/* * Copyright (C) 2011-2012 Red Hat, Inc. * * This file is released under the GPL. */ #include "dm-thin-metadata.h" #include "persistent-data/dm-btree.h" #include "persistent-data/dm-space-map.h" #include "persistent-data/dm-space-map-disk.h" #include "persistent-data/dm-transaction-manager.h" #include #include #include /*-------------------------------------------------------------------------- * As far as the metadata goes, there is: * * - A superblock in block zero, taking up fewer than 512 bytes for * atomic writes. * * - A space map managing the metadata blocks. * * - A space map managing the data blocks. * * - A btree mapping our internal thin dev ids onto struct disk_device_details. * * - A hierarchical btree, with 2 levels which effectively maps (thin * dev id, virtual block) -> block_time. Block time is a 64-bit * field holding the time in the low 24 bits, and block in the top 48 * bits. * * BTrees consist solely of btree_nodes, that fill a block. Some are * internal nodes, as such their values are a __le64 pointing to other * nodes. Leaf nodes can store data of any reasonable size (ie. much * smaller than the block size). The nodes consist of the header, * followed by an array of keys, followed by an array of values. We have * to binary search on the keys so they're all held together to help the * cpu cache. * * Space maps have 2 btrees: * * - One maps a uint64_t onto a struct index_entry. Which points to a * bitmap block, and has some details about how many free entries there * are etc. * * - The bitmap blocks have a header (for the checksum). Then the rest * of the block is pairs of bits. With the meaning being: * * 0 - ref count is 0 * 1 - ref count is 1 * 2 - ref count is 2 * 3 - ref count is higher than 2 * * - If the count is higher than 2 then the ref count is entered in a * second btree that directly maps the block_address to a uint32_t ref * count. * * The space map metadata variant doesn't have a bitmaps btree. Instead * it has one single blocks worth of index_entries. This avoids * recursive issues with the bitmap btree needing to allocate space in * order to insert. With a small data block size such as 64k the * metadata support data devices that are hundreds of terrabytes. * * The space maps allocate space linearly from front to back. Space that * is freed in a transaction is never recycled within that transaction. * To try and avoid fragmenting _free_ space the allocator always goes * back and fills in gaps. * * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks * from the block manager. *--------------------------------------------------------------------------*/ #define DM_MSG_PREFIX "thin metadata" #define THIN_SUPERBLOCK_MAGIC 27022010 #define THIN_SUPERBLOCK_LOCATION 0 #define THIN_VERSION 2 #define SECTOR_TO_BLOCK_SHIFT 3 /* * For btree insert: * 3 for btree insert + * 2 for btree lookup used within space map * For btree remove: * 2 for shadow spine + * 4 for rebalance 3 child node */ #define THIN_MAX_CONCURRENT_LOCKS 6 /* This should be plenty */ #define SPACE_MAP_ROOT_SIZE 128 /* * Little endian on-disk superblock and device details. */ struct thin_disk_superblock { __le32 csum; /* Checksum of superblock except for this field. */ __le32 flags; __le64 blocknr; /* This block number, dm_block_t. */ __u8 uuid[16]; __le64 magic; __le32 version; __le32 time; __le64 trans_id; /* * Root held by userspace transactions. */ __le64 held_root; __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; /* * 2-level btree mapping (dev_id, (dev block, time)) -> data block */ __le64 data_mapping_root; /* * Device detail root mapping dev_id -> device_details */ __le64 device_details_root; __le32 data_block_size; /* In 512-byte sectors. */ __le32 metadata_block_size; /* In 512-byte sectors. */ __le64 metadata_nr_blocks; __le32 compat_flags; __le32 compat_ro_flags; __le32 incompat_flags; } __packed; struct disk_device_details { __le64 mapped_blocks; __le64 transaction_id; /* When created. */ __le32 creation_time; __le32 snapshotted_time; } __packed; struct dm_pool_metadata { struct hlist_node hash; struct block_device *bdev; struct dm_block_manager *bm; struct dm_space_map *metadata_sm; struct dm_space_map *data_sm; struct dm_transaction_manager *tm; struct dm_transaction_manager *nb_tm; /* * Two-level btree. * First level holds thin_dev_t. * Second level holds mappings. */ struct dm_btree_info info; /* * Non-blocking version of the above. */ struct dm_btree_info nb_info; /* * Just the top level for deleting whole devices. */ struct dm_btree_info tl_info; /* * Just the bottom level for creating new devices. */ struct dm_btree_info bl_info; /* * Describes the device details btree. */ struct dm_btree_info details_info; struct rw_semaphore root_lock; uint32_t time; dm_block_t root; dm_block_t details_root; struct list_head thin_devices; uint64_t trans_id; unsigned long flags; sector_t data_block_size; /* * We reserve a section of the metadata for commit overhead. * All reported space does *not* include this. */ dm_block_t metadata_reserve; /* * Set if a transaction has to be aborted but the attempt to roll back * to the previous (good) transaction failed. The only pool metadata * operation possible in this state is the closing of the device. */ bool fail_io:1; /* * Reading the space map roots can fail, so we read it into these * buffers before the superblock is locked