/* * Driver for MT9T031 CMOS Image Sensor from Micron * * Copyright (C) 2008, Guennadi Liakhovetski, DENX Software Engineering * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include /* * ATTENTION: this driver still cannot be used outside of the soc-camera * framework because of its PM implementation, using the video_device node. * If hardware becomes available for testing, alternative PM approaches shall * be considered and tested. */ /* * mt9t031 i2c address 0x5d * The platform has to define struct i2c_board_info objects and link to them * from struct soc_camera_host_desc */ /* mt9t031 selected register addresses */ #define MT9T031_CHIP_VERSION 0x00 #define MT9T031_ROW_START 0x01 #define MT9T031_COLUMN_START 0x02 #define MT9T031_WINDOW_HEIGHT 0x03 #define MT9T031_WINDOW_WIDTH 0x04 #define MT9T031_HORIZONTAL_BLANKING 0x05 #define MT9T031_VERTICAL_BLANKING 0x06 #define MT9T031_OUTPUT_CONTROL 0x07 #define MT9T031_SHUTTER_WIDTH_UPPER 0x08 #define MT9T031_SHUTTER_WIDTH 0x09 #define MT9T031_PIXEL_CLOCK_CONTROL 0x0a #define MT9T031_FRAME_RESTART 0x0b #define MT9T031_SHUTTER_DELAY 0x0c #define MT9T031_RESET 0x0d #define MT9T031_READ_MODE_1 0x1e #define MT9T031_READ_MODE_2 0x20 #define MT9T031_READ_MODE_3 0x21 #define MT9T031_ROW_ADDRESS_MODE 0x22 #define MT9T031_COLUMN_ADDRESS_MODE 0x23 #define MT9T031_GLOBAL_GAIN 0x35 #define MT9T031_CHIP_ENABLE 0xF8 #define MT9T031_MAX_HEIGHT 1536 #define MT9T031_MAX_WIDTH 2048 #define MT9T031_MIN_HEIGHT 2 #define MT9T031_MIN_WIDTH 18 #define MT9T031_HORIZONTAL_BLANK 142 #define MT9T031_VERTICAL_BLANK 25 #define MT9T031_COLUMN_SKIP 32 #define MT9T031_ROW_SKIP 20 struct mt9t031 { struct v4l2_subdev subdev; struct v4l2_ctrl_handler hdl; struct { /* exposure/auto-exposure cluster */ struct v4l2_ctrl *autoexposure; struct v4l2_ctrl *exposure; }; struct v4l2_rect rect; /* Sensor window */ struct v4l2_clk *clk; u16 xskip; u16 yskip; unsigned int total_h; unsigned short y_skip_top; /* Lines to skip at the top */ }; static struct mt9t031 *to_mt9t031(const struct i2c_client *client) { return container_of(i2c_get_clientdata(client), struct mt9t031, subdev); } static int reg_read(struct i2c_client *client, const u8 reg) { return i2c_smbus_read_word_swapped(client, reg); } static int reg_write(struct i2c_client *client, const u8 reg, const u16 data) { return i2c_smbus_write_word_swapped(client, reg, data); } static int reg_set(struct i2c_client *client, const u8 reg, const u16 data) { int ret; ret = reg_read(client, reg); if (ret < 0) return ret; return reg_write(client, reg, ret | data); } static int reg_clear(struct i2c_client *client, const u8 reg, const u16 data) { int ret; ret = reg_read(client, reg); if (ret < 0) return ret; return reg_write(client, reg, ret & ~data); } static int set_shutter(struct i2c_client *client, const u32 data) { int ret; ret = reg_write(client, MT9T031_SHUTTER_WIDTH_UPPER, data >> 16); if (ret >= 0) ret = reg_write(client, MT9T031_SHUTTER_WIDTH, data & 0xffff); return ret; } static int get_shutter(struct i2c_client *client, u32 *data) { int ret; ret = reg_read(client, MT9T031_SHUTTER_WIDTH_UPPER); *data = ret << 16; if (ret >= 0) ret = reg_read(client, MT9T031_SHUTTER_WIDTH); *data |= ret & 0xffff; return ret < 0 ? ret : 0; } static int mt9t031_idle(struct i2c_client *client) { int ret; /* Disable chip output, synchronous option update */ ret = reg_write(client, MT9T031_RESET, 1); if (ret >= 0) ret = reg_write(client, MT9T031_RESET, 0); if (ret >= 0) ret = reg_clear(client, MT9T031_OUTPUT_CONTROL, 2); return ret >= 0 ? 