_extn.flags; gic_dist_init(gic); gic_cpu_init(gic); gic_pm_init(gic); } #ifdef CONFIG_OF static int gic_cnt __initdata; static int __init gic_of_init(struct device_node *node, struct device_node *parent) { void __iomem *cpu_base; void __iomem *dist_base; u32 percpu_offset; int irq; if (WARN_ON(!node)) return -ENODEV; dist_base = of_iomap(node, 0); WARN(!dist_base, "unable to map gic dist registers\n"); cpu_base = of_iomap(node, 1); WARN(!cpu_base, "unable to map gic cpu registers\n"); if (of_property_read_u32(node, "cpu-offset", &percpu_offset)) percpu_offset = 0; gic_init_bases(gic_cnt, -1, dist_base, cpu_base, percpu_offset, node); if (!gic_cnt) gic_init_physaddr(node); if (parent) { irq = irq_of_parse_and_map(node, 0); gic_cascade_irq(gic_cnt, irq); } if (IS_ENABLED(CONFIG_ARM_GIC_V2M)) gicv2m_of_init(node, gic_data[gic_cnt].domain); gic_cnt++; return 0; } IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init); IRQCHIP_DECLARE(arm11mp_gic, "arm,arm11mp-gic", gic_of_init); IRQCHIP_DECLARE(arm1176jzf_dc_gic, "arm,arm1176jzf-devchip-gic", gic_of_init); IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init); IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init); IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init); IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init); IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init); #endif