// SPDX-License-Identifier: GPL-2.0 /* * V4L2 Driver for Renesas Capture Engine Unit (CEU) interface * Copyright (C) 2017-2018 Jacopo Mondi * * Based on soc-camera driver "soc_camera/sh_mobile_ceu_camera.c" * Copyright (C) 2008 Magnus Damm * * Based on V4L2 Driver for PXA camera host - "pxa_camera.c", * Copyright (C) 2006, Sascha Hauer, Pengutronix * Copyright (C) 2008, Guennadi Liakhovetski */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "renesas-ceu" /* CEU registers offsets and masks. */ #define CEU_CAPSR 0x00 /* Capture start register */ #define CEU_CAPCR 0x04 /* Capture control register */ #define CEU_CAMCR 0x08 /* Capture interface control register */ #define CEU_CAMOR 0x10 /* Capture interface offset register */ #define CEU_CAPWR 0x14 /* Capture interface width register */ #define CEU_CAIFR 0x18 /* Capture interface input format register */ #define CEU_CRCNTR 0x28 /* CEU register control register */ #define CEU_CRCMPR 0x2c /* CEU register forcible control register */ #define CEU_CFLCR 0x30 /* Capture filter control register */ #define CEU_CFSZR 0x34 /* Capture filter size clip register */ #define CEU_CDWDR 0x38 /* Capture destination width register */ #define CEU_CDAYR 0x3c /* Capture data address Y register */ #define CEU_CDACR 0x40 /* Capture data address C register */ #define CEU_CFWCR 0x5c /* Firewall operation control register */ #define CEU_CDOCR 0x64 /* Capture data output control register */ #define CEU_CEIER 0x70 /* Capture event interrupt enable register */ #define CEU_CETCR 0x74 /* Capture event flag clear register */ #define CEU_CSTSR 0x7c /* Capture status register */ #define CEU_CSRTR 0x80 /* Capture software reset register */ /* Data synchronous fetch mode. */ #define CEU_CAMCR_JPEG BIT(4) /* Input components ordering: CEU_CAMCR.DTARY field. */ #define CEU_CAMCR_DTARY_8_UYVY (0x00 << 8) #define CEU_CAMCR_DTARY_8_VYUY (0x01 << 8) #define CEU_CAMCR_DTARY_8_YUYV (0x02 << 8) #define CEU_CAMCR_DTARY_8_YVYU (0x03 << 8) /* TODO: input components ordering for 16 bits input. */ /* Bus transfer MTU. */ #define CEU_CAPCR_BUS_WIDTH256 (0x3 << 20) /* Bus width configuration. */ #define CEU_CAMCR_DTIF_16BITS BIT(12) /* No downsampling to planar YUV420 in image fetch mode. */ #define CEU_CDOCR_NO_DOWSAMPLE BIT(4) /* Swap all input data in 8-bit, 16-bits and 32-bits units (Figure 46.45). */ #define CEU_CDOCR_SWAP_ENDIANNESS (7) /* Capture reset and enable bits. */ #define CEU_CAPSR_CPKIL BIT(16) #define CEU_CAPSR_CE BIT(0) /* CEU operating flag bit. */ #define CEU_CAPCR_CTNCP BIT(16) #define CEU_CSTRST_CPTON BIT(0) /* Platform specific IRQ source flags. */ #define CEU_CETCR_ALL_IRQS_RZ 0x397f313 #define CEU_CETCR_ALL_IRQS_SH4 0x3d7f313 /* Prohibited register access interrupt bit. */ #define CEU_CETCR_IGRW BIT(4) /* One-frame capture end interrupt. */ #define CEU_CEIER_CPE BIT(0) /* VBP error. */ #define CEU_CEIER_VBP BIT(20) #define CEU_CEIER_MASK (CEU_CEIER_CPE | CEU_CEIER_VBP) #define CEU_MAX_WIDTH 2560 #define CEU_MAX_HEIGHT 1920 #define CEU_MAX_BPL 8188 #define CEU_W_MAX(w) ((w) < CEU_MAX_WIDTH ? (w) : CEU_MAX_WIDTH) #define CEU_H_MAX(h) ((h) < CEU_MAX_HEIGHT ? (h) : CEU_MAX_HEIGHT) /* * ceu_bus_fmt - describe a 8-bits yuyv format the sensor can produce * * @mbus_code: bus format code * @fmt_order: CEU_CAMCR.DTARY ordering of input components (Y, Cb, Cr) * @fmt_order_swap: swapped CEU_CAMCR.DTARY ordering of input components * (Y, Cr, Cb) * @swapped: does Cr appear before Cb? * @bps: number of bits sent over bus for each sample * @bpp: number of bits per pixels unit */ struct ceu_mbus_fmt { u32 mbus_code; u32 fmt_order; u32 fmt_order_swap; bool swapped; u8 bps; u8 bpp; }; /* * ceu_buffer - Link vb2 buffer to the list of available buffers. */ struct ceu_buffer { struct vb2_v4l2_buffer vb; struct list_head queue; }; static inline struct ceu_buffer *vb2_to_ceu(struct vb2_v4l2_buffer *vbuf) { return container_of(vbuf, struct ceu_buffer, vb); } /* * ceu_subdev - Wraps v4l2 sub-device and provides async subdevice. */ struct ceu_subdev { struct v4l2_subdev *v4l2_sd; struct v4l2_async_subdev asd; /* per-subdevice mbus configuration options */ unsigned int mbus_flags; struct ceu_mbus_fmt mbus_fmt; }; static struct ceu_subdev *to_ceu_subdev(struct v4l2_async_subdev *asd) { return container_of(asd, struct ceu_subdev, asd); } /* * ceu_device - CEU device instance */ struct ceu_device { struct device *dev; struct video_device vdev; struct v4l2_device v4l2_dev; /* subdevices descriptors */ struct ceu_subdev *subdevs; /* the subdevice currently in use */ struct ceu_subdev *sd; unsigned int sd_index; unsigned int num_sd; /* platform specific mask with all IRQ sources flagged */ u32 irq_mask; /* currently configured field and pixel format */ enum v4l2_field field; struct v4l2_pix_format_mplane v4l2_pix; /* async subdev notification helpers */ struct v4l2_async_notifier notifier; /* vb2 queue, capture buffer list and active buffer pointer */ struct vb2_queue vb2_vq; struct list_head capture; struct vb2_v4l2_buffer *active; unsigned int sequence; /* mlock - lock access to interface reset and vb2 queue */ struct mutex mlock; /* lock - lock access to capture buffer queue and active buffer */ spinlock_t lock; /* base - CEU memory base address */ void __iomem *base; }; static inline struct ceu_device *v4l2_to_ceu(struct v4l2_device *v4l2_dev) { return container_of(v4l2_dev, struct ceu_device, v4l2_dev); } /* --- CEU memory output formats --- */ /* * ceu_fmt - describe a memory output format supported by CEU interface. * * @fourcc: memory layout fourcc format code * @bpp: number of bits for each pixel stored in memory */ struct ceu_fmt { u32 fourcc; u32 bpp; }; /* * ceu_format_list - List of supported memory output formats * * If sensor provides any YUYV bus format, all the following planar memory * formats are available thanks to CEU re-ordering and sub-sampling * capabilities. */ static const struct ceu_fmt ceu_fmt_list[] = { { .fourcc = V4L2_PIX_FMT_NV16, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_NV61, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_NV12, .bpp = 12, }, { .fourcc = V4L2_PIX_FMT_NV21, .bpp = 12, }, { .fourcc = V4L2_PIX_FMT_YUYV, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_UYVY, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_YVYU, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_VYUY, .bpp = 16, }, }; static const struct ceu_fmt *get_ceu_fmt_from_fourcc(unsigned int fourcc) { const struct ceu_fmt *fmt = &ceu_fmt_list[0]; unsigned int i; for (i = 0; i < ARRAY_SIZE(ceu_fmt_list); i++, fmt++) if (fmt->fourcc == fourcc) return fmt; return NULL; } static bool ceu_fmt_mplane(struct v4l2_pix_format_mplane *pix) { switch (pix->pixelformat) { case V4L2_PIX_FMT_YUYV: case V4L2_PIX_FMT_UYVY: case V4L2_PIX_FMT_YVYU: case V4L2_PIX_FMT_VYUY: return false; case V4L2_PIX_FMT_NV16: case V4L2_PIX_FMT_NV61: case V4L2_PIX_FMT_NV12: case V4L2_PIX_FMT_NV21: return true; default: return false; } } /* --- CEU HW operations --- */ static void ceu_write(struct ceu_device *priv, unsigned int reg_offs, u32 data) { iowrite32(data, priv->base + reg_offs); } static u32 ceu_read(struct ceu_device *priv, unsigned int reg_offs) { return ioread32(priv->base + reg_offs); } /* * ceu_soft_reset() - Software reset the CEU interface. * @ceu_device: CEU device. * * Returns 0 for success, -EIO for error. */ static int ceu_soft_reset(struct ceu_device *ceudev) { unsigned int i; ceu_write(ceudev, CEU_CAPSR, CEU_CAPSR_CPKIL); for (i = 0; i < 100; i++) { if (!(ceu_read(ceudev, CEU_CSTSR) & CEU_CSTRST_CPTON)) break; udelay(1); } if (i == 100) { dev_err(ceudev->dev, "soft reset time out\n"); return -EIO; } for (i = 0; i < 100; i++) { if (!(ceu_read(ceudev, CEU_CAPSR) & CEU_CAPSR_CPKIL)) return 0; udelay(1); } /* If we get here, CEU has not reset properly. */ return -EIO; } /* --- CEU Capture Operations --- */ /* * ceu_hw_config() - Configure CEU interface registers. */ static int ceu_hw_config(struct ceu_device *ceudev) { u32 camcr, cdocr, cfzsr, cdwdr, capwr; struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix; struct ceu_subdev *ceu_sd = ceudev->sd; struct ceu_mbus_fmt *mbus_fmt = &ceu_sd->mbus_fmt; unsigned int mbus_flags = ceu_sd->mbus_flags; /* Start configuring CEU registers */ ceu_write(ceudev, CEU_CAIFR, 0); ceu_write(ceudev, CEU_CFWCR, 0); ceu_write(ceudev, CEU_CRCNTR, 0); ceu_write(ceudev, CEU_CRCMPR, 0); /* Set the frame capture period for both image capture and data sync. */ capwr = (pix->height << 16) | pix->width * mbus_fmt->bpp / 8; /* * Swap input data endianness by default. * In data fetch mode bytes are received in chunks of 8 bytes. * D0, D1, D2, D3, D4, D5, D6, D7 (D0 received first) * The data is however by default written to memory in reverse order: * D7, D6, D5, D4, D3, D2, D1, D0 (D7 written to lowest byte) * * Use CEU_CDOCR[2:0] to swap data ordering. */ cdocr = CEU_CDOCR_SWAP_ENDIANNESS; /* * Configure CAMCR and CDOCR: * match input components ordering with memory output format and * handle downsampling to YUV420. * * If the memory output planar format is 'swapped' (Cr before Cb) and * input format is not, use the swapped version of CAMCR.DTARY. * * If the memory output planar format is not 'swapped' (Cb before Cr) * and input format is, use the swapped version of CAMCR.DTARY. * * CEU by default downsample to planar YUV420 (CDCOR[4] = 0). * If output is planar YUV422 set CDOCR[4] = 1 * * No downsample for data fetch sync mode. */ switch (pix->pixelformat) { /* Data fetch sync mode */ case V4L2_PIX_FMT_YUYV: case V4L2_PIX_FMT_YVYU: case V4L2_PIX_FMT_UYVY: case V4L2_PIX_FMT_VYUY: camcr = CEU_CAMCR_JPEG; cdocr |= CEU_CDOCR_NO_DOWSAMPLE; cfzsr = (pix->height << 16) | pix->width; cdwdr = pix->plane_fmt[0].bytesperline; break; /* Non-swapped planar image capture mode. */ case V4L2_PIX_FMT_NV16: cdocr |= CEU_CDOCR_NO_DOWSAMPLE; fallthrough; case V4L2_PIX_FMT_NV12: if (mbus_fmt->swapped) camcr = mbus_fmt->fmt_order_swap; else camcr = mbus_fmt->fmt_order; cfzsr = (pix->height << 16) | pix->width; cdwdr = pix->width; break; /* Swapped planar image capture mode. */ case V4L2_PIX_FMT_NV61: cdocr |= CEU_CDOCR_NO_DOWSAMPLE; fallthrough; case V4L2_PIX_FMT_NV21: if (mbus_fmt->swapped) camcr = mbus_fmt->fmt_order; else camcr = mbus_fmt->fmt_order_swap; cfzsr = (pix->height << 16) | pix->width; cdwdr = pix->width; break; default: return -EINVAL; } camcr |= mbus_flags & V4L2_MBUS_VSYNC_ACTIVE_LOW ? 1 << 1 : 0; camcr |= mbus_flags & V4L2_MBUS_HSYNC_ACTIVE_LOW ? 