and updated. */ __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; }; struct dm_thin_device { struct list_head list; struct dm_pool_metadata *pmd; dm_thin_id id; int open_count; bool changed:1; bool aborted_with_changes:1; uint64_t mapped_blocks; uint64_t transaction_id; uint32_t creation_time; uint32_t snapshotted_time; }; /*---------------------------------------------------------------- * superblock validator *--------------------------------------------------------------*/ #define SUPERBLOCK_CSUM_XOR 160774 static void sb_prepare_for_write(struct dm_block_validator *v, struct dm_block *b, size_t block_size) { struct thin_disk_superblock *disk_super = dm_block_data(b); disk_super->blocknr = cpu_to_le64(dm_block_location(b)); disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags, block_size - sizeof(__le32), SUPERBLOCK_CSUM_XOR)); } static int sb_check(struct dm_block_validator *v, struct dm_block *b, size_t block_size) { struct thin_disk_superblock *disk_super = dm_block_data(b); __le32 csum_le; if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) { DMERR("sb_check failed: blocknr %llu: " "wanted %llu", le64_to_cpu(disk_super->blocknr), (unsigned long long)dm_block_location(b)); return -ENOTBLK; } if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) { DMERR("sb_check failed: magic %llu: " "wanted %llu", le64_to_cpu(disk_super->magic), (unsigned long long)THIN_SUPERBLOCK_MAGIC); return -EILSEQ; } csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags, block_size - sizeof(__le32), SUPERBLOCK_CSUM_XOR)); if (csum_le != disk_super->csum) { DMERR("sb_check failed: csum %u: wanted %u", le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum)); return -EILSEQ; } return 0; } static struct dm_block_validator sb_validator = { .name = "superblock", .prepare_for_write = sb_prepare_for_write, .check = sb_check }; /*---------------------------------------------------------------- * Methods for the btree value types *--------------------------------------------------------------*/ static uint64_t pack_block_time(dm_block_t b, uint32_t t) { return (b << 24) | t; } static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t) { *b = v >> 24; *t = v & ((1 << 24) - 1); } static void data_block_inc(void *context, const void *value_le) { struct dm_space_map *sm = context; __le64 v_le; uint64_t b; uint32_t t; memcpy(&v_le, value_le, sizeof(v_le)); unpack_block_time(le64_to_cpu(v_le), &b, &t); dm_sm_inc_block(sm, b); } static void data_block_dec(void *context, const void *value_le) { struct dm_space_map *sm = context; __le64 v_le; uint64_t b; uint32_t t; memcpy(&v_le, value_le, sizeof(v_le)); unpack_block_time(le64_to_cpu(v_le), &b, &t); dm_sm_dec_block(sm, b); } static int data_block_equal(void *context, const void *value1_le, const void *value2_le) { __le64 v1_le, v2_le; uint64_t b1, b2; uint32_t t; memcpy(&v1_le, value1_le, sizeof(v1_le)); memcpy(&v2_le, value2_le, sizeof(v2_le)); unpack_block_time(le64_to_cpu(v1_le), &b1, &t); unpack_block_time(le64_to_cpu(v2_le), &b2, &t); return b1 == b2; } static void subtree_inc(void *context, const void *value) { struct dm_btree_info *info = context; __le64 root_le; uint64_t root; memcpy(&root_le, value, sizeof(root_le)); root = le64_to_cpu(root_le); dm_tm_inc(info->tm, root); } static void subtree_dec(void *context, const void *value) { struct dm_btree_info *info = context; __le64 root_le; uint64_t root; memcpy(&root_le, value, sizeof(root_le)); root = le64_to_cpu(root_le); if (dm_btree_del(info, root)) DMERR("btree delete failed"); } static int subtree_equal(void *context, const void *value1_le, const void *value2_le) { __le64 v1_le, v2_le; memcpy(&v1_le, value1_le, sizeof(v1_le)); memcpy(&v2_le, value2_le, sizeof(v2_le)); return v1_le == v2_le; } /*----------------------------------------------------------------*/ static inline void __pmd_write_lock(struct dm_pool_metadata *pmd) __acquires(pmd->root_lock) { down_write(&pmd->root_lock); } #define pmd_write_lock_in_core(pmd) __pmd_write_lock((pmd)) static inline void pmd_write_lock(struct dm_pool_metadata *pmd) { __pmd_write_lock(pmd); } static inline void pmd_write_unlock(struct dm_pool_metadata *pmd) __releases(pmd->root_lock) { up_write(&pmd->root_lock); } /*----------------------------------------------------------------*/ static int superblock_lock_zero(struct dm_pool_metadata *pmd, struct dm_block **sblock) { return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION, &sb_validator, sblock); } static int superblock_lock(struct dm_pool_metadata *pmd, struct dm_block **sblock) { return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, &sb_validator, sblock); } static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result) { int r; unsigned i; struct dm_block *b; __le64 *data_le, zero = cpu_to_le64(0); unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64); /* * We can't use a validator here - it may be all zeroes. */ r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b); if (r) return r; data_le = dm_block_data(b); *result = 1; for (i = 0; i < block_size; i++) { if (data_le[i] != zero) { *result = 0; break; } } dm_bm_unlock(b); return 0; } static void __setup_btree_details(struct dm_pool_metadata *pmd) { pmd->info.tm = pmd->tm; pmd->info.levels = 2; pmd->info.value_type.context = pmd->data_sm; pmd->info.value_type.size = sizeof(__le64); pmd->info.value_type.inc = data_block_inc; pmd->info.value_type.dec = data_block_dec; pmd->info.value_type.equal = data_block_equal; memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info)); pmd->nb_info.tm = pmd->nb_tm; pmd->tl_info.tm = pmd->tm; pmd->tl_info.levels = 1; pmd->tl_info.value_type.context = &pmd->bl_info; pmd->tl_info.value_type.size = sizeof(__le64); pmd->tl_info.value_type.inc = subtree_inc; pmd->tl_info.value_type.dec = subtree_dec; pmd->tl_info.value_type.equal = subtree_equal; pmd->bl_info.tm = pmd->tm; pmd->bl_info.levels = 1; pmd->bl_info.value_type.context = pmd->data_sm; pmd->bl_info.value_type.size = sizeof(__le64); pmd->bl_info.value_type.inc = data_block_inc; pmd->bl_info.value_type.dec = data_block_dec; pmd->bl_info.value_type.equal = data_block_equal; pmd->details_info.tm = pmd->tm; pmd->details_info.levels = 1; pmd->details_info.value_type.context = NULL; pmd->details_info.value_type.size = sizeof(struct disk_device_details); pmd->details_info.value_type.inc = NULL; pmd->details_info.value_type.dec = NULL; pmd->details_info.value_type.equal = NULL; } static int save_sm_roots(struct dm_pool_metadata *pmd) { int r; size_t len; r = dm_sm_root_size(pmd->metadata_sm, &len); if (r < 0) return r; r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len); if (r < 0) return r; r = dm_sm_root_size(pmd->data_sm, &len); if (r < 0) return r; return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len); } static void copy_sm_roots(struct dm_pool_metadata *pmd, struct thin_disk_superblock *disk) { memcpy(&disk->metadata_space_map_root, &pmd->metadata_space_map_root, sizeof(pmd->metadata_space_map_root)); memcpy(&disk->data_space_map_root, &pmd->data_space_map_root, sizeof(pmd->data_space_map_root)); } static int __write_initial_superblock(struct dm_pool_metadata *pmd) { int r; struct dm_block *sblock; struct thin_disk_superblock *disk_super; sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT; if (bdev_size > THIN_METADATA_MAX_SECTORS) bdev_size = THIN_METADATA_MAX_SECTORS; r = dm_sm_commit(pmd->data_sm); if (r < 0) return r; r = dm_tm_pre_commit(pmd->tm); if (r < 0) return r; r = save_sm_roots(pmd); if (r < 0) return r; r = superblock_lock_zero(pmd, &sblock); if (r) return r; disk_super = dm_block_data(sblock); disk_super->flags = 0; memset(disk_super->uuid, 0, sizeof(disk_super->uuid)); disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC); disk_super->version = cpu_to_le32(THIN_VERSION); disk_super->time = 0; disk_super->trans_id = 0; disk_super->held_root = 0; copy_sm_roots(pmd, disk_super); disk_super->data_mapping_root = cpu_to_le64(pmd->root); disk_super->device_details_root = cpu_to_le64(pmd->details_root); disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE); disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT); disk_super->data_block_size = cpu_to_le32(pmd->data_block_size); return dm_tm_commit(pmd->tm, sblock); } static int __format_metadata(struct dm_pool_metadata *pmd) { int r; r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, &pmd->tm, &pmd->metadata_sm); if (r < 0) { DMERR("tm_create_with_sm failed"); return r; } pmd->data_sm = dm_sm_disk_create(pmd->tm, 0); if (IS_ERR(pmd->data_sm)) { DMERR("sm_disk_create failed"); r = PTR_ERR(pmd->data_sm); goto bad_cleanup_tm; } pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); if (!pmd->nb_tm) { DMERR("could not create non-blocking clone tm"); r = -ENOMEM; goto bad_cleanup_data_sm; } __setup_btree_details(pmd); r = dm_btree_empty(&pmd->info, &pmd->root); if (r < 0) goto bad_cleanup_nb_tm; r = dm_btree_empty(&pmd->details_info, &pmd->details_root); if (r < 0) { DMERR("couldn't create devices root"); goto bad_cleanup_nb_tm; } r = __write_initial_superblock(pmd); if (r) goto bad_cleanup_nb_tm; return 0; bad_cleanup_nb_tm: dm_tm_destroy(pmd->nb_tm); bad_cleanup_data_sm: dm_sm_destroy(pmd->data_sm); bad_cleanup_tm: dm_tm_destroy(pmd->tm); dm_sm_destroy(pmd->metadata_sm); return r; } static int __check_incompat_features(struct thin_disk_superblock *disk_super, struct dm_pool_metadata *pmd) { uint32_t features; features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP; if (features) { DMERR("could not access metadata due to unsupported optional features (%lx).", (unsigned long)features); return -EINVAL; } /* * Check for read-only metadata to skip the following RDWR checks. */ if (get_disk_ro(pmd->bdev->bd_disk)) return 0; features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP; if (features) { DMERR("could not access metadata RDWR due to unsupported optional features (%lx).", (unsigned long)features); return -EINVAL; } return 0; } static int __open_metadata(struct dm_pool_metadata *pmd) { int r; struct dm_block *sblock; struct thin_disk_superblock *disk_super; r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, &sb_validator, &sblock); if (r < 0) { DMERR("couldn't read superblock"); return r; } disk_super = dm_block_data(sblock); /* Verify the data block size hasn't changed */ if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) { DMERR("changing the data block size (from %u to %llu) is not supported", le32_to_cpu(disk_super->data_block_size), (unsigned long long)pmd->data_block_size); r = -EINVAL; goto bad_unlock_sblock; } r = __check_incompat_features(disk_super, pmd); if (r < 0) goto bad_unlock_sblock; r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, disk_super->metadata_space_map_root, sizeof(disk_super->metadata_space_map_root), &pmd->tm, &pmd->metadata_sm); if (r < 0) { DMERR("tm_open_with_sm failed"); goto bad_unlock_sblock; } pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root, sizeof(disk_super->data_space_map_root)); if (IS_ERR(pmd->data_sm)) { DMERR("sm_disk_open failed"); r = PTR_ERR(pmd->data_sm); goto bad_cleanup_tm; } pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); if (!pmd->nb_tm) { DMERR("could not create non-blocking clone tm"); r = -ENOMEM; goto bad_cleanup_data_sm; } __setup_btree_details(pmd); dm_bm_unlock(sblock); return 0; bad_cleanup_data_sm: dm_sm_destroy(pmd->data_sm); bad_cleanup_tm: dm_tm_destroy(pmd->tm); dm_sm_destroy(pmd->metadata_sm); bad_unlock_sblock: dm_bm_unlock(sblock); return r; } static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device) { int r, unformatted; r = __superblock_all_zeroes(pmd->bm, &unformatted); if (r) return r; if (unformatted) return format_device ? __format_metadata(pmd) : -EPERM; return __open_metadata(pmd); } static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device) { int r; pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT, THIN_MAX_CONCURRENT_LOCKS); if (IS_ERR(pmd->bm)) { DMERR("could not create block manager"); return PTR_ERR(pmd->bm); } r = __open_or_format_metadata(pmd, format_device); if (r) dm_block_manager_destroy(pmd->bm); return r; } static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd) { dm_sm_destroy(pmd->data_sm); dm_sm_destroy(pmd->metadata_sm); dm_tm_destroy(pmd->nb_tm); dm_tm_destroy(pmd->tm); dm_block_manager_destroy(pmd->bm); } static int __begin_transaction(struct dm_pool_metadata *pmd) { int r; struct thin_disk_superblock *disk_super; struct dm_block *sblock; /* * We re-read the superblock every time. Shouldn't need to do this * really. */ r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, &sb_validator, &sblock); if (r) return r; disk_super = dm_block_data(sblock); pmd->time = le32_to_cpu(disk_super->time); pmd->root = le64_to_cpu(disk_super->data_mapping_root); pmd->details_root = le64_to_cpu(disk_super->device_details_root); pmd->trans_id = le64_to_cpu(disk_super->trans_id); pmd->flags = le32_to_cpu(disk_super->flags); pmd->data_block_size = le32_to_cpu(disk_super->data_block_size); dm_bm_unlock(sblock); return 0; } static int __write_changed_details(struct dm_pool_metadata *pmd) { int r; struct dm_thin_device *td, *tmp; struct disk_device_details details; uint64_t key; list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { if (!td->changed) continue; key = td->id; details.mapped_blocks = cpu_to_le64(td->mapped_blocks); details.transaction_id = cpu_to_le64(td->transaction_id); details.creation_time = cpu_to_le32(td->creation_time); details.snapshotted_time = cpu_to_le32(td->snapshotted_time); __dm_bless_for_disk(&details); r = dm_btree_insert(&pmd->details_info, pmd->details_root, &key, &details, &pmd->details_root); if (r) return r; if (td->open_count) td->changed = 0; else { list_del(&td->list); kfree(td); } } return 0; } static int __commit_transaction(struct dm_pool_metadata *pmd) { int r; struct thin_disk_superblock *disk_super; struct dm_block *sblock; /* * We need to know if the thin_disk_superblock exceeds a 512-byte sector. */ BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512); r = __write_changed_details(pmd); if (r < 0) return r; r = dm_sm_commit(pmd->data_sm); if (r < 0) return r; r = dm_tm_pre_commit(pmd->tm); if (r < 0) return r; r = save_sm_roots(pmd); if (r < 0) return r; r = superblock_lock(pmd, &sblock); if (r) return r; disk_super = dm_block_data(sblock); disk_super->time = cpu_to_le32(pmd->time); disk_super->data_mapping_root = cpu_to_le64(pmd->root); disk_super->device_details_root = cpu_to_le64(pmd->details_root); disk_super->trans_id = cpu_to_le64(pmd->trans_id); disk_super->flags = cpu_to_le32(pmd->flags); copy_sm_roots(pmd, disk_super); return dm_tm_commit(pmd->tm, sblock); } static void __set_metadata_reserve(struct dm_pool_metadata *pmd) { int r; dm_block_t total; dm_block_t max_blocks = 4096; /* 16M */ r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total); if (r) { DMERR("could not get size of metadata device"); pmd->metadata_reserve = max_blocks; } else pmd->metadata_reserve = min(max_blocks, div_u64(total, 10)); } struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev, sector_t data_block_size, bool format_device) { int r; struct dm_pool_metadata *pmd; pmd = kmalloc(sizeof(*pmd), GFP_KERNEL); if (!pmd) { DMERR("could not allocate metadata struct"); return ERR_PTR(-ENOMEM); } init_rwsem(&pmd->root_lock); pmd->time = 0; INIT_LIST_HEAD(&pmd->thin_devices); pmd->fail_io = false; pmd->bdev = bdev; pmd->data_block_size = data_block_size; r = __create_persistent_data_objects(pmd, format_device); if (r) { kfree(pmd); return ERR_PTR(r); } r = __begin_transaction(pmd); if (r < 0) { if (dm_pool_metadata_close(pmd) < 0) DMWARN("%s: dm_pool_metadata_close() failed.", __func__); return ERR_PTR(r); } __set_metadata_reserve(pmd); return pmd; } int dm_pool_metadata_close(struct dm_pool_metadata *pmd) { int r; unsigned open_devices = 0; struct dm_thin_device *td, *tmp; down_read(&pmd->root_lock); list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { if (td->open_count) open_devices++; else { list_del(&td->list); kfree(td); } } up_read(&pmd->root_lock); if (open_devices) { DMERR("attempt