// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2005-2006 Micronas USA Inc. */ #include #include #include #include #include #include #include #include #include #define TW2804_REG_AUTOGAIN 0x02 #define TW2804_REG_HUE 0x0f #define TW2804_REG_SATURATION 0x10 #define TW2804_REG_CONTRAST 0x11 #define TW2804_REG_BRIGHTNESS 0x12 #define TW2804_REG_COLOR_KILLER 0x14 #define TW2804_REG_GAIN 0x3c #define TW2804_REG_CHROMA_GAIN 0x3d #define TW2804_REG_BLUE_BALANCE 0x3e #define TW2804_REG_RED_BALANCE 0x3f struct tw2804 { struct v4l2_subdev sd; struct v4l2_ctrl_handler hdl; u8 channel:2; u8 input:1; int norm; }; static const u8 global_registers[] = { 0x39, 0x00, 0x3a, 0xff, 0x3b, 0x84, 0x3c, 0x80, 0x3d, 0x80, 0x3e, 0x82, 0x3f, 0x82, 0x78, 0x00, 0xff, 0xff, /* Terminator (reg 0xff does not exist) */ }; static const u8 channel_registers[] = { 0x01, 0xc4, 0x02, 0xa5, 0x03, 0x20, 0x04, 0xd0, 0x05, 0x20, 0x06, 0xd0, 0x07, 0x88, 0x08, 0x20, 0x09, 0x07, 0x0a, 0xf0, 0x0b, 0x07, 0x0c, 0xf0, 0x0d, 0x40, 0x0e, 0xd2, 0x0f, 0x80, 0x10, 0x80, 0x11, 0x80, 0x12, 0x80, 0x13, 0x1f, 0x14, 0x00, 0x15, 0x00, 0x16, 0x00, 0x17, 0x00, 0x18, 0xff, 0x19, 0xff, 0x1a, 0xff, 0x1b, 0xff, 0x1c, 0xff, 0x1d, 0xff, 0x1e, 0xff, 0x1f, 0xff, 0x20, 0x07, 0x21, 0x07, 0x22, 0x00, 0x23, 0x91, 0x24, 0x51, 0x25, 0x03, 0x26, 0x00, 0x27, 0x00, 0x28, 0x00, 0x29, 0x00, 0x2a, 0x00, 0x2b, 0x00, 0x2c, 0x00, 0x2d, 0x00, 0x2e, 0x00, 0x2f, 0x00, 0x30, 0x00, 0x31, 0x00, 0x32, 0x00, 0x33, 0x00, 0x34, 0x00, 0x35, 0x00, 0x36, 0x00, 0x37, 0x00, 0xff, 0xff, /* Terminator (reg 0xff does not exist) */ }; static int write_reg(struct i2c_client *client, u8 reg, u8 value, u8 channel) { return i2c_smbus_write_byte_data(client, reg | (channel << 6), value); } static int write_regs(struct i2c_client *client, const u8 *regs, u8 channel) { int ret; int i; for (i = 0; regs[i] != 0xff; i += 2) { ret = i2c_smbus_write_byte_data(client, regs[i] | (channel << 6), regs[i + 1]); if (ret < 0) return ret; } return 0; } static int read_reg(struct i2c_client *client, u8 reg, u8 channel) { return i2c_smbus_read_byte_data(client, (reg) | (channel << 6)); } static inline struct tw2804 *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct tw2804, sd); } static inline struct tw2804 *to_state_from_ctrl(struct v4l2_ctrl *ctrl) { return container_of(ctrl->handler, struct tw2804, hdl); } static int tw2804_log_status(struct v4l2_subdev *sd) { struct tw2804 *state = to_state(sd); v4l2_info(sd, "Standard: %s\n", state->norm & V4L2_STD_525_60 ? "60 Hz" : "50 Hz"); v4l2_info(sd, "Channel: %d\n", state->channel); v4l2_info(sd, "Input: %d\n", state->input); return v4l2_ctrl_subdev_log_status(sd); } /* * These volatile controls are needed because all four channels share * these controls. So a change made to them through one channel would * require another channel to be updated. * * Normally this would have been done in a different way, but since the one * board that uses this driver sees this single chip as if it was on four * different i2c adapters (each adapter belonging to a separate instance of * the same USB driver) there is no reliable method that I have found to let * the instances know about each other. * * So implementing these global registers as volatile is the best