/* raid0.c : Multiple Devices driver for Linux Copyright (C) 1994-96 Marc ZYNGIER or Copyright (C) 1999, 2000 Ingo Molnar, Red Hat RAID-0 management functions. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. You should have received a copy of the GNU General Public License (for example /usr/src/linux/COPYING); if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include "md.h" #include "raid0.h" #include "raid5.h" static int raid0_congested(void *data, int bits) { mddev_t *mddev = data; raid0_conf_t *conf = mddev->private; mdk_rdev_t **devlist = conf->devlist; int raid_disks = conf->strip_zone[0].nb_dev; int i, ret = 0; if (mddev_congested(mddev, bits)) return 1; for (i = 0; i < raid_disks && !ret ; i++) { struct request_queue *q = bdev_get_queue(devlist[i]->bdev); ret |= bdi_congested(&q->backing_dev_info, bits); } return ret; } /* * inform the user of the raid configuration */ static void dump_zones(mddev_t *mddev) { int j, k, h; sector_t zone_size = 0; sector_t zone_start = 0; char b[BDEVNAME_SIZE]; raid0_conf_t *conf = mddev->private; int raid_disks = conf->strip_zone[0].nb_dev; printk(KERN_INFO "******* %s configuration *********\n", mdname(mddev)); h = 0; for (j = 0; j < conf->nr_strip_zones; j++) { printk(KERN_INFO "zone%d=[", j); for (k = 0; k < conf->strip_zone[j].nb_dev; k++) printk(KERN_CONT "%s/", bdevname(conf->devlist[j*raid_disks + k]->bdev, b)); printk(KERN_CONT "]\n"); zone_size = conf->strip_zone[j].zone_end - zone_start; printk(KERN_INFO " zone offset=%llukb " "device offset=%llukb size=%llukb\n", (unsigned long long)zone_start>>1, (unsigned long long)conf->strip_zone[j].dev_start>>1, (unsigned long long)zone_size>>1); zone_start = conf->strip_zone[j].zone_end; } printk(KERN_INFO "**********************************\n\n"); } static int create_strip_zones(mddev_t *mddev, raid0_conf_t **private_conf) { int i, c, err; sector_t curr_zone_end, sectors; mdk_rdev_t *smallest, *rdev1, *rdev2, *rdev, **dev; struct strip_zone *zone; int cnt; char b[BDEVNAME_SIZE]; raid0_conf_t *conf = kzalloc(sizeof(*conf), GFP_KERNEL); if (!conf) return -ENOMEM; list_for_each_entry(rdev1, &mddev->disks, same_set) { printk(KERN_INFO "md/raid0:%s: looking at %s\n", mdname(mddev), bdevname(rdev1->bdev, b)); c = 0; /* round size to chunk_size */ sectors = rdev1->sectors; sector_div(sectors, mddev->chunk_sectors); rdev1->sectors = sectors * mddev->chunk_sectors; list_for_each_entry(rdev2, &mddev->disks, same_set) { printk(KERN_INFO "md/raid0:%s: comparing %s(%llu)", mdname(mddev), bdevname(rdev1->bdev,b), (unsigned long long)rdev1->sectors); printk(KERN_CONT " with %s(%llu)\n", bdevname(rdev2->bdev,b), (unsigned long long)rdev2->sectors); if (rdev2 == rdev1) { printk(KERN_INFO "md/raid0:%s: END\n", mdname(mddev)); break; } if (rdev2->sectors == rdev1->sectors) { /* * Not unique, don't count it as a new * group */ printk(KERN_INFO "md/raid0:%s: EQUAL\n", mdname(mddev)); c = 1; break; } printk(KERN_INFO "md/raid0:%s: NOT EQUAL\n", mdname(mddev)); } if (!c) { printk(KERN_INFO "md/raid0:%s: ==> UNIQUE\n", mdname(mddev)); conf->nr_strip_zones++; printk(KERN_INFO "md/raid0:%s: %d zones\n", mdname(mddev), conf->nr_strip_zones); } } printk(KERN_INFO "md/raid0:%s: FINAL %d zones\n", mdname(mddev), conf->nr_strip_zones); err = -ENOMEM; conf->strip_zone = kzalloc(sizeof(struct strip_zone)* conf->nr_strip_zones, GFP_KERNEL); if (!conf->strip_zone) goto abort; conf->devlist = kzalloc(sizeof(mdk_rdev_t*)* conf->nr_strip_zones*mddev->raid_disks, GFP_KERNEL); if (!conf->devlist) goto abort; /* The first zone must contain all devices, so here we check that * there is a