to close pmd when %u device(s) are still open", open_devices); return -EBUSY; } if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) { r = __commit_transaction(pmd); if (r < 0) DMWARN("%s: __commit_transaction() failed, error = %d", __func__, r); } if (!pmd->fail_io) __destroy_persistent_data_objects(pmd); kfree(pmd); return 0; } /* * __open_device: Returns @td corresponding to device with id @dev, * creating it if @create is set and incrementing @td->open_count. * On failure, @td is undefined. */ static int __open_device(struct dm_pool_metadata *pmd, dm_thin_id dev, int create, struct dm_thin_device **td) { int r, changed = 0; struct dm_thin_device *td2; uint64_t key = dev; struct disk_device_details details_le; /* * If the device is already open, return it. */ list_for_each_entry(td2, &pmd->thin_devices, list) if (td2->id == dev) { /* * May not create an already-open device. */ if (create) return -EEXIST; td2->open_count++; *td = td2; return 0; } /* * Check the device exists. */ r = dm_btree_lookup(&pmd->details_info, pmd->details_root, &key, &details_le); if (r) { if (r != -ENODATA || !create) return r; /* * Create new device. */ changed = 1; details_le.mapped_blocks = 0; details_le.transaction_id = cpu_to_le64(pmd->trans_id); details_le.creation_time = cpu_to_le32(pmd->time); details_le.snapshotted_time = cpu_to_le32(pmd->time); } *td = kmalloc(sizeof(**td), GFP_NOIO); if (!*td) return -ENOMEM; (*td)->pmd = pmd; (*td)->id = dev; (*td)->open_count = 1; (*td)->changed = changed; (*td)->aborted_with_changes = false; (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks); (*td)->transaction_id = le64_to_cpu(details_le.transaction_id); (*td)->creation_time = le32_to_cpu(details_le.creation_time); (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time); list_add(&(*td)->list, &pmd->thin_devices); return 0; } static void __close_device(struct dm_thin_device *td) { --td->open_count; } static int __create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev) { int r; dm_block_t dev_root; uint64_t key = dev; struct disk_device_details details_le; struct dm_thin_device *td; __le64 value; r = dm_btree_lookup(&pmd->details_info, pmd->details_root, &key, &details_le); if (!r) return -EEXIST; /* * Create an empty btree for the mappings. */ r = dm_btree_empty(&pmd->bl_info, &dev_root); if (r) return r; /* * Insert it into the main mapping tree. */ value = cpu_to_le64(dev_root); __dm_bless_for_disk(&value); r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); if (r) { dm_btree_del(&pmd->bl_info, dev_root); return r; } r = __open_device(pmd, dev, 1, &td); if (r) { dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); dm_btree_del(&pmd->bl_info, dev_root); return r; } __close_device(td); return r; } int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev) { int r = -EINVAL; pmd_write_lock(pmd); if (!pmd->fail_io) r = __create_thin(pmd, dev); pmd_write_unlock(pmd); return r; } static int __set_snapshot_details(struct dm_pool_metadata *pmd, struct dm_thin_device *snap, dm_thin_id origin, uint32_t time) { int r; struct dm_thin_device *td; r = __open_device(pmd, origin, 0, &td); if (r) return r; td->changed = 1; td->snapshotted_time = time; snap->mapped_blocks = td->mapped_blocks; snap->snapshotted_time = time; __close_device(td); return 0; } static int __create_snap(struct dm_pool_metadata *pmd, dm_thin_id dev, dm_thin_id origin) { int r; dm_block_t origin_root; uint64_t key = origin, dev_key = dev; struct dm_thin_device *td; struct disk_device_details details_le; __le64 value; /* check this device is unused */ r = dm_btree_lookup(&pmd->details_info, pmd->details_root, &dev_key, &details_le); if (!r) return -EEXIST; /* find the mapping tree for the origin */ r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value); if (r) return r; origin_root = le64_to_cpu(value); /* clone the origin, an inc will do */ dm_tm_inc(pmd->tm, origin_root); /* insert into the main mapping tree */ value = cpu_to_le64(origin_root); __dm_bless_for_disk(&value); key = dev; r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); if (r) { dm_tm_dec(pmd->tm, origin_root); return r; } pmd->time++; r = __open_device(pmd, dev, 1, &td); if (r) goto bad; r = __set_snapshot_details(pmd, td, origin, pmd->time); __close_device(td); if (r) goto bad; return 0; bad: dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); dm_btree_remove(&pmd->details_info, pmd->details_root, &key, &pmd->details_root); return r; } int dm_pool_create_snap(struct dm_pool_metadata *pmd, dm_thin_id dev, dm_thin_id origin) { int r = -EINVAL; pmd_write_lock(pmd); if (!pmd->fail_io) r = __create_snap(pmd, dev, origin); pmd_write_unlock(pmd); return r; } static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev) { int r; uint64_t key = dev; struct dm_thin_device *td; /* TODO: failure should mark the transaction invalid */ r = __open_device(pmd, dev, 0, &td); if (r) return r; if (td->open_count > 1) { __close_device(td); return -EBUSY; } list_del(&td->list); kfree(td); r = dm_btree_remove(&pmd->details_info, pmd->details_root, &key, &pmd->details_root); if (r) return r; r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); if (r) return r; return 0; } int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev) { int r = -EINVAL; pmd_write_lock(pmd); if (!pmd->fail_io) r = __delete_device(pmd, dev); pmd_write_unlock(pmd); return