1 << 0 : 0; /* TODO: handle 16 bit bus width with DTIF bit in CAMCR */ ceu_write(ceudev, CEU_CAMCR, camcr); ceu_write(ceudev, CEU_CDOCR, cdocr); ceu_write(ceudev, CEU_CAPCR, CEU_CAPCR_BUS_WIDTH256); /* * TODO: make CAMOR offsets configurable. * CAMOR wants to know the number of blanks between a VS/HS signal * and valid data. This value should actually come from the sensor... */ ceu_write(ceudev, CEU_CAMOR, 0); /* TODO: 16 bit bus width require re-calculation of cdwdr and cfzsr */ ceu_write(ceudev, CEU_CAPWR, capwr); ceu_write(ceudev, CEU_CFSZR, cfzsr); ceu_write(ceudev, CEU_CDWDR, cdwdr); return 0; } /* * ceu_capture() - Trigger start of a capture sequence. * * Program the CEU DMA registers with addresses where to transfer image data. */ static int ceu_capture(struct ceu_device *ceudev) { struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix; dma_addr_t phys_addr_top; phys_addr_top = vb2_dma_contig_plane_dma_addr(&ceudev->active->vb2_buf, 0); ceu_write(ceudev, CEU_CDAYR, phys_addr_top); /* Ignore CbCr plane for non multi-planar image formats. */ if (ceu_fmt_mplane(pix)) { phys_addr_top = vb2_dma_contig_plane_dma_addr(&ceudev->active->vb2_buf, 1); ceu_write(ceudev, CEU_CDACR, phys_addr_top); } /* * Trigger new capture start: once for each frame, as we work in * one-frame capture mode. */ ceu_write(ceudev, CEU_CAPSR, CEU_CAPSR_CE); return 0; } static irqreturn_t ceu_irq(int irq, void *data) { struct ceu_device *ceudev = data; struct vb2_v4l2_buffer *vbuf; struct ceu_buffer *buf; u32 status; /* Clean interrupt status. */ status = ceu_read(ceudev, CEU_CETCR); ceu_write(ceudev, CEU_CETCR, ~ceudev->irq_mask); /* Unexpected interrupt. */ if (!(status & CEU_CEIER_MASK)) return IRQ_NONE; spin_lock(&ceudev->lock); /* Stale interrupt from a released buffer, ignore it. */ vbuf = ceudev->active; if (!vbuf) { spin_unlock(&ceudev->lock); return IRQ_HANDLED; } /* * When a VBP interrupt occurs, no capture end interrupt will occur * and the image of that frame is not captured correctly. */ if (status & CEU_CEIER_VBP) { dev_err(ceudev->dev, "VBP interrupt: abort capture\n"); goto error_irq_out; } /* Prepare to return the 'previous' buffer. */ vbuf->vb2_buf.timestamp = ktime_get_ns(); vbuf->sequence = ceudev->sequence++; vbuf->field = ceudev->field; /* Prepare a new 'active' buffer and trigger a new capture. */ if (!list_empty(&ceudev->capture)) { buf = list_first_entry(&ceudev->capture, struct ceu_buffer, queue); list_del(&buf->queue); ceudev->active = &buf->vb; ceu_capture(ceudev); } /* Return the 'previous' buffer. */ vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_DONE); spin_unlock(&ceudev->lock); return IRQ_HANDLED; error_irq_out: /* Return the 'previous' buffer and all queued ones. */ vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_ERROR); list_for_each_entry(buf, &ceudev->capture, queue) vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR); spin_unlock(&ceudev->lock); return IRQ_HANDLED; } /* --- CEU Videobuf2 operations --- */ static void ceu_update_plane_sizes(struct v4l2_plane_pix_format *plane, unsigned int bpl, unsigned int szimage) { memset(plane, 0, sizeof(*plane)); plane->sizeimage = szimage; if (plane->bytesperline < bpl || plane->bytesperline > CEU_MAX_BPL) plane->bytesperline = bpl; } /* * ceu_calc_plane_sizes() - Fill per-plane 'struct v4l2_plane_pix_format' * information according to the currently configured * pixel format. * @ceu_device: CEU device. * @ceu_fmt: Active image format. * @pix: Pixel format information (store line width and image sizes) */ static void ceu_calc_plane_sizes(struct ceu_device *ceudev, const struct ceu_fmt *ceu_fmt, struct v4l2_pix_format_mplane *pix) { unsigned int bpl, szimage; switch (pix->pixelformat) { case V4L2_PIX_FMT_YUYV: case V4L2_PIX_FMT_UYVY: case V4L2_PIX_FMT_YVYU: case V4L2_PIX_FMT_VYUY: pix->num_planes = 1; bpl = pix->width * ceu_fmt->bpp / 8; szimage = pix->height * bpl; ceu_update_plane_sizes(&pix->plane_fmt[0], bpl, szimage); break; case V4L2_PIX_FMT_NV12: case V4L2_PIX_FMT_NV21: pix->num_planes = 2; bpl = pix->width; szimage = pix->height * pix->width; ceu_update_plane_sizes(&pix->plane_fmt[0], bpl, szimage); ceu_update_plane_sizes(&pix->plane_fmt[1], bpl, szimage / 2); break; case V4L2_PIX_FMT_NV16: case V4L2_PIX_FMT_NV61: default: pix->num_planes = 2; bpl = pix->width; szimage = pix->height * pix->width; ceu_update_plane_sizes(&pix->plane_fmt[0], bpl, szimage); ceu_update_plane_sizes(&pix->plane_fmt[1], bpl, szimage); break; } } /* * ceu_vb2_setup() - is called to check whether the driver can accept the * requested number of buffers and to fill in plane sizes * for the current frame format, if required. */ static int ceu_vb2_setup(struct vb2_queue *vq, unsigned int *count, unsigned int *num_planes, unsigned int sizes[], struct device *alloc_devs[]) { struct ceu_device *ceudev = vb2_get_drv_priv(vq); struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix; unsigned int i; /* num_planes is set: just check plane sizes. */ if (*num_planes) { for (i = 0; i < pix->num_planes; i++) if (sizes[i] < pix->plane_fmt[i].sizeimage) return -EINVAL; return 0; } /* num_planes not set: called from REQBUFS, just set plane sizes. */ *num_planes = pix->num_planes; for (i = 0; i < pix->num_planes; i++) sizes[i] = pix->plane_fmt[i].sizeimage; return 