proper alignment of slots to devices and find them all */ zone = &conf->strip_zone[0]; cnt = 0; smallest = NULL; dev = conf->devlist; err = -EINVAL; list_for_each_entry(rdev1, &mddev->disks, same_set) { int j = rdev1->raid_disk; if (mddev->level == 10) { /* taking over a raid10-n2 array */ j /= 2; rdev1->new_raid_disk = j; } if (mddev->level == 1) { /* taiking over a raid1 array- * we have only one active disk */ j = 0; rdev1->new_raid_disk = j; } if (j < 0 || j >= mddev->raid_disks) { printk(KERN_ERR "md/raid0:%s: bad disk number %d - " "aborting!\n", mdname(mddev), j); goto abort; } if (dev[j]) { printk(KERN_ERR "md/raid0:%s: multiple devices for %d - " "aborting!\n", mdname(mddev), j); goto abort; } dev[j] = rdev1; disk_stack_limits(mddev->gendisk, rdev1->bdev, rdev1->data_offset << 9); /* as we don't honour merge_bvec_fn, we must never risk * violating it, so limit ->max_segments to 1, lying within * a single page. */ if (rdev1->bdev->bd_disk->queue->merge_bvec_fn) { blk_queue_max_segments(mddev->queue, 1); blk_queue_segment_boundary(mddev->queue, PAGE_CACHE_SIZE - 1); } if (!smallest || (rdev1->sectors < smallest->sectors)) smallest = rdev1; cnt++; } if (cnt != mddev->raid_disks) { printk(KERN_ERR "md/raid0:%s: too few disks (%d of %d) - " "aborting!\n", mdname(mddev), cnt, mddev->raid_disks); goto abort; } zone->nb_dev = cnt; zone->zone_end = smallest->sectors * cnt; curr_zone_end = zone->zone_end; /* now do the other zones */ for (i = 1; i < conf->nr_strip_zones; i++) { int j; zone = conf->strip_zone + i; dev = conf->devlist + i * mddev->raid_disks; printk(KERN_INFO "md/raid0:%s: zone %d\n", mdname(mddev), i); zone->dev_start = smallest->sectors; smallest = NULL; c = 0; for (j=0; jdevlist[j]; printk(KERN_INFO "md/raid0:%s: checking %s ...", mdname(mddev), bdevname(rdev->bdev, b)); if (rdev->sectors <= zone->dev_start) { printk(KERN_CONT " nope.\n"); continue; } printk(KERN_CONT " contained as device %d\n", c); dev[c] = rdev; c++; if (!smallest || rdev->sectors < smallest->sectors) { smallest = rdev; printk(KERN_INFO "md/raid0:%s: (%llu) is smallest!.\n", mdname(mddev), (unsigned long long)rdev->sectors); } } zone->nb_dev = c; sectors = (smallest->sectors - zone->dev_start) * c; printk(KERN_INFO "md/raid0:%s: zone->nb_dev: %d, sectors: %llu\n", mdname(mddev), zone->nb_dev, (unsigned long long)sectors); curr_zone_end += sectors; zone->zone_end = curr_zone_end; printk(KERN_INFO "md/raid0:%s: current zone start: %llu\n", mdname(mddev), (unsigned long long)smallest->sectors); } mddev->queue->backing_dev_info.congested_fn = raid0_congested; mddev->queue->backing_dev_info.congested_data = mddev; /* * now since we have the hard sector sizes, we can make sure * chunk size is a multiple of that sector size */ if ((mddev->chunk_sectors << 9) % queue_logical_block_size(mddev->queue)) { printk(KERN_ERR "md/raid0:%s: chunk_size of %d not valid\n", mdname(mddev), mddev->chunk_sectors << 9); goto abort; } blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9); blk_queue_io_opt(mddev->queue, (mddev->chunk_sectors << 9) * mddev->raid_disks); printk(KERN_INFO "md/raid0:%s: done.