we can do. */ static int tw2804_g_volatile_ctrl(struct v4l2_ctrl *ctrl) { struct tw2804 *state = to_state_from_ctrl(ctrl); struct i2c_client *client = v4l2_get_subdevdata(&state->sd); switch (ctrl->id) { case V4L2_CID_GAIN: ctrl->val = read_reg(client, TW2804_REG_GAIN, 0); return 0; case V4L2_CID_CHROMA_GAIN: ctrl->val = read_reg(client, TW2804_REG_CHROMA_GAIN, 0); return 0; case V4L2_CID_BLUE_BALANCE: ctrl->val = read_reg(client, TW2804_REG_BLUE_BALANCE, 0); return 0; case V4L2_CID_RED_BALANCE: ctrl->val = read_reg(client, TW2804_REG_RED_BALANCE, 0); return 0; } return 0; } static int tw2804_s_ctrl(struct v4l2_ctrl *ctrl) { struct tw2804 *state = to_state_from_ctrl(ctrl); struct i2c_client *client = v4l2_get_subdevdata(&state->sd); int addr; int reg; switch (ctrl->id) { case V4L2_CID_AUTOGAIN: addr = TW2804_REG_AUTOGAIN; reg = read_reg(client, addr, state->channel); if (reg < 0) return reg; if (ctrl->val == 0) reg &= ~(1 << 7); else reg |= 1 << 7; return write_reg(client, addr, reg, state->channel); case V4L2_CID_COLOR_KILLER: addr = TW2804_REG_COLOR_KILLER; reg = read_reg(client, addr, state->channel); if (reg < 0) return reg; reg = (reg & ~(0x03)) | (ctrl->val == 0 ? 0x02 : 0x03); return write_reg(client, addr, reg, state->channel); case V4L2_CID_GAIN: return write_reg(client, TW2804_REG_GAIN, ctrl->val, 0); case V4L2_CID_CHROMA_GAIN: return write_reg(client, TW2804_REG_CHROMA_GAIN, ctrl->val, 0); case V4L2_CID_BLUE_BALANCE: return write_reg(client, TW2804_REG_BLUE_BALANCE, ctrl->val, 0); case V4L2_CID_RED_BALANCE: return write_reg(client, TW2804_REG_RED_BALANCE, ctrl->val, 0); case V4L2_CID_BRIGHTNESS: return write_reg(client, TW2804_REG_BRIGHTNESS, ctrl->val, state->channel); case V4L2_CID_CONTRAST: return write_reg(client, TW2804_REG_CONTRAST, ctrl->val, state->channel); case V4L2_CID_SATURATION: return write_reg(client, TW2804_REG_SATURATION, ctrl->val, state->channel); case V4L2_CID_HUE: return write_reg(client, TW2804_REG_HUE, ctrl->val, state->channel); default: break; } return -EINVAL; } static int tw2804_s_std(struct v4l2_subdev *sd, v4l2_std_id norm) { struct tw2804 *dec = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); bool is_60hz = norm & V4L2_STD_525_60; u8 regs[] = { 0x01, is_60hz ? 0xc4 : 0x84, 0x09, is_60hz ? 0x07 : 0x04, 0x0a, is_60hz ? 0xf0 : 0x20, 0x0b, is_60hz ? 0x07 : 0x04, 0x0c, is_60hz ? 0xf0 : 0x20, 0x0d, is_60hz ? 0x40 : 0x4a, 0x16, is_60hz ? 0x00 : 0x40, 0x17, is_60hz ? 0x00 : 0x40, 0x20, is_60hz ? 0x07 : 0x0f, 0x21, is_60hz ? 0x07 : 0x0f, 0xff, 0xff, }; write_regs(client, regs, dec->channel); dec->norm = norm; return 0; } static int tw2804_s_video_routing(struct v4l2_subdev *sd, u32 input, u32 output, u32 config) { struct tw2804 *dec = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); int reg; if (config && config - 1 != dec->channel) { if (config > 4) { dev_err(&client->dev, "channel %d is not between 1 and 4!