/* * Linux-DVB Driver for DiBcom's DiB8000 chip (ISDB-T). * * Copyright (C) 2009 DiBcom (http://www.dibcom.fr/) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, version 2. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/mutex.h> #include <asm/div64.h> #include "dvb_math.h" #include "dvb_frontend.h" #include "dib8000.h" #define LAYER_ALL -1 #define LAYER_A 1 #define LAYER_B 2 #define LAYER_C 3 #define MAX_NUMBER_OF_FRONTENDS 6 /* #define DIB8000_AGC_FREEZE */ static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); #define dprintk(fmt, arg...) do { \ if (debug) \ printk(KERN_DEBUG pr_fmt("%s: " fmt), \ __func__, ##arg); \ } while (0) struct i2c_device { struct i2c_adapter *adap; u8 addr; u8 *i2c_write_buffer; u8 *i2c_read_buffer; struct mutex *i2c_buffer_lock; }; enum param_loop_step { LOOP_TUNE_1, LOOP_TUNE_2 }; enum dib8000_autosearch_step { AS_START = 0, AS_SEARCHING_FFT, AS_SEARCHING_GUARD, AS_DONE = 100, }; enum timeout_mode { SYMBOL_DEPENDENT_OFF = 0, SYMBOL_DEPENDENT_ON, }; struct dib8000_state { struct dib8000_config cfg; struct i2c_device i2c; struct dibx000_i2c_master i2c_master; u16 wbd_ref; u8 current_band; u32 current_bandwidth; struct dibx000_agc_config *current_agc; u32 timf; u32 timf_default; u8 div_force_off:1; u8 div_state:1; u16 div_sync_wait; u8 agc_state; u8 differential_constellation; u8 diversity_onoff; s16 ber_monitored_layer; u16 gpio_dir; u16 gpio_val; u16 revision; u8 isdbt_cfg_loaded; enum frontend_tune_state tune_state; s32 status; struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS]; /* for the I2C transfer */ struct i2c_msg msg[2]; u8 i2c_write_buffer[4]; u8 i2c_read_buffer[2]; struct mutex i2c_buffer_lock; u8 input_mode_mpeg; u16 tuner_enable; struct i2c_adapter dib8096p_tuner_adap; u16 current_demod_bw; u16 seg_mask; u16 seg_diff_mask; u16 mode; u8 layer_b_nb_seg; u8 layer_c_nb_seg; u8 channel_parameters_set; u16 autosearch_state; u16 found_nfft; u16 found_guard; u8 subchannel; u8 symbol_duration; unsigned long timeout; u8 longest_intlv_layer; u16 output_mode; /* for DVBv5 stats */ s64 init_ucb; unsigned long per_jiffies_stats; unsigned long ber_jiffies_stats; unsigned long ber_jiffies_stats_layer[3]; #ifdef DIB8000_AGC_FREEZE u16 agc1_max; u16 agc1_min; u16 agc2_max; u16 agc2_min; #endif }; enum dib8000_power_mode { DIB8000_POWER_ALL = 0, DIB8000_POWER_INTERFACE_ONLY, }; static u16 dib8000_i2c_read16(struct i2c_device *i2c, u16 reg) { u16 ret; struct i2c_msg msg[2] = { {.addr = i2c->addr >> 1, .flags = 0, .len = 2}, {.addr = i2c->addr >> 1, .flags = I2C_M_RD, .len = 2}, }; if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) { dprintk("could not acquire lock\n"); return 0; } msg[0].buf = i2c->i2c_write_buffer; msg[0].buf[0] = reg >> 8; msg[0].buf[1] = reg & 0xff; msg[1].buf = i2c->i2c_read_buffer; if (i2c_transfer(i2c->adap, msg, 2) != 2) dprintk("i2c read error on %d\n", reg); ret = (msg[1].buf[0] << 8) | msg[1].buf[1]; mutex_unlock(i2c->i2c_buffer_lock); return ret; } static u16 __dib8000_read_word(struct dib8000_state *state, u16 reg) { u16 ret; state->i2c_write_buffer[0] = reg >> 8; state->i2c_write_buffer[1] = reg & 0xff; memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); state->msg[0].addr = state->i2c.addr >> 1; state->msg[0].flags = 0; state->msg[0].buf = state->i2c_write_buffer; state->msg[0].len = 2; state->msg[1].addr = state->i2c.addr >> 1; state->msg[1].flags = I2C_M_RD; state->msg[1].buf = state->i2c_read_buffer; state->msg[1].len = 2; if (i2c_transfer(state->i2c.adap, state->msg, 2) != 2) dprintk("i2c read error on %d\n", reg); ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; return ret; } static u16 dib8000_read_word(struct dib8000_state *state, u16 reg) { u16 ret; if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { dprintk("could not acquire lock\n"); return 0; } ret = __dib8000_read_word(state, reg); mutex_unlock(&state->i2c_buffer_lock); return ret; } static u32 dib8000_read32(struct dib8000_state *state, u16 reg) { u16 rw[2]; if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { dprintk("could not acquire lock\n"); return 0; } rw[0] = __dib8000_read_word(state, reg + 0); rw[1] = __dib8000_read_word(state, reg + 1); mutex_unlock(&state->i2c_buffer_lock); return ((rw[0] << 16) | (rw[1])); } static int dib8000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val) { struct i2c_msg msg = {.addr = i2c->addr >> 1, .flags = 0, .len = 4}; int ret = 0; if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) { dprintk("could not acquire lock\n"); return -EINVAL; } msg.buf = i2c->i2c_write_buffer; msg.buf[0] = (reg >> 8) & 0xff; msg.buf[1] = reg & 0xff; msg.buf[2] = (val >> 8) & 0xff; msg.buf[3] = val & 0xff; ret = i2c_transfer(i2c->adap, &msg, 1) != 1 ? -EREMOTEIO : 0; mutex_unlock(i2c->i2c_buffer_lock); return ret; } static int dib8000_write_word(struct dib8000_state *state, u16 reg, u16 val) { int ret; if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { dprintk("could not acquire lock\n"); return -EINVAL; } state->i2c_write_buffer[0] = (reg >> 8) & 0xff; state->i2c_write_buffer[1] = reg & 0xff; state->i2c_write_buffer[2] = (val >> 8) & 0xff; state->i2c_write_buffer[3] = val & 0xff; memset(&state->msg[0], 0, sizeof(struct i2c_msg)); state->msg[0].addr = state->i2c.addr >> 1; state->msg[0].flags = 0; state->msg[0].buf = state->i2c_write_buffer; state->msg[0].len = 4; ret = (i2c_transfer(state->i2c.adap, state->msg, 1) != 1 ? -EREMOTEIO : 0); mutex_unlock(&state->i2c_buffer_lock); return ret; } static const s16 coeff_2k_sb_1seg_dqpsk[8] = { (769 << 5) | 0x0a, (745 << 5) | 0x03, (595 << 5) | 0x0d, (769 << 5) | 0x0a, (920 << 5) | 0x09, (784 << 5) | 0x02, (519 << 5) | 0x0c, (920 << 5) | 0x09 }; static const s16 coeff_2k_sb_1seg[8] = { (692 << 5) | 0x0b, (683 << 5) | 0x01, (519 << 5) | 0x09, (692 << 5) | 0x0b, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f }; static const s16 coeff_2k_sb_3seg_0dqpsk_1dqpsk[8] = { (832 << 5) | 0x10, (912 << 5) | 0x05, (900 << 5) | 0x12, (832 << 5) | 0x10, (-931 << 5) | 0x0f, (912 << 5) | 0x04, (807 << 5) | 0x11, (-931 << 5) | 0x0f }; static const s16 coeff_2k_sb_3seg_0dqpsk[8] = { (622 << 5) | 0x0c, (941 << 5) | 0x04, (796 << 5) | 0x10, (622 << 5) | 0x0c, (982 << 5) | 0x0c, (519 << 5) | 0x02, (572 << 5) | 0x0e, (982 << 5) | 0x0c }; static const s16 coeff_2k_sb_3seg_1dqpsk[8] = { (699 << 5) | 0x14, (607 << 5) | 0x04, (944 << 5) | 0x13, (699 << 5) | 0x14, (-720 << 5) | 0x0d, (640 << 5) | 0x03, (866 << 5) | 0x12, (-720 << 5) | 0x0d }; static const s16 coeff_2k_sb_3seg[8] = { (664 << 5) | 0x0c, (925 << 5) | 0x03, (937 << 5) | 0x10, (664 << 5) | 0x0c, (-610 << 5) | 0x0a, (697 << 5) | 0x01, (836 << 5) | 0x0e, (-610 << 5) | 0x0a }; static const s16 coeff_4k_sb_1seg_dqpsk[8] = { (-955 << 5) | 0x0e, (687 << 5) | 0x04, (818 << 5) | 0x10, (-955 << 5) | 0x0e, (-922 << 5) | 0x0d, (750 << 5) | 0x03, (665 << 5) | 0x0f, (-922 << 5) | 0x0d }; static const s16 coeff_4k_sb_1seg[8] = { (638 << 5) | 0x0d, (683 << 5) | 0x02, (638 << 5) | 0x0d, (638 << 5) | 0x0d, (-655 << 5) | 0x0a, (517 << 5) | 0x00, (698 << 5) | 0x0d, (-655 << 5) | 0x0a }; static const s16 coeff_4k_sb_3seg_0dqpsk_1dqpsk[8] = { (-707 << 5) | 0x14, (910 << 5) | 0x06, (889 << 5) | 0x16, (-707 << 5) | 0x14, (-958 << 5) | 0x13, (993 << 5) | 0x05, (523 << 5) | 0x14, (-958 << 5) | 0x13 }; static const s16 coeff_4k_sb_3seg_0dqpsk[8] = { (-723 << 5) | 0x13, (910 << 5) | 0x05, (777 << 5) | 0x14, (-723 << 5) | 0x13, (-568 << 5) | 0x0f, (547 << 5) | 0x03, (696 << 5) | 0x12, (-568 << 5) | 0x0f }; static const s16 coeff_4k_sb_3seg_1dqpsk[8] = { (-940 << 5) | 0x15, (607 << 5) | 0x05, (915 << 5) | 0x16, (-940 << 5) | 0x15, (-848 << 5) | 0x13, (683 << 5) | 0x04, (543 << 5) | 0x14, (-848 << 5) | 0x13 }; static const s16 coeff_4k_sb_3seg[8] = { (612 << 5) | 0x12, (910 << 5) | 0x04, (864 << 5) | 0x14, (612 << 5) | 0x12, (-869 << 5) | 0x13, (683 << 5) | 0x02, (869 << 5) | 0x12, (-869 << 5) | 0x13 }; static const s16 coeff_8k_sb_1seg_dqpsk[8] = { (-835 << 5) | 0x12, (684 << 5) | 0x05, (735 << 5) | 0x14, (-835 << 5) | 0x12, (-598 << 5) | 0x10, (781 << 5) | 0x04, (739 << 5) | 0x13, (-598 << 5) | 0x10 }; static const s16 coeff_8k_sb_1seg[8] = { (673 << 5) | 0x0f, (683 << 5) | 0x03, (808 << 5) | 0x12, (673 << 5) | 0x0f, (585 << 5) | 0x0f, (512 << 5) | 0x01, (780 << 5) | 0x0f, (585 << 5) | 0x0f }; static const s16 coeff_8k_sb_3seg_0dqpsk_1dqpsk[8] = { (863 << 5) | 0x17, (930 << 5) | 0x07, (878 << 5) | 0x19, (863 << 5) | 0x17, (0 << 5) | 0x14, (521 << 5) | 0x05, (980 << 5) | 0x18, (0 << 5) | 0x14 }; static const s16 coeff_8k_sb_3seg_0dqpsk[8] = { (-924 << 5) | 0x17, (910 << 5) | 0x06, (774 << 5) | 0x17, (-924 << 5) | 0x17, (-877 << 5) | 0x15, (565 << 5) | 0x04, (553 << 5) | 0x15, (-877 << 5) | 0x15 }; static const s16 coeff_8k_sb_3seg_1dqpsk[8] = { (-921 << 5) | 0x19, (607 << 5) | 0x06, (881 << 5) | 0x19, (-921 << 5) | 0x19, (-921 << 5) | 0x14, (713 << 5) | 0x05, (1018 << 5) | 0x18, (-921 << 5) | 0x14 }; static const s16 coeff_8k_sb_3seg[8] = { (514 << 5) | 0x14, (910 << 5) | 0x05, (861 << 5) | 0x17, (514 << 5) | 0x14, (690 << 5) | 0x14, (683 << 5) | 0x03, (662 << 5) | 0x15, (690 << 5) | 0x14 }; static const s16 ana_fe_coeff_3seg[24] = { 81, 80, 78, 74, 68, 61, 54, 45, 37, 28, 19, 11, 4, 1022, 1017, 1013, 1010, 1008, 1008, 1008, 1008, 1010, 1014, 1017 }; static const s16 ana_fe_coeff_1seg[24] = { 249, 226, 164, 82, 5, 981, 970, 988, 1018, 20, 31, 26, 8, 1012, 1000, 1018, 1012, 8, 15, 14, 9, 3, 1017, 1003 }; static const s16 ana_fe_coeff_13seg[24] = { 396, 305, 105, -51, -77, -12, 41, 31, -11, -30, -11, 14, 15, -2, -13, -7, 5, 8, 1, -6, -7, -3, 0, 1 }; static u16 fft_to_mode(struct dib8000_state *state) { u16 mode; switch (state->fe[0]->dtv_property_cache.transmission_mode) { case TRANSMISSION_MODE_2K: mode = 1; break; case TRANSMISSION_MODE_4K: mode = 2; break; default: case TRANSMISSION_MODE_AUTO: case TRANSMISSION_MODE_8K: mode = 3; break; } return mode; } static void dib8000_set_acquisition_mode(struct dib8000_state *state) { u16 nud = dib8000_read_word(state, 298); nud |= (1 << 3) | (1 << 0); dprintk("acquisition mode activated\n"); dib8000_write_word(state, 298, nud); } static int dib8000_set_output_mode(struct dvb_frontend *fe, int mode) { struct dib8000_state *state = fe->demodulator_priv; u16 outreg, fifo_threshold, smo_mode, sram = 0x0205; /* by default SDRAM deintlv is enabled */ state->output_mode = mode; outreg = 0; fifo_threshold = 1792; smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1); dprintk("-I- Setting output mode for demod %p to %d\n", &state->fe[0], mode); switch (mode) { case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock outreg = (1 << 10); /* 0x0400 */ break; case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock outreg = (1 << 10) | (1 << 6); /* 0x0440 */ break; case OUTMODE_MPEG2_SERIAL: // STBs with serial input outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */ break; case OUTMODE_DIVERSITY: if (state->cfg.hostbus_diversity) { outreg = (1 << 10) | (4 << 6); /* 0x0500 */ sram &= 0xfdff; } else sram |= 0x0c00; break; case OUTMODE_MPEG2_FIFO: // e.g. USB feeding smo_mode |= (3 << 1); fifo_threshold = 512; outreg = (1 << 10) | (5 << 6); break; case OUTMODE_HIGH_Z: // disable outreg = 0; break; case OUTMODE_ANALOG_ADC: outreg = (1 << 10) | (3 << 6); dib8000_set_acquisition_mode(state); break; default: dprintk("Unhandled output_mode passed to be set for demod %p\n", &state->fe[0]); return -EINVAL; } if (state->cfg.output_mpeg2_in_188_bytes) smo_mode |= (1 << 5); dib8000_write_word(state, 299, smo_mode); dib8000_write_word(state, 300, fifo_threshold); /* synchronous fread */ dib8000_write_word(state, 1286, outreg); dib8000_write_word(state, 1291, sram); return 0; } static int dib8000_set_diversity_in(struct dvb_frontend *fe, int onoff) { struct dib8000_state *state = fe->demodulator_priv; u16 tmp, sync_wait = dib8000_read_word(state, 273) & 0xfff0; dprintk("set diversity input to %i\n", onoff); if (!state->differential_constellation) { dib8000_write_word(state, 272, 1 << 9); //dvsy_off_lmod4 = 1 dib8000_write_word(state, 273, sync_wait | (1 << 2) | 2); // sync_enable = 1; comb_mode = 2 } else { dib8000_write_word(state, 272, 0); //dvsy_off_lmod4 = 0 dib8000_write_word(state, 273, sync_wait); // sync_enable = 0; comb_mode = 0 } state->diversity_onoff = onoff; switch (onoff) { case 0: /* only use the internal way - not the diversity input */ dib8000_write_word(state, 270, 1); dib8000_write_word(state, 271, 0); break; case 1: /* both ways */ dib8000_write_word(state, 270, 6); dib8000_write_word(state, 271, 6); break; case 2: /* only the diversity input */ dib8000_write_word(state, 270, 0); dib8000_write_word(state, 271, 1); break; } if (state->revision == 0x8002) { tmp = dib8000_read_word(state, 903); dib8000_write_word(state, 903, tmp & ~(1 << 3)); msleep(30); dib8000_write_word(state, 903, tmp | (1 << 3)); } return 0; } static void dib8000_set_power_mode(struct dib8000_state *state, enum dib8000_power_mode mode) { /* by default everything is going to be powered off */ u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0xffff, reg_900 = (dib8000_read_word(state, 900) & 0xfffc) | 0x3, reg_1280; if (state->revision != 0x8090) reg_1280 = (dib8000_read_word(state, 1280) & 0x00ff) | 0xff00; else reg_1280 = (dib8000_read_word(state, 1280) & 0x707f) | 0x8f80; /* now, depending on the requested mode, we power on */ switch (mode) { /* power up everything in the demod */ case DIB8000_POWER_ALL: reg_774 = 0x0000; reg_775 = 0x0000; reg_776 = 0x0000; reg_900 &= 0xfffc; if (state->revision != 0x8090) reg_1280 &= 0x00ff; else reg_1280 &= 0x707f; break; case DIB8000_POWER_INTERFACE_ONLY: if (state->revision != 0x8090) reg_1280 &= 0x00ff; else reg_1280 &= 0xfa7b; break; } dprintk("powermode : 774 : %x ; 775 : %x; 776 : %x ; 900 : %x; 1280 : %x\n", reg_774, reg_775, reg_776, reg_900, reg_1280); dib8000_write_word(state, 774, reg_774); dib8000_write_word(state, 775, reg_775); dib8000_write_word(state, 776, reg_776); dib8000_write_word(state, 900, reg_900); dib8000_write_word(state, 1280, reg_1280); } static int dib8000_set_adc_state(struct dib8000_state *state, enum dibx000_adc_states no) { int ret = 0; u16 reg, reg_907 = dib8000_read_word(state, 907); u16 reg_908 = dib8000_read_word(state, 908); switch (no) { case DIBX000_SLOW_ADC_ON: if (state->revision != 0x8090) { reg_908 |= (1 << 1) | (1 << 0); ret |= dib8000_write_word(state, 908, reg_908); reg_908 &= ~(1 << 1); } else { reg = dib8000_read_word(state, 1925); /* en_slowAdc = 1 & reset_sladc = 1 */ dib8000_write_word(state, 1925, reg | (1<<4) | (1<<2)); /* read acces to make it works... strange ... */ reg = dib8000_read_word(state, 1925); msleep(20); /* en_slowAdc = 1 & reset_sladc = 0 */ dib8000_write_word(state, 1925, reg & ~(1<<4)); reg = dib8000_read_word(state, 921) & ~((0x3 << 14) | (0x3 << 12)); /* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ; (Vin2 = Vcm) */ dib8000_write_word(state, 921, reg | (1 << 14) | (3 << 12)); } break; case DIBX000_SLOW_ADC_OFF: if (state->revision == 0x8090) { reg = dib8000_read_word(state, 1925); /* reset_sladc = 1 en_slowAdc = 0 */ dib8000_write_word(state, 1925, (reg & ~(1<<2)) | (1<<4)); } reg_908 |= (1 << 1) | (1 << 0); break; case DIBX000_ADC_ON: reg_907 &= 0x0fff; reg_908 &= 0x0003; break; case DIBX000_ADC_OFF: // leave the VBG voltage on reg_907 = (1 << 13) | (1 << 12); reg_908 = (1 << 6) | (1 << 5) | (1 << 4) | (1 << 3) | (1 << 1); break; case DIBX000_VBG_ENABLE: reg_907 &= ~(1 << 15); break; case