\n", mdname(mddev)); *private_conf = conf; return 0; abort: kfree(conf->strip_zone); kfree(conf->devlist); kfree(conf); *private_conf = NULL; return err; } /** * raid0_mergeable_bvec -- tell bio layer if a two requests can be merged * @q: request queue * @bvm: properties of new bio * @biovec: the request that could be merged to it. * * Return amount of bytes we can accept at this offset */ static int raid0_mergeable_bvec(struct request_queue *q, struct bvec_merge_data *bvm, struct bio_vec *biovec) { mddev_t *mddev = q->queuedata; sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); int max; unsigned int chunk_sectors = mddev->chunk_sectors; unsigned int bio_sectors = bvm->bi_size >> 9; if (is_power_of_2(chunk_sectors)) max = (chunk_sectors - ((sector & (chunk_sectors-1)) + bio_sectors)) << 9; else max = (chunk_sectors - (sector_div(sector, chunk_sectors) + bio_sectors)) << 9; if (max < 0) max = 0; /* bio_add cannot handle a negative return */ if (max <= biovec->bv_len && bio_sectors == 0) return biovec->bv_len; else return max; } static sector_t raid0_size(mddev_t *mddev, sector_t sectors, int raid_disks) { sector_t array_sectors = 0; mdk_rdev_t *rdev; WARN_ONCE(sectors || raid_disks, "%s does not support generic reshape\n", __func__); list_for_each_entry(rdev, &mddev->disks, same_set) array_sectors += rdev->sectors; return array_sectors; } static int raid0_run(mddev_t *mddev) { raid0_conf_t *conf; int ret; if (mddev->chunk_sectors == 0) { printk(KERN_ERR "md/raid0:%s: chunk size must be set.\n", mdname(mddev)); return -EINVAL; } if (md_check_no_bitmap(mddev)) return -EINVAL; blk_queue_max_hw_sectors(mddev->queue, mddev->chunk_sectors); /* if private is not null, we are here after takeover */ if (mddev->private == NULL) { ret = create_strip_zones(mddev, &conf); if (ret < 0) return ret; mddev->private = conf; } conf = mddev->private; /* calculate array device size */ md_set_array_sectors(mddev, raid0_size(mddev, 0, 0)); printk(KERN_INFO "md/raid0:%s: md_size is %llu sectors.\n", mdname(mddev), (unsigned long long)mddev->array_sectors); /* calculate the max read-ahead size. * For read-ahead of large files to be effective, we need to * readahead at least twice a whole stripe. i.e. number of devices * multiplied by chunk size times 2. * If an individual device has an ra_pages greater than the * chunk size, then we will not drive that device as hard as it * wants. We consider this a configuration error: a larger * chunksize should be used in that case. */ { int stripe = mddev->raid_disks * (mddev->chunk_sectors << 9) / PAGE_SIZE; if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) mddev->queue->backing_dev_info.ra_pages = 2* stripe; } blk_queue_merge_bvec(mddev->queue, raid0_mergeable_bvec); dump_zones(mddev); return md_integrity_register(mddev); } static int raid0_stop(mddev_t *mddev) { raid0_conf_t *conf = mddev->private; blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ kfree(conf->strip_zone); kfree(conf->devlist); kfree(conf); mddev->private = NULL; return 0; } /* Find the zone which holds a particular offset * Update *sectorp to be an offset in that zone */ static struct strip_zone *find_zone(struct raid0_private_data *conf, sector_t *sectorp) { int i; struct strip_zone *z = conf->strip_zone; sector_t sector = *sectorp; for (i = 0; i < conf->nr_strip_zones; i++) if (sector < z[i].zone_end) { if (i) *sectorp = sector - z[i-1].zone_end; return z + i; } BUG(); } /* * remaps the bio to the target device. we separate two flows. * power 2 flow and a general flow for the sake of perfromance */ static mdk_rdev_t *map_sector(mddev_t *mddev, struct strip_zone *zone, sector_t sector, sector_t *sector_offset) { unsigned int sect_in_chunk; sector_t chunk; raid0_conf_t *conf = mddev->private; int raid_disks = conf->strip_zone[0].nb_dev; unsigned int chunk_sects = mddev->chunk_sectors; if (is_power_of_2(chunk_sects)) { int chunksect_bits = ffz(~chunk_sects); /* find the sector offset inside the chunk */ sect_in_chunk = sector & (chunk_sects - 1); sector >>= chunksect_bits; /* chunk in zone */ chunk = *sector_offset; /* quotient