// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) /* * Copyright (C) Sunplus Technology Co., Ltd. * All rights reserved. */ #include <linux/irq.h> #include <linux/irqdomain.h> #include <linux/io.h> #include <linux/irqchip.h> #include <linux/irqchip/chained_irq.h> #include <linux/of_address.h> #include <linux/of_irq.h> #define SP_INTC_HWIRQ_MIN 0 #define SP_INTC_HWIRQ_MAX 223 #define SP_INTC_NR_IRQS (SP_INTC_HWIRQ_MAX - SP_INTC_HWIRQ_MIN + 1) #define SP_INTC_NR_GROUPS DIV_ROUND_UP(SP_INTC_NR_IRQS, 32) #define SP_INTC_REG_SIZE (SP_INTC_NR_GROUPS * 4) /* REG_GROUP_0 regs */ #define REG_INTR_TYPE (sp_intc.g0) #define REG_INTR_POLARITY (REG_INTR_TYPE + SP_INTC_REG_SIZE) #define REG_INTR_PRIORITY (REG_INTR_POLARITY + SP_INTC_REG_SIZE) #define REG_INTR_MASK (REG_INTR_PRIORITY + SP_INTC_REG_SIZE) /* REG_GROUP_1 regs */ #define REG_INTR_CLEAR (sp_intc.g1) #define REG_MASKED_EXT1 (REG_INTR_CLEAR + SP_INTC_REG_SIZE) #define REG_MASKED_EXT0 (REG_MASKED_EXT1 + SP_INTC_REG_SIZE) #define REG_INTR_GROUP (REG_INTR_CLEAR + 31 * 4) #define GROUP_MASK (BIT(SP_INTC_NR_GROUPS) - 1) #define GROUP_SHIFT_EXT1 (0) #define GROUP_SHIFT_EXT0 (8) /* * When GPIO_INT0~7 set to edge trigger, doesn't work properly. * WORKAROUND: change it to level trigger, and toggle the polarity * at ACK/Handler to make the HW work. */ #define GPIO_INT0_HWIRQ 120 #define GPIO_INT7_HWIRQ 127 #define IS_GPIO_INT(irq) \ ({ \ u32 i = irq; \ (i >= GPIO_INT0_HWIRQ) && (i <= GPIO_INT7_HWIRQ); \ }) /* index of states */ enum { _IS_EDGE = 0, _IS_LOW, _IS_ACTIVE }; #define STATE_BIT(irq, idx) (((irq) - GPIO_INT0_HWIRQ) * 3 + (idx)) #define ASSIGN_STATE(irq, idx, v) assign_bit(STATE_BIT(irq, idx), sp_intc.states, v) #define TEST_STATE(irq, idx) test_bit(STATE_BIT(irq, idx), sp_intc.states) static struct sp_intctl { /* * REG_GROUP_0: include type/polarity/priority/mask regs. * REG_GROUP_1: include clear/masked_ext0/masked_ext1/group regs. */ void __iomem *g0; // REG_GROUP_0 base void __iomem *g1; // REG_GROUP_1 base struct irq_domain *domain; raw_spinlock_t lock; /* * store GPIO_INT states * each interrupt has 3 states: is_edge, is_low, is_active */ DECLARE_BITMAP(states, (GPIO_INT7_HWIRQ - GPIO_INT0_HWIRQ + 1) * 3); } sp_intc; static struct irq_chip sp_intc_chip; static void sp_intc_assign_bit(u32 hwirq, void __iomem *base, bool value) { u32 offset, mask; unsigned long flags; void __iomem *reg; offset = (hwirq / 32) * 4; reg = base + offset; raw_spin_lock_irqsave(&sp_intc.lock, flags); mask = readl_relaxed(reg); if (value) mask |= BIT(hwirq % 32); else mask &= ~BIT(hwirq % 32); writel_relaxed(mask, reg); raw_spin_unlock_irqrestore(&sp_intc.lock, flags); } static void sp_intc_ack_irq(struct irq_data *d) { u32 hwirq = d->hwirq; if (unlikely(IS_GPIO_INT(hwirq) && TEST_STATE(hwirq, _IS_EDGE))) { // WORKAROUND sp_intc_assign_bit(hwirq, REG_INTR_POLARITY, !TEST_STATE(hwirq, _IS_LOW)); ASSIGN_STATE(hwirq, _IS_ACTIVE, true); } sp_intc_assign_bit(hwirq, REG_INTR_CLEAR, 1); } static void sp_intc_mask_irq(struct irq_data *d) { sp_intc_assign_bit(d->hwirq, REG_INTR_MASK, 0); } static void sp_intc_unmask_irq(struct irq_data *d) { sp_intc_assign_bit(d->hwirq, REG_INTR_MASK, 1); } static int sp_intc_set_type(struct irq_data *d, unsigned int type) { u32 hwirq = d->hwirq; bool is_edge = !