0 : -EIO; } static int mt9t031_s_stream(struct v4l2_subdev *sd, int enable) { struct i2c_client *client = v4l2_get_subdevdata(sd); int ret; if (enable) /* Switch to master "normal" mode */ ret = reg_set(client, MT9T031_OUTPUT_CONTROL, 2); else /* Stop sensor readout */ ret = reg_clear(client, MT9T031_OUTPUT_CONTROL, 2); if (ret < 0) return -EIO; return 0; } /* target must be _even_ */ static u16 mt9t031_skip(s32 *source, s32 target, s32 max) { unsigned int skip; if (*source < target + target / 2) { *source = target; return 1; } skip = min(max, *source + target / 2) / target; if (skip > 8) skip = 8; *source = target * skip; return skip; } /* rect is the sensor rectangle, the caller guarantees parameter validity */ static int mt9t031_set_params(struct i2c_client *client, struct v4l2_rect *rect, u16 xskip, u16 yskip) { struct mt9t031 *mt9t031 = to_mt9t031(client); int ret; u16 xbin, ybin; const u16 hblank = MT9T031_HORIZONTAL_BLANK, vblank = MT9T031_VERTICAL_BLANK; xbin = min(xskip, (u16)3); ybin = min(yskip, (u16)3); /* * Could just do roundup(rect->left, [xy]bin * 2); but this is cheaper. * There is always a valid suitably aligned value. The worst case is * xbin = 3, width = 2048. Then we will start at 36, the last read out * pixel will be 2083, which is < 2085 - first black pixel. * * MT9T031 datasheet imposes window left border alignment, depending on * the selected xskip. Failing to conform to this requirement produces * dark horizontal stripes in the image. However, even obeying to this * requirement doesn't eliminate the stripes in all configurations. They * appear "locally reproducibly," but can differ between tests under * different lighting conditions. */ switch (xbin) { case 1: rect->left &= ~1; break; case 2: rect->left &= ~3; break; case 3: rect->left = rect->left > roundup(MT9T031_COLUMN_SKIP, 6) ? (rect->left / 6) * 6 : roundup(MT9T031_COLUMN_SKIP, 6); } rect->top &= ~1; dev_dbg(&client->dev, "skip %u:%u, rect %ux%u@%u:%u\n", xskip, yskip, rect->width, rect->height, rect->left, rect->top); /* Disable register update, reconfigure atomically */ ret = reg_set(client, MT9T031_OUTPUT_CONTROL, 1); if (ret < 0) return ret; /* Blanking and start values - default... */ ret = reg_write(client, MT9T031_HORIZONTAL_BLANKING, hblank); if (ret >= 0) ret = reg_write(client, MT9T031_VERTICAL_BLANKING, vblank); if (yskip != mt9t031->yskip || xskip != mt9t031->xskip) { /* Binning, skipping */ if (ret >= 0) ret = reg_write(client, MT9T031_COLUMN_ADDRESS_MODE, ((xbin - 1) << 4) | (xskip - 1)); if (ret >= 0) ret = reg_write(client, MT9T031_ROW_ADDRESS_MODE, ((ybin - 1) << 4) | (yskip - 1)); } dev_dbg(&client->dev, "new physical left %u, top %u\n", rect->left, rect->top); /* * The caller provides a supported format, as guaranteed by * .try_mbus_fmt(), soc_camera_s_crop() and soc_camera_cropcap() */ if (ret >= 0) ret = reg_write(client, MT9T031_COLUMN_START, rect->left); if (ret >= 0) ret = reg_write(client, MT9T031_ROW_START, rect->top); if (ret >= 0) ret = reg_write(client, MT9T031_WINDOW_WIDTH, rect->width - 1); if (ret >= 0) ret = reg_write(client, MT9T031_WINDOW_HEIGHT, rect->height + mt9t031->y_skip_top - 1); if (ret >= 0 && v4l2_ctrl_g_ctrl(mt9t031->autoexposure) == V4L2_EXPOSURE_AUTO) { mt9t031->total_h = rect->height + mt9t031->y_skip_top + vblank; ret = set_shutter(client, mt9t031->total_h); } /* Re-enable register update, commit all changes */ if (ret >= 0) ret = reg_clear(client, MT9T031_OUTPUT_CONTROL, 