// SPDX-License-Identifier: GPL-2.0 /* * Driver for STM32 Digital Camera Memory Interface * * Copyright (C) STMicroelectronics SA 2017 * Authors: Yannick Fertre * Hugues Fruchet * for STMicroelectronics. * * This driver is based on atmel_isi.c * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRV_NAME "stm32-dcmi" /* Registers offset for DCMI */ #define DCMI_CR 0x00 /* Control Register */ #define DCMI_SR 0x04 /* Status Register */ #define DCMI_RIS 0x08 /* Raw Interrupt Status register */ #define DCMI_IER 0x0C /* Interrupt Enable Register */ #define DCMI_MIS 0x10 /* Masked Interrupt Status register */ #define DCMI_ICR 0x14 /* Interrupt Clear Register */ #define DCMI_ESCR 0x18 /* Embedded Synchronization Code Register */ #define DCMI_ESUR 0x1C /* Embedded Synchronization Unmask Register */ #define DCMI_CWSTRT 0x20 /* Crop Window STaRT */ #define DCMI_CWSIZE 0x24 /* Crop Window SIZE */ #define DCMI_DR 0x28 /* Data Register */ #define DCMI_IDR 0x2C /* IDentifier Register */ /* Bits definition for control register (DCMI_CR) */ #define CR_CAPTURE BIT(0) #define CR_CM BIT(1) #define CR_CROP BIT(2) #define CR_JPEG BIT(3) #define CR_ESS BIT(4) #define CR_PCKPOL BIT(5) #define CR_HSPOL BIT(6) #define CR_VSPOL BIT(7) #define CR_FCRC_0 BIT(8) #define CR_FCRC_1 BIT(9) #define CR_EDM_0 BIT(10) #define CR_EDM_1 BIT(11) #define CR_ENABLE BIT(14) /* Bits definition for status register (DCMI_SR) */ #define SR_HSYNC BIT(0) #define SR_VSYNC BIT(1) #define SR_FNE BIT(2) /* * Bits definition for interrupt registers * (DCMI_RIS, DCMI_IER, DCMI_MIS, DCMI_ICR) */ #define IT_FRAME BIT(0) #define IT_OVR BIT(1) #define IT_ERR BIT(2) #define IT_VSYNC BIT(3) #define IT_LINE BIT(4) enum state { STOPPED = 0, WAIT_FOR_BUFFER, RUNNING, }; #define MIN_WIDTH 16U #define MAX_WIDTH 2592U #define MIN_HEIGHT 16U #define MAX_HEIGHT 2592U #define TIMEOUT_MS 1000 #define OVERRUN_ERROR_THRESHOLD 3 struct dcmi_format { u32 fourcc; u32 mbus_code; u8 bpp; }; struct dcmi_framesize { u32 width; u32 height; }; struct dcmi_buf { struct vb2_v4l2_buffer vb; bool prepared; dma_addr_t paddr; size_t size; struct list_head list; }; struct stm32_dcmi { /* Protects the access of variables shared within the interrupt */ spinlock_t irqlock; struct device *dev; void __iomem *regs; struct resource *res; struct reset_control *rstc; int sequence; struct list_head buffers; struct dcmi_buf *active; struct v4l2_device v4l2_dev; struct video_device *vdev; struct v4l2_async_notifier notifier; struct v4l2_subdev *source; struct v4l2_format fmt; struct v4l2_rect crop; bool do_crop; const struct dcmi_format **sd_formats; unsigned int num_of_sd_formats; const struct dcmi_format *sd_format; struct dcmi_framesize *sd_framesizes; unsigned int num_of_sd_framesizes; struct dcmi_framesize sd_framesize; struct v4l2_rect sd_bounds; /* Protect this data structure */ struct mutex lock; struct vb2_queue queue; struct v4l2_fwnode_bus_parallel bus; enum v4l2_mbus_type bus_type; struct completion complete; struct clk *mclk; enum state state; struct dma_chan *dma_chan; dma_cookie_t dma_cookie; u32 misr; int errors_count; int overrun_count; int buffers_count; /* Ensure DMA