DIBX000_VBG_DISABLE: reg_907 |= (1 << 15); break; default: break; } ret |= dib8000_write_word(state, 907, reg_907); ret |= dib8000_write_word(state, 908, reg_908); return ret; } static int dib8000_set_bandwidth(struct dvb_frontend *fe, u32 bw) { struct dib8000_state *state = fe->demodulator_priv; u32 timf; if (bw == 0) bw = 6000; if (state->timf == 0) { dprintk("using default timf\n"); timf = state->timf_default; } else { dprintk("using updated timf\n"); timf = state->timf; } dib8000_write_word(state, 29, (u16) ((timf >> 16) & 0xffff)); dib8000_write_word(state, 30, (u16) ((timf) & 0xffff)); return 0; } static int dib8000_sad_calib(struct dib8000_state *state) { u8 sad_sel = 3; if (state->revision == 0x8090) { dib8000_write_word(state, 922, (sad_sel << 2)); dib8000_write_word(state, 923, 2048); dib8000_write_word(state, 922, (sad_sel << 2) | 0x1); dib8000_write_word(state, 922, (sad_sel << 2)); } else { /* internal */ dib8000_write_word(state, 923, (0 << 1) | (0 << 0)); dib8000_write_word(state, 924, 776); /* do the calibration */ dib8000_write_word(state, 923, (1 << 0)); dib8000_write_word(state, 923, (0 << 0)); } msleep(1); return 0; } static int dib8000_set_wbd_ref(struct dvb_frontend *fe, u16 value) { struct dib8000_state *state = fe->demodulator_priv; if (value > 4095) value = 4095; state->wbd_ref = value; return dib8000_write_word(state, 106, value); } static void dib8000_reset_pll_common(struct dib8000_state *state, const struct dibx000_bandwidth_config *bw) { dprintk("ifreq: %d %x, inversion: %d\n", bw->ifreq, bw->ifreq, bw->ifreq >> 25); if (state->revision != 0x8090) { dib8000_write_word(state, 23, (u16) (((bw->internal * 1000) >> 16) & 0xffff)); dib8000_write_word(state, 24, (u16) ((bw->internal * 1000) & 0xffff)); } else { dib8000_write_word(state, 23, (u16) (((bw->internal / 2 * 1000) >> 16) & 0xffff)); dib8000_write_word(state, 24, (u16) ((bw->internal / 2 * 1000) & 0xffff)); } dib8000_write_word(state, 27, (u16) ((bw->ifreq >> 16) & 0x01ff)); dib8000_write_word(state, 28, (u16) (bw->ifreq & 0xffff)); dib8000_write_word(state, 26, (u16) ((bw->ifreq >> 25) & 0x0003)); if (state->revision != 0x8090) dib8000_write_word(state, 922, bw->sad_cfg); } static void dib8000_reset_pll(struct dib8000_state *state) { const struct dibx000_bandwidth_config *pll = state->cfg.pll; u16 clk_cfg1, reg; if (state->revision != 0x8090) { dib8000_write_word(state, 901, (pll->pll_prediv << 8) | (pll->pll_ratio << 0)); clk_cfg1 = (1 << 10) | (0 << 9) | (pll->IO_CLK_en_core << 8) | (pll->bypclk_div << 5) | (pll->enable_refdiv << 4) | (1 << 3) | (pll->pll_range << 1) | (pll->pll_reset << 0); dib8000_write_word(state, 902, clk_cfg1); clk_cfg1 = (clk_cfg1 & 0xfff7) | (pll->pll_bypass << 3); dib8000_write_word(state, 902, clk_cfg1); dprintk("clk_cfg1: 0x%04x\n", clk_cfg1); /* smpl_cfg: P_refclksel=2, P_ensmplsel=1 nodivsmpl=1 */ if (state->cfg.pll->ADClkSrc == 0) dib8000_write_word(state, 904, (0 << 15) | (0 << 12) | (0 << 10) | (pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1)); else if (state->cfg.refclksel != 0) dib8000_write_word(state, 904, (0 << 15) | (1 << 12) | ((state->cfg.refclksel & 0x3) << 10) | (pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1)); else dib8000_write_word(state, 904, (0 << 15) | (1 << 12) | (3 << 10) | (pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1)); } else { dib8000_write_word(state, 1856, (!pll->pll_reset<<13) | (pll->pll_range<<12) | (pll->pll_ratio<<6) | (pll->pll_prediv)); reg = dib8000_read_word(state, 1857); dib8000_write_word(state, 1857, reg|(!pll->pll_bypass<<15)); reg = dib8000_read_word(state, 1858); /* Force clk out pll /2 */ dib8000_write_word(state, 1858, reg | 1); dib8000_write_word(state, 904, (pll->modulo << 8)); } dib8000_reset_pll_common(state, pll); } static int dib8000_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *pll, u32 bw, u8 ratio) { struct dib8000_state *state = fe->demodulator_priv; u16 reg_1857, reg_1856 = dib8000_read_word(state, 1856); u8 loopdiv, prediv, oldprediv = state->cfg.pll->pll_prediv ; u32 internal, xtal; /* get back old values */ prediv = reg_1856 & 0x3f; loopdiv = (reg_1856 >> 6) & 0x3f; if ((pll == NULL) || (pll->pll_prediv == prediv && pll->pll_ratio == loopdiv)) return -EINVAL; dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)\n", prediv, pll->pll_prediv, loopdiv, pll->pll_ratio); if (state->revision == 0x8090) { reg_1856 &= 0xf000; reg_1857 = dib8000_read_word(state, 1857); /* disable PLL */ dib8000_write_word(state, 1857, reg_1857 & ~(1 << 15)); dib8000_write_word(state, 1856, reg_1856 | ((pll->pll_ratio & 0x3f) << 6) | (pll->pll_prediv & 0x3f)); /* write new system clk into P_sec_len */ internal = dib8000_read32(state, 23) / 1000; dprintk("Old Internal = %d\n", internal); xtal = 2 * (internal / loopdiv) * prediv; internal = 1000 * (xtal/pll->pll_prediv) * pll->pll_ratio; dprintk("Xtal = %d , New Fmem = %d New Fdemod = %d, New Fsampling = %d\n", xtal, internal/1000, internal/2000, internal/8000); dprintk("New Internal = %d\n", internal); dib8000_write_word(state, 23, (u16) (((internal / 2) >> 16) & 0xffff)); dib8000_write_word(state, 24, (u16) ((internal / 2) & 0xffff)); /* enable PLL */ dib8000_write_word(state, 1857, reg_1857 | (1 << 15)); while (((dib8000_read_word(state, 1856)>>15)&0x1) != 1) dprintk("Waiting for PLL to lock\n"); /* verify */ reg_1856 = dib8000_read_word(state, 1856); dprintk("PLL Updated with prediv = %d and loopdiv = %d\n", reg_1856&0x3f, (reg_1856>>6)&0x3f); } else { if (bw != state->current_demod_bw) { /** Bandwidth change => force PLL update **/ dprintk("PLL: Bandwidth Change %d MHz -> %d MHz (prediv: %d->%d)\n", state->current_demod_bw / 1000, bw / 1000, oldprediv, state->cfg.pll->pll_prediv); if (state->cfg.pll->pll_prediv != oldprediv) { /** Full PLL change only if prediv is changed **/ /** full update => bypass and reconfigure **/ dprintk("PLL: New Setting for %d MHz Bandwidth (prediv: %d, ratio: %d)\n", bw/1000, state->cfg.pll->pll_prediv, state->cfg.pll->pll_ratio); dib8000_write_word(state, 902, dib8000_read_word(state, 902) | (1<<3)); /* bypass PLL */ dib8000_reset_pll(state); dib8000_write_word(state, 898, 0x0004); /* sad */ } else ratio = state->cfg.pll->pll_ratio; state->current_demod_bw = bw; } if (ratio != 0) { /** ratio update => only change ratio **/ dprintk("PLL: Update ratio (prediv: %d, ratio: %d)\n", state->cfg.pll->pll_prediv, ratio); dib8000_write_word(state, 901, (state->cfg.pll->pll_prediv << 8) | (ratio << 0)); /* only the PLL ratio is updated. */ } } return 0; } static int dib8000_reset_gpio(struct dib8000_state *st) { /* reset the GPIOs */ dib8000_write_word(st, 1029, st->cfg.gpio_dir); dib8000_write_word(st, 1030, st->cfg.gpio_val); /* TODO 782 is P_gpio_od */ dib8000_write_word(st, 1032, st->cfg.gpio_pwm_pos); dib8000_write_word(st, 1037, st->cfg.pwm_freq_div); return 0; } static int dib8000_cfg_gpio(struct dib8000_state *st, u8 num, u8 dir, u8 val) { st->cfg.gpio_dir = dib8000_read_word(st, 1029); st->cfg.gpio_dir &= ~(1 << num); /* reset the direction bit */ st->cfg.gpio_dir |= (dir & 0x1) << num; /* set the new direction */ dib8000_write_word(st, 1029, st->cfg.gpio_dir); st->cfg.gpio_val = dib8000_read_word(st, 1030); st->cfg.gpio_val &= ~(1 << num); /* reset the direction bit */ st->cfg.gpio_val |= (val & 0x01) << num; /* set the new value */ dib8000_write_word(st, 1030, st->cfg.gpio_val); dprintk("gpio dir: %x: gpio val: %x\n", st->cfg.gpio_dir, st->cfg.gpio_val); return 0; } static int dib8000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val) { struct dib8000_state *state = fe->demodulator_priv; return dib8000_cfg_gpio(state, num, dir, val); } static const u16 dib8000_defaults[] = { /* auto search configuration - lock0 by default waiting * for cpil_lock; lock1 cpil_lock; lock2 tmcc_sync_lock */ 3, 7, 0x0004, 0x0400, 0x0814, 12, 11, 0x001b, 0x7740, 0x005b, 0x8d80, 0x01c9, 0xc380, 0x0000, 0x0080, 0x0000, 0x0090, 0x0001, 0xd4c0, /*1, 32, 0x6680 // P_corm_thres Lock algorithms configuration */ 11, 80, /* set ADC level to -16 */ (1 << 13) - 825 - 117, (1 << 13) - 837 - 117, (1 << 13) - 811 - 117, (1 << 13) - 766 - 117, (1 << 13) - 737 - 117, (1 << 13) - 693 - 117, (1 << 13) - 648 - 117, (1 << 13) - 619 - 117, (1 << 13) - 575 - 117, (1 << 13) - 531 - 117, (1 << 13) - 501 - 117, 4, 108, 0, 0, 0, 0, 1, 175, 0x0410, 1, 179, 8192, // P_fft_nb_to_cut 6, 181, 0x2800, // P_coff_corthres_ ( 2k 4k 8k ) 0x2800 0x2800, 0x2800, 0x2800, // P_coff_cpilthres_ ( 2k 4k 8k ) 0x2800 0x2800, 0x2800, 2, 193, 0x0666, // P_pha3_thres 0x0000, // P_cti_use_cpe, P_cti_use_prog 2, 205, 0x200f, // P_cspu_regul, P_cspu_win_cut 0x000f, // P_des_shift_work 5, 215, 0x023d, // P_adp_regul_cnt 0x00a4, // P_adp_noise_cnt 0x00a4, // P_adp_regul_ext 0x7ff0, // P_adp_noise_ext 0x3ccc, // P_adp_fil 1, 230, 0x0000, // P_2d_byp_ti_num 1, 263, 0x800, //P_equal_thres_wgn 1, 268, (2 << 9) | 39, // P_equal_ctrl_synchro, P_equal_speedmode 1, 270, 0x0001, // P_div_lock0_wait 1, 285, 0x0020, //p_fec_ 1, 299, 0x0062, /* P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard */ 1, 338, (1 << 12) | // P_ctrl_corm_thres4pre_freq_inh=1 (1 << 10) | (0 << 9) | /* P_ctrl_pre_freq_inh=0 */ (3 << 5) | /* P_ctrl_pre_freq_step=3 */ (1 << 0), /* P_pre_freq_win_len=1 */ 0, }; static u16 dib8000_identify(struct i2c_device *client) { u16 value; //because of glitches sometimes value = dib8000_i2c_read16(client, 896); if ((value = dib8000_i2c_read16(client, 896)) != 0x01b3) { dprintk("wrong Vendor ID (read=0x%x)\n", value); return 0; } value = dib8000_i2c_read16(client, 897); if (value != 0x8000 && value != 0x8001 && value != 0x8002 && value != 0x8090) { dprintk("wrong Device ID (%x)\n", value); return 0; } switch (value) { case 0x8000: dprintk("found DiB8000A\n"); break; case 0x8001: dprintk("found DiB8000B\n"); break; case 0x8002: dprintk("found DiB8000C\n"); break; case 0x8090: dprintk("found DiB8096P\n"); break; } return value; } static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 *unc); static void dib8000_reset_stats(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; u32 ucb; memset(&c->strength, 0, sizeof(c->strength)); memset(&c->cnr, 0, sizeof(c->cnr)); memset(&c->post_bit_error, 0, sizeof(c->post_bit_error)); memset(&c->post_bit_count, 0, sizeof(c->post_bit_count)); memset(&c->block_error, 0, sizeof(c->block_error)); c->strength.len = 1; c->cnr.len = 1; c->block_error.len = 1; c->block_count.len = 1; c->post_bit_error.len = 1; c->post_bit_count.len = 1; c->strength.stat[0].scale = FE_SCALE_DECIBEL; c->strength.stat[0].uvalue = 0; c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; dib8000_read_unc_blocks(fe, &ucb); state->init_ucb = -ucb; state->ber_jiffies_stats = 0; state->per_jiffies_stats = 0; memset(&state->ber_jiffies_stats_layer, 0, sizeof(state->ber_jiffies_stats_layer)); } static int dib8000_reset(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; if ((state->revision = dib8000_identify(&state->i2c)) == 0) return -EINVAL; /* sram lead in, rdy */ if (state->revision != 0x8090) dib8000_write_word(state, 1287, 0x0003); if (state->revision == 0x8000) dprintk("error : dib8000 MA not supported\n"); dibx000_reset_i2c_master(&state->i2c_master); dib8000_set_power_mode(state, DIB8000_POWER_ALL); /* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */ dib8000_set_adc_state(state, DIBX000_ADC_OFF); /* restart all parts */ dib8000_write_word(state, 770, 0xffff); dib8000_write_word(state, 771, 0xffff); dib8000_write_word(state, 772, 0xfffc); dib8000_write_word(state, 898, 0x000c); /* restart sad */ if (state->revision == 0x8090) dib8000_write_word(state, 1280, 0x0045); else dib8000_write_word(state, 1280, 0x004d); dib8000_write_word(state, 1281, 0x000c); dib8000_write_word(state, 770, 0x0000); dib8000_write_word(state, 771, 0x0000); dib8000_write_word(state, 772, 0x0000); dib8000_write_word(state, 898, 0x0004); // sad dib8000_write_word(state, 1280, 0x0000); dib8000_write_word(state, 1281, 0x0000); /* drives */ if (state->revision != 0x8090) { if (state->cfg.drives) dib8000_write_word(state, 906, state->cfg.drives); else { dprintk("using standard PAD-drive-settings, please adjust settings in config-struct to be optimal.\n"); /* min drive SDRAM - not optimal - adjust */ dib8000_write_word(state, 906, 0x2d98); } } dib8000_reset_pll(state); if (state->revision != 0x8090) dib8000_write_word(state, 898, 0x0004); if (dib8000_reset_gpio(state) != 0) dprintk("GPIO reset was not successful.\n"); if ((state->revision != 0x8090) && (dib8000_set_output_mode(fe, OUTMODE_HIGH_Z) != 0)) dprintk("OUTPUT_MODE could not be resetted.\n"); state->current_agc = NULL; // P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ... /* P_iqc_ca2 = 0; P_iqc_impnc_on = 0; P_iqc_mode = 0; */ if (state->cfg.pll->ifreq == 0) dib8000_write_word(state, 40, 0x0755); /* P_iqc_corr_inh = 0 enable IQcorr block */ else dib8000_write_word(state, 40, 0x1f55); /* P_iqc_corr_inh = 1 disable IQcorr block */ { u16 l = 0, r; const u16 *n; n = dib8000_defaults; l = *n++; while (l) { r = *n++; do { dib8000_write_word(state, r, *n++); r++; } while (--l); l = *n++; } } state->isdbt_cfg_loaded = 0; //div_cfg override for special configs if ((state->revision != 8090) && (state->cfg.div_cfg != 0)) dib8000_write_word(state, 903, state->cfg.div_cfg); /* unforce divstr regardless whether i2c enumeration was done or not */ dib8000_write_word(state, 1285, dib8000_read_word(state, 1285) & ~(1 << 1)); dib8000_set_bandwidth(fe, 6000); dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON); dib8000_sad_calib(state); if (state->revision != 0x8090) dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF); /* ber_rs_len = 3 */ dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5)); dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY); dib8000_reset_stats(fe); return 0; } static void dib8000_restart_agc(struct dib8000_state *state) { // P_restart_iqc & P_restart_agc dib8000_write_word(state, 770, 0x0a00); dib8000_write_word(state, 770, 0x0000); } static int dib8000_update_lna(struct dib8000_state *state) { u16 dyn_gain; if (state->cfg.update_lna) { // read dyn_gain here (because it is demod-dependent and not tuner) dyn_gain = dib8000_read_word(state, 390); if (state->cfg.update_lna(state->fe[0], dyn_gain)) { dib8000_restart_agc(state); return 1; } } return 0; } static int dib8000_set_agc_config(struct dib8000_state *state, u8 band) { struct dibx000_agc_config *agc = NULL; int i; u16 reg; if (state->current_band == band && state->current_agc != NULL) return 0; state->current_band = band; for (i = 0; i < state->cfg.agc_config_count; i++) if (state->cfg.agc[i].band_caps & band) { agc = &state->cfg.agc[i]; break; } if (agc == NULL) { dprintk("no valid AGC configuration found for band 0x%02x\n", band); return -EINVAL; } state->current_agc = agc; /* AGC */ dib8000_write_word(state, 76, agc->setup); dib8000_write_word(state, 77, agc->inv_gain); dib8000_write_word(state, 78, agc->time_stabiliz); dib8000_write_word(state, 101, (agc->alpha_level << 12) | agc->thlock); // Demod AGC loop configuration dib8000_write_word(state, 102, (agc->alpha_mant << 5) | agc->alpha_exp); dib8000_write_word(state, 103, (agc->beta_mant << 6) | agc->beta_exp); dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d\n", state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); /* AGC continued */ if (state->wbd_ref != 0) dib8000_write_word(state, 106, state->wbd_ref); else // use default dib8000_write_word(state, 106, agc->wbd_ref); if (state->revision == 0x8090) { reg = dib8000_read_word(state, 922) & (0x3 << 2); dib8000_write_word(state, 922, reg | (agc->wbd_sel << 2)); } dib8000_write_word(state, 107, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8)); dib8000_write_word(state, 108, agc->agc1_max); dib8000_write_word(state, 109, agc->agc1_min); dib8000_write_word(state, 110, agc->agc2_max); dib8000_write_word(state, 111, agc->agc2_min); dib8000_write_word(state, 112, (agc->agc1_pt1 << 8) | agc->agc1_pt2); dib8000_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2); dib8000_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2); dib8000_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2); dib8000_write_word(state, 75, agc->agc1_pt3); if (state->revision != 0x8090) dib8000_write_word(state, 923, (dib8000_read_word(state, 923) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2)); return 0; } static void dib8000_pwm_agc_reset(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; dib8000_set_adc_state(state, DIBX000_ADC_ON); dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))); } static int dib8000_agc_soft_split(struct dib8000_state *state) { u16 agc, split_offset; if (!