is the chunk in real device*/ sector_div(chunk, zone->nb_dev << chunksect_bits); } else{ sect_in_chunk = sector_div(sector, chunk_sects); chunk = *sector_offset; sector_div(chunk, chunk_sects * zone->nb_dev); } /* * position the bio over the real device * real sector = chunk in device + starting of zone * + the position in the chunk */ *sector_offset = (chunk * chunk_sects) + sect_in_chunk; return conf->devlist[(zone - conf->strip_zone)*raid_disks + sector_div(sector, zone->nb_dev)]; } /* * Is io distribute over 1 or more chunks ? */ static inline int is_io_in_chunk_boundary(mddev_t *mddev, unsigned int chunk_sects, struct bio *bio) { if (likely(is_power_of_2(chunk_sects))) { return chunk_sects >= ((bio->bi_sector & (chunk_sects-1)) + (bio->bi_size >> 9)); } else{ sector_t sector = bio->bi_sector; return chunk_sects >= (sector_div(sector, chunk_sects) + (bio->bi_size >> 9)); } } static void raid0_make_request(mddev_t *mddev, struct bio *bio) { unsigned int chunk_sects; sector_t sector_offset; struct strip_zone *zone; mdk_rdev_t *tmp_dev; if (unlikely(bio->bi_rw & REQ_FLUSH)) { md_flush_request(mddev, bio); return; } chunk_sects = mddev->chunk_sectors; if (unlikely(!is_io_in_chunk_boundary(mddev, chunk_sects, bio))) { sector_t sector = bio->bi_sector; struct bio_pair *bp; /* Sanity check -- queue functions should prevent this happening */ if (bio->bi_vcnt != 1 || bio->bi_idx != 0) goto bad_map; /* This is a one page bio that upper layers * refuse to split for us, so we need to split it. */ if (likely(is_power_of_2(chunk_sects))) bp = bio_split(bio, chunk_sects - (sector & (chunk_sects-1))); else bp = bio_split(bio, chunk_sects - sector_div(sector, chunk_sects)); raid0_make_request(mddev, &bp->bio1); raid0_make_request(mddev, &bp->bio2); bio_pair_release(bp); return; } sector_offset = bio->bi_sector; zone = find_zone(mddev->private, §or_offset); tmp_dev = map_sector(mddev, zone, bio->bi_sector, §or_offset); bio->bi_bdev = tmp_dev->bdev; bio->bi_sector = sector_offset + zone->dev_start + tmp_dev->data_offset; generic_make_request(bio); return; bad_map: printk("md/raid0:%s: make_request bug: can't convert block across chunks" " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects / 2, (unsigned long long)bio->bi_sector, bio->bi_size >> 10); bio_io_error(bio); return; } static void raid0_status(struct seq_file *seq, mddev_t *mddev) { #undef MD_DEBUG #ifdef MD_DEBUG int j, k, h; char b[BDEVNAME_SIZE]; raid0_conf_t *conf = mddev->private; int raid_disks = conf->strip_zone[0].nb_dev; sector_t zone_size; sector_t zone_start = 0; h = 0; for (j = 0; j < conf->nr_strip_zones; j++) { seq_printf(seq, " z%d", j); seq_printf(seq, "=["); for (k = 0; k < conf->strip_zone[j].nb_dev; k++) seq_printf(seq, "%s/", bdevname( conf->devlist[j*raid_disks + k] ->bdev, b)); zone_size = conf->strip_zone[j].zone_end - zone_start; seq_printf(seq, "] ze=%lld ds=%lld s=%lld\n", (unsigned long long)zone_start>>1, (unsigned long long)conf->strip_zone[j].dev_start>>1, (unsigned long long)zone_size>>1); zone_start = conf->strip_zone[j].zone_end; } #endif seq_printf(seq, " %dk chunks", mddev->chunk_sectors / 2); return; } static void *raid0_takeover_raid45(mddev_t *mddev) { mdk_rdev_t *rdev; raid0_conf_t *priv_conf; if (mddev->degraded != 1) { printk(KERN_ERR "md/raid0:%s: raid5 must be degraded! Degraded disks: %d\n", mdname(mddev), mddev->degraded); return ERR_PTR(-EINVAL); } list_for_each_entry(rdev, &mddev->disks, same_set) { /* check slot number for a disk */ if (rdev->raid_disk == mddev->raid_disks-1) { printk(KERN_ERR "md/raid0:%s: raid5 must have missing parity disk!