r; } int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd, uint64_t current_id, uint64_t new_id) { int r = -EINVAL; pmd_write_lock(pmd); if (pmd->fail_io) goto out; if (pmd->trans_id != current_id) { DMERR("mismatched transaction id"); goto out; } pmd->trans_id = new_id; r = 0; out: pmd_write_unlock(pmd); return r; } int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd, uint64_t *result) { int r = -EINVAL; down_read(&pmd->root_lock); if (!pmd->fail_io) { *result = pmd->trans_id; r = 0; } up_read(&pmd->root_lock); return r; } static int __reserve_metadata_snap(struct dm_pool_metadata *pmd) { int r, inc; struct thin_disk_superblock *disk_super; struct dm_block *copy, *sblock; dm_block_t held_root; /* * We commit to ensure the btree roots which we increment in a * moment are up to date. */ r = __commit_transaction(pmd); if (r < 0) { DMWARN("%s: __commit_transaction() failed, error = %d", __func__, r); return r; } /* * Copy the superblock. */ dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION); r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION, &sb_validator, ©, &inc); if (r) return r; BUG_ON(!inc); held_root = dm_block_location(copy); disk_super = dm_block_data(copy); if (le64_to_cpu(disk_super->held_root)) { DMWARN("Pool metadata snapshot already exists: release this before taking another."); dm_tm_dec(pmd->tm, held_root); dm_tm_unlock(pmd->tm, copy); return -EBUSY; } /* * Wipe the spacemap since we're not publishing this. */ memset(&disk_super->data_space_map_root, 0, sizeof(disk_super->data_space_map_root)); memset(&disk_super->metadata_space_map_root, 0, sizeof(disk_super->metadata_space_map_root)); /* * Increment the data structures that need to be preserved. */ dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root)); dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root)); dm_tm_unlock(pmd->tm, copy); /* * Write the held root into the superblock. */ r = superblock_lock(pmd, &sblock); if (r) { dm_tm_dec(pmd->tm, held_root); return r; } disk_super = dm_block_data(sblock); disk_super->held_root = cpu_to_le64(held_root); dm_bm_unlock(sblock); return 0; } int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd) { int r = -EINVAL; pmd_write_lock(pmd); if (!pmd->fail_io) r = __reserve_metadata_snap(pmd); pmd_write_unlock(pmd); return r; } static int __release_metadata_snap(struct dm_pool_metadata *pmd) { int r; struct thin_disk_superblock *disk_super; struct dm_block *sblock, *copy; dm_block_t held_root; r = superblock_lock(pmd, &sblock); if (r) return r; disk_super = dm_block_data(sblock); held_root = le64_to_cpu(disk_super->held_root); disk_super->held_root = cpu_to_le64(0); dm_bm_unlock(sblock); if (!held_root) { DMWARN("No pool metadata snapshot found: nothing to release."); return -EINVAL; } r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, ©); if (r) return r; disk_super = dm_block_data(copy); dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root)); dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root)); dm_sm_dec_block(pmd->metadata_sm, held_root); dm_tm_unlock(pmd->tm, copy); return 0; } int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd) { int r = -EINVAL; pmd_write_lock(pmd); if (!pmd->fail_io) r = __release_metadata_snap(pmd); pmd_write_unlock(pmd); return r; } static int __get_metadata_snap(struct dm_pool_metadata *pmd, dm_block_t *result) { int r; struct thin_disk_superblock *disk_super; struct dm_block *sblock; r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, &sb_validator, &sblock); if (r) return r; disk_super = dm_block_data(sblock); *result = le64_to_cpu(disk_super->held_root); dm_bm_unlock(sblock); return 0; } int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd, dm_block_t *result) { int r = -EINVAL; down_read(&pmd->root_lock); if (!pmd->fail_io) r = __get_metadata_snap(pmd, result); up_read(&pmd->root_lock); return r; } int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev, struct dm_thin_device **td) { int r = -EINVAL; pmd_write_lock_in_core(pmd); if (!pmd->fail_io) r = __open_device(pmd, dev, 0, td); pmd_write_unlock(pmd); return r; } int dm_pool_close_thin_device(struct dm_thin_device *td) { pmd_write_lock_in_core(td->pmd); __close_device(td); pmd_write_unlock(td->pmd); return 0; } dm_thin_id dm_thin_dev_id(struct dm_thin_device *td) { return td->id; } /* * Check whether @time (of block creation) is older than @td's last snapshot. * If so then the associated block is shared with the last snapshot device. * Any block on a device created *after* the device last got snapshotted is * necessarily not shared. */ static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time) { return td->snapshotted_time > time; } static void unpack_lookup_result(struct dm_thin_device *td, __le64 value, struct dm_thin_lookup_result *result) { uint64_t block_time = 0; dm_block_t exception_block; uint32_t exception_time; block_time = le64_to_cpu(value); unpack_block_time(block_time, &exception_block, &exception_time); result->block = exception_block; result->shared = __snapshotted_since(td, exception_time); } static int __find_block(struct dm_thin_device *td, dm_block_t block, int can_issue_io, struct dm_thin_lookup_result *result) { int r; __le64 value; struct dm_pool_metadata *pmd = td->pmd; dm_block_t keys[2] = { td->id, block }; struct dm_btree_info *info; if (can_issue_io) { info = &pmd->info; } else