operations atomicity */ struct mutex dma_lock; struct media_device mdev; struct media_pad vid_cap_pad; struct media_pipeline pipeline; }; static inline struct stm32_dcmi *notifier_to_dcmi(struct v4l2_async_notifier *n) { return container_of(n, struct stm32_dcmi, notifier); } static inline u32 reg_read(void __iomem *base, u32 reg) { return readl_relaxed(base + reg); } static inline void reg_write(void __iomem *base, u32 reg, u32 val) { writel_relaxed(val, base + reg); } static inline void reg_set(void __iomem *base, u32 reg, u32 mask) { reg_write(base, reg, reg_read(base, reg) | mask); } static inline void reg_clear(void __iomem *base, u32 reg, u32 mask) { reg_write(base, reg, reg_read(base, reg) & ~mask); } static int dcmi_start_capture(struct stm32_dcmi *dcmi, struct dcmi_buf *buf); static void dcmi_buffer_done(struct stm32_dcmi *dcmi, struct dcmi_buf *buf, size_t bytesused, int err) { struct vb2_v4l2_buffer *vbuf; if (!buf) return; list_del_init(&buf->list); vbuf = &buf->vb; vbuf->sequence = dcmi->sequence++; vbuf->field = V4L2_FIELD_NONE; vbuf->vb2_buf.timestamp = ktime_get_ns(); vb2_set_plane_payload(&vbuf->vb2_buf, 0, bytesused); vb2_buffer_done(&vbuf->vb2_buf, err ? VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE); dev_dbg(dcmi->dev, "buffer[%d] done seq=%d, bytesused=%zu\n", vbuf->vb2_buf.index, vbuf->sequence, bytesused); dcmi->buffers_count++; dcmi->active = NULL; } static int dcmi_restart_capture(struct stm32_dcmi *dcmi) { struct dcmi_buf *buf; spin_lock_irq(&dcmi->irqlock); if (dcmi->state != RUNNING) { spin_unlock_irq(&dcmi->irqlock); return -EINVAL; } /* Restart a new DMA transfer with next buffer */ if (list_empty(&dcmi->buffers)) { dev_dbg(dcmi->dev, "Capture restart is deferred to next buffer queueing\n"); dcmi->state = WAIT_FOR_BUFFER; spin_unlock_irq(&dcmi->irqlock); return 0; } buf = list_entry(dcmi->buffers.next, struct dcmi_buf, list); dcmi->active = buf; spin_unlock_irq(&dcmi->irqlock); return dcmi_start_capture(dcmi, buf); } static void dcmi_dma_callback(void *param) { struct stm32_dcmi *dcmi = (struct stm32_dcmi *)param; struct dma_tx_state state; enum dma_status status; struct dcmi_buf *buf = dcmi->active; spin_lock_irq(&dcmi->irqlock); /* Check DMA status */ status = dmaengine_tx_status(dcmi->dma_chan, dcmi->dma_cookie, &state); switch (status) { case DMA_IN_PROGRESS: dev_dbg(dcmi->dev, "%s: Received DMA_IN_PROGRESS\n", __func__); break; case DMA_PAUSED: dev_err(dcmi->dev, "%s: Received DMA_PAUSED\n", __func__); break; case DMA_ERROR: dev_err(dcmi->dev, "%s: Received DMA_ERROR\n", __func__); /* Return buffer to V4L2 in error state */ dcmi_buffer_done(dcmi, buf, 0, -EIO); break; case DMA_COMPLETE: dev_dbg(dcmi->dev, "%s: Received DMA_COMPLETE\n", __func__); /* Return buffer to V4L2 */ dcmi_buffer_done(dcmi, buf, buf->size, 0); spin_unlock_irq(&dcmi->irqlock); /* Restart capture */ if (dcmi_restart_capture(dcmi)) dev_err(dcmi->dev, "%s: Cannot restart capture on DMA complete\n", __func__); return; default: dev_err(dcmi->dev, "%s: Received unknown status\n", __func__); break; } spin_unlock_irq(&dcmi->irqlock); } static int dcmi_start_dma(struct stm32_dcmi *dcmi, struct