0; } static void ceu_vb2_queue(struct vb2_buffer *vb) { struct ceu_device *ceudev = vb2_get_drv_priv(vb->vb2_queue); struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct ceu_buffer *buf = vb2_to_ceu(vbuf); unsigned long irqflags; spin_lock_irqsave(&ceudev->lock, irqflags); list_add_tail(&buf->queue, &ceudev->capture); spin_unlock_irqrestore(&ceudev->lock, irqflags); } static int ceu_vb2_prepare(struct vb2_buffer *vb) { struct ceu_device *ceudev = vb2_get_drv_priv(vb->vb2_queue); struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix; unsigned int i; for (i = 0; i < pix->num_planes; i++) { if (vb2_plane_size(vb, i) < pix->plane_fmt[i].sizeimage) { dev_err(ceudev->dev, "Plane size too small (%lu < %u)\n", vb2_plane_size(vb, i), pix->plane_fmt[i].sizeimage); return -EINVAL; } vb2_set_plane_payload(vb, i, pix->plane_fmt[i].sizeimage); } return 0; } static int ceu_start_streaming(struct vb2_queue *vq, unsigned int count) { struct ceu_device *ceudev = vb2_get_drv_priv(vq); struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd; struct ceu_buffer *buf; unsigned long irqflags; int ret; /* Program the CEU interface according to the CEU image format. */ ret = ceu_hw_config(ceudev); if (ret) goto error_return_bufs; ret = v4l2_subdev_call(v4l2_sd, video, s_stream, 1); if (ret && ret != -ENOIOCTLCMD) { dev_dbg(ceudev->dev, "Subdevice failed to start streaming: %d\n", ret); goto error_return_bufs; } spin_lock_irqsave(&ceudev->lock, irqflags); ceudev->sequence = 0; /* Grab the first available buffer and trigger the first capture. */ buf = list_first_entry(&ceudev->capture, struct ceu_buffer, queue); if (!buf) { spin_unlock_irqrestore(&ceudev->lock, irqflags); dev_dbg(ceudev->dev, "No buffer available for capture.\n"); goto error_stop_sensor; } list_del(&buf->queue); ceudev->active = &buf->vb; /* Clean and program interrupts for first capture. */ ceu_write(ceudev, CEU_CETCR, ~ceudev->irq_mask); ceu_write(ceudev, CEU_CEIER, CEU_CEIER_MASK); ceu_capture(ceudev); spin_unlock_irqrestore(&ceudev->lock, irqflags); return 0; error_stop_sensor: v4l2_subdev_call(v4l2_sd, video, s_stream, 0); error_return_bufs: spin_lock_irqsave(&ceudev->lock, irqflags); list_for_each_entry(buf, &ceudev->capture, queue) vb2_buffer_done(&ceudev->active->vb2_buf, VB2_BUF_STATE_QUEUED); ceudev->active = NULL; spin_unlock_irqrestore(&ceudev->lock, irqflags); return ret; } static void ceu_stop_streaming(struct vb2_queue *vq) { struct ceu_device *ceudev = vb2_get_drv_priv(vq); struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd; struct ceu_buffer *buf; unsigned long irqflags; /* Clean and disable interrupt sources. */ ceu_write(ceudev, CEU_CETCR, ceu_read(ceudev, CEU_CETCR) & ceudev->irq_mask); ceu_write(ceudev, CEU_CEIER, CEU_CEIER_MASK); v4l2_subdev_call(v4l2_sd, video, s_stream, 0); spin_lock_irqsave(&ceudev->lock, irqflags); if (ceudev->active) { vb2_buffer_done(&ceudev->active->vb2_buf, VB2_BUF_STATE_ERROR); ceudev->active = NULL; } /* Release all queued buffers. */ list_for_each_entry(buf, &ceudev->capture, queue) vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR); INIT_LIST_HEAD(&ceudev->capture); spin_unlock_irqrestore(&ceudev->lock, irqflags); ceu_soft_reset(ceudev); } static const struct vb2_ops ceu_vb2_ops = { .queue_setup = ceu_vb2_setup, .buf_queue = ceu_vb2_queue, .buf_prepare = ceu_vb2_prepare, .wait_prepare = vb2_ops_wait_prepare, .wait_finish = vb2_ops_wait_finish, .start_streaming = ceu_start_streaming, .stop_streaming = ceu_stop_streaming, }; /* --- CEU image formats handling --- */ /* * __ceu_try_fmt() - test format on CEU and sensor * @ceudev: The CEU device. * @v4l2_fmt: format to test. * @sd_mbus_code: the media bus code accepted by the subdevice; output param. * * Returns 0 for success, < 0 for errors. */ static int __ceu_try_fmt(struct ceu_device *ceudev, struct v4l2_format *v4l2_fmt, u32 *sd_mbus_code) { struct ceu_subdev *ceu_sd = ceudev->sd; struct v4l2_pix_format_mplane *pix = &v4l2_fmt->fmt.pix_mp; struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd; struct v4l2_subdev_pad_config pad_cfg; const struct ceu_fmt *ceu_fmt; u32 mbus_code_old; u32 mbus_code; int ret; /* * Set format on sensor sub device: bus format used to produce memory * format is selected depending on YUV component ordering or * at initialization time. */ struct v4l2_subdev_format sd_format = { .which = V4L2_SUBDEV_FORMAT_TRY, }; mbus_code_old = ceu_sd->mbus_fmt.mbus_code; switch (pix->pixelformat) { case V4L2_PIX_FMT_YUYV: mbus_code = MEDIA_BUS_FMT_YUYV8_2X8; break; case V4L2_PIX_FMT_UYVY: mbus_code = MEDIA_BUS_FMT_UYVY8_2X8; break; case V4L2_PIX_FMT_YVYU: mbus_code = MEDIA_BUS_FMT_YVYU8_2X8; break; case V4L2_PIX_FMT_VYUY: mbus_code = MEDIA_BUS_FMT_VYUY8_2X8; break; case V4L2_PIX_FMT_NV16: case V4L2_PIX_FMT_NV61: case V4L2_PIX_FMT_NV12: case V4L2_PIX_FMT_NV21: mbus_code = ceu_sd->mbus_fmt.mbus_code; break; default: pix->pixelformat = V4L2_PIX_FMT_NV16; mbus_code = ceu_sd->mbus_fmt.mbus_code; break; } ceu_fmt = get_ceu_fmt_from_fourcc(pix->pixelformat); /* CFSZR requires height and width to be 4-pixel aligned. */ v4l_bound_align_image(&pix->width, 2, CEU_MAX_WIDTH, 4, &pix->height, 4, CEU_MAX_HEIGHT, 4, 