info = &pmd->nb_info; r = dm_btree_lookup(info, pmd->root, keys, &value); if (!r) unpack_lookup_result(td, value, result); return r; } int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block, int can_issue_io, struct dm_thin_lookup_result *result) { int r; struct dm_pool_metadata *pmd = td->pmd; down_read(&pmd->root_lock); if (pmd->fail_io) { up_read(&pmd->root_lock); return -EINVAL; } r = __find_block(td, block, can_issue_io, result); up_read(&pmd->root_lock); return r; } static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block, dm_block_t *vblock, struct dm_thin_lookup_result *result) { int r; __le64 value; struct dm_pool_metadata *pmd = td->pmd; dm_block_t keys[2] = { td->id, block }; r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value); if (!r) unpack_lookup_result(td, value, result); return r; } static int __find_mapped_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end, dm_block_t *thin_begin, dm_block_t *thin_end, dm_block_t *pool_begin, bool *maybe_shared) { int r; dm_block_t pool_end; struct dm_thin_lookup_result lookup; if (end < begin) return -ENODATA; r = __find_next_mapped_block(td, begin, &begin, &lookup); if (r) return r; if (begin >= end) return -ENODATA; *thin_begin = begin; *pool_begin = lookup.block; *maybe_shared = lookup.shared; begin++; pool_end = *pool_begin + 1; while (begin != end) { r = __find_block(td, begin, true, &lookup); if (r) { if (r == -ENODATA) break; else return r; } if ((lookup.block != pool_end) || (lookup.shared != *maybe_shared)) break; pool_end++; begin++; } *thin_end = begin; return 0; } int dm_thin_find_mapped_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end, dm_block_t *thin_begin, dm_block_t *thin_end, dm_block_t *pool_begin, bool *maybe_shared) { int r = -EINVAL; struct dm_pool_metadata *pmd = td->pmd; down_read(&pmd->root_lock); if (!pmd->fail_io) { r = __find_mapped_range(td, begin, end, thin_begin, thin_end, pool_begin, maybe_shared); } up_read(&pmd->root_lock); return r; } static int __insert(struct dm_thin_device *td, dm_block_t block, dm_block_t data_block) { int r, inserted; __le64 value; struct dm_pool_metadata *pmd = td->pmd; dm_block_t keys[2] = { td->id, block }; value = cpu_to_le64(pack_block_time(data_block, pmd->time)); __dm_bless_for_disk(&value); r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value, &pmd->root, &inserted); if (r) return r; td->changed = 1; if (inserted) td->mapped_blocks++; return 0; } int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block, dm_block_t data_block) { int r = -EINVAL; pmd_write_lock(td->pmd); if (!td->pmd->fail_io) r = __insert(td, block, data_block); pmd_write_unlock(td->pmd); return r; } static int __remove(struct dm_thin_device *td, dm_block_t block) { int r; struct dm_pool_metadata *pmd = td->pmd; dm_block_t keys[2] = { td->id, block }; r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root); if (r) return r; td->mapped_blocks--; td->changed = 1; return 0; } static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end) { int r; unsigned count, total_count = 0; struct dm_pool_metadata *pmd = td->pmd; dm_block_t keys[1] = { td->id }; __le64 value; dm_block_t mapping_root; /* * Find the mapping tree */ r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value); if (r) return r; /* * Remove from the mapping tree, taking care to inc the * ref count so it doesn't get deleted. */ mapping_root = le64_to_cpu(value); dm_tm_inc(pmd->tm, mapping_root); r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root); if (r) return r; /* * Remove leaves stops at the first unmapped entry, so we have to * loop round finding mapped ranges. */ while (begin < end) { r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value); if (r == -ENODATA) break; if (r) return r; if (begin >= end) break; r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count); if (r) return r; total_count += count; } td->mapped_blocks -= total_count; td->changed = 1; /* * Reinsert the mapping tree. */ value = cpu_to_le64(mapping_root); __dm_bless_for_disk(&value); return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root); } int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block) { int r = -EINVAL; pmd_write_lock(td->pmd); if (!td->pmd->fail_io) r = __remove(td, block); pmd_write_unlock(td->pmd); return r; } int dm_thin_remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end) { int r = -EINVAL; pmd_write_lock(td->pmd); if (!td->pmd->fail_io) r = __remove_range(td, begin, end); pmd_write_unlock(td->pmd); return r; } int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result) { int r; uint32_t ref_count; down_read(&pmd->root_lock); r = dm_sm_get_count(pmd->data_sm, b, &ref_count); if (!r) *result = (ref_count > 1); up_read(&pmd->root_lock); return r; } int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e) { int r = 0; pmd_write_lock(pmd); for (; b != e; b++) { r = dm_sm_inc_block(pmd->data_sm, b); if (r) break; } pmd_write_unlock(pmd); return r; } int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e) { int r = 0; pmd_write_lock(pmd); for (; b != e; b++) { r = dm_sm_dec_block(pmd->data_sm, b); if (r) break; } pmd_write_unlock(pmd); return r; } bool dm_thin_changed_this_transaction(struct dm_thin_device *td) { int r; down_read(&td->pmd->root_lock); r = td->changed; up_read(&td->pmd->root_lock); return r; } bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd) { bool