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0) return 0; // n_agc_global agc = dib8000_read_word(state, 390); if (agc > state->current_agc->split.min_thres) split_offset = state->current_agc->split.min; else if (agc < state->current_agc->split.max_thres) split_offset = state->current_agc->split.max; else split_offset = state->current_agc->split.max * (agc - state->current_agc->split.min_thres) / (state->current_agc->split.max_thres - state->current_agc->split.min_thres); dprintk("AGC split_offset: %d\n", split_offset); // P_agc_force_split and P_agc_split_offset dib8000_write_word(state, 107, (dib8000_read_word(state, 107) & 0xff00) | split_offset); return 5000; } static int dib8000_agc_startup(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; enum frontend_tune_state *tune_state = &state->tune_state; int ret = 0; u16 reg; u32 upd_demod_gain_period = 0x8000; switch (*tune_state) { case CT_AGC_START: // set power-up level: interf+analog+AGC if (state->revision != 0x8090) dib8000_set_adc_state(state, DIBX000_ADC_ON); else { dib8000_set_power_mode(state, DIB8000_POWER_ALL); reg = dib8000_read_word(state, 1947)&0xff00; dib8000_write_word(state, 1946, upd_demod_gain_period & 0xFFFF); /* bit 14 = enDemodGain */ dib8000_write_word(state, 1947, reg | (1<<14) | ((upd_demod_gain_period >> 16) & 0xFF)); /* enable adc i & q */ reg = dib8000_read_word(state, 1920); dib8000_write_word(state, 1920, (reg | 0x3) & (~(1 << 7))); } if (dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))) != 0) { *tune_state = CT_AGC_STOP; state->status = FE_STATUS_TUNE_FAILED; break; } ret = 70; *tune_state = CT_AGC_STEP_0; break; case CT_AGC_STEP_0: //AGC initialization if (state->cfg.agc_control) state->cfg.agc_control(fe, 1); dib8000_restart_agc(state); // wait AGC rough lock time ret = 50; *tune_state = CT_AGC_STEP_1; break; case CT_AGC_STEP_1: // wait AGC accurate lock time ret = 70; if (dib8000_update_lna(state)) // wait only AGC rough lock time ret = 50; else *tune_state = CT_AGC_STEP_2; break; case CT_AGC_STEP_2: dib8000_agc_soft_split(state); if (state->cfg.agc_control) state->cfg.agc_control(fe, 0); *tune_state = CT_AGC_STOP; break; default: ret = dib8000_agc_soft_split(state); break; } return ret; } static void dib8096p_host_bus_drive(struct dib8000_state *state, u8 drive) { u16 reg; drive &= 0x7; /* drive host bus 2, 3, 4 */ reg = dib8000_read_word(state, 1798) & ~(0x7 | (0x7 << 6) | (0x7 << 12)); reg |= (drive<<12) | (drive<<6) | drive; dib8000_write_word(state, 1798, reg); /* drive host bus 5,6 */ reg = dib8000_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8)); reg |= (drive<<8) | (drive<<2); dib8000_write_word(state, 1799, reg); /* drive host bus 7, 8, 9 */ reg = dib8000_read_word(state, 1800) & ~(0x7 | (0x7 << 6) | (0x7 << 12)); reg |= (drive<<12) | (drive<<6) | drive; dib8000_write_word(state, 1800, reg); /* drive host bus 10, 11 */ reg = dib8000_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8)); reg |= (drive<<8) | (drive<<2); dib8000_write_word(state, 1801, reg); /* drive host bus 12, 13, 14 */ reg = dib8000_read_word(state, 1802) & ~(0x7 | (0x7 << 6) | (0x7 << 12)); reg |= (drive<<12) | (drive<<6) | drive; dib8000_write_word(state, 1802, reg); } static u32 dib8096p_calcSyncFreq(u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 syncSize) { u32 quantif = 3; u32 nom = (insertExtSynchro * P_Kin+syncSize); u32 denom = P_Kout; u32 syncFreq = ((nom << quantif) / denom); if ((syncFreq & ((1 << quantif) - 1)) != 0) syncFreq = (syncFreq >> quantif) + 1; else syncFreq = (syncFreq >> quantif); if (syncFreq != 0) syncFreq = syncFreq - 1; return syncFreq; } static void dib8096p_cfg_DibTx(struct dib8000_state *state, u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, u32 syncWord, u32 syncSize) { dprintk("Configure DibStream Tx\n"); dib8000_write_word(state, 1615, 1); dib8000_write_word(state, 1603, P_Kin); dib8000_write_word(state, 1605, P_Kout); dib8000_write_word(state, 1606, insertExtSynchro); dib8000_write_word(state, 1608, synchroMode); dib8000_write_word(state, 1609, (syncWord >> 16) & 0xffff); dib8000_write_word(state, 1610, syncWord & 0xffff); dib8000_write_word(state, 1612, syncSize); dib8000_write_word(state, 1615, 0); } static void dib8096p_cfg_DibRx(struct dib8000_state *state, u32 P_Kin, u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, u32 syncWord, u32 syncSize, u32 dataOutRate) { u32 syncFreq; dprintk("Configure DibStream Rx synchroMode = %d\n", synchroMode); if ((P_Kin != 0) && (P_Kout != 0)) { syncFreq = dib8096p_calcSyncFreq(P_Kin, P_Kout, insertExtSynchro, syncSize); dib8000_write_word(state, 1542, syncFreq); } dib8000_write_word(state, 1554, 1); dib8000_write_word(state, 1536, P_Kin); dib8000_write_word(state, 1537, P_Kout); dib8000_write_word(state, 1539, synchroMode); dib8000_write_word(state, 1540, (syncWord >> 16) & 0xffff); dib8000_write_word(state, 1541, syncWord & 0xffff); dib8000_write_word(state, 1543, syncSize); dib8000_write_word(state, 1544, dataOutRate); dib8000_write_word(state, 1554, 0); } static void dib8096p_enMpegMux(struct dib8000_state *state, int onoff) { u16 reg_1287; reg_1287 = dib8000_read_word(state, 1287); switch (onoff) { case 1: reg_1287 &= ~(1 << 8); break; case 0: reg_1287 |= (1 << 8); break; } dib8000_write_word(state, 1287, reg_1287); } static void dib8096p_configMpegMux(struct dib8000_state *state, u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2) { u16 reg_1287; dprintk("Enable Mpeg mux\n"); dib8096p_enMpegMux(state, 0); /* If the input mode is MPEG do not divide the serial clock */ if ((enSerialMode == 1) && (state->input_mode_mpeg == 1)) enSerialClkDiv2 = 0; reg_1287 = ((pulseWidth & 0x1f) << 3) | ((enSerialMode & 0x1) << 2) | (enSerialClkDiv2 & 0x1); dib8000_write_word(state, 1287, reg_1287); dib8096p_enMpegMux(state, 1); } static void dib8096p_setDibTxMux(struct dib8000_state *state, int mode) { u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 7); switch (mode) { case MPEG_ON_DIBTX: dprintk("SET MPEG ON DIBSTREAM TX\n"); dib8096p_cfg_DibTx(state, 8, 5, 0, 0, 0, 0); reg_1288 |= (1 << 9); break; case DIV_ON_DIBTX: dprintk("SET DIV_OUT ON DIBSTREAM TX\n"); dib8096p_cfg_DibTx(state, 5, 5, 0, 0, 0, 0); reg_1288 |= (1 << 8); break; case ADC_ON_DIBTX: dprintk("SET ADC_OUT ON DIBSTREAM TX\n"); dib8096p_cfg_DibTx(state, 20, 5, 10, 0, 0, 0); reg_1288 |= (1 << 7); break; default: break; } dib8000_write_word(state, 1288, reg_1288); } static void dib8096p_setHostBusMux(struct dib8000_state *state, int mode) { u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 4); switch (mode) { case DEMOUT_ON_HOSTBUS: dprintk("SET DEM OUT OLD INTERF ON HOST BUS\n"); dib8096p_enMpegMux(state, 0); reg_1288 |= (1 << 6); break; case DIBTX_ON_HOSTBUS: dprintk("SET DIBSTREAM TX ON HOST BUS\n"); dib8096p_enMpegMux(state, 0); reg_1288 |= (1 << 5); break; case MPEG_ON_HOSTBUS: dprintk("SET MPEG MUX ON HOST BUS\n"); reg_1288 |= (1 << 4); break; default: break; } dib8000_write_word(state, 1288, reg_1288); } static int dib8096p_set_diversity_in(struct dvb_frontend *fe, int onoff) { struct dib8000_state *state = fe->demodulator_priv; u16 reg_1287; switch (onoff) { case 0: /* only use the internal way - not the diversity input */ dprintk("%s mode OFF : by default Enable Mpeg INPUT\n", __func__); /* outputRate = 8 */ dib8096p_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0); /* Do not divide the serial clock of MPEG MUX in SERIAL MODE in case input mode MPEG is used */ reg_1287 = dib8000_read_word(state, 1287); /* enSerialClkDiv2 == 1 ? */ if ((reg_1287 & 0x1) == 1) { /* force enSerialClkDiv2 = 0 */ reg_1287 &= ~0x1; dib8000_write_word(state, 1287, reg_1287); } state->input_mode_mpeg = 1; break; case 1: /* both ways */ case 2: /* only the diversity input */ dprintk("%s ON : Enable diversity INPUT\n", __func__); dib8096p_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0); state->input_mode_mpeg = 0; break; } dib8000_set_diversity_in(state->fe[0], onoff); return 0; } static int dib8096p_set_output_mode(struct dvb_frontend *fe, int mode) { struct dib8000_state *state = fe->demodulator_priv; u16 outreg, smo_mode, fifo_threshold; u8 prefer_mpeg_mux_use = 1; int ret = 0; state->output_mode = mode; dib8096p_host_bus_drive(state, 1); fifo_threshold = 1792; smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1); outreg = dib8000_read_word(state, 1286) & ~((1 << 10) | (0x7 << 6) | (1 << 1)); switch (mode) { case OUTMODE_HIGH_Z: outreg = 0; break; case OUTMODE_MPEG2_SERIAL: if (prefer_mpeg_mux_use) { dprintk("dib8096P setting output mode TS_SERIAL using Mpeg Mux\n"); dib8096p_configMpegMux(state, 3, 1, 1); dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS); } else {/* Use Smooth block */ dprintk("dib8096P setting output mode TS_SERIAL using Smooth bloc\n"); dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS); outreg |= (2 << 6) | (0 << 1); } break; case OUTMODE_MPEG2_PAR_GATED_CLK: if (prefer_mpeg_mux_use) { dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Mpeg Mux\n"); dib8096p_configMpegMux(state, 2, 0, 0); dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS); } else { /* Use Smooth block */ dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Smooth block\n"); dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS); outreg |= (0 << 6); } break; case OUTMODE_MPEG2_PAR_CONT_CLK: /* Using Smooth block only */ dprintk("dib8096P setting output mode TS_PARALLEL_CONT using Smooth block\n"); dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS); outreg |= (1 << 6); break; case OUTMODE_MPEG2_FIFO: /* Using Smooth block because not supported by new Mpeg Mux bloc */ dprintk("dib8096P setting output mode TS_FIFO using Smooth block\n"); dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS); outreg |= (5 << 6); smo_mode |= (3 << 1); fifo_threshold = 512; break; case OUTMODE_DIVERSITY: dprintk("dib8096P setting output mode MODE_DIVERSITY\n"); dib8096p_setDibTxMux(state, DIV_ON_DIBTX); dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS); break; case OUTMODE_ANALOG_ADC: dprintk("dib8096P setting output mode MODE_ANALOG_ADC\n"); dib8096p_setDibTxMux(state, ADC_ON_DIBTX); dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS); break; } if (mode != OUTMODE_HIGH_Z) outreg |= (1<<10); dprintk("output_mpeg2_in_188_bytes = %d\n", state->cfg.output_mpeg2_in_188_bytes); if (state->cfg.output_mpeg2_in_188_bytes) smo_mode |= (1 << 5); ret |= dib8000_write_word(state, 299, smo_mode); /* synchronous fread */ ret |= dib8000_write_word(state, 299 + 1, fifo_threshold); ret |= dib8000_write_word(state, 1286, outreg); return ret; } static int map_addr_to_serpar_number(struct i2c_msg *msg) { if (msg->buf[0] <= 15) msg->buf[0] -= 1; else if (msg->buf[0] == 17) msg->buf[0] = 15; else if (msg->buf[0] == 16) msg->buf[0] = 17; else if (msg->buf[0] == 19) msg->buf[0] = 16; else if (msg->buf[0] >= 21 && msg->buf[0] <= 25) msg->buf[0] -= 3; else if (msg->buf[0] == 28) msg->buf[0] = 23; else if (msg->buf[0] == 99) msg->buf[0] = 99; else return -EINVAL; return 0; } static int dib8096p_tuner_write_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { struct dib8000_state *state = i2c_get_adapdata(i2c_adap); u8 n_overflow = 1; u16 i = 1000; u16 serpar_num = msg[0].buf[0]; while (n_overflow == 1 && i) { n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1; i--; if (i == 0) dprintk("Tuner ITF: write busy (overflow)\n"); } dib8000_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f)); dib8000_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]); return num; } static int dib8096p_tuner_read_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { struct dib8000_state *state = i2c_get_adapdata(i2c_adap); u8 n_overflow = 1, n_empty = 1; u16 i = 1000; u16 serpar_num = msg[0].buf[0]; u16 read_word; while (n_overflow == 1 && i) { n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1; i--; if (i == 0) dprintk("TunerITF: read busy (overflow)\n"); } dib8000_write_word(state, 1985, (0<<6) | (serpar_num&0x3f)); i = 1000; while (n_empty == 1 && i) { n_empty = dib8000_read_word(state, 1984)&0x1; i--; if (i == 0) dprintk("TunerITF: read busy (empty)\n"); } read_word = dib8000_read_word(state, 1987); msg[1].buf[0] = (read_word >> 8) & 0xff; msg[1].buf[1] = (read_word) & 0xff; return num; } static int dib8096p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { if (map_addr_to_serpar_number(&msg[0]) == 0) { if (num == 1) /* write */ return dib8096p_tuner_write_serpar(i2c_adap, msg, 1); else /* read */ return dib8096p_tuner_read_serpar(i2c_adap, msg, 2); } return num; } static int dib8096p_rw_on_apb(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num, u16 apb_address) { struct dib8000_state *state = i2c_get_adapdata(i2c_adap); u16 word; if (num == 1) { /* write */ dib8000_write_word(state, apb_address, ((msg[0].buf[1] << 8) | (msg[0].buf[2]))); } else { word = dib8000_read_word(state, apb_address); msg[1].buf[0] = (word >> 8) & 0xff; msg[1].buf[1] = (word) & 0xff; } return num; } static int dib8096p_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { struct dib8000_state *state = i2c_get_adapdata(i2c_adap); u16 apb_address = 0, word; int i = 0; switch (msg[0].buf[0]) { case 0x12: apb_address = 1920; break; case 0x14: apb_address = 1921; break; case 0x24: apb_address = 1922; break; case 0x1a: apb_address = 1923; break; case 0x22: apb_address = 1924; break; case 0x33: apb_address = 1926; break; case 0x34: apb_address = 1927; break; case 0x35: apb_address = 1928; break; case 0x36: apb_address = 1929; break; case 0x37: apb_address = 1930; break; case 0x38: apb_address = 1931; break; case 0x39: apb_address = 1932; break; case 0x2a: apb_address = 1935; break; case 0x2b: apb_address = 1936; break; case 0x2c: apb_address = 1937; break; case 0x2d: apb_address = 1938; break; case 0x2e: apb_address = 1939; break; case 0x2f: apb_address = 1940; break; case 0x30: apb_address = 1941; break; case 0x31: apb_address = 1942; break; case 0x32: apb_address = 1943; break; case 0x3e: apb_address = 1944; break; case 0x3f: apb_address = 1945; break; case 0x40: apb_address = 1948; break; case 0x25: apb_address = 936; break; case 0x26: apb_address = 937; break; case 0x27: apb_address = 938; break; case 0x28: apb_address = 939; break; case 0x1d: /* get sad sel request */ i = ((dib8000_read_word(state, 921) >> 12)&0x3); word = dib8000_read_word(state, 924+i); msg[1].buf[0] = (word >> 8) & 0xff; msg[1].buf[1] = (word) & 0xff; return num; case 0x1f: if (num == 1) { /* write */ word = (u16) ((msg[0].buf[1] << 8) | msg[0].buf[2]); /* in the VGAMODE Sel are located on bit 0/1 */ word &= 0x3; word = (dib8000_read_word(state, 921) & ~(3<<12)) | (word<<12); /* Set the proper input */ dib8000_write_word(state, 921, word); return num; } } if (apb_address != 0) /* R/W acces via APB */ return dib8096p_rw_on_apb(i2c_adap, msg, num, apb_address); else /* R/W access via SERPAR */ return dib8096p_tuner_rw_serpar(i2c_adap, msg, num); return 0; } static u32 dib8096p_i2c_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C; } static const struct i2c_algorithm dib8096p_tuner_xfer_algo = { .master_xfer = dib8096p_tuner_xfer, .functionality = dib8096p_i2c_func, }; static struct i2c_adapter *dib8096p_get_i2c_tuner(struct dvb_frontend *fe) { struct dib8000_state *st = fe->demodulator_priv; return &st->dib8096p_tuner_adap; } static int dib8096p_tuner_sleep(struct dvb_frontend *fe, int onoff) { struct dib8000_state *state = fe->demodulator_priv; u16 en_cur_state; dprintk("sleep dib8096p: %d\n", onoff); en_cur_state = dib8000_read_word(state, 1922); /* LNAs and MIX are ON and therefore it is a valid configuration */ if (en_cur_state > 0xff) state->tuner_enable = en_cur_state ; if (onoff) en_cur_state &= 0x00ff; else { if (state->tuner_enable != 0) en_cur_state = state->tuner_enable; } dib8000_write_word(state, 1922, en_cur_state); return 0; } static const s32 lut_1000ln_mant[] = { 908, 7003, 7090, 7170, 7244, 7313, 7377, 7438, 7495, 7549, 7600 }; static s32 dib8000_get_adc_power(struct dvb_frontend *fe, u8 mode) { struct dib8000_state *state = fe->demodulator_priv; u32 ix = 0, tmp_val = 0, exp = 0, mant = 0; s32 val; val = dib8000_read32(state, 384); if (mode) { tmp_val = val; while (tmp_val >>= 1) exp++; mant = (val * 1000 / (1<<exp)); ix = (u8)((mant-1000)/100); /* index of the LUT */ val = (lut_1000ln_mant[ix] + 693*(exp-20) - 6908); val = (val*256)/1000; } return val; } static int dib8090p_get_dc_power(struct dvb_frontend *fe, u8 IQ) { struct dib8000_state *state = fe->demodulator_priv; int val = 0; switch (IQ) { case 1: val = dib8000_read_word(state, 403); break; case 0: val = dib8000_read_word(state, 404); break; } if (val & 0x200) val -= 1024; return val; } static void dib8000_update_timf(struct dib8000_state *state) { u32 timf = state->timf = dib8000_read32(state, 435); dib8000_write_word(state, 29, (u16) (timf >> 16)); dib8000_write_word(state, 30, (u16) (timf & 0xffff)); dprintk("Updated timing frequency: %d (default: %d)\n", state->timf, state->timf_default); } static u32 dib8000_ctrl_timf(struct dvb_frontend *fe, uint8_t op, uint32_t timf) { struct dib8000_state *state = fe->demodulator_priv; switch (op) { case DEMOD_TIMF_SET: state->timf = timf; break; case DEMOD_TIMF_UPDATE: dib8000_update_timf(state); break; case DEMOD_TIMF_GET: break; } dib8000_set_bandwidth(state->fe[0], 6000); return state->timf; } static const u16 adc_target_16dB[11] = { 7250, 7238, 7264, 7309, 7338, 7382, 7427, 7456, 7500, 7544, 7574 }; static const u8 permu_seg[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12 }; static u16 dib8000_set_layer(struct dib8000_state *state, u8 layer_index, u16 max_constellation) { u8 cr, constellation, time_intlv; struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; switch (c->layer[layer_index].modulation) { case DQPSK: constellation = 0; break; case QPSK: constellation = 1; break; case QAM_16: constellation = 2; break; case QAM_64: default: constellation = 3; break; } switch (c->layer[layer_index].fec) { case FEC_1_2: cr = 1; break; case FEC_2_3: cr = 2; break; case FEC_3_4: cr = 3; break; case FEC_5_6: cr = 5; break; case FEC_7_8: default: cr = 7; break; } time_intlv = fls(c->layer[layer_index].interleaving); if (time_intlv > 3 && !(time_intlv == 4 && c->isdbt_sb_mode == 1)) time_intlv = 0; dib8000_write_word(state, 2 + layer_index, (constellation << 10) | ((c->layer[layer_index].segment_count & 0xf) << 6) | (cr << 3) | time_intlv); if (c->layer[layer_index].segment_count > 0) { switch (max_constellation) { case DQPSK: case QPSK: if (c->layer[layer_index].modulation == QAM_16 || c->layer[layer_index].modulation == QAM_64) max_constellation = c->layer[layer_index].modulation; break; case QAM_16: if (c->layer[layer_index].modulation == QAM_64) max_constellation = c->layer[layer_index].modulation; break; } } return max_constellation; } static const u16 adp_Q64[4] = {0x0148, 0xfff0, 0x00a4, 0xfff8}; /* P_adp_regul_cnt 0.04, P_adp_noise_cnt -0.002, P_adp_regul_ext 0.02, P_adp_noise_ext -0.001 */ static const u16 adp_Q16[4] = {0x023d, 0xffdf, 0x00a4, 0xfff0}; /* P_adp_regul_cnt 0.07, P_adp_noise_cnt -0.004, P_adp_regul_ext 0.02, P_adp_noise_ext -0.002 */ static const u16 adp_Qdefault[4] = {0x099a, 0xffae, 0x0333, 0xfff8}; /* P_adp_regul_cnt 0.3, P_adp_noise_cnt -0.01, P_adp_regul_ext 0.1, P_adp_noise_ext -0.002 */ static u16 dib8000_adp_fine_tune(struct dib8000_state *state, u16 max_constellation) { u16 i, ana_gain = 0; const u16 *adp; /* channel estimation fine configuration */ switch (max_constellation) { case QAM_64: ana_gain = 0x7; adp = &adp_Q64[0]; break; case QAM_16: ana_gain = 0x7; adp = &adp_Q16[0]; break; default: ana_gain = 0; adp = &adp_Qdefault[0]; break; } for (i = 0; i < 4; i++) dib8000_write_word(state, 215 + i, adp[i]); return ana_gain; } static void dib8000_update_ana_gain(struct dib8000_state *state, u16 ana_gain) { u16 i; dib8000_write_word(state, 116, ana_gain); /* update ADC target depending on ana_gain */ if (ana_gain) { /* set -16dB ADC target for ana_gain=-1 */ for (i = 0; i < 10; i++) dib8000_write_word(state, 80 + i, adc_target_16dB[i]); } else { /* set -22dB ADC target for ana_gain=0 */ for (i = 0; i < 10; i++) dib8000_write_word(state, 80 + i, adc_target_16dB[i] - 355); } } static void dib8000_load_ana_fe_coefs(struct dib8000_state *state, const s16 *ana_fe) { u16 mode = 0; if (state->isdbt_cfg_loaded == 0) for (mode = 0; mode < 24; mode++) dib8000_write_word(state, 117 + mode, ana_fe[mode]); } static const u16 lut_prbs_2k[14] = { 0, 0x423, 0x009, 0x5C7, 0x7A6, 0x3D8, 0x527, 0x7FF, 0x79B, 0x3D6, 0x3A2, 0x53B, 0x2F4, 0x213 }; static const u16 lut_prbs_4k[14] = { 0, 0x208, 0x0C3, 0x7B9, 0x423, 0x5C7, 0x3D8, 0x7FF, 0x3D6, 0x53B, 0x213, 0x029, 0x0D0, 0x48E }; static const u16 lut_prbs_8k[14] = { 0, 0x740, 0x069, 0x7DD, 0x208, 0x7B9, 0x5C7, 0x7FF, 0x53B, 0x029, 0x48E, 0x4C4, 0x367, 0x684 }; static u16 dib8000_get_init_prbs(struct dib8000_state *state, u16 subchannel) { int sub_channel_prbs_group = 0; sub_channel_prbs_group = (subchannel / 3) + 1; dprintk("sub_channel_prbs_group = %d , subchannel =%d prbs = 0x%04x\n", sub_channel_prbs_group, subchannel, lut_prbs_8k[sub_channel_prbs_group]); switch (state->fe[0]->dtv_property_cache.transmission_mode) { case TRANSMISSION_MODE_2K: return lut_prbs_2k[sub_channel_prbs_group]; case TRANSMISSION_MODE_4K: return lut_prbs_4k[sub_channel_prbs_group]; default: case TRANSMISSION_MODE_8K: return lut_prbs_8k[sub_channel_prbs_group]; } } static void dib8000_set_13seg_channel(struct dib8000_state *state) { u16 i; u16 coff_pow = 0x2800; state->seg_mask = 0x1fff; /* All 13 segments enabled */ /* ---- COFF ---- Carloff, the most robust --- */ if (state->isdbt_cfg_loaded == 0) { /* if not Sound Broadcasting mode : put default values for 13 segments */ dib8000_write_word(state, 180, (16 << 6) | 9); dib8000_write_word(state, 187, (4 << 12) | (8 << 5) | 0x2); coff_pow = 0x2800; for (i = 0; i < 6; i++) dib8000_write_word(state, 181+i, coff_pow); /* P_ctrl_corm_thres4pre_freq_inh=1, P_ctrl_pre_freq_mode_sat=1 */ /* P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 3, P_pre_freq_win_len=1 */ dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (3 << 5) | 1); /* P_ctrl_pre_freq_win_len=8, P_ctrl_pre_freq_thres_lockin=6 */ dib8000_write_word(state, 340, (8 << 6) | (6 << 0)); /* P_ctrl_pre_freq_thres_lockout=4, P_small_use_tmcc/ac/cp=1 */ dib8000_write_word(state, 341, (4 << 3) | (1 << 2) | (1 << 1) | (1 << 0)); dib8000_write_word(state, 228, 0); /* default value */ dib8000_write_word(state, 265, 31); /* default value */ dib8000_write_word(state, 205, 0x200f); /* init value */ } /* * make the cpil_coff_lock more robust but slower p_coff_winlen * 6bits; p_coff_thres_lock 6bits (for coff lock if needed) */ if (state->cfg.pll->ifreq == 0) dib8000_write_word(state, 266, ~state->seg_mask | state->seg_diff_mask | 0x40); /* P_equal_noise_seg_inh */ dib8000_load_ana_fe_coefs(state, ana_fe_coeff_13seg); } static void dib8000_set_subchannel_prbs(struct dib8000_state *state, u16 init_prbs) { u16 reg_1; reg_1 = dib8000_read_word(state, 1); dib8000_write_word(state, 1, (init_prbs << 2) | (reg_1 & 0x3)); /* ADDR 1 */ } static void dib8000_small_fine_tune(struct dib8000_state *state) { u16 i; const s16 *ncoeff; struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; dib8000_write_word(state, 352, state->seg_diff_mask); dib8000_write_word(state, 353, state->seg_mask); /* P_small_coef_ext_enable=ISDB-Tsb, P_small_narrow_band=ISDB-Tsb, P_small_last_seg=13, P_small_offset_num_car=5 */ dib8000_write_word(state, 351, (c->isdbt_sb_mode << 9) | (c->isdbt_sb_mode << 8) | (13 << 4) | 5); if (c->isdbt_sb_mode) { /* ---- SMALL ---- */ switch (c->transmission_mode) { case TRANSMISSION_MODE_2K: if (c->isdbt_partial_reception == 0) { /* 1-seg */ if (c->layer[0].modulation == DQPSK) /* DQPSK */ ncoeff = coeff_2k_sb_1seg_dqpsk; else /* QPSK or QAM */ ncoeff = coeff_2k_sb_1seg; } else { /* 3-segments */ if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */ if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ ncoeff = coeff_2k_sb_3seg_0dqpsk_1dqpsk; else /* QPSK or QAM on external segments */ ncoeff = coeff_2k_sb_3seg_0dqpsk; } else { /* QPSK or QAM on central segment */ if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ ncoeff = coeff_2k_sb_3seg_1dqpsk; else /* QPSK or QAM on external segments */ ncoeff = coeff_2k_sb_3seg; } } break; case TRANSMISSION_MODE_4K: if (c->isdbt_partial_reception == 0) { /* 1-seg */ if (c->layer[0].modulation == DQPSK) /* DQPSK */ ncoeff = coeff_4k_sb_1seg_dqpsk; else /* QPSK or QAM */ ncoeff = coeff_4k_sb_1seg; } else { /* 3-segments */ if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */ if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ ncoeff = coeff_4k_sb_3seg_0dqpsk_1dqpsk; else /* QPSK or QAM on external segments */ ncoeff = coeff_4k_sb_3seg_0dqpsk; } else { /* QPSK or QAM on central segment */ if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ ncoeff = coeff_4k_sb_3seg_1dqpsk; else /* QPSK or QAM on external segments */ ncoeff = coeff_4k_sb_3seg; } } break; case TRANSMISSION_MODE_AUTO: case TRANSMISSION_MODE_8K: default: if (c->isdbt_partial_reception == 0) { /* 1-seg */ if (c->layer[0].modulation == DQPSK) /* DQPSK */ ncoeff = coeff_8k_sb_1seg_dqpsk; else /* QPSK or QAM */ ncoeff = coeff_8k_sb_1seg; } else { /* 3-segments */ if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */ if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ ncoeff = coeff_8k_sb_3seg_0dqpsk_1dqpsk; else /* QPSK or QAM on external segments */ ncoeff = coeff_8k_sb_3seg_0dqpsk; } else { /* QPSK or QAM on central segment */ if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ ncoeff = coeff_8k_sb_3seg_1dqpsk; else /* QPSK or QAM on external segments */ ncoeff = coeff_8k_sb_3seg; } } break; } for (i = 0; i < 8; i++) dib8000_write_word(state, 343 + i, ncoeff[i]); } } static const u16 coff_thres_1seg[3] = {300, 150, 80}; static const u16 coff_thres_3seg[3] = {350, 300, 250}; static void dib8000_set_sb_channel(struct dib8000_state *state) { struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; const u16 *coff; u16 i; if (c->transmission_mode == TRANSMISSION_MODE_2K || c->transmission_mode == TRANSMISSION_MODE_4K) { dib8000_write_word(state, 219, dib8000_read_word(state, 219) | 0x1); /* adp_pass =1 */ dib8000_write_word(state, 190, dib8000_read_word(state, 190) | (0x1 << 14)); /* pha3_force_pha_shift = 1 */ } else { dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); /* adp_pass =0 */ dib8000_write_word(state, 190, dib8000_read_word(state, 190) & 0xbfff); /* pha3_force_pha_shift = 0 */ } if (c->isdbt_partial_reception == 1) /* 3-segments */ state->seg_mask = 0x00E0; else /* 1-segment */ state->seg_mask = 0x0040; dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200); /* ---- COFF ---- Carloff, the most robust --- */ /* P_coff_cpil_alpha=4, P_coff_inh=0, P_coff_cpil_winlen=64, P_coff_narrow_band=1, P_coff_square_val=1, P_coff_one_seg=~partial_rcpt, P_coff_use_tmcc=1, P_coff_use_ac=1 */ dib8000_write_word(state, 187, (4 << 12) | (0 << 11) | (63 << 5) | (0x3 << 3) | ((~c->isdbt_partial_reception & 1) << 2) | 0x3); dib8000_write_word(state, 340, (16 << 6) | (8 << 0)); /* P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8 */ dib8000_write_word(state, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));/* P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1 */ /* Sound Broadcasting mode 1 seg */ if (c->isdbt_partial_reception == 0) { /* P_coff_winlen=63, P_coff_thres_lock=15, P_coff_one_seg_width = (P_mode == 3) , P_coff_one_seg_sym = (P_mode-1) */ if (state->mode == 3) dib8000_write_word(state, 180, 0x1fcf | ((state->mode - 1) << 14)); else dib8000_write_word(state, 180, 0x0fcf | ((state->mode - 1) << 14)); /* P_ctrl_corm_thres4pre_freq_inh=1,P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 5, P_pre_freq_win_len=4 */ dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (5 << 5) | 4); coff = &coff_thres_1seg[0]; } else { /* Sound Broadcasting mode 3 seg */ dib8000_write_word(state, 180, 0x1fcf | (1 << 14)); /* P_ctrl_corm_thres4pre_freq_inh = 1, P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 4, P_pre_freq_win_len=4 */ dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (4 << 5) | 4); coff = &coff_thres_3seg[0]; } dib8000_write_word(state, 228, 1); /* P_2d_mode_byp=1 */ dib8000_write_word(state, 205, dib8000_read_word(state, 205) & 0xfff0); /* P_cspu_win_cut = 0 */ if (c->isdbt_partial_reception == 0 && c->transmission_mode == TRANSMISSION_MODE_2K) dib8000_write_word(state, 265, 15); /* P_equal_noise_sel = 15 */ /* Write COFF thres */ for (i = 0 ; i < 3; i++) { dib8000_write_word(state, 181+i, coff[i]); dib8000_write_word(state, 184+i, coff[i]); } /* * make the cpil_coff_lock more robust but slower p_coff_winlen * 6bits; p_coff_thres_lock 6bits (for coff lock if needed) */ dib8000_write_word(state, 266, ~state->seg_mask | state->seg_diff_mask); /* P_equal_noise_seg_inh */ if (c->isdbt_partial_reception == 0) dib8000_write_word(state, 178, 64); /* P_fft_powrange = 64 */ else dib8000_write_word(state, 178, 32); /* P_fft_powrange = 32 */ } static void dib8000_set_isdbt_common_channel(struct dib8000_state *state, u8 seq, u8 autosearching) { u16 p_cfr_left_edge = 0, p_cfr_right_edge = 0; u16 tmcc_pow = 0, ana_gain = 0, tmp = 0, i = 0, nbseg_diff = 0 ; u16 max_constellation = DQPSK; int init_prbs; struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; if (autosearching) c->isdbt_partial_reception = 1; /* P_mode */ dib8000_write_word(state, 10, (seq << 4)); /* init mode */ state->mode = fft_to_mode(state); /* set guard */ tmp = dib8000_read_word(state, 1); dib8000_write_word(state, 1, (tmp&0xfffc) | (c->guard_interval & 0x3)); dib8000_write_word(state, 274, (dib8000_read_word(state, 274) & 0xffcf) | ((c->isdbt_partial_reception & 1) << 5) | ((c->isdbt_sb_mode & 1) << 4)); /* signal optimization parameter */ if (c->isdbt_partial_reception) { state->seg_diff_mask = (c->layer[0].modulation == DQPSK) << permu_seg[0]; for (i = 1; i < 3; i++) nbseg_diff += (c->layer[i].modulation == DQPSK) * c->layer[i].segment_count; for (i = 0; i < nbseg_diff; i++) state->seg_diff_mask |= 1 << permu_seg[i+1]; } else { for (i = 0; i < 3; i++) nbseg_diff += (c->layer[i].modulation == DQPSK) * c->layer[i].segment_count; for (i = 0; i < nbseg_diff; i++) state->seg_diff_mask |= 1 << permu_seg[i]; } if (state->seg_diff_mask) dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200); else dib8000_write_word(state, 268, (2 << 9) | 39); /*init value */ for (i = 0; i < 3; i++) max_constellation = dib8000_set_layer(state, i, max_constellation); if (autosearching == 0) { state->layer_b_nb_seg = c->layer[1].segment_count; state->layer_c_nb_seg = c->layer[2].segment_count; } /* WRITE: Mode & Diff mask */ dib8000_write_word(state, 0, (state->mode << 13) | state->seg_diff_mask); state->differential_constellation = (state->seg_diff_mask != 0); /* channel estimation fine configuration */ ana_gain = dib8000_adp_fine_tune(state, max_constellation); /* update ana_gain depending on max constellation */ dib8000_update_ana_gain(state, ana_gain); /* ---- ANA_FE ---- */ if (c->isdbt_partial_reception) /* 3-segments */ dib8000_load_ana_fe_coefs(state, ana_fe_coeff_3seg); else dib8000_load_ana_fe_coefs(state, ana_fe_coeff_1seg); /* 1-segment */ /* TSB or ISDBT ? apply it now */ if (c->isdbt_sb_mode) { dib8000_set_sb_channel(state); if (c->isdbt_sb_subchannel < 14) init_prbs = dib8000_get_init_prbs(state, c->isdbt_sb_subchannel); else init_prbs = 0; } else { dib8000_set_13seg_channel(state); init_prbs = 0xfff; } /* SMALL */ dib8000_small_fine_tune(state); dib8000_set_subchannel_prbs(state, init_prbs); /* ---- CHAN_BLK ---- */ for (i = 0; i < 13; i++) { if ((((~state->seg_diff_mask) >> i) & 1) == 1) { p_cfr_left_edge += (1 << i) * ((i == 0) || ((((state->seg_mask & (~state->seg_diff_mask)) >> (i - 1)) & 1) == 0)); p_cfr_right_edge += (1 << i) * ((i == 12) || ((((state->seg_mask & (~state->seg_diff_mask)) >> (i + 1)) & 1) == 0)); } } dib8000_write_word(state, 222, p_cfr_left_edge); /* p_cfr_left_edge */ dib8000_write_word(state, 223, p_cfr_right_edge); /* p_cfr_right_edge */ /* "P_cspu_left_edge" & "P_cspu_right_edge" not used => do not care */ dib8000_write_word(state, 189, ~state->seg_mask | state->seg_diff_mask); /* P_lmod4_seg_inh */ dib8000_write_word(state, 192, ~state->seg_mask | state->seg_diff_mask); /* P_pha3_seg_inh */ dib8000_write_word(state, 225, ~state->seg_mask | state->seg_diff_mask); /* P_tac_seg_inh */ if (!autosearching) dib8000_write_word(state, 288, (~state->seg_mask | state->seg_diff_mask) & 0x1fff); /* P_tmcc_seg_eq_inh */ else dib8000_write_word(state, 288, 0x1fff); /*disable equalisation of the tmcc when autosearch to be able to find the DQPSK channels. */ dib8000_write_word(state, 211, state->seg_mask & (~state->seg_diff_mask)); /* P_des_seg_enabled */ dib8000_write_word(state, 287, ~state->seg_mask | 0x1000); /* P_tmcc_seg_inh */ dib8000_write_word(state, 178, 32); /* P_fft_powrange = 32 */ /* ---- TMCC ---- */ for (i = 0; i < 3; i++) tmcc_pow += (((c->layer[i].modulation == DQPSK) * 4 + 1) * c->layer[i].segment_count) ; /* Quantif of "P_tmcc_dec_thres_?k" is (0, 5+mode, 9); */ /* Threshold is set at 1/4 of max power. */ tmcc_pow *= (1 << (9-2)); dib8000_write_word(state, 290, tmcc_pow); /* P_tmcc_dec_thres_2k */ dib8000_write_word(state, 291, tmcc_pow); /* P_tmcc_dec_thres_4k */ dib8000_write_word(state, 292, tmcc_pow); /* P_tmcc_dec_thres_8k */ /*dib8000_write_word(state, 287, (1 << 13) | 0x1000 ); */ /* ---- PHA3 ---- */ if (state->isdbt_cfg_loaded == 0) dib8000_write_word(state, 250, 3285); /* p_2d_hspeed_thr0 */ state->isdbt_cfg_loaded = 0; } static u32 dib8000_wait_lock(struct dib8000_state *state, u32 internal, u32 wait0_ms, u32 wait1_ms, u32 wait2_ms) { u32 value = 0; /* P_search_end0 wait time */ u16 reg = 11; /* P_search_end0 start addr */ for (reg = 11; reg < 16; reg += 2) { if (reg == 11) { if (state->revision == 0x8090) value = internal * wait1_ms; else value = internal * wait0_ms; } else if (reg == 13) value = internal * wait1_ms; else if (reg == 15) value = internal * wait2_ms; dib8000_write_word(state, reg, (u16)((value >> 16) & 0xffff)); dib8000_write_word(state, (reg + 1), (u16)(value & 0xffff)); } return value; } static int dib8000_autosearch_start(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; u8 slist = 0; u32 value, internal = state->cfg.pll->internal; if (state->revision == 0x8090) internal = dib8000_read32(state, 23) / 1000; if ((state->revision >= 0x8002) && (state->autosearch_state == AS_SEARCHING_FFT)) { dib8000_write_word(state, 37, 0x0065); /* P_ctrl_pha_off_max default values */ dib8000_write_word(state, 116, 0x0000); /* P_ana_gain to 0 */ dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x1fff) | (0 << 13) | (1 << 15)); /* P_mode = 0, P_restart_search=1 */ dib8000_write_word(state, 1, (dib8000_read_word(state, 1) & 0xfffc) | 0); /* P_guard = 0 */ dib8000_write_word(state, 6, 0); /* P_lock0_mask = 0 */ dib8000_write_word(state, 7, 0); /* P_lock1_mask = 0 */ dib8000_write_word(state, 8, 0); /* P_lock2_mask = 0 */ dib8000_write_word(state, 10, (dib8000_read_word(state, 10) & 0x200) | (16 << 4) | (0 << 0)); /* P_search_list=16, P_search_maxtrial=0 */ if (state->revision == 0x8090) value = dib8000_wait_lock(state, internal, 10, 10, 10); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ else value = dib8000_wait_lock(state, internal, 20, 20, 20); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ dib8000_write_word(state, 17, 0); dib8000_write_word(state, 18, 200); /* P_search_rstst = 200 */ dib8000_write_word(state, 19, 0); dib8000_write_word(state, 20, 400); /* P_search_rstend = 400 */ dib8000_write_word(state, 21, (value >> 16) & 0xffff); /* P_search_checkst */ dib8000_write_word(state, 22, value & 0xffff); if (state->revision == 0x8090) dib8000_write_word(state, 32, (dib8000_read_word(state, 32) & 0xf0ff) | (0 << 8)); /* P_corm_alpha = 0 */ else dib8000_write_word(state, 32, (dib8000_read_word(state, 32) & 0xf0ff) | (9 << 8)); /* P_corm_alpha = 3 */ dib8000_write_word(state, 355, 2); /* P_search_param_max = 2 */ /* P_search_param_select = (1 | 1<<4 | 1 << 8) */ dib8000_write_word(state, 356, 0); dib8000_write_word(state, 357, 0x111); dib8000_write_word(state, 770, (dib8000_read_word(state, 770) & 0xdfff) | (1 << 13)); /* P_restart_ccg = 1 */ dib8000_write_word(state, 770, (dib8000_read_word(state, 770) & 0xdfff) | (0 << 13)); /* P_restart_ccg = 0 */ dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x7ff) | (0 << 15) | (1 << 13)); /* P_restart_search = 0; */ } else if ((state->revision >= 0x8002) && (state->autosearch_state == AS_SEARCHING_GUARD)) { c->transmission_mode = TRANSMISSION_MODE_8K; c->guard_interval = GUARD_INTERVAL_1_8; c->inversion = 0; c->layer[0].modulation = QAM_64; c->layer[0].fec = FEC_2_3; c->layer[0].interleaving = 0; c->layer[0].segment_count = 13; slist = 16; c->transmission_mode = state->found_nfft; dib8000_set_isdbt_common_channel(state, slist, 1); /* set lock_mask values */ dib8000_write_word(state, 6, 0x4); if (state->revision == 0x8090) dib8000_write_word(state, 7, ((1 << 12) | (1 << 11) | (1 << 10)));/* tmcc_dec_lock, tmcc_sync_lock, tmcc_data_lock, tmcc_bch_uncor */ else dib8000_write_word(state, 7, 0x8); dib8000_write_word(state, 8, 0x1000); /* set lock_mask wait time values */ if (state->revision == 0x8090) dib8000_wait_lock(state, internal, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ else dib8000_wait_lock(state, internal, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ dib8000_write_word(state, 355, 3); /* P_search_param_max = 3 */ /* P_search_param_select = 0xf; look for the 4 different guard intervals */ dib8000_write_word(state, 356, 0); dib8000_write_word(state, 357, 0xf); value = dib8000_read_word(state, 0); dib8000_write_word(state, 0, (u16)((1 << 15) | value)); dib8000_read_word(state, 1284); /* reset the INT. n_irq_pending */ dib8000_write_word(state, 0, (u16)value); } else { c->inversion = 0; c->layer[0].modulation = QAM_64; c->layer[0].fec = FEC_2_3; c->layer[0].interleaving = 0; c->layer[0].segment_count = 13; if (!c->isdbt_sb_mode) c->layer[0].segment_count = 13; /* choose the right list, in sb, always do everything */ if (c->isdbt_sb_mode) { slist = 7; dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); } else { if (c->guard_interval == GUARD_INTERVAL_AUTO) { if (c->transmission_mode == TRANSMISSION_MODE_AUTO) { c->transmission_mode = TRANSMISSION_MODE_8K; c->guard_interval = GUARD_INTERVAL_1_8; slist = 7; dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); /* P_mode = 1 to have autosearch start ok with mode2 */ } else { c->guard_interval = GUARD_INTERVAL_1_8; slist = 3; } } else { if (c->transmission_mode == TRANSMISSION_MODE_AUTO) { c->transmission_mode = TRANSMISSION_MODE_8K; slist = 2; dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); /* P_mode = 1 */ } else slist = 0; } } dprintk("Using list for autosearch : %d\n", slist); dib8000_set_isdbt_common_channel(state, slist, 1); /* set lock_mask values */ dib8000_write_word(state, 6, 0x4); if (state->revision == 0x8090) dib8000_write_word(state, 7, (1 << 12) | (1 << 11) | (1 << 10)); else dib8000_write_word(state, 7, 0x8); dib8000_write_word(state, 8, 0x1000); /* set lock_mask wait time values */ if (state->revision == 0x8090) dib8000_wait_lock(state, internal, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ else dib8000_wait_lock(state, internal, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ value = dib8000_read_word(state, 0); dib8000_write_word(state, 0, (u16)((1 << 15) | value)); dib8000_read_word(state, 1284); /* reset the INT. n_irq_pending */ dib8000_write_word(state, 0, (u16)value); } return 0; } static int dib8000_autosearch_irq(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; u16 irq_pending = dib8000_read_word(state, 1284); if ((state->revision >= 0x8002) && (state->autosearch_state == AS_SEARCHING_FFT)) { if (irq_pending & 0x1) { dprintk("dib8000_autosearch_irq: max correlation result available\n"); return 3; } } else { if (irq_pending & 0x1) { /* failed */ dprintk("dib8000_autosearch_irq failed\n"); return 1; } if (irq_pending & 0x2) { /* succeeded */ dprintk("dib8000_autosearch_irq succeeded\n"); return 2; } } return 0; // still pending } static void dib8000_viterbi_state(struct dib8000_state *state, u8 onoff) { u16 tmp; tmp = dib8000_read_word(state, 771); if (onoff) /* start P_restart_chd : channel_decoder */ dib8000_write_word(state, 771, tmp & 0xfffd); else /* stop P_restart_chd : channel_decoder */ dib8000_write_word(state, 771, tmp | (1<<1)); } static void dib8000_set_dds(struct dib8000_state *state, s32 offset_khz) { s16 unit_khz_dds_val; u32 abs_offset_khz = ABS(offset_khz); u32 dds = state->cfg.pll->ifreq & 0x1ffffff; u8 invert = !!(state->cfg.pll->ifreq & (1 << 25)); u8 ratio; if (state->revision == 0x8090) { ratio = 4; unit_khz_dds_val = (1<<26) / (dib8000_read32(state, 23) / 1000); if (offset_khz < 0) dds = (1 << 26) - (abs_offset_khz * unit_khz_dds_val); else dds = (abs_offset_khz * unit_khz_dds_val); if (invert) dds = (1<<26) - dds; } else { ratio = 2; unit_khz_dds_val = (u16) (67108864 / state->cfg.pll->internal); if (offset_khz < 0) unit_khz_dds_val *= -1; /* IF tuner */ if (invert) dds -= abs_offset_khz * unit_khz_dds_val; else dds += abs_offset_khz * unit_khz_dds_val; } dprintk("setting a DDS frequency offset of %c%dkHz\n", invert ? '-' : ' ', dds / unit_khz_dds_val); if (abs_offset_khz <= (state->cfg.pll->internal / ratio)) { /* Max dds offset is the half of the demod freq */ dib8000_write_word(state, 26, invert); dib8000_write_word(state, 27, (u16)(dds >> 16) & 0x1ff); dib8000_write_word(state, 28, (u16)(dds & 0xffff)); } } static void dib8000_set_frequency_offset(struct dib8000_state *state) { struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; int i; u32 current_rf; int total_dds_offset_khz; if (state->fe[0]->ops.tuner_ops.get_frequency) state->fe[0]->ops.tuner_ops.get_frequency(state->fe[0], ¤t_rf); else current_rf = c->frequency; current_rf /= 1000; total_dds_offset_khz = (int)current_rf - (int)c->frequency / 1000; if (c->isdbt_sb_mode) { state->subchannel = c->isdbt_sb_subchannel; i = dib8000_read_word(state, 26) & 1; /* P_dds_invspec */ dib8000_write_word(state, 26, c->inversion ^ i); if (state->cfg.pll->ifreq == 0) { /* low if tuner */ if ((c->inversion ^ i) == 0) dib8000_write_word(state, 26, dib8000_read_word(state, 26) | 1); } else { if ((c->inversion ^ i) == 0) total_dds_offset_khz *= -1; } } dprintk("%dkhz tuner offset (frequency = %dHz & current_rf = %dHz) total_dds_offset_hz = %d\n", c->frequency - current_rf, c->frequency, current_rf, total_dds_offset_khz); /* apply dds offset now */ dib8000_set_dds(state, total_dds_offset_khz); } static u16 LUT_isdbt_symbol_duration[4] = { 26, 101, 63 }; static u32 dib8000_get_symbol_duration(struct dib8000_state *state) { struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; u16 i; switch (c->transmission_mode) { case TRANSMISSION_MODE_2K: i = 0; break; case TRANSMISSION_MODE_4K: i = 2; break; default: case TRANSMISSION_MODE_AUTO: case TRANSMISSION_MODE_8K: i = 1; break; } return (LUT_isdbt_symbol_duration[i] / (c->bandwidth_hz / 1000)) + 1; } static void dib8000_set_isdbt_loop_params(struct dib8000_state *state, enum param_loop_step loop_step) { struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; u16 reg_32 = 0, reg_37 = 0; switch (loop_step) { case LOOP_TUNE_1: if (c->isdbt_sb_mode) { if (c->isdbt_partial_reception == 0) { reg_32 = ((11 - state->mode) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (11-P_mode), P_corm_alpha=6, P_corm_thres=0x40 */ reg_37 = (3 << 5) | (0 << 4) | (10 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (10-P_mode) */ } else { /* Sound Broadcasting mode 3 seg */ reg_32 = ((10 - state->mode) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (10-P_mode), P_corm_alpha=6, P_corm_thres=0x60 */ reg_37 = (3 << 5) | (0 << 4) | (9 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (9-P_mode) */ } } else { /* 13-seg start conf offset loop parameters */ reg_32 = ((9 - state->mode) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = (9-P_mode, P_corm_alpha=6, P_corm_thres=0x80 */ reg_37 = (3 << 5) | (0 << 4) | (8 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = 9 */ } break; case LOOP_TUNE_2: if (c->isdbt_sb_mode) { if (c->isdbt_partial_reception == 0) { /* Sound Broadcasting mode 1 seg */ reg_32 = ((13-state->mode) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (13-P_mode) , P_corm_alpha=6, P_corm_thres=0x40*/ reg_37 = (12-state->mode) | ((5 + state->mode) << 5); } else { /* Sound Broadcasting mode 3 seg */ reg_32 = ((12-state->mode) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (12-P_mode) , P_corm_alpha=6, P_corm_thres=0x60 */ reg_37 = (11-state->mode) | ((5 + state->mode) << 5); } } else { /* 13 seg */ reg_32 = ((11-state->mode) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = 8 , P_corm_alpha=6, P_corm_thres=0x80 */ reg_37 = ((5+state->mode) << 5) | (10 - state->mode); } break; } dib8000_write_word(state, 32, reg_32); dib8000_write_word(state, 37, reg_37); } static void dib8000_demod_restart(struct dib8000_state *state) { dib8000_write_word(state, 770, 