(type & IRQ_TYPE_LEVEL_MASK); bool is_low = (type == IRQ_TYPE_LEVEL_LOW || type == IRQ_TYPE_EDGE_FALLING); irq_set_handler_locked(d, is_edge ? handle_edge_irq : handle_level_irq); if (unlikely(IS_GPIO_INT(hwirq) && is_edge)) { // WORKAROUND /* store states */ ASSIGN_STATE(hwirq, _IS_EDGE, is_edge); ASSIGN_STATE(hwirq, _IS_LOW, is_low); ASSIGN_STATE(hwirq, _IS_ACTIVE, false); /* change to level */ is_edge = false; } sp_intc_assign_bit(hwirq, REG_INTR_TYPE, is_edge); sp_intc_assign_bit(hwirq, REG_INTR_POLARITY, is_low); return 0; } static int sp_intc_get_ext_irq(int ext_num) { void __iomem *base = ext_num ? REG_MASKED_EXT1 : REG_MASKED_EXT0; u32 shift = ext_num ? GROUP_SHIFT_EXT1 : GROUP_SHIFT_EXT0; u32 groups; u32 pending_group; u32 group; u32 pending_irq; groups = readl_relaxed(REG_INTR_GROUP); pending_group = (groups >> shift) & GROUP_MASK; if (!pending_group) return -1; group = fls(pending_group) - 1; pending_irq = readl_relaxed(base + group * 4); if (!pending_irq) return -1; return (group * 32) + fls(pending_irq) - 1; } static void sp_intc_handle_ext_cascaded(struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); int ext_num = (uintptr_t)irq_desc_get_handler_data(desc); int hwirq; chained_irq_enter(chip, desc); while ((hwirq = sp_intc_get_ext_irq(ext_num)) >= 0) { if (unlikely(IS_GPIO_INT(hwirq) && TEST_STATE(hwirq, _IS_ACTIVE))) { // WORKAROUND ASSIGN_STATE(hwirq, _IS_ACTIVE, false); sp_intc_assign_bit(hwirq, REG_INTR_POLARITY, TEST_STATE(hwirq, _IS_LOW)); } else { generic_handle_domain_irq(sp_intc.domain, hwirq); } } chained_irq_exit(chip, desc); } static struct irq_chip sp_intc_chip = { .name = "sp_intc", .irq_ack = sp_intc_ack_irq, .irq_mask = sp_intc_mask_irq, .irq_unmask = sp_intc_unmask_irq, .irq_set_type = sp_intc_set_type, }; static int sp_intc_irq_domain_map(struct irq_domain *domain, unsigned int irq, irq_hw_number_t hwirq) { irq_set_chip_and_handler(irq, &sp_intc_chip, handle_level_irq); irq_set_chip_data(irq, &sp_intc_chip); irq_set_noprobe(irq); return 0; } static const struct irq_domain_ops sp_intc_dm_ops = { .xlate = irq_domain_xlate_twocell, .map = sp_intc_irq_domain_map, }; static int sp_intc_irq_map(struct device_node *node, int i) { unsigned int irq; irq = irq_of_parse_and_map(node, i); if (!irq) return -ENOENT; irq_set_chained_handler_and_data(irq, sp_intc_handle_ext_cascaded, (void *)(uintptr_t)i); return 0; } static int __init sp_intc_init_dt(struct device_node *node, struct device_node *parent) { int i, ret; sp_intc.g0 = of_iomap(node, 0); if (!sp_intc.g0) return -ENXIO; sp_intc.g1 = of_iomap(node, 1); if (!sp_intc.g1) { ret = -ENXIO; goto out_unmap0; } ret = sp_intc_irq_map(node, 0); // EXT_INT0 if (ret) goto out_unmap1; ret = sp_intc_irq_map(node, 1); // EXT_INT1 if (ret) goto out_unmap1; /* initial regs */ for (i = 0; i < SP_INTC_NR_GROUPS; i++) { /* all mask */ writel_relaxed(0, REG_INTR_MASK + i * 4); /* all edge */ writel_relaxed(~0, REG_INTR_TYPE + i * 4); /* all high-active */ writel_relaxed(0, REG_INTR_POLARITY + i * 4); /* all EXT_INT0 */ writel_relaxed(~0, REG_INTR_PRIORITY + i * 4); /* all clear */ writel_relaxed(~0, REG_INTR_CLEAR + i * 4); } sp_intc.domain = irq_domain_add_linear(node, SP_INTC_NR_IRQS, &sp_intc_dm_ops, &sp_intc); if (!sp_intc.domain) { ret = -ENOMEM; goto out_unmap1; } raw_spin_lock_init(&sp_intc.lock); return 0; out_unmap1: iounmap(sp_intc.g1); out_unmap0: iounmap(sp_intc.g0); return ret; } IRQCHIP_DECLARE(sp_intc, "sunplus,sp7021-intc", sp_intc_init_dt);