0); v4l2_fill_mbus_format_mplane(&sd_format.format, pix); /* * Try with the mbus_code matching YUYV components ordering first, * if that one fails, fallback to default selected at initialization * time. */ sd_format.format.code = mbus_code; ret = v4l2_subdev_call(v4l2_sd, pad, set_fmt, &pad_cfg, &sd_format); if (ret) { if (ret == -EINVAL) { /* fallback */ sd_format.format.code = mbus_code_old; ret = v4l2_subdev_call(v4l2_sd, pad, set_fmt, &pad_cfg, &sd_format); } if (ret) return ret; } /* Apply size returned by sensor as the CEU can't scale. */ v4l2_fill_pix_format_mplane(pix, &sd_format.format); /* Calculate per-plane sizes based on image format. */ ceu_calc_plane_sizes(ceudev, ceu_fmt, pix); /* Report to caller the configured mbus format. */ *sd_mbus_code = sd_format.format.code; return 0; } /* * ceu_try_fmt() - Wrapper for __ceu_try_fmt; discard configured mbus_fmt */ static int ceu_try_fmt(struct ceu_device *ceudev, struct v4l2_format *v4l2_fmt) { u32 mbus_code; return __ceu_try_fmt(ceudev, v4l2_fmt, &mbus_code); } /* * ceu_set_fmt() - Apply the supplied format to both sensor and CEU */ static int ceu_set_fmt(struct ceu_device *ceudev, struct v4l2_format *v4l2_fmt) { struct ceu_subdev *ceu_sd = ceudev->sd; struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd; u32 mbus_code; int ret; /* * Set format on sensor sub device: bus format used to produce memory * format is selected at initialization time. */ struct v4l2_subdev_format format = { .which = V4L2_SUBDEV_FORMAT_ACTIVE, }; ret = __ceu_try_fmt(ceudev, v4l2_fmt, &mbus_code); if (ret) return ret; format.format.code = mbus_code; v4l2_fill_mbus_format_mplane(&format.format, &v4l2_fmt->fmt.pix_mp); ret = v4l2_subdev_call(v4l2_sd, pad, set_fmt, NULL, &format); if (ret) return ret; ceudev->v4l2_pix = v4l2_fmt->fmt.pix_mp; ceudev->field = V4L2_FIELD_NONE; return 0; } /* * ceu_set_default_fmt() - Apply default NV16 memory output format with VGA * sizes. */ static int ceu_set_default_fmt(struct ceu_device *ceudev) { int ret; struct v4l2_format v4l2_fmt = { .type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE, .fmt.pix_mp = { .width = VGA_WIDTH, .height = VGA_HEIGHT, .field = V4L2_FIELD_NONE, .pixelformat = V4L2_PIX_FMT_NV16, .num_planes = 2, .plane_fmt = { [0] = { .sizeimage = VGA_WIDTH * VGA_HEIGHT * 2, .bytesperline = VGA_WIDTH * 2, }, [1] = { .sizeimage = VGA_WIDTH * VGA_HEIGHT * 2, .bytesperline = VGA_WIDTH * 2, }, }, }, }; ret = ceu_try_fmt(ceudev, &v4l2_fmt); if (ret) return ret; ceudev->v4l2_pix = v4l2_fmt.fmt.pix_mp; ceudev->field = V4L2_FIELD_NONE; return 0; } /* * ceu_init_mbus_fmt() - Query sensor for supported formats and initialize * CEU media bus format used to produce memory formats. * * Find out if sensor can produce a permutation of 8-bits YUYV bus format. * From a single 8-bits YUYV bus format the CEU can produce several memory * output formats: * - NV[12|21|16|61] through image fetch mode; * - YUYV422 if sensor provides YUYV422 * * TODO: Other YUYV422 permutations through data fetch sync mode and DTARY * TODO: Binary data (eg. JPEG) and raw formats through data fetch sync mode */ static int ceu_init_mbus_fmt(struct ceu_device *ceudev) { struct ceu_subdev *ceu_sd = ceudev->sd; struct ceu_mbus_fmt *mbus_fmt = &ceu_sd->mbus_fmt; struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd; bool yuyv_bus_fmt = false; struct v4l2_subdev_mbus_code_enum sd_mbus_fmt = { .which = V4L2_SUBDEV_FORMAT_ACTIVE, .index = 0, }; /* Find out if sensor can produce any permutation of 8-bits YUYV422. */ while (!yuyv_bus_fmt && !v4l2_subdev_call(v4l2_sd, pad, enum_mbus_code, NULL, &sd_mbus_fmt)) { switch (sd_mbus_fmt.code) { case MEDIA_BUS_FMT_YUYV8_2X8: case MEDIA_BUS_FMT_YVYU8_2X8: case MEDIA_BUS_FMT_UYVY8_2X8: case MEDIA_BUS_FMT_VYUY8_2X8: yuyv_bus_fmt = true; break; default: /* * Only support 8-bits YUYV bus formats at the moment; * * TODO: add support for binary formats (data sync * fetch mode). */ break; } sd_mbus_fmt.index++; } if (!yuyv_bus_fmt) return -ENXIO; /* * Save the first encountered YUYV format as "mbus_fmt" and use it * to output all planar YUV422 and YUV420 (NV*) formats to memory as * well as for data synch fetch mode (YUYV - YVYU etc. ). */ mbus_fmt->mbus_code = sd_mbus_fmt.code; mbus_fmt->bps = 8; /* Annotate the selected bus format components ordering. */ switch (sd_mbus_fmt.code) { case MEDIA_BUS_FMT_YUYV8_2X8: mbus_fmt->fmt_order = CEU_CAMCR_DTARY_8_YUYV; mbus_fmt->fmt_order_swap = CEU_CAMCR_DTARY_8_YVYU; mbus_fmt->swapped = false; mbus_fmt->bpp = 16; break; case MEDIA_BUS_FMT_YVYU8_2X8: mbus_fmt->fmt_order = CEU_CAMCR_DTARY_8_YVYU; mbus_fmt->fmt_order_swap = CEU_CAMCR_DTARY_8_YUYV; mbus_fmt->swapped = true; mbus_fmt->bpp = 16; break; case MEDIA_BUS_FMT_UYVY8_2X8: mbus_fmt->fmt_order = CEU_CAMCR_DTARY_8_UYVY; mbus_fmt->fmt_order_swap = CEU_CAMCR_DTARY_8_VYUY; mbus_fmt->swapped = false; mbus_fmt->bpp = 16; break; case MEDIA_BUS_FMT_VYUY8_2X8: mbus_fmt->fmt_order = CEU_CAMCR_DTARY_8_VYUY; mbus_fmt->fmt_order_swap = CEU_CAMCR_DTARY_8_UYVY; mbus_fmt->swapped = true; mbus_fmt->bpp = 16; break; } return 0; } /* --- Runtime PM Handlers --- */ /* * ceu_runtime_resume() - soft-reset the interface and turn sensor power on. */ static int __maybe_unused ceu_runtime_resume(struct device *dev) { struct ceu_device *ceudev = dev_get_drvdata(dev); struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd; v4l2_subdev_call(v4l2_sd, core, s_power, 1); ceu_soft_reset(ceudev); return 0; } /* * ceu_runtime_suspend() - disable capture and interrupts and soft-reset. * Turn sensor power off. */ static int __maybe_unused ceu_runtime_suspend(struct device *dev) { struct ceu_device *ceudev = dev_get_drvdata(dev); struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd; v4l2_subdev_call(v4l2_sd, core, s_power, 0); ceu_write(ceudev, CEU_CEIER, 0); ceu_soft_reset(ceudev); return 0; } /* --- File Operations --- */ static int ceu_open(struct file *file) { struct ceu_device *ceudev = video_drvdata(file); int ret; ret = v4l2_fh_open(file); if (ret) return ret; mutex_lock(&ceudev->mlock); /* Causes soft-reset and sensor power on on first open */ pm_runtime_get_sync(ceudev->dev); mutex_unlock(&ceudev->mlock); return 0; } static int ceu_release(struct file *file) { struct ceu_device *ceudev = video_drvdata(file); vb2_fop_release(file); mutex_lock(&ceudev->mlock); /* Causes soft-reset and sensor power down on last close */ pm_runtime_put(ceudev->dev); mutex_unlock(&ceudev->mlock); return 0; } static const struct v4l2_file_operations ceu_fops = { .owner = THIS_MODULE, .open = ceu_open, .release = ceu_release, .unlocked_ioctl = video_ioctl2, .mmap = vb2_fop_mmap, .poll = vb2_fop_poll, }; /* --- Video Device IOCTLs --- */ static int ceu_querycap(struct file *file, void *priv, struct v4l2_capability *cap) { struct ceu_device *ceudev = video_drvdata(file); strscpy(cap->card, "Renesas CEU", sizeof(cap->card)); strscpy(cap->driver, DRIVER_NAME, sizeof(cap->driver)); snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:renesas-ceu-%s", dev_name(ceudev->dev)); return 0; } static int ceu_enum_fmt_vid_cap(struct file *file, void *priv, struct v4l2_fmtdesc *f) { const struct ceu_fmt *fmt; if (f->index >= ARRAY_SIZE(ceu_fmt_list)) return -EINVAL; fmt = &ceu_fmt_list[f->index]; f->pixelformat = fmt->fourcc; return 0; } static int ceu_try_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *f) { struct ceu_device *ceudev = video_drvdata(file); return ceu_try_fmt(ceudev, f); } static int ceu_s_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *f) { struct ceu_device *ceudev = video_drvdata(file); if (vb2_is_streaming(&ceudev->vb2_vq)) return -EBUSY; return ceu_set_fmt(ceudev, f); } static int ceu_g_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *f) { struct ceu_device *ceudev = video_drvdata(file); f->fmt.pix_mp = ceudev->v4l2_pix; return 0; } static int ceu_enum_input(struct file *file, void *priv, struct v4l2_input *inp) { struct ceu_device *ceudev = video_drvdata(file); struct ceu_subdev *ceusd; if (inp->index >= ceudev->num_sd) return -EINVAL; ceusd = &ceudev->subdevs[inp->index]; inp->type = V4L2_INPUT_TYPE_CAMERA; inp->std = 0; snprintf(inp->name, sizeof(inp->name), "Camera%u: %s", inp->index, ceusd->v4l2_sd->name); return 0; } static int ceu_g_input(struct file *file, void *priv, unsigned int *i) { struct ceu_device *ceudev = video_drvdata(file); *i = ceudev->sd_index; return 0; } static int ceu_s_input(struct file *file, void *priv, unsigned int i) { struct ceu_device *ceudev = video_drvdata(file); struct ceu_subdev *ceu_sd_old; int ret; if (i >= ceudev->num_sd) return -EINVAL; if (vb2_is_streaming(&ceudev->vb2_vq)) return -EBUSY; if (i == ceudev->sd_index) return 0; ceu_sd_old = ceudev->sd; ceudev->sd = &ceudev->subdevs[i]; /* * Make sure we can generate output image formats and apply * default one. */ ret = ceu_init_mbus_fmt(ceudev); if (ret) { ceudev->sd = ceu_sd_old; return -EINVAL; } ret = ceu_set_default_fmt(ceudev); if (ret) { ceudev->sd = ceu_sd_old; return -EINVAL; } /* Now that we're sure we can use the sensor, power off the old one. */ v4l2_subdev_call(ceu_sd_old->v4l2_sd, core, s_power, 0); v4l2_subdev_call(ceudev->sd->v4l2_sd, core, s_power, 1); ceudev->sd_index = i; return 0; } static int ceu_g_parm(struct file *file, void *fh, struct v4l2_streamparm *a) { struct ceu_device *ceudev = video_drvdata(file); return v4l2_g_parm_cap(video_devdata(file), ceudev->sd->v4l2_sd, a); } static int ceu_s_parm(struct file *file, void *fh, struct v4l2_streamparm *a) { struct ceu_device *ceudev = video_drvdata(file); return v4l2_s_parm_cap(video_devdata(file), ceudev->sd->v4l2_sd, a); } static int ceu_enum_framesizes(struct file *file, void *fh, struct v4l2_frmsizeenum *fsize) { struct ceu_device *ceudev = video_drvdata(file); struct ceu_subdev *ceu_sd = ceudev->sd; const struct ceu_fmt *ceu_fmt; struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd; int ret; struct v4l2_subdev_frame_size_enum fse = { .code = ceu_sd->mbus_fmt.mbus_code, .index = fsize->index, .which = V4L2_SUBDEV_FORMAT_ACTIVE, }; /* Just check if user supplied pixel format is supported. */ ceu_fmt = get_ceu_fmt_from_fourcc(fsize->pixel_format); if (!ceu_fmt) return -EINVAL; ret = v4l2_subdev_call(v4l2_sd, pad, enum_frame_size, NULL, &fse); if (ret) return ret; fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE; fsize->discrete.width = CEU_W_MAX(fse.max_width); fsize->discrete.height = CEU_H_MAX(fse.max_height); return 0; } static int ceu_enum_frameintervals(struct file *file, void *fh, struct