0x4000); dib8000_write_word(state, 770, 0x0000); return; } static void dib8000_set_sync_wait(struct dib8000_state *state) { struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; u16 sync_wait = 64; /* P_dvsy_sync_wait - reuse mode */ switch (c->transmission_mode) { case TRANSMISSION_MODE_8K: sync_wait = 256; break; case TRANSMISSION_MODE_4K: sync_wait = 128; break; default: case TRANSMISSION_MODE_2K: sync_wait = 64; break; } if (state->cfg.diversity_delay == 0) sync_wait = (sync_wait * (1 << (c->guard_interval)) * 3) / 2 + 48; /* add 50% SFN margin + compensate for one DVSY-fifo */ else sync_wait = (sync_wait * (1 << (c->guard_interval)) * 3) / 2 + state->cfg.diversity_delay; /* add 50% SFN margin + compensate for DVSY-fifo */ dib8000_write_word(state, 273, (dib8000_read_word(state, 273) & 0x000f) | (sync_wait << 4)); } static unsigned long dib8000_get_timeout(struct dib8000_state *state, u32 delay, enum timeout_mode mode) { if (mode == SYMBOL_DEPENDENT_ON) delay *= state->symbol_duration; return jiffies + usecs_to_jiffies(delay * 100); } static s32 dib8000_get_status(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; return state->status; } static enum frontend_tune_state dib8000_get_tune_state(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; return state->tune_state; } static int dib8000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state) { struct dib8000_state *state = fe->demodulator_priv; state->tune_state = tune_state; return 0; } static int dib8000_tune_restart_from_demod(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; state->status = FE_STATUS_TUNE_PENDING; state->tune_state = CT_DEMOD_START; return 0; } static u16 dib8000_read_lock(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; if (state->revision == 0x8090) return dib8000_read_word(state, 570); return dib8000_read_word(state, 568); } static int dib8090p_init_sdram(struct dib8000_state *state) { u16 reg = 0; dprintk("init sdram\n"); reg = dib8000_read_word(state, 274) & 0xfff0; dib8000_write_word(state, 274, reg | 0x7); /* P_dintlv_delay_ram = 7 because of MobileSdram */ dib8000_write_word(state, 1803, (7 << 2)); reg = dib8000_read_word(state, 1280); dib8000_write_word(state, 1280, reg | (1 << 2)); /* force restart P_restart_sdram */ dib8000_write_word(state, 1280, reg); /* release restart P_restart_sdram */ return 0; } /** * is_manual_mode - Check if TMCC should be used for parameters settings * @c: struct dvb_frontend_properties * * By default, TMCC table should be used for parameter settings on most * usercases. However, sometimes it is desirable to lock the demod to * use the manual parameters. * * On manual mode, the current dib8000_tune state machine is very restrict: * It requires that both per-layer and per-transponder parameters to be * properly specified, otherwise the device won't lock. * * Check if all those conditions are properly satisfied before allowing * the device to use the manual frequency lock mode. */ static int is_manual_mode(struct dtv_frontend_properties *c) { int i, n_segs = 0; /* Use auto mode on DVB-T compat mode */ if (c->delivery_system != SYS_ISDBT) return 0; /* * Transmission mode is only detected on auto mode, currently */ if (c->transmission_mode == TRANSMISSION_MODE_AUTO) { dprintk("transmission mode auto\n"); return 0; } /* * Guard interval is only detected on auto mode, currently */ if (c->guard_interval == GUARD_INTERVAL_AUTO) { dprintk("guard interval auto\n"); return 0; } /* * If no layer is enabled, assume auto mode, as at least one * layer should be enabled */ if (!c->isdbt_layer_enabled) { dprintk("no layer modulation specified\n"); return 0; } /* * Check if the per-layer parameters aren't auto and * disable a layer if segment count is 0 or invalid. */ for (i = 0; i < 3; i++) { if (!(c->isdbt_layer_enabled & 1 << i)) continue; if ((c->layer[i].segment_count > 13) || (c->layer[i].segment_count == 0)) { c->isdbt_layer_enabled &= ~(1 << i); continue; } n_segs += c->layer[i].segment_count; if ((c->layer[i].modulation == QAM_AUTO) || (c->layer[i].fec == FEC_AUTO)) { dprintk("layer %c has either modulation or FEC auto\n", 'A' + i); return 0; } } /* * Userspace specified a wrong number of segments. * fallback to auto mode. */ if (n_segs == 0 || n_segs > 13) { dprintk("number of segments is invalid\n"); return 0; } /* Everything looks ok for manual mode */ return 1; } static int dib8000_tune(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; enum frontend_tune_state *tune_state = &state->tune_state; u16 locks, deeper_interleaver = 0, i; int ret = 1; /* 1 symbol duration (in 100us unit) delay most of the time */ unsigned long *timeout = &state->timeout; unsigned long now = jiffies; #ifdef DIB8000_AGC_FREEZE u16 agc1, agc2; #endif u32 corm[4] = {0, 0, 0, 0}; u8 find_index, max_value; #if 0 if (*tune_state < CT_DEMOD_STOP) dprintk("IN: context status = %d, TUNE_STATE %d autosearch step = %u jiffies = %lu\n", state->channel_parameters_set, *tune_state, state->autosearch_state, now); #endif switch (*tune_state) { case CT_DEMOD_START: /* 30 */ dib8000_reset_stats(fe); if (state->revision == 0x8090) dib8090p_init_sdram(state); state->status = FE_STATUS_TUNE_PENDING; state->channel_parameters_set = is_manual_mode(c); dprintk("Tuning channel on %s search mode\n", state->channel_parameters_set ? "manual" : "auto"); dib8000_viterbi_state(state, 0); /* force chan dec in restart */ /* Layer monitor */ dib8000_write_word(state, 285, dib8000_read_word(state, 285) & 0x60); dib8000_set_frequency_offset(state); dib8000_set_bandwidth(fe, c->bandwidth_hz / 1000); if (state->channel_parameters_set == 0) { /* The channel struct is unknown, search it ! */ #ifdef DIB8000_AGC_FREEZE if (state->revision != 0x8090) { state->agc1_max = dib8000_read_word(state, 108); state->agc1_min = dib8000_read_word(state, 109); state->agc2_max = dib8000_read_word(state, 110); state->agc2_min = dib8000_read_word(state, 111); agc1 = dib8000_read_word(state, 388); agc2 = dib8000_read_word(state, 389); dib8000_write_word(state, 108, agc1); dib8000_write_word(state, 109, agc1); dib8000_write_word(state, 110, agc2); dib8000_write_word(state, 111, agc2); } #endif state->autosearch_state = AS_SEARCHING_FFT; state->found_nfft = TRANSMISSION_MODE_AUTO; state->found_guard = GUARD_INTERVAL_AUTO; *tune_state = CT_DEMOD_SEARCH_NEXT; } else { /* we already know the channel struct so TUNE only ! */ state->autosearch_state = AS_DONE; *tune_state = CT_DEMOD_STEP_3; } state->symbol_duration = dib8000_get_symbol_duration(state); break; case CT_DEMOD_SEARCH_NEXT: /* 51 */ dib8000_autosearch_start(fe); if (state->revision == 0x8090) ret = 50; else ret = 15; *tune_state = CT_DEMOD_STEP_1; break; case CT_DEMOD_STEP_1: /* 31 */ switch (dib8000_autosearch_irq(fe)) { case 1: /* fail */ state->status = FE_STATUS_TUNE_FAILED; state->autosearch_state = AS_DONE; *tune_state = CT_DEMOD_STOP; /* else we are done here */ break; case 2: /* Succes */ state->status = FE_STATUS_FFT_SUCCESS; /* signal to the upper layer, that there was a channel found and the parameters can be read */ *tune_state = CT_DEMOD_STEP_3; if (state->autosearch_state == AS_SEARCHING_GUARD) *tune_state = CT_DEMOD_STEP_2; else state->autosearch_state = AS_DONE; break; case 3: /* Autosearch FFT max correlation endded */ *tune_state = CT_DEMOD_STEP_2; break; } break; case CT_DEMOD_STEP_2: switch (state->autosearch_state) { case AS_SEARCHING_FFT: /* searching for the correct FFT */ if (state->revision == 0x8090) { corm[2] = (dib8000_read_word(state, 596) << 16) | (dib8000_read_word(state, 597)); corm[1] = (dib8000_read_word(state, 598) << 16) | (dib8000_read_word(state, 599)); corm[0] = (dib8000_read_word(state, 600) << 16) | (dib8000_read_word(state, 601)); } else { corm[2] = (dib8000_read_word(state, 594) << 16) | (dib8000_read_word(state, 595)); corm[1] = (dib8000_read_word(state, 596) << 16) | (dib8000_read_word(state, 597)); corm[0] = (dib8000_read_word(state, 598) << 16) | (dib8000_read_word(state, 599)); } /* dprintk("corm fft: %u %u %u\n", corm[0], corm[1], corm[2]); */ max_value = 0; for (find_index = 1 ; find_index < 3 ; find_index++) { if (corm[max_value] < corm[find_index]) max_value = find_index ; } switch (max_value) { case 0: state->found_nfft = TRANSMISSION_MODE_2K; break; case 1: state->found_nfft = TRANSMISSION_MODE_4K; break; case 2: default: state->found_nfft = TRANSMISSION_MODE_8K; break; } /* dprintk("Autosearch FFT has found Mode %d\n", max_value + 1); */ *tune_state = CT_DEMOD_SEARCH_NEXT; state->autosearch_state = AS_SEARCHING_GUARD; if (state->revision == 0x8090) ret = 50; else ret = 10; break; case AS_SEARCHING_GUARD: /* searching for the correct guard interval */ if (state->revision == 0x8090) state->found_guard = dib8000_read_word(state, 572) & 0x3; else state->found_guard = dib8000_read_word(state, 570) & 0x3; /* dprintk("guard interval found=%i\n", state->found_guard); */ *tune_state = CT_DEMOD_STEP_3; break; default: /* the demod should never be in this state */ state->status = FE_STATUS_TUNE_FAILED; state->autosearch_state = AS_DONE; *tune_state = CT_DEMOD_STOP; /* else we are done here */ break; } break; case CT_DEMOD_STEP_3: /* 33 */ dib8000_set_isdbt_loop_params(state, LOOP_TUNE_1); dib8000_set_isdbt_common_channel(state, 0, 0);/* setting the known channel parameters here */ *tune_state = CT_DEMOD_STEP_4; break; case CT_DEMOD_STEP_4: /* (34) */ dib8000_demod_restart(state); dib8000_set_sync_wait(state); dib8000_set_diversity_in(state->fe[0], state->diversity_onoff); locks = (dib8000_read_word(state, 180) >> 6) & 0x3f; /* P_coff_winlen ? */ /* coff should lock over P_coff_winlen ofdm symbols : give 3 times this length to lock */ *timeout = dib8000_get_timeout(state, 2 * locks, SYMBOL_DEPENDENT_ON); *tune_state = CT_DEMOD_STEP_5; break; case CT_DEMOD_STEP_5: /* (35) */ locks = dib8000_read_lock(fe); if (locks & (0x3 << 11)) { /* coff-lock and off_cpil_lock achieved */ dib8000_update_timf(state); /* we achieved a coff_cpil_lock - it's time to update the timf */ if (!state->differential_constellation) { /* 2 times lmod4_win_len + 10 symbols (pipe delay after coff + nb to compute a 1st correlation) */ *timeout = dib8000_get_timeout(state, (20 * ((dib8000_read_word(state, 188)>>5)&0x1f)), SYMBOL_DEPENDENT_ON); *tune_state = CT_DEMOD_STEP_7; } else { *tune_state = CT_DEMOD_STEP_8; } } else if (time_after(now, *timeout)) { *tune_state = CT_DEMOD_STEP_6; /* goto check for diversity input connection */ } break; case CT_DEMOD_STEP_6: /* (36) if there is an input (diversity) */ if ((state->fe[1] != NULL) && (state->output_mode != OUTMODE_DIVERSITY)) { /* if there is a diversity fe in input and this fe is has not already failled : wait here until this this fe has succedeed or failled */ if (dib8000_get_status(state->fe[1]) <= FE_STATUS_STD_SUCCESS) /* Something is locked on the input fe */ *tune_state = CT_DEMOD_STEP_8; /* go for mpeg */ else if (dib8000_get_status(state->fe[1]) >= FE_STATUS_TUNE_TIME_TOO_SHORT) { /* fe in input failled also, break the current one */ *tune_state = CT_DEMOD_STOP; /* else we are done here ; step 8 will close the loops and exit */ dib8000_viterbi_state(state, 1); /* start viterbi chandec */ dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2); state->status = FE_STATUS_TUNE_FAILED; } } else { dib8000_viterbi_state(state, 1); /* start viterbi chandec */ dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2); *tune_state = CT_DEMOD_STOP; /* else we are done here ; step 8 will close the loops and exit */ state->status = FE_STATUS_TUNE_FAILED; } break; case CT_DEMOD_STEP_7: /* 37 */ locks = dib8000_read_lock(fe); if (locks & (1<<10)) { /* lmod4_lock */ ret = 14; /* wait for 14 symbols */ *tune_state = CT_DEMOD_STEP_8; } else if (time_after(now, *timeout)) *tune_state = CT_DEMOD_STEP_6; /* goto check for diversity input connection */ break; case CT_DEMOD_STEP_8: /* 38 */ dib8000_viterbi_state(state, 1); /* start viterbi chandec */ dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2); /* mpeg will never lock on this condition because init_prbs is not set : search for it !*/ if (c->isdbt_sb_mode && c->isdbt_sb_subchannel < 14 && !state->differential_constellation) { state->subchannel = 0; *tune_state = CT_DEMOD_STEP_11; } else { *tune_state = CT_DEMOD_STEP_9; state->status = FE_STATUS_LOCKED; } break; case CT_DEMOD_STEP_9: /* 39 */ if ((state->revision == 0x8090) || ((dib8000_read_word(state, 1291) >> 9) & 0x1)) { /* fe capable of deinterleaving : esram */ /* defines timeout for mpeg lock depending on interleaver length of longest layer */ for (i = 0; i < 3; i++) { if (c->layer[i].interleaving >= deeper_interleaver) { dprintk("layer%i: time interleaver = %d\n", i, c->layer[i].interleaving); if (c->layer[i].segment_count > 0) { /* valid layer */ deeper_interleaver = c->layer[0].interleaving; state->longest_intlv_layer = i; } } } if (deeper_interleaver == 0) locks = 2; /* locks is the tmp local variable name */ else if (deeper_interleaver == 3) locks = 8; else locks = 2 * deeper_interleaver; if (state->diversity_onoff != 0) /* because of diversity sync */ locks *= 2; *timeout = now + msecs_to_jiffies(200 * locks); /* give the mpeg lock 800ms if sram is present */ dprintk("Deeper interleaver mode = %d on layer %d : timeout mult factor = %d => will use timeout = %ld\n", deeper_interleaver, state->longest_intlv_layer, locks, *timeout); *tune_state = CT_DEMOD_STEP_10; } else *tune_state = CT_DEMOD_STOP; break; case CT_DEMOD_STEP_10: /* 40 */ locks = dib8000_read_lock(fe); if (locks&(1<<(7-state->longest_intlv_layer))) { /* mpeg lock : check the longest one */ dprintk("ISDB-T layer locks: Layer A %s, Layer B %s, Layer C %s\n", c->layer[0].segment_count ? (locks >> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", c->layer[1].segment_count ? (locks >> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", c->layer[2].segment_count ? (locks >> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled"); if (c->isdbt_sb_mode && c->isdbt_sb_subchannel < 14 && !state->differential_constellation) /* signal to the upper layer, that there was a channel found and the parameters can be read */ state->status = FE_STATUS_DEMOD_SUCCESS; else state->status = FE_STATUS_DATA_LOCKED; *tune_state = CT_DEMOD_STOP; } else if (time_after(now, *timeout)) { if (c->isdbt_sb_mode && c->isdbt_sb_subchannel < 14 && !state->differential_constellation) { /* continue to try init prbs autosearch */ state->subchannel += 3; *tune_state = CT_DEMOD_STEP_11; } else { /* we are done mpeg of the longest interleaver xas not locking but let's try if an other layer has locked in the same time */ if (locks & (0x7 << 5)) { dprintk("Not all ISDB-T layers locked in %d ms: Layer A %s, Layer B %s, Layer C %s\n", jiffies_to_msecs(now - *timeout), c->layer[0].segment_count ? (locks >> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", c->layer[1].segment_count ? (locks >> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", c->layer[2].segment_count ? (locks >> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled"); state->status = FE_STATUS_DATA_LOCKED; } else state->status = FE_STATUS_TUNE_FAILED; *tune_state = CT_DEMOD_STOP; } } break; case CT_DEMOD_STEP_11: /* 41 : init prbs autosearch */ if (state->subchannel <= 41) { dib8000_set_subchannel_prbs(state, dib8000_get_init_prbs(state, state->subchannel)); *tune_state = CT_DEMOD_STEP_9; } else { *tune_state = CT_DEMOD_STOP; state->status = FE_STATUS_TUNE_FAILED; } break; default: break; } /* tuning is finished - cleanup the demod */ switch (*tune_state) { case CT_DEMOD_STOP: /* (42) */ #ifdef DIB8000_AGC_FREEZE if ((state->revision != 0x8090) && (state->agc1_max != 0)) { dib8000_write_word(state, 108, state->agc1_max); dib8000_write_word(state, 109, state->agc1_min); dib8000_write_word(state, 110, state->agc2_max); dib8000_write_word(state, 111, state->agc2_min); state->agc1_max = 0; state->agc1_min = 0; state->agc2_max = 0; state->agc2_min = 0; } #endif ret = 0; break; default: break; } if ((ret > 0) && (*tune_state > CT_DEMOD_STEP_3)) return ret * state->symbol_duration; if ((ret > 0) && (ret < state->symbol_duration)) return state->symbol_duration; /* at least one symbol */ return ret; } static int dib8000_wakeup(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; u8 index_frontend; int ret; dib8000_set_power_mode(state, DIB8000_POWER_ALL); dib8000_set_adc_state(state, DIBX000_ADC_ON); if (dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0) dprintk("could not start Slow ADC\n"); if (state->revision == 0x8090) dib8000_sad_calib(state); for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { ret = state->fe[index_frontend]->ops.init(state->fe[index_frontend]); if (ret < 0) return ret; } return 0; } static int dib8000_sleep(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; u8 index_frontend; int ret; for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]); if (ret < 0) return ret; } if (state->revision != 0x8090) dib8000_set_output_mode(fe, OUTMODE_HIGH_Z); dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY); return dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF) | dib8000_set_adc_state(state, DIBX000_ADC_OFF); } static int dib8000_read_status(struct dvb_frontend *fe, enum fe_status *stat); static int dib8000_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *c) { struct dib8000_state *state = fe->demodulator_priv; u16 i, val = 0; enum fe_status stat = 0; u8 index_frontend, sub_index_frontend; c->bandwidth_hz = 6000000; /* * If called to early, get_frontend makes dib8000_tune to either * not lock or not sync. This causes dvbv5-scan/dvbv5-zap to fail. * So, let's just return if frontend 0 has not locked. */ dib8000_read_status(fe, &stat); if (!