dcmi_buf *buf) { struct dma_async_tx_descriptor *desc = NULL; struct dma_slave_config config; int ret; memset(&config, 0, sizeof(config)); config.src_addr = (dma_addr_t)dcmi->res->start + DCMI_DR; config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; config.dst_maxburst = 4; /* Configure DMA channel */ ret = dmaengine_slave_config(dcmi->dma_chan, &config); if (ret < 0) { dev_err(dcmi->dev, "%s: DMA channel config failed (%d)\n", __func__, ret); return ret; } /* * Avoid call of dmaengine_terminate_sync() between * dmaengine_prep_slave_single() and dmaengine_submit() * by locking the whole DMA submission sequence */ mutex_lock(&dcmi->dma_lock); /* Prepare a DMA transaction */ desc = dmaengine_prep_slave_single(dcmi->dma_chan, buf->paddr, buf->size, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); if (!desc) { dev_err(dcmi->dev, "%s: DMA dmaengine_prep_slave_single failed for buffer phy=%pad size=%zu\n", __func__, &buf->paddr, buf->size); mutex_unlock(&dcmi->dma_lock); return -EINVAL; } /* Set completion callback routine for notification */ desc->callback = dcmi_dma_callback; desc->callback_param = dcmi; /* Push current DMA transaction in the pending queue */ dcmi->dma_cookie = dmaengine_submit(desc); if (dma_submit_error(dcmi->dma_cookie)) { dev_err(dcmi->dev, "%s: DMA submission failed\n", __func__); mutex_unlock(&dcmi->dma_lock); return -ENXIO; } mutex_unlock(&dcmi->dma_lock); dma_async_issue_pending(dcmi->dma_chan); return 0; } static int dcmi_start_capture(struct stm32_dcmi *dcmi, struct dcmi_buf *buf) { int ret; if (!buf) return -EINVAL; ret = dcmi_start_dma(dcmi, buf); if (ret) { dcmi->errors_count++; return ret; } /* Enable capture */ reg_set(dcmi->regs, DCMI_CR, CR_CAPTURE); return 0; } static void dcmi_set_crop(struct stm32_dcmi *dcmi) { u32 size, start; /* Crop resolution */ size = ((dcmi->crop.height - 1) << 16) | ((dcmi->crop.width << 1) - 1); reg_write(dcmi->regs, DCMI_CWSIZE, size); /* Crop start point */ start = ((dcmi->crop.top) << 16) | ((dcmi->crop.left << 1)); reg_write(dcmi->regs, DCMI_CWSTRT, start); dev_dbg(dcmi->dev, "Cropping to %ux%u@%u:%u\n", dcmi->crop.width, dcmi->crop.height, dcmi->crop.left, dcmi->crop.top); /* Enable crop */ reg_set(dcmi->regs, DCMI_CR, CR_CROP); } static void dcmi_process_jpeg(struct stm32_dcmi *dcmi) { struct dma_tx_state state; enum dma_status status; struct dcmi_buf *buf = dcmi->active; if (!buf) return; /* * Because of variable JPEG buffer size sent by sensor, * DMA transfer never completes due to transfer size never reached. * In order to ensure that all the JPEG data are transferred * in active buffer memory, DMA is drained. * Then DMA tx status gives the amount of data transferred * to memory, which is then returned to V4L2 through the active * buffer payload. */ /* Drain DMA */ dmaengine_synchronize(dcmi->dma_chan); /* Get DMA residue to get JPEG size */ status = dmaengine_tx_status(dcmi->dma_chan, dcmi->dma_cookie, &state); if (status != DMA_ERROR && state.residue < buf->size) { /* Return JPEG buffer to V4L2 with received JPEG buffer size */ dcmi_buffer_done(dcmi, buf, buf->size - state.residue, 0); } else { dcmi->errors