\n", config); return -EINVAL; } dec->channel = config - 1; dev_dbg(&client->dev, "initializing TW2804 channel %d\n", dec->channel); if (dec->channel == 0 && write_regs(client, global_registers, 0) < 0) { dev_err(&client->dev, "error initializing TW2804 global registers\n"); return -EIO; } if (write_regs(client, channel_registers, dec->channel) < 0) { dev_err(&client->dev, "error initializing TW2804 channel %d\n", dec->channel); return -EIO; } } if (input > 1) return -EINVAL; if (input == dec->input) return 0; reg = read_reg(client, 0x22, dec->channel); if (reg >= 0) { if (input == 0) reg &= ~(1 << 2); else reg |= 1 << 2; reg = write_reg(client, 0x22, reg, dec->channel); } if (reg >= 0) dec->input = input; else return reg; return 0; } static const struct v4l2_ctrl_ops tw2804_ctrl_ops = { .g_volatile_ctrl = tw2804_g_volatile_ctrl, .s_ctrl = tw2804_s_ctrl, }; static const struct v4l2_subdev_video_ops tw2804_video_ops = { .s_std = tw2804_s_std, .s_routing = tw2804_s_video_routing, }; static const struct v4l2_subdev_core_ops tw2804_core_ops = { .log_status = tw2804_log_status, }; static const struct v4l2_subdev_ops tw2804_ops = { .core = &tw2804_core_ops, .video = &tw2804_video_ops, }; static int tw2804_probe(struct i2c_client *client) { struct i2c_adapter *adapter = client->adapter; struct tw2804 *state; struct v4l2_subdev *sd; struct v4l2_ctrl *ctrl; int err; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL); if (state == NULL) return -ENOMEM; sd = &state->sd; v4l2_i2c_subdev_init(sd, client, &tw2804_ops); state->channel = -1; state->norm = V4L2_STD_NTSC; v4l2_ctrl_handler_init(&state->hdl, 10); v4l2_ctrl_new_std(&state->hdl, &tw2804_ctrl_ops, V4L2_CID_BRIGHTNESS, 0, 255, 1, 128); v4l2_ctrl_new_std(&state->hdl, &tw2804_ctrl_ops, V4L2_CID_CONTRAST, 0, 255, 1, 128); v4l2_ctrl_new_std(&state->hdl, &tw2804_ctrl_ops, V4L2_CID_SATURATION, 0, 255, 1, 128); v4l2_ctrl_new_std(&state->hdl, &tw2804_ctrl_ops, V4L2_CID_HUE, 0, 255, 1, 128); v4l2_ctrl_new_std(&state->hdl, &tw2804_ctrl_ops, V4L2_CID_COLOR_KILLER, 0, 1, 1, 0); v4l2_ctrl_new_std(&state->hdl, &tw2804_ctrl_ops, V4L2_CID_AUTOGAIN, 0, 1, 1, 0); ctrl = v4l2_ctrl_new_std(&state->hdl, &tw2804_ctrl_ops, V4L2_CID_GAIN, 0, 255, 1, 128); if (ctrl) ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE; ctrl = v4l2_ctrl_new_std(&state->hdl, &tw2804_ctrl_ops, V4L2_CID_CHROMA_GAIN, 0, 255, 1, 128); if (ctrl) ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE; ctrl = v4l2_ctrl_new_std(&state->hdl, &tw2804_ctrl_ops, V4L2_CID_BLUE_BALANCE, 0, 255, 1, 122); if (ctrl) ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE; ctrl = v4l2_ctrl_new_std(&state->hdl, &tw2804_ctrl_ops, V4L2_CID_RED_BALANCE, 0, 255, 1, 122); if (ctrl) ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE; sd->ctrl_handler = &state->hdl; err = state->hdl.error; if (err) { v4l2_ctrl_handler_free(&state->hdl); return err; } v4l_info(client, "chip found @ 0x%02x (%s)\n", client->addr << 1, client->adapter->name); return 0; } static void tw2804_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct tw2804 *state = to_state(sd); v4l2_device_unregister_subdev(sd); v4l2_ctrl_handler_free(&state->hdl); } static const struct i2c_device_id tw2804_id[] = { { "tw2804" }, { } }; MODULE_DEVICE_TABLE(i2c, tw2804_id); static struct i2c_driver tw2804_driver = { .driver = { .name = "tw2804", }, .probe = tw2804_probe, .remove = tw2804_remove, .id_table = tw2804_id, }; module_i2c_driver(tw2804_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("TW2804/TW2802 V4L2 i2c driver"); MODULE_AUTHOR("Micronas USA Inc");