r = false; struct dm_thin_device *td, *tmp; down_read(&pmd->root_lock); list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { if (td->changed) { r = td->changed; break; } } up_read(&pmd->root_lock); return r; } bool dm_thin_aborted_changes(struct dm_thin_device *td) { bool r; down_read(&td->pmd->root_lock); r = td->aborted_with_changes; up_read(&td->pmd->root_lock); return r; } int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result) { int r = -EINVAL; pmd_write_lock(pmd); if (!pmd->fail_io) r = dm_sm_new_block(pmd->data_sm, result); pmd_write_unlock(pmd); return r; } int dm_pool_commit_metadata(struct dm_pool_metadata *pmd) { int r = -EINVAL; pmd_write_lock(pmd); if (pmd->fail_io) goto out; r = __commit_transaction(pmd); if (r <= 0) goto out; /* * Open the next transaction. */ r = __begin_transaction(pmd); out: pmd_write_unlock(pmd); return r; } static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd) { struct dm_thin_device *td; list_for_each_entry(td, &pmd->thin_devices, list) td->aborted_with_changes = td->changed; } int dm_pool_abort_metadata(struct dm_pool_metadata *pmd) { int r = -EINVAL; pmd_write_lock(pmd); if (pmd->fail_io) goto out; __set_abort_with_changes_flags(pmd); __destroy_persistent_data_objects(pmd); r = __create_persistent_data_objects(pmd, false); if (r) pmd->fail_io = true; out: pmd_write_unlock(pmd); return r; } int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result) { int r = -EINVAL; down_read(&pmd->root_lock); if (!pmd->fail_io) r = dm_sm_get_nr_free(pmd->data_sm, result); up_read(&pmd->root_lock); return r; } int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd, dm_block_t *result) { int r = -EINVAL; down_read(&pmd->root_lock); if (!pmd->fail_io) r = dm_sm_get_nr_free(pmd->metadata_sm, result); if (!r) { if (*result < pmd->metadata_reserve) *result = 0; else *result -= pmd->metadata_reserve; } up_read(&pmd->root_lock); return r; } int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result) { int r = -EINVAL; down_read(&pmd->root_lock); if (!pmd->fail_io) r = dm_sm_get_nr_blocks(pmd->metadata_sm, result); up_read(&pmd->root_lock); return r; } int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result) { int r = -EINVAL; down_read(&pmd->root_lock); if (!pmd->fail_io) r = dm_sm_get_nr_blocks(pmd->data_sm, result); up_read(&pmd->root_lock); return r; } int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result) { int r = -EINVAL; struct dm_pool_metadata *pmd = td->pmd; down_read(&pmd->root_lock); if (!pmd->fail_io) { *result = td->mapped_blocks; r = 0; } up_read(&pmd->root_lock); return r; } static int __highest_block(struct dm_thin_device *td, dm_block_t *result) { int r; __le64 value_le; dm_block_t thin_root; struct dm_pool_metadata *pmd = td->pmd; r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le); if (r) return r; thin_root = le64_to_cpu(value_le); return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result); } int dm_thin_get_highest_mapped_block(struct dm_thin_device *td, dm_block_t *result) { int r = -EINVAL; struct dm_pool_metadata *pmd = td->pmd; down_read(&pmd->root_lock); if (!pmd->fail_io) r = __highest_block(td, result); up_read(&pmd->root_lock); return r; } static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count) { int r; dm_block_t old_count; r = dm_sm_get_nr_blocks(sm, &old_count); if (r) return r; if (new_count == old_count) return 0; if (new_count < old_count) { DMERR("cannot reduce size of space map"); return -EINVAL; } return dm_sm_extend(sm, new_count - old_count); } int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) { int r = -EINVAL; pmd_write_lock(pmd); if (!pmd->fail_io) r = __resize_space_map(pmd->data_sm, new_count); pmd_write_unlock(pmd); return r; } int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) { int r = -EINVAL; pmd_write_lock(pmd); if (!pmd->fail_io) { r = __resize_space_map(pmd->metadata_sm, new_count); if (!r) __set_metadata_reserve(pmd); } pmd_write_unlock(pmd); return r; } void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd) { pmd_write_lock_in_core(pmd); dm_bm_set_read_only(pmd->bm); pmd_write_unlock(pmd); } void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd) { pmd_write_lock_in_core(pmd); dm_bm_set_read_write(pmd->bm); pmd_write_unlock(pmd); } int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd, dm_block_t threshold, dm_sm_threshold_fn fn, void *context) { int r; pmd_write_lock_in_core(pmd); r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context); pmd_write_unlock(pmd); return r; } int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd) { int r; struct dm_block *sblock; struct thin_disk_superblock *disk_super; pmd_write_lock(pmd); pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG; r = superblock_lock(pmd, &sblock); if (r) { DMERR("couldn't read superblock"); goto out; } disk_super = dm_block_data(sblock); disk_super->flags = cpu_to_le32(pmd->flags); dm_bm_unlock(sblock); out: pmd_write_unlock(pmd); return r; } bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd) { bool needs_check; down_read(&pmd->root_lock); needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG; up_read(&pmd->root_lock); return needs_check; } void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd) { down_read(&pmd->root_lock); if (!pmd->fail_io) dm_tm_issue_prefetches(pmd->tm); up_read(&pmd->root_lock); }