\n", mdname(mddev)); return ERR_PTR(-EINVAL); } } /* Set new parameters */ mddev->new_level = 0; mddev->new_layout = 0; mddev->new_chunk_sectors = mddev->chunk_sectors; mddev->raid_disks--; mddev->delta_disks = -1; /* make sure it will be not marked as dirty */ mddev->recovery_cp = MaxSector; create_strip_zones(mddev, &priv_conf); return priv_conf; } static void *raid0_takeover_raid10(mddev_t *mddev) { raid0_conf_t *priv_conf; /* Check layout: * - far_copies must be 1 * - near_copies must be 2 * - disks number must be even * - all mirrors must be already degraded */ if (mddev->layout != ((1 << 8) + 2)) { printk(KERN_ERR "md/raid0:%s:: Raid0 cannot takover layout: 0x%x\n", mdname(mddev), mddev->layout); return ERR_PTR(-EINVAL); } if (mddev->raid_disks & 1) { printk(KERN_ERR "md/raid0:%s: Raid0 cannot takover Raid10 with odd disk number.\n", mdname(mddev)); return ERR_PTR(-EINVAL); } if (mddev->degraded != (mddev->raid_disks>>1)) { printk(KERN_ERR "md/raid0:%s: All mirrors must be already degraded!\n", mdname(mddev)); return ERR_PTR(-EINVAL); } /* Set new parameters */ mddev->new_level = 0; mddev->new_layout = 0; mddev->new_chunk_sectors = mddev->chunk_sectors; mddev->delta_disks = - mddev->raid_disks / 2; mddev->raid_disks += mddev->delta_disks; mddev->degraded = 0; /* make sure it will be not marked as dirty */ mddev->recovery_cp = MaxSector; create_strip_zones(mddev, &priv_conf); return priv_conf; } static void *raid0_takeover_raid1(mddev_t *mddev) { raid0_conf_t *priv_conf; /* Check layout: * - (N - 1) mirror drives must be already faulty */ if ((mddev->raid_disks - 1) != mddev->degraded) { printk(KERN_ERR "md/raid0:%s: (N - 1) mirrors drives must be already faulty!\n", mdname(mddev)); return ERR_PTR(-EINVAL); } /* Set new parameters */ mddev->new_level = 0; mddev->new_layout = 0; mddev->new_chunk_sectors = 128; /* by default set chunk size to 64k */ mddev->delta_disks = 1 - mddev->raid_disks; mddev->raid_disks = 1; /* make sure it will be not marked as dirty */ mddev->recovery_cp = MaxSector; create_strip_zones(mddev, &priv_conf); return priv_conf; } static void *raid0_takeover(mddev_t *mddev) { /* raid0 can take over: * raid4 - if all data disks are active. * raid5 - providing it is Raid4 layout and one disk is faulty * raid10 - assuming we have all necessary active disks * raid1 - with (N -1) mirror drives faulty */ if (mddev->level == 4) return raid0_takeover_raid45(mddev); if (mddev->level == 5) { if (mddev->layout == ALGORITHM_PARITY_N) return raid0_takeover_raid45(mddev); printk(KERN_ERR "md/raid0:%s: Raid can only takeover Raid5 with layout: %d\n", mdname(mddev), ALGORITHM_PARITY_N); } if (mddev->level == 10) return raid0_takeover_raid10(mddev); if (mddev->level == 1) return raid0_takeover_raid1(mddev); printk(KERN_ERR "Takeover from raid%i to raid0 not supported\n", mddev->level); return ERR_PTR(-EINVAL); } static void raid0_quiesce(mddev_t *mddev, int state) { } static struct mdk_personality raid0_personality= { .name = "raid0", .level = 0, .owner = THIS_MODULE, .make_request = raid0_make_request, .run = raid0_run, .stop = raid0_stop, .status = raid0_status, .size = raid0_size, .takeover = raid0_takeover, .quiesce = raid0_quiesce, }; static int __init raid0_init (void) { return register_md_personality (&raid0_personality); } static void raid0_exit (void) { unregister_md_personality (&raid0_personality); } module_init(raid0_init); module_exit(raid0_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("RAID0 (striping) personality for MD"); MODULE_ALIAS("md-personality-2"); /* RAID0 */ MODULE_ALIAS("md-raid0"); MODULE_ALIAS("md-level-0");