(stat & FE_HAS_SYNC)) return 0; dprintk("dib8000_get_frontend: TMCC lock\n"); for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat); if (stat&FE_HAS_SYNC) { dprintk("TMCC lock on the slave%i\n", index_frontend); /* synchronize the cache with the other frontends */ state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], c); for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); sub_index_frontend++) { if (sub_index_frontend != index_frontend) { state->fe[sub_index_frontend]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode; state->fe[sub_index_frontend]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion; state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode; state->fe[sub_index_frontend]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval; state->fe[sub_index_frontend]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception; for (i = 0; i < 3; i++) { state->fe[sub_index_frontend]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count; state->fe[sub_index_frontend]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving; state->fe[sub_index_frontend]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec; state->fe[sub_index_frontend]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation; } } } return 0; } } c->isdbt_sb_mode = dib8000_read_word(state, 508) & 0x1; if (state->revision == 0x8090) val = dib8000_read_word(state, 572); else val = dib8000_read_word(state, 570); c->inversion = (val & 0x40) >> 6; switch ((val & 0x30) >> 4) { case 1: c->transmission_mode = TRANSMISSION_MODE_2K; dprintk("dib8000_get_frontend: transmission mode 2K\n"); break; case 2: c->transmission_mode = TRANSMISSION_MODE_4K; dprintk("dib8000_get_frontend: transmission mode 4K\n"); break; case 3: default: c->transmission_mode = TRANSMISSION_MODE_8K; dprintk("dib8000_get_frontend: transmission mode 8K\n"); break; } switch (val & 0x3) { case 0: c->guard_interval = GUARD_INTERVAL_1_32; dprintk("dib8000_get_frontend: Guard Interval = 1/32\n"); break; case 1: c->guard_interval = GUARD_INTERVAL_1_16; dprintk("dib8000_get_frontend: Guard Interval = 1/16\n"); break; case 2: dprintk("dib8000_get_frontend: Guard Interval = 1/8\n"); c->guard_interval = GUARD_INTERVAL_1_8; break; case 3: dprintk("dib8000_get_frontend: Guard Interval = 1/4\n"); c->guard_interval = GUARD_INTERVAL_1_4; break; } val = dib8000_read_word(state, 505); c->isdbt_partial_reception = val & 1; dprintk("dib8000_get_frontend: partial_reception = %d\n", c->isdbt_partial_reception); for (i = 0; i < 3; i++) { int show; val = dib8000_read_word(state, 493 + i) & 0x0f; c->layer[i].segment_count = val; if (val == 0 || val > 13) show = 0; else show = 1; if (show) dprintk("dib8000_get_frontend: Layer %d segments = %d\n", i, c->layer[i].segment_count); val = dib8000_read_word(state, 499 + i) & 0x3; /* Interleaving can be 0, 1, 2 or 4 */ if (val == 3) val = 4; c->layer[i].interleaving = val; if (show) dprintk("dib8000_get_frontend: Layer %d time_intlv = %d\n", i, c->layer[i].interleaving); val = dib8000_read_word(state, 481 + i); switch (val & 0x7) { case 1: c->layer[i].fec = FEC_1_2; if (show) dprintk("dib8000_get_frontend: Layer %d Code Rate = 1/2\n", i); break; case 2: c->layer[i].fec = FEC_2_3; if (show) dprintk("dib8000_get_frontend: Layer %d Code Rate = 2/3\n", i); break; case 3: c->layer[i].fec = FEC_3_4; if (show) dprintk("dib8000_get_frontend: Layer %d Code Rate = 3/4\n", i); break; case 5: c->layer[i].fec = FEC_5_6; if (show) dprintk("dib8000_get_frontend: Layer %d Code Rate = 5/6\n", i); break; default: c->layer[i].fec = FEC_7_8; if (show) dprintk("dib8000_get_frontend: Layer %d Code Rate = 7/8\n", i); break; } val = dib8000_read_word(state, 487 + i); switch (val & 0x3) { case 0: c->layer[i].modulation = DQPSK; if (show) dprintk("dib8000_get_frontend: Layer %d DQPSK\n", i); break; case 1: c->layer[i].modulation = QPSK; if (show) dprintk("dib8000_get_frontend: Layer %d QPSK\n", i); break; case 2: c->layer[i].modulation = QAM_16; if (show) dprintk("dib8000_get_frontend: Layer %d QAM16\n", i); break; case 3: default: c->layer[i].modulation = QAM_64; if (show) dprintk("dib8000_get_frontend: Layer %d QAM64\n", i); break; } } /* synchronize the cache with the other frontends */ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode = c->isdbt_sb_mode; state->fe[index_frontend]->dtv_property_cache.inversion = c->inversion; state->fe[index_frontend]->dtv_property_cache.transmission_mode = c->transmission_mode; state->fe[index_frontend]->dtv_property_cache.guard_interval = c->guard_interval; state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception = c->isdbt_partial_reception; for (i = 0; i < 3; i++) { state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count = c->layer[i].segment_count; state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving = c->layer[i].interleaving; state->fe[index_frontend]->dtv_property_cache.layer[i].fec = c->layer[i].fec; state->fe[index_frontend]->dtv_property_cache.layer[i].modulation = c->layer[i].modulation; } } return 0; } static int dib8000_set_frontend(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; int l, i, active, time, time_slave = 0; u8 exit_condition, index_frontend; unsigned long delay, callback_time; if (c->frequency == 0) { dprintk("dib8000: must at least specify frequency\n"); return 0; } if (c->bandwidth_hz == 0) { dprintk("dib8000: no bandwidth specified, set to default\n"); c->bandwidth_hz = 6000000; } for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { /* synchronization of the cache */ state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_ISDBT; memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties)); /* set output mode and diversity input */ if (state->revision != 0x8090) { dib8000_set_diversity_in(state->fe[index_frontend], 1); if (index_frontend != 0) dib8000_set_output_mode(state->fe[index_frontend], OUTMODE_DIVERSITY); else dib8000_set_output_mode(state->fe[0], OUTMODE_HIGH_Z); } else { dib8096p_set_diversity_in(state->fe[index_frontend], 1); if (index_frontend != 0) dib8096p_set_output_mode(state->fe[index_frontend], OUTMODE_DIVERSITY); else dib8096p_set_output_mode(state->fe[0], OUTMODE_HIGH_Z); } /* tune the tuner */ if (state->fe[index_frontend]->ops.tuner_ops.set_params) state->fe[index_frontend]->ops.tuner_ops.set_params(state->fe[index_frontend]); dib8000_set_tune_state(state->fe[index_frontend], CT_AGC_START); } /* turn off the diversity of the last chip */ if (state->revision != 0x8090) dib8000_set_diversity_in(state->fe[index_frontend - 1], 0); else dib8096p_set_diversity_in(state->fe[index_frontend - 1], 0); /* start up the AGC */ do { time = dib8000_agc_startup(state->fe[0]); for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { time_slave = dib8000_agc_startup(state->fe[index_frontend]); if (time == 0) time = time_slave; else if ((time_slave != 0) && (time_slave > time)) time = time_slave; } if (time == 0) break; /* * Despite dib8000_agc_startup returns time at a 0.1 ms range, * the actual sleep time depends on CONFIG_HZ. The worse case * is when CONFIG_HZ=100. In such case, the minimum granularity * is 10ms. On some real field tests, the tuner sometimes don't * lock when this timer is lower than 10ms. So, enforce a 10ms * granularity. */ time = 10 * (time + 99)/100; usleep_range(time * 1000, (time + 1) * 1000); exit_condition = 1; for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_AGC_STOP) { exit_condition = 0; break; } } } while (exit_condition == 0); for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) dib8000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START); active = 1; do { callback_time = 0; for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { delay = dib8000_tune(state->fe[index_frontend]); if (delay != 0) { delay = jiffies + usecs_to_jiffies(100 * delay); if (!callback_time || delay < callback_time) callback_time = delay; } /* we are in autosearch */ if (state->channel_parameters_set == 0) { /* searching */ if ((dib8000_get_status(state->fe[index_frontend]) == FE_STATUS_DEMOD_SUCCESS) || (dib8000_get_status(state->fe[index_frontend]) == FE_STATUS_FFT_SUCCESS)) { dprintk("autosearch succeeded on fe%i\n", index_frontend); dib8000_get_frontend(state->fe[index_frontend], c); /* we read the channel parameters from the frontend which was successful */ state->channel_parameters_set = 1; for (l = 0; (l < MAX_NUMBER_OF_FRONTENDS) && (state->fe[l] != NULL); l++) { if (l != index_frontend) { /* and for all frontend except the successful one */ dprintk("Restarting frontend %d\n", l); dib8000_tune_restart_from_demod(state->fe[l]); state->fe[l]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode; state->fe[l]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion; state->fe[l]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode; state->fe[l]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval; state->fe[l]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception; for (i = 0; i < 3; i++) { state->fe[l]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count; state->fe[l]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving; state->fe[l]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec; state->fe[l]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation; } } } } } } /* tuning is done when the master frontend is done (failed or success) */ if (dib8000_get_status(state->fe[0]) == FE_STATUS_TUNE_FAILED || dib8000_get_status(state->fe[0]) == FE_STATUS_LOCKED || dib8000_get_status(state->fe[0]) == FE_STATUS_DATA_LOCKED) { active = 0; /* we need to wait for all frontends to be finished */ for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_DEMOD_STOP) active = 1; } if (active == 0) dprintk("tuning done with status %d\n", dib8000_get_status(state->fe[0])); } if ((active == 1) && (callback_time == 0)) { dprintk("strange callback time something went wrong\n"); active = 0; } while ((active == 1) && (time_before(jiffies, callback_time))) msleep(100); } while (active); /* set output mode */ if (state->revision != 0x8090) dib8000_set_output_mode(state->fe[0], state->cfg.output_mode); else { dib8096p_set_output_mode(state->fe[0], state->cfg.output_mode); if (state->cfg.enMpegOutput == 0) { dib8096p_setDibTxMux(state, MPEG_ON_DIBTX); dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS); } } return 0; } static int dib8000_get_stats(struct dvb_frontend *fe, enum fe_status stat); static int dib8000_read_status(struct dvb_frontend *fe, enum fe_status *stat) { struct dib8000_state *state = fe->demodulator_priv; u16 lock_slave = 0, lock; u8 index_frontend; lock = dib8000_read_lock(fe); for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) lock_slave |= dib8000_read_lock(state->fe[index_frontend]); *stat = 0; if (((lock >> 13) & 1) || ((lock_slave >> 13) & 1)) *stat |= FE_HAS_SIGNAL; if (((lock >> 8) & 1) || ((lock_slave >> 8) & 1)) /* Equal */ *stat |= FE_HAS_CARRIER; if ((((lock >> 1) & 0xf) == 0xf) || (((lock_slave >> 1) & 0xf) == 0xf)) /* TMCC_SYNC */ *stat |= FE_HAS_SYNC; if ((((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) && ((lock >> 5) & 7)) /* FEC MPEG */ *stat |= FE_HAS_LOCK; if (((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) { lock = dib8000_read_word(state, 554); /* Viterbi Layer A */ if (lock & 0x01) *stat |= FE_HAS_VITERBI; lock = dib8000_read_word(state, 555); /* Viterbi Layer B */ if (lock & 0x01) *stat |= FE_HAS_VITERBI; lock = dib8000_read_word(state, 556); /* Viterbi Layer C */ if (lock & 0x01) *stat |= FE_HAS_VITERBI; } dib8000_get_stats(fe, *stat); return 0; } static int dib8000_read_ber(struct dvb_frontend *fe, u32 * ber) { struct dib8000_state *state = fe->demodulator_priv; /* 13 segments */ if (state->revision == 0x8090) *ber = (dib8000_read_word(state, 562) << 16) | dib8000_read_word(state, 563); else *ber = (dib8000_read_word(state, 560) << 16) | dib8000_read_word(state, 561); return 0; } static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc) { struct dib8000_state *state = fe->demodulator_priv; /* packet error on 13 seg */ if (state->revision == 0x8090) *unc = dib8000_read_word(state, 567); else *unc = dib8000_read_word(state, 565); return 0; } static int dib8000_read_signal_strength(struct dvb_frontend *fe, u16 * strength) { struct dib8000_state *state = fe->demodulator_priv; u8 index_frontend; u16 val; *strength = 0; for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val); if (val > 65535 - *strength) *strength = 65535; else *strength += val; } val = 65535 - dib8000_read_word(state, 390); if (val > 65535 - *strength) *strength = 65535; else *strength += val; return 0; } static u32 dib8000_get_snr(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; u32 n, s, exp; u16 val; if (state->revision != 0x8090) val = dib8000_read_word(state, 542); else val = dib8000_read_word(state, 544); n = (val >> 6) & 0xff; exp = (val & 0x3f); if ((exp & 0x20) != 0) exp -= 0x40; n <<= exp+16; if (state->revision != 0x8090) val = dib8000_read_word(state, 543); else val = dib8000_read_word(state, 545); s = (val >> 6) & 0xff; exp = (val & 0x3f); if ((exp & 0x20) != 0) exp -= 0x40; s <<= exp+16; if (n > 0) { u32 t = (s/n) << 16; return t + ((s << 16) - n*t) / n; } return 0xffffffff; } static int dib8000_read_snr(struct dvb_frontend *fe, u16 * snr) { struct