1); if (ret >= 0) { mt9t031->rect = *rect; mt9t031->xskip = xskip; mt9t031->yskip = yskip; } return ret < 0 ? ret : 0; } static int mt9t031_s_crop(struct v4l2_subdev *sd, const struct v4l2_crop *a) { struct v4l2_rect rect = a->c; struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9t031 *mt9t031 = to_mt9t031(client); rect.width = ALIGN(rect.width, 2); rect.height = ALIGN(rect.height, 2); soc_camera_limit_side(&rect.left, &rect.width, MT9T031_COLUMN_SKIP, MT9T031_MIN_WIDTH, MT9T031_MAX_WIDTH); soc_camera_limit_side(&rect.top, &rect.height, MT9T031_ROW_SKIP, MT9T031_MIN_HEIGHT, MT9T031_MAX_HEIGHT); return mt9t031_set_params(client, &rect, mt9t031->xskip, mt9t031->yskip); } static int mt9t031_g_crop(struct v4l2_subdev *sd, struct v4l2_crop *a) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9t031 *mt9t031 = to_mt9t031(client); a->c = mt9t031->rect; a->type = V4L2_BUF_TYPE_VIDEO_CAPTURE; return 0; } static int mt9t031_cropcap(struct v4l2_subdev *sd, struct v4l2_cropcap *a) { a->bounds.left = MT9T031_COLUMN_SKIP; a->bounds.top = MT9T031_ROW_SKIP; a->bounds.width = MT9T031_MAX_WIDTH; a->bounds.height = MT9T031_MAX_HEIGHT; a->defrect = a->bounds; a->type = V4L2_BUF_TYPE_VIDEO_CAPTURE; a->pixelaspect.numerator = 1; a->pixelaspect.denominator = 1; return 0; } static int mt9t031_g_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *mf) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9t031 *mt9t031 = to_mt9t031(client); mf->width = mt9t031->rect.width / mt9t031->xskip; mf->height = mt9t031->rect.height / mt9t031->yskip; mf->code = MEDIA_BUS_FMT_SBGGR10_1X10; mf->colorspace = V4L2_COLORSPACE_SRGB; mf->field = V4L2_FIELD_NONE; return 0; } static int mt9t031_s_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *mf) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9t031 *mt9t031 = to_mt9t031(client); u16 xskip, yskip; struct v4l2_rect rect = mt9t031->rect; /* * try_fmt has put width and height within limits. * S_FMT: use binning and skipping for scaling */ xskip = mt9t031_skip(&rect.width, mf->width, MT9T031_MAX_WIDTH); yskip = mt9t031_skip(&rect.height, mf->height, MT9T031_MAX_HEIGHT); mf->code = MEDIA_BUS_FMT_SBGGR10_1X10; mf->colorspace = V4L2_COLORSPACE_SRGB; /* mt9t031_set_params() doesn't change width and height */ return mt9t031_set_params(client, &rect, xskip, yskip); } /* * If a user window larger than sensor window is requested, we'll increase the * sensor window. */ static int mt9t031_try_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *mf) { v4l_bound_align_image( &mf->width, MT9T031_MIN_WIDTH, MT9T031_MAX_WIDTH, 1, &mf->height, MT9T031_MIN_HEIGHT, MT9T031_MAX_HEIGHT, 1, 0); mf->code = MEDIA_BUS_FMT_SBGGR10_1X10; mf->colorspace = V4L2_COLORSPACE_SRGB; return 0; } #ifdef CONFIG_VIDEO_ADV_DEBUG static int mt9t031_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); if (reg->reg > 0xff) return -EINVAL; reg->size = 1; reg->val = reg_read(client, reg->reg); if (reg->val > 0xffff) return -EIO; return 0; } static int mt9t031_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); if (reg->reg > 0xff) return -EINVAL; if (reg_write(client, reg->reg, reg->val) < 0) return -EIO; return 0; } #endif static int mt9t031_g_volatile_ctrl(struct v4l2_ctrl *ctrl) { struct mt9t031 *mt9t031 = container_of(ctrl->handler, struct mt9t031, hdl); const u32 shutter_max = MT9T031_MAX_HEIGHT + MT9T031_VERTICAL_BLANK; s32 min, max; switch (ctrl->id) { case V4L2_CID_EXPOSURE_AUTO: min = mt9t031->exposure->minimum; max = mt9t031->exposure->maximum; mt9t031->exposure->val = (shutter_max / 2 + (mt9t031->total_h - 1) * (max - min)) / shutter_max + min; break; } return 0; } static int mt9t031_s_ctrl(struct v4l2_ctrl *ctrl) { struct mt9t031 *mt9t031 = container_of(ctrl->handler, struct mt9t031, hdl); struct v4l2_subdev *sd = &mt9t031->subdev; struct i2c_client *client = v4l2_get_subdevdata(sd); struct v4l2_ctrl *exp = mt9t031->exposure; int data; switch (ctrl->id) { case V4L2_CID_VFLIP: if (ctrl->val) data = reg_set(client, MT9T031_READ_MODE_2, 0x8000); else data = reg_clear(client, MT9T031_READ_MODE_2, 0x8000); if (data < 0) return -EIO; return 0; case V4L2_CID_HFLIP: if (ctrl->val) data = reg_set(client, MT9T031_READ_MODE_2, 0x4000); else data = reg_clear(client, MT9T031_READ_MODE_2, 0x4000); if (data < 0) return -EIO; return 0; case V4L2_CID_GAIN: /* See Datasheet Table 7, Gain settings. */ if (ctrl->val <= ctrl->default_value) { /* Pack it into 0..1 step 0.125, register values 0..8 */ unsigned long range = ctrl->default_value - ctrl->minimum; data = ((ctrl->val - (s32)ctrl->minimum) * 8 + range / 2) / range; dev_dbg(&client->dev, "Setting gain %d\n", data); data = reg_write(client, MT9T031_GLOBAL_GAIN, data); if (data < 0) return -EIO; } else { /* Pack it into 1.125..128 variable step, register values 9..0x7860 */ /* We assume qctrl->maximum - qctrl->default_value - 1 > 0 */ unsigned long range = ctrl->maximum - ctrl->default_value - 1; /* calculated gain: map 65..127 to 9..1024 step 0.125 */ unsigned long gain = ((ctrl->val - (s32)ctrl->default_value - 1) * 1015 + range / 2) / range + 9; if (gain <= 32) /* calculated gain 9..32 -> 9..32 */ data = gain; else if (gain <= 64) /* calculated gain 33..64 -> 0x51..0x60 */ data = ((gain - 32) * 16 + 16) / 32 + 80; else /* calculated gain 65..1024 -> (1..120) << 8 + 0x60 */ data = (((gain - 64 + 7) * 32) & 0xff00) | 0x60; dev_dbg(&client->dev, "Set gain from 0x%x to 0x%x\n", reg_read(client, MT9T031_GLOBAL_GAIN), data); data = reg_write(client, MT9T031_GLOBAL_GAIN, data); if (data < 0) return -EIO; } return 0; case V4L2_CID_EXPOSURE_AUTO: if (ctrl->val == V4L2_EXPOSURE_MANUAL) { unsigned int range = exp->maximum - exp->minimum; unsigned int shutter = ((exp->val - (s32)exp->minimum) * 1048 + range / 2) / range + 1; u32 old; get_shutter(client, &old); dev_dbg(&client->dev, "Set shutter from %u to %u\n", old, shutter); if (set_shutter(client, shutter) < 0) return -EIO; } else { const u16 vblank = MT9T031_VERTICAL_BLANK; mt9t031->total_h = mt9t031->rect.height + mt9t031->y_skip_top + vblank; if (set_shutter(client, mt9t031->total_h) < 0) return -EIO; } return 0; default: return -EINVAL; } return 0; } /* * Power Management: * This function does nothing for now but must be present for pm to work */ static int mt9t031_runtime_suspend(struct device *dev) { return 0; } /* * Power Management: * COLUMN_ADDRESS_MODE and ROW_ADDRESS_MODE are not rewritten if unchanged * they are however changed at reset if the platform hook is present * thus we rewrite them with the values stored by the driver */ static int mt9t031_runtime_resume(struct device *dev) { struct video_device *vdev = to_video_device(dev); struct v4l2_subdev *sd = soc_camera_vdev_to_subdev(vdev); struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9t031 *mt9t031 = to_mt9t031(client); int ret; u16 xbin, ybin; xbin = min(mt9t031->xskip, (u16)3); ybin = min(mt9t031->yskip, (u16)3); ret = reg_write(client, MT9T031_COLUMN_ADDRESS_MODE, ((xbin - 1) << 