v4l2_frmivalenum *fival) { struct ceu_device *ceudev = video_drvdata(file); struct ceu_subdev *ceu_sd = ceudev->sd; const struct ceu_fmt *ceu_fmt; struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd; int ret; struct v4l2_subdev_frame_interval_enum fie = { .code = ceu_sd->mbus_fmt.mbus_code, .index = fival->index, .width = fival->width, .height = fival->height, .which = V4L2_SUBDEV_FORMAT_ACTIVE, }; /* Just check if user supplied pixel format is supported. */ ceu_fmt = get_ceu_fmt_from_fourcc(fival->pixel_format); if (!ceu_fmt) return -EINVAL; ret = v4l2_subdev_call(v4l2_sd, pad, enum_frame_interval, NULL, &fie); if (ret) return ret; fival->type = V4L2_FRMIVAL_TYPE_DISCRETE; fival->discrete = fie.interval; return 0; } static const struct v4l2_ioctl_ops ceu_ioctl_ops = { .vidioc_querycap = ceu_querycap, .vidioc_enum_fmt_vid_cap = ceu_enum_fmt_vid_cap, .vidioc_try_fmt_vid_cap_mplane = ceu_try_fmt_vid_cap, .vidioc_s_fmt_vid_cap_mplane = ceu_s_fmt_vid_cap, .vidioc_g_fmt_vid_cap_mplane = ceu_g_fmt_vid_cap, .vidioc_enum_input = ceu_enum_input, .vidioc_g_input = ceu_g_input, .vidioc_s_input = ceu_s_input, .vidioc_reqbufs = vb2_ioctl_reqbufs, .vidioc_querybuf = vb2_ioctl_querybuf, .vidioc_qbuf = vb2_ioctl_qbuf, .vidioc_expbuf = vb2_ioctl_expbuf, .vidioc_dqbuf = vb2_ioctl_dqbuf, .vidioc_create_bufs = vb2_ioctl_create_bufs, .vidioc_prepare_buf = vb2_ioctl_prepare_buf, .vidioc_streamon = vb2_ioctl_streamon, .vidioc_streamoff = vb2_ioctl_streamoff, .vidioc_g_parm = ceu_g_parm, .vidioc_s_parm = ceu_s_parm, .vidioc_enum_framesizes = ceu_enum_framesizes, .vidioc_enum_frameintervals = ceu_enum_frameintervals, .vidioc_log_status = v4l2_ctrl_log_status, .vidioc_subscribe_event = v4l2_ctrl_subscribe_event, .vidioc_unsubscribe_event = v4l2_event_unsubscribe, }; /* * ceu_vdev_release() - release CEU video device memory when last reference * to this driver is closed */ static void ceu_vdev_release(struct video_device *vdev) { struct ceu_device *ceudev = video_get_drvdata(vdev); kfree(ceudev); } static int ceu_notify_bound(struct v4l2_async_notifier *notifier, struct v4l2_subdev *v4l2_sd, struct v4l2_async_subdev *asd) { struct v4l2_device *v4l2_dev = notifier->v4l2_dev; struct ceu_device *ceudev = v4l2_to_ceu(v4l2_dev); struct ceu_subdev *ceu_sd = to_ceu_subdev(asd); ceu_sd->v4l2_sd = v4l2_sd; ceudev->num_sd++; return 0; } static int ceu_notify_complete(struct v4l2_async_notifier *notifier) { struct v4l2_device *v4l2_dev = notifier->v4l2_dev; struct ceu_device *ceudev = v4l2_to_ceu(v4l2_dev); struct video_device *vdev = &ceudev->vdev; struct vb2_queue *q = &ceudev->vb2_vq; struct v4l2_subdev *v4l2_sd; int ret; /* Initialize vb2 queue. */ q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE; q->io_modes = VB2_MMAP | VB2_DMABUF; q->drv_priv = ceudev; q->ops = &ceu_vb2_ops; q->mem_ops = &vb2_dma_contig_memops; q->buf_struct_size = sizeof(struct ceu_buffer); q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC; q->min_buffers_needed = 2; q->lock = &ceudev->mlock; q->dev = ceudev->v4l2_dev.dev; ret = vb2_queue_init(q); if (ret) return ret; /* * Make sure at least one sensor is primary and use it to initialize * ceu formats. */ if (!ceudev->sd) { ceudev->sd = &ceudev->subdevs[0]; ceudev->sd_index = 0; } v4l2_sd = ceudev->sd->v4l2_sd; ret = ceu_init_mbus_fmt(ceudev); if (ret) return ret; ret = ceu_set_default_fmt(ceudev); if (ret) return ret; /* Register the video device. */ strscpy(vdev->name, DRIVER_NAME, sizeof(vdev->name)); vdev->v4l2_dev = v4l2_dev; vdev->lock = &ceudev->mlock; vdev->queue = &ceudev->vb2_vq; vdev->ctrl_handler = v4l2_sd->ctrl_handler; vdev->fops = &ceu_fops; vdev->ioctl_ops = &ceu_ioctl_ops; vdev->release = ceu_vdev_release; vdev->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE | V4L2_CAP_STREAMING; video_set_drvdata(vdev, ceudev); ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1); if (ret < 0) { v4l2_err(vdev->v4l2_dev, "video_register_device failed: %d\n", ret); return ret; } return 0; } static const struct v4l2_async_notifier_operations ceu_notify_ops = { .bound = ceu_notify_bound, .complete = ceu_notify_complete, }; /* * ceu_init_async_subdevs() - Initialize CEU subdevices and async_subdevs in * ceu device. Both DT and platform data parsing use * this routine. * * Returns 0 for success, -ENOMEM for failure. */ static int ceu_init_async_subdevs(struct ceu_device *ceudev, unsigned int n_sd) { /* Reserve memory for 'n_sd' ceu_subdev descriptors. */ ceudev->subdevs = devm_kcalloc(ceudev->dev, n_sd, sizeof(*ceudev->subdevs), GFP_KERNEL); if (!ceudev->subdevs) return -ENOMEM; ceudev->sd = NULL; ceudev->sd_index = 0; ceudev->num_sd = 0; return 0; } /* * ceu_parse_platform_data() - Initialize async_subdevices using platform * device provided data. */ static int ceu_parse_platform_data(struct ceu_device *ceudev, const struct ceu_platform_data *pdata) { const struct ceu_async_subdev *async_sd; struct ceu_subdev *ceu_sd; unsigned int i; int ret; if (pdata->num_subdevs == 0) return -ENODEV; ret = ceu_init_async_subdevs(ceudev, pdata->num_subdevs); if (ret) return ret; for (i = 0; i < pdata->num_subdevs; i++) { /* Setup the ceu subdevice and the async subdevice. */ async_sd = &pdata->subdevs[i]; ceu_sd = &ceudev->subdevs[i]; INIT_LIST_HEAD(&ceu_sd->asd.list); ceu_sd->mbus_flags = async_sd->flags; ceu_sd->asd.match_type = V4L2_ASYNC_MATCH_I2C; ceu_sd->asd.match.i2c.adapter_id = async_sd->i2c_adapter_id; ceu_sd->asd.match.i2c.address = async_sd->i2c_address; ret = v4l2_async_notifier_add_subdev(&ceudev->notifier, &ceu_sd->asd); if (ret) { v4l2_async_notifier_cleanup(&ceudev->notifier); return ret; } } return pdata->num_subdevs; } /* * ceu_parse_dt() - Initialize async_subdevs parsing device tree graph. */ static int ceu_parse_dt(struct ceu_device *ceudev) { struct device_node *of = ceudev->dev->of_node; struct device_node *ep, *remote; struct ceu_subdev *ceu_sd; unsigned int i; int num_ep; int ret; num_ep = of_graph_get_endpoint_count(of); if (!num_ep) return -ENODEV; ret = ceu_init_async_subdevs(ceudev, num_ep); if (ret) return ret; for (i = 0; i < num_ep; i++) { struct v4l2_fwnode_endpoint fw_ep = { .bus_type = V4L2_MBUS_PARALLEL, .bus = { .parallel = { .flags = V4L2_MBUS_HSYNC_ACTIVE_HIGH | V4L2_MBUS_VSYNC_ACTIVE_HIGH, .bus_width = 8, }, }, }; ep = of_graph_get_endpoint_by_regs(of, 0, i); if (!ep) { dev_err(ceudev->dev, "No subdevice connected on endpoint %u.\n", i); ret = -ENODEV; goto error_cleanup; } ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep), &fw_ep); if (ret) { dev_err(ceudev->dev, "Unable to parse endpoint #%u: %d.\n", i, ret); goto error_cleanup; } /* Setup the ceu subdevice and the async subdevice. */ ceu_sd = &ceudev->subdevs[i]; INIT_LIST_HEAD(&ceu_sd->asd.list); remote = of_graph_get_remote_port_parent(ep); ceu_sd->mbus_flags = fw_ep.bus.parallel.flags; ceu_sd->asd.match_type = V4L2_ASYNC_MATCH_FWNODE; ceu_sd->asd.match.fwnode = of_fwnode_handle(remote); ret = v4l2_async_notifier_add_subdev(&ceudev->notifier, &ceu_sd->asd); if (ret) { of_node_put(remote); goto error_cleanup; } of_node_put(ep); } return num_ep; error_cleanup: v4l2_async_notifier_cleanup(&ceudev->notifier); of_node_put(ep); return ret; } /* * struct ceu_data - Platform specific CEU data * @irq_mask: CETCR mask with all interrupt sources enabled. The mask differs * between SH4 and RZ platforms. */ struct ceu_data { u32 irq_mask; }; static const struct ceu_data ceu_data_rz = { .irq_mask = CEU_CETCR_ALL_IRQS_RZ, }; static const struct ceu_data ceu_data_sh4 = { .irq_mask = CEU_CETCR_ALL_IRQS_SH4, }; #if IS_ENABLED(CONFIG_OF) static const struct of_device_id ceu_of_match[] = { { .compatible = "renesas,r7s72100-ceu", .data = &ceu_data_rz }, { .compatible = "renesas,r8a7740-ceu", .data = &ceu_data_rz }, { } }; MODULE_DEVICE_TABLE(of, ceu_of_match); #endif static int ceu_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct ceu_data *ceu_data; struct ceu_device *ceudev; struct resource *res; unsigned int irq; int num_subdevs; int ret; ceudev = kzalloc(sizeof(*ceudev), GFP_KERNEL); if (!ceudev) return -ENOMEM; platform_set_drvdata(pdev, ceudev); ceudev->dev = dev; INIT_LIST_HEAD(&ceudev->capture); spin_lock_init(&ceudev->lock); mutex_init(&ceudev->mlock); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ceudev->base = devm_ioremap_resource(dev, res); if (IS_ERR(ceudev->base)) { ret = PTR_ERR(ceudev->base); goto error_free_ceudev; } ret = platform_get_irq(pdev, 0); if (ret < 0) goto error_free_ceudev; irq = ret; ret = devm_request_irq(dev, irq, ceu_irq, 0, dev_name(dev), ceudev); if (ret) { dev_err(&pdev->dev, "Unable to request CEU interrupt.\n"); goto error_free_ceudev; } pm_runtime_enable(dev); ret = v4l2_device_register(dev, &ceudev->v4l2_dev); if (ret) goto error_pm_disable; v4l2_async_notifier_init(&ceudev->notifier); if (IS_ENABLED(CONFIG_OF) && dev->of_node) { ceu_data = of_device_get_match_data(dev); num_subdevs = ceu_parse_dt(ceudev); } else if (dev->platform_data) { /* Assume SH4 if booting with platform data. */ ceu_data = &ceu_data_sh4; num_subdevs = ceu_parse_platform_data(ceudev, dev->platform_data); } else { num_subdevs = -EINVAL; } if (num_subdevs < 0) { ret = num_subdevs; goto error_v4l2_unregister; } ceudev->irq_mask = ceu_data->irq_mask; ceudev->notifier.v4l2_dev = &ceudev->v4l2_dev; ceudev->notifier.ops = &ceu_notify_ops; ret = v4l2_async_notifier_register(&ceudev->v4l2_dev, &ceudev->notifier); if (ret) goto error_cleanup; dev_info(dev, "Renesas Capture Engine Unit %s\n", dev_name(dev)); return 0; error_cleanup: v4l2_async_notifier_cleanup(&ceudev->notifier); error_v4l2_unregister: v4l2_device_unregister(&ceudev->v4l2_dev); error_pm_disable: pm_runtime_disable(dev); error_free_ceudev: kfree(ceudev); return ret; } static int ceu_remove(struct platform_device *pdev) { struct ceu_device *ceudev = platform_get_drvdata(pdev); pm_runtime_disable(ceudev->dev); v4l2_async_notifier_unregister(&ceudev->notifier); v4l2_async_notifier_cleanup(&ceudev->notifier); v4l2_device_unregister(&ceudev->v4l2_dev); video_unregister_device(&ceudev->vdev); return 0; } static const struct dev_pm_ops ceu_pm_ops = { SET_RUNTIME_PM_OPS(ceu_runtime_suspend, ceu_runtime_resume, NULL) }; static struct platform_driver ceu_driver = { .driver = { .name = DRIVER_NAME, .pm = &ceu_pm_ops, .of_match_table = of_match_ptr(ceu_of_match), }, .probe = ceu_probe, .remove = ceu_remove, }; module_platform_driver(ceu_driver); MODULE_DESCRIPTION("Renesas CEU camera driver"); MODULE_AUTHOR("Jacopo Mondi "); MODULE_LICENSE("GPL v2");