dib8000_state *state = fe->demodulator_priv; u8 index_frontend; u32 snr_master; snr_master = dib8000_get_snr(fe); for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) snr_master += dib8000_get_snr(state->fe[index_frontend]); if ((snr_master >> 16) != 0) { snr_master = 10*intlog10(snr_master>>16); *snr = snr_master / ((1 << 24) / 10); } else *snr = 0; return 0; } struct per_layer_regs { u16 lock, ber, per; }; static const struct per_layer_regs per_layer_regs[] = { { 554, 560, 562 }, { 555, 576, 578 }, { 556, 581, 583 }, }; struct linear_segments { unsigned x; signed y; }; /* * Table to estimate signal strength in dBm. * This table was empirically determinated by measuring the signal * strength generated by a DTA-2111 RF generator directly connected into * a dib8076 device (a PixelView PV-D231U stick), using a good quality * 3 meters RC6 cable and good RC6 connectors. * The real value can actually be different on other devices, depending * on several factors, like if LNA is enabled or not, if diversity is * enabled, type of connectors, etc. * Yet, it is better to use this measure in dB than a random non-linear * percentage value, especially for antenna adjustments. * On my tests, the precision of the measure using this table is about * 0.5 dB, with sounds reasonable enough. */ static struct linear_segments strength_to_db_table[] = { { 55953, 108500 }, /* -22.5 dBm */ { 55394, 108000 }, { 53834, 107000 }, { 52863, 106000 }, { 52239, 105000 }, { 52012, 104000 }, { 51803, 103000 }, { 51566, 102000 }, { 51356, 101000 }, { 51112, 100000 }, { 50869, 99000 }, { 50600, 98000 }, { 50363, 97000 }, { 50117, 96000 }, /* -35 dBm */ { 49889, 95000 }, { 49680, 94000 }, { 49493, 93000 }, { 49302, 92000 }, { 48929, 91000 }, { 48416, 90000 }, { 48035, 89000 }, { 47593, 88000 }, { 47282, 87000 }, { 46953, 86000 }, { 46698, 85000 }, { 45617, 84000 }, { 44773, 83000 }, { 43845, 82000 }, { 43020, 81000 }, { 42010, 80000 }, /* -51 dBm */ { 0, 0 }, }; static u32 interpolate_value(u32 value, struct linear_segments *segments, unsigned len) { u64 tmp64; u32 dx; s32 dy; int i, ret; if (value >= segments[0].x) return segments[0].y; if (value < segments[len-1].x) return segments[len-1].y; for (i = 1; i < len - 1; i++) { /* If value is identical, no need to interpolate */ if (value == segments[i].x) return segments[i].y; if (value > segments[i].x) break; } /* Linear interpolation between the two (x,y) points */ dy = segments[i - 1].y - segments[i].y; dx = segments[i - 1].x - segments[i].x; tmp64 = value - segments[i].x; tmp64 *= dy; do_div(tmp64, dx); ret = segments[i].y + tmp64; return ret; } static u32 dib8000_get_time_us(struct dvb_frontend *fe, int layer) { struct dib8000_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; int ini_layer, end_layer, i; u64 time_us, tmp64; u32 tmp, denom; int guard, rate_num, rate_denum = 1, bits_per_symbol, nsegs; int interleaving = 0, fft_div; if (layer >= 0) { ini_layer = layer; end_layer = layer + 1; } else { ini_layer = 0; end_layer = 3; } switch (c->guard_interval) { case GUARD_INTERVAL_1_4: guard = 4; break; case GUARD_INTERVAL_1_8: guard = 8; break; case GUARD_INTERVAL_1_16: guard = 16; break; default: case GUARD_INTERVAL_1_32: guard = 32; break; } switch (c->transmission_mode) { case TRANSMISSION_MODE_2K: fft_div = 4; break; case TRANSMISSION_MODE_4K: fft_div = 2; break; default: case TRANSMISSION_MODE_8K: fft_div = 1; break; } denom = 0; for (i = ini_layer; i < end_layer; i++) { nsegs = c->layer[i].segment_count; if (nsegs == 0 || nsegs > 13) continue; switch (c->layer[i].modulation) { case DQPSK: case QPSK: bits_per_symbol = 2; break; case QAM_16: bits_per_symbol = 4; break; default: case QAM_64: bits_per_symbol = 6; break; } switch (c->layer[i].fec) { case FEC_1_2: rate_num = 1; rate_denum = 2; break; case FEC_2_3: rate_num = 2; rate_denum = 3; break; case FEC_3_4: rate_num = 3; rate_denum = 4; break; case FEC_5_6: rate_num = 5; rate_denum = 6; break; default: case FEC_7_8: rate_num = 7; rate_denum = 8; break; } interleaving = c->layer[i].interleaving; denom += bits_per_symbol * rate_num * fft_div * nsegs * 384; } /* If all goes wrong, wait for 1s for the next stats */ if (!denom) return 0; /* Estimate the period for the total bit rate */ time_us = rate_denum * (1008 * 1562500L); tmp64 = time_us; do_div(tmp64, guard); time_us = time_us + tmp64; time_us += denom / 2; do_div(time_us, denom); tmp = 1008 * 96 * interleaving; time_us += tmp + tmp / guard; return time_us; } static int dib8000_get_stats(struct dvb_frontend *fe, enum fe_status stat) { struct dib8000_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; int i; int show_per_stats = 0; u32 time_us = 0, snr, val; u64 blocks; s32 db; u16 strength; /* Get Signal strength */ dib8000_read_signal_strength(fe, &strength); val = strength; db = interpolate_value(val, strength_to_db_table, ARRAY_SIZE(strength_to_db_table)) - 131000; c->strength.stat[0].svalue = db; /* UCB/BER/CNR measures require lock */ if (!(stat & FE_HAS_LOCK)) { c->cnr.len = 1; c->block_count.len = 1; c->block_error.len = 1; c->post_bit_error.len = 1; c->post_bit_count.len = 1; c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; return 0; } /* Check if time for stats was elapsed */ if (time_after(jiffies, state->per_jiffies_stats)) { state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000); /* Get SNR */ snr = dib8000_get_snr(fe); for (i = 1; i < MAX_NUMBER_OF_FRONTENDS; i++) { if (state->fe[i]) snr += dib8000_get_snr(state->fe[i]); } snr = snr >> 16; if (snr) { snr = 10 * intlog10(snr); snr = (1000L * snr) >> 24; } else { snr = 0; } c->cnr.stat[0].svalue = snr; c->cnr.stat[0].scale = FE_SCALE_DECIBEL; /* Get UCB measures */ dib8000_read_unc_blocks(fe, &val); if (val < state->init_ucb) state->init_ucb += 0x100000000LL; c->block_error.stat[0].scale = FE_SCALE_COUNTER; c->block_error.stat[0].uvalue = val + state->init_ucb; /* Estimate the number of packets based on bitrate */ if (!time_us) time_us = dib8000_get_time_us(fe, -1); if (time_us) { blocks = 1250000ULL * 1000000ULL; do_div(blocks, time_us * 8 * 204); c->block_count.stat[0].scale = FE_SCALE_COUNTER; c->block_count.stat[0].uvalue += blocks; } show_per_stats = 1; } /* Get post-BER measures */ if (time_after(jiffies, state->ber_jiffies_stats)) { time_us = dib8000_get_time_us(fe, -1); state->ber_jiffies_stats = jiffies + msecs_to_jiffies((time_us + 500) / 1000); dprintk("Next all layers stats available in %u us.\n", time_us); dib8000_read_ber(fe, &val); c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; c->post_bit_error.stat[0].uvalue += val; c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; c->post_bit_count.stat[0].uvalue += 100000000; } if (state->revision < 0x8002) return 0; c->block_error.len = 4; c->post_bit_error.len = 4; c->post_bit_count.len = 4; for (i = 0; i < 3; i++) { unsigned nsegs = c->layer[i].segment_count; if (nsegs == 0 || nsegs > 13) continue; time_us = 0; if (time_after(jiffies, state->ber_jiffies_stats_layer[i])) { time_us = dib8000_get_time_us(fe, i); state->ber_jiffies_stats_layer[i] = jiffies + msecs_to_jiffies((time_us + 500) / 1000); dprintk("Next layer %c stats will be available in %u us\n", 'A' + i, time_us); val = dib8000_read_word(state, per_layer_regs[i].ber); c->post_bit_error.stat[1 + i].scale = FE_SCALE_COUNTER; c->post_bit_error.stat[1 + i].uvalue += val; c->post_bit_count.stat[1 + i].scale = FE_SCALE_COUNTER; c->post_bit_count.stat[1 + i].uvalue += 100000000; } if (show_per_stats) { val = dib8000_read_word(state, per_layer_regs[i].per); c->block_error.stat[1 + i].scale = FE_SCALE_COUNTER; c->block_error.stat[1 + i].uvalue += val; if (!time_us) time_us = dib8000_get_time_us(fe, i); if (time_us) { blocks = 1250000ULL * 1000000ULL; do_div(blocks, time_us * 8 * 204); c->block_count.stat[0].scale = FE_SCALE_COUNTER; c->block_count.stat[0].uvalue += blocks; } } } return 0; } static int dib8000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave) { struct dib8000_state *state = fe->demodulator_priv; u8 index_frontend = 1; while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL)) index_frontend++; if (index_frontend < MAX_NUMBER_OF_FRONTENDS) { dprintk("set slave fe %p to index %i\n", fe_slave, index_frontend); state->fe[index_frontend] = fe_slave; return 0; } dprintk("too many slave frontend\n"); return -ENOMEM; } static struct dvb_frontend *dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index) { struct dib8000_state *state = fe->demodulator_priv; if (slave_index >= MAX_NUMBER_OF_FRONTENDS) return NULL; return state->fe[slave_index]; } static int dib8000_i2c_enumeration(struct i2c_adapter *host, int no_of_demods, u8 default_addr, u8 first_addr, u8 is_dib8096p) { int k = 0, ret = 0; u8 new_addr = 0; struct i2c_device client = {.adap = host }; client.i2c_write_buffer = kzalloc(4 * sizeof(u8), GFP_KERNEL); if (!client.i2c_write_buffer) { dprintk("%s: not enough memory\n", __func__); return -ENOMEM; } client.i2c_read_buffer = kzalloc(4 * sizeof(u8), GFP_KERNEL); if (!client.i2c_read_buffer) { dprintk("%s: not enough memory\n", __func__); ret = -ENOMEM; goto error_memory_read; } client.i2c_buffer_lock = kzalloc(sizeof(struct mutex), GFP_KERNEL); if (!client.i2c_buffer_lock) { dprintk("%s: not enough memory\n", __func__); ret = -ENOMEM; goto error_memory_lock; } mutex_init(client.i2c_buffer_lock); for (k = no_of_demods - 1; k >= 0; k--) { /* designated i2c address */ new_addr = first_addr + (k << 1); client.addr = new_addr; if (!is_dib8096p) dib8000_i2c_write16(&client, 1287, 0x0003); /* sram lead in, rdy */ if (dib8000_identify(&client) == 0) { /* sram lead in, rdy */ if (!is_dib8096p) dib8000_i2c_write16(&client, 1287, 0x0003); client.addr = default_addr; if (dib8000_identify(&client) == 0) { dprintk("#%d: not identified\n", k); ret = -EINVAL; goto error; } } /* start diversity to pull_down div_str - just for i2c-enumeration */ dib8000_i2c_write16(&client, 1286, (1 << 10) | (4 << 6)); /* set new i2c address and force divstart */ dib8000_i2c_write16(&client, 1285, (new_addr << 2) | 0x2); client.addr = new_addr; dib8000_identify(&client); dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr); } for (k = 0; k < no_of_demods; k++) { new_addr = first_addr | (k << 1); client.addr = new_addr; // unforce divstr dib8000_i2c_write16(&client, 1285, new_addr << 2); /* deactivate div - it was just for i2c-enumeration */ dib8000_i2c_write16(&client, 1286, 0); } error: kfree(client.i2c_buffer_lock); error_memory_lock: kfree(client.i2c_read_buffer); error_memory_read: kfree(client.i2c_write_buffer); return ret; } static int dib8000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) { tune->min_delay_ms = 1000; tune->step_size = 0; tune->max_drift = 0; return 0; } static void dib8000_release(struct dvb_frontend *fe) { struct dib8000_state *st = fe->demodulator_priv; u8 index_frontend; for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++) dvb_frontend_detach(st->fe[index_frontend]); dibx000_exit_i2c_master(&st->i2c_master); i2c_del_adapter(&st->dib8096p_tuner_adap); kfree(st->fe[0]); kfree(st); } static struct i2c_adapter *dib8000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating) { struct dib8000_state *st = fe->demodulator_priv; return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); } static int dib8000_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) { struct dib8000_state *st = fe->demodulator_priv; u16 val = dib8000_read_word(st, 299) & 0xffef; val |= (onoff & 0x1) << 4; dprintk("pid filter enabled %d\n", onoff); return dib8000_write_word(st, 299, val); } static int dib8000_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) { struct dib8000_state *st = fe->demodulator_priv; dprintk("Index %x, PID %d, OnOff %d\n", id, pid, onoff); return dib8000_write_word(st, 305 + id, onoff ? (1 << 13) | pid : 0); } static const struct dvb_frontend_ops dib8000_ops = { .delsys = { SYS_ISDBT }, .info = { .name = "DiBcom 8000 ISDB-T", .frequency_min = 44250000, .frequency_max = 867250000, .frequency_stepsize = 62500, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, }, .release = dib8000_release, .init = dib8000_wakeup, .sleep = dib8000_sleep, .set_frontend = dib8000_set_frontend, .get_tune_settings = dib8000_fe_get_tune_settings, .get_frontend = dib8000_get_frontend, .read_status = dib8000_read_status, .read_ber = dib8000_read_ber, .read_signal_strength = dib8000_read_signal_strength, .read_snr = dib8000_read_snr, .read_ucblocks = dib8000_read_unc_blocks, }; static struct dvb_frontend *dib8000_init(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib8000_config *cfg) { struct dvb_frontend *fe; struct dib8000_state *state; dprintk("dib8000_init\n"); state = kzalloc(sizeof(struct dib8000_state), GFP_KERNEL); if (state == NULL) return NULL; fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL); if (fe == NULL) goto error; memcpy(&state->cfg, cfg, sizeof(struct dib8000_config)); state->i2c.adap = i2c_adap; state->i2c.addr = i2c_addr; state->i2c.i2c_write_buffer = state->i2c_write_buffer; state->i2c.i2c_read_buffer = state->i2c_read_buffer; mutex_init(&state->i2c_buffer_lock); state->i2c.i2c_buffer_lock = &state->i2c_buffer_lock; state->gpio_val = cfg->gpio_val; state->gpio_dir = cfg->gpio_dir; /* Ensure the output mode remains at the previous default if it's * not specifically set by the caller. */ if ((state->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (state->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK)) state->cfg.output_mode = OUTMODE_MPEG2_FIFO; state->fe[0] = fe; fe->demodulator_priv = state; memcpy(&state->fe[0]->ops, &dib8000_ops, sizeof(struct dvb_frontend_ops)); state->timf_default = cfg->pll->timf; if (dib8000_identify(&state->i2c) == 0) goto error; dibx000_init_i2c_master(&state->i2c_master, DIB8000, state->i2c.adap, state->i2c.addr); /* init 8096p tuner adapter */ strncpy(state->dib8096p_tuner_adap.name, "DiB8096P tuner interface", sizeof(state->dib8096p_tuner_adap.name)); state->dib8096p_tuner_adap.algo = &dib8096p_tuner_xfer_algo; state->dib8096p_tuner_adap.algo_data = NULL; state->dib8096p_tuner_adap.dev.parent = state->i2c.adap->dev.parent; i2c_set_adapdata(&state->dib8096p_tuner_adap, state); i2c_add_adapter(&state->dib8096p_tuner_adap); dib8000_reset(fe); dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5)); /* ber_rs_len = 3 */ state->current_demod_bw = 6000; return fe; error: kfree(state); return NULL; } void *dib8000_attach(struct dib8000_ops *ops) { if (!ops) return NULL; ops->pwm_agc_reset = dib8000_pwm_agc_reset; ops->get_dc_power = dib8090p_get_dc_power; ops->set_gpio = dib8000_set_gpio; ops->get_slave_frontend = dib8000_get_slave_frontend; ops->set_tune_state = dib8000_set_tune_state; ops->pid_filter_ctrl = dib8000_pid_filter_ctrl; ops->get_adc_power = dib8000_get_adc_power; ops->update_pll = dib8000_update_pll; ops->tuner_sleep = dib8096p_tuner_sleep; ops->get_tune_state = dib8000_get_tune_state; ops->get_i2c_tuner = dib8096p_get_i2c_tuner; ops->set_slave_frontend = dib8000_set_slave_frontend; ops->pid_filter = dib8000_pid_filter; ops->ctrl_timf = dib8000_ctrl_timf; ops->init = dib8000_init; ops->get_i2c_master = dib8000_get_i2c_master; ops->i2c_enumeration = dib8000_i2c_enumeration; ops->set_wbd_ref = dib8000_set_wbd_ref; return ops; } EXPORT_SYMBOL(dib8000_attach); MODULE_AUTHOR("Olivier Grenie <Olivier.Grenie@parrot.com, Patrick Boettcher <patrick.boettcher@posteo.de>"); MODULE_DESCRIPTION("Driver for the DiBcom 8000 ISDB-T demodulator"); MODULE_LICENSE("GPL");