4) | (mt9t031->xskip - 1)); if (ret < 0) return ret; ret = reg_write(client, MT9T031_ROW_ADDRESS_MODE, ((ybin - 1) << 4) | (mt9t031->yskip - 1)); if (ret < 0) return ret; return 0; } static const struct dev_pm_ops mt9t031_dev_pm_ops = { .runtime_suspend = mt9t031_runtime_suspend, .runtime_resume = mt9t031_runtime_resume, }; static struct device_type mt9t031_dev_type = { .name = "MT9T031", .pm = &mt9t031_dev_pm_ops, }; static int mt9t031_s_power(struct v4l2_subdev *sd, int on) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct soc_camera_subdev_desc *ssdd = soc_camera_i2c_to_desc(client); struct video_device *vdev = soc_camera_i2c_to_vdev(client); struct mt9t031 *mt9t031 = to_mt9t031(client); int ret; if (on) { ret = soc_camera_power_on(&client->dev, ssdd, mt9t031->clk); if (ret < 0) return ret; if (vdev) /* Not needed during probing, when vdev isn't available yet */ vdev->dev.type = &mt9t031_dev_type; } else { if (vdev) vdev->dev.type = NULL; soc_camera_power_off(&client->dev, ssdd, mt9t031->clk); } return 0; } /* * Interface active, can use i2c. If it fails, it can indeed mean, that * this wasn't our capture interface, so, we wait for the right one */ static int mt9t031_video_probe(struct i2c_client *client) { struct mt9t031 *mt9t031 = to_mt9t031(client); s32 data; int ret; ret = mt9t031_s_power(&mt9t031->subdev, 1); if (ret < 0) return ret; ret = mt9t031_idle(client); if (ret < 0) { dev_err(&client->dev, "Failed to initialise the camera\n"); goto done; } /* Read out the chip version register */ data = reg_read(client, MT9T031_CHIP_VERSION); switch (data) { case 0x1621: break; default: dev_err(&client->dev, "No MT9T031 chip detected, register read %x\n", data); ret = -ENODEV; goto done; } dev_info(&client->dev, "Detected a MT9T031 chip ID %x\n", data); ret = v4l2_ctrl_handler_setup(&mt9t031->hdl); done: mt9t031_s_power(&mt9t031->subdev, 0); return ret; } static int mt9t031_g_skip_top_lines(struct v4l2_subdev *sd, u32 *lines) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9t031 *mt9t031 = to_mt9t031(client); *lines = mt9t031->y_skip_top; return 0; } static const struct v4l2_ctrl_ops mt9t031_ctrl_ops = { .g_volatile_ctrl = mt9t031_g_volatile_ctrl, .s_ctrl = mt9t031_s_ctrl, }; static struct v4l2_subdev_core_ops mt9t031_subdev_core_ops = { .s_power = mt9t031_s_power, #ifdef CONFIG_VIDEO_ADV_DEBUG .g_register = mt9t031_g_register, .s_register = mt9t031_s_register, #endif }; static int mt9t031_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_mbus_code_enum *code) { if (code->pad || code->index) return -EINVAL; code->code = MEDIA_BUS_FMT_SBGGR10_1X10; return 0; } static int mt9t031_g_mbus_config(struct v4l2_subdev *sd, struct v4l2_mbus_config *cfg) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct soc_camera_subdev_desc *ssdd = soc_camera_i2c_to_desc(client); cfg->flags = V4L2_MBUS_MASTER | V4L2_MBUS_PCLK_SAMPLE_RISING | V4L2_MBUS_PCLK_SAMPLE_FALLING | V4L2_MBUS_HSYNC_ACTIVE_HIGH | V4L2_MBUS_VSYNC_ACTIVE_HIGH | V4L2_MBUS_DATA_ACTIVE_HIGH; cfg->type = V4L2_MBUS_PARALLEL; cfg->flags = soc_camera_apply_board_flags(ssdd, cfg); return 0; } static int mt9t031_s_mbus_config(struct v4l2_subdev *sd, const struct v4l2_mbus_config *cfg) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct soc_camera_subdev_desc *ssdd = soc_camera_i2c_to_desc(client); if (soc_camera_apply_board_flags(ssdd, cfg) & V4L2_MBUS_PCLK_SAMPLE_FALLING) return reg_clear(client, MT9T031_PIXEL_CLOCK_CONTROL, 0x8000); else return reg_set(client, MT9T031_PIXEL_CLOCK_CONTROL, 0x8000); } static struct v4l2_subdev_video_ops mt9t031_subdev_video_ops = { .s_stream = mt9t031_s_stream, .s_mbus_fmt = mt9t031_s_fmt, .g_mbus_fmt = mt9t031_g_fmt, .try_mbus_fmt = mt9t031_try_fmt, .s_crop = mt9t031_s_crop, .g_crop = mt9t031_g_crop, .cropcap = mt9t031_cropcap, .g_mbus_config = mt9t031_g_mbus_config, .s_mbus_config = mt9t031_s_mbus_config, }; static struct v4l2_subdev_sensor_ops mt9t031_subdev_sensor_ops = { .g_skip_top_lines = mt9t031_g_skip_top_lines, }; static const struct v4l2_subdev_pad_ops mt9t031_subdev_pad_ops = { .enum_mbus_code = mt9t031_enum_mbus_code, }; static struct v4l2_subdev_ops mt9t031_subdev_ops = { .core = &mt9t031_subdev_core_ops, .video = &mt9t031_subdev_video_ops, .sensor = &mt9t031_subdev_sensor_ops, .pad = &mt9t031_subdev_pad_ops, }; static int mt9t031_probe(struct i2c_client *client, const struct i2c_device_id *did) { struct mt9t031 *mt9t031; struct soc_camera_subdev_desc *ssdd = soc_camera_i2c_to_desc(client); struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent); int ret; if (!ssdd) { dev_err(&client->dev, "MT9T031 driver needs platform data\n"); return -EINVAL; } if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_WORD_DATA)) { dev_warn(&adapter->dev, "I2C-Adapter doesn't support I2C_FUNC_SMBUS_WORD\n"); return -EIO; } mt9t031 = devm_kzalloc(&client->dev, sizeof(struct mt9t031), GFP_KERNEL); if (!mt9t031) return -ENOMEM; v4l2_i2c_subdev_init(&mt9t031->subdev, client, &mt9t031_subdev_ops); v4l2_ctrl_handler_init(&mt9t031->hdl, 5); v4l2_ctrl_new_std(&mt9t031->hdl, &mt9t031_ctrl_ops, V4L2_CID_VFLIP, 0, 1, 1, 0); v4l2_ctrl_new_std(&mt9t031->hdl, &mt9t031_ctrl_ops, V4L2_CID_HFLIP, 0, 1, 1, 0); v4l2_ctrl_new_std(&mt9t031->hdl, &mt9t031_ctrl_ops, V4L2_CID_GAIN, 0, 127, 1, 64); /* * Simulated autoexposure. If enabled, we calculate shutter width * ourselves in the driver based on vertical blanking and frame width */ mt9t031->autoexposure = v4l2_ctrl_new_std_menu(&mt9t031->hdl, &mt9t031_ctrl_ops, V4L2_CID_EXPOSURE_AUTO, 1, 0, V4L2_EXPOSURE_AUTO); mt9t031->exposure = v4l2_ctrl_new_std(&mt9t031->hdl, &mt9t031_ctrl_ops, V4L2_CID_EXPOSURE, 1, 255, 1, 255); mt9t031->subdev.ctrl_handler = &mt9t031->hdl; if (mt9t031->hdl.error) return mt9t031->hdl.error; v4l2_ctrl_auto_cluster(2, &mt9t031->autoexposure, V4L2_EXPOSURE_MANUAL, true); mt9t031->y_skip_top = 0; mt9t031->rect.left = MT9T031_COLUMN_SKIP; mt9t031->rect.top = MT9T031_ROW_SKIP; mt9t031->rect.width = MT9T031_MAX_WIDTH; mt9t031->rect.height = MT9T031_MAX_HEIGHT; mt9t031->xskip = 1; mt9t031->yskip = 1; mt9t031->clk = v4l2_clk_get(&client->dev, "mclk"); if (IS_ERR(mt9t031->clk)) { ret = PTR_ERR(mt9t031->clk); goto eclkget; } ret = mt9t031_video_probe(client); if (ret) { v4l2_clk_put(mt9t031->clk); eclkget: v4l2_ctrl_handler_free(&mt9t031->hdl); } return ret; } static int mt9t031_remove(struct i2c_client *client) { struct mt9t031 *mt9t031 = to_mt9t031(client); v4l2_clk_put(mt9t031->clk); v4l2_device_unregister_subdev(&mt9t031->subdev); v4l2_ctrl_handler_free(&mt9t031->hdl); return 0; } static const struct i2c_device_id mt9t031_id[] = { { "mt9t031", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, mt9t031_id); static struct i2c_driver mt9t031_i2c_driver = { .driver = { .name = "mt9t031", }, .probe = mt9t031_probe, .remove = mt9t031_remove, .id_table = mt9t031_id, }; module_i2c_driver(mt9t031_i2c_driver); MODULE_DESCRIPTION("Micron MT9T031 Camera driver"); MODULE_AUTHOR("Guennadi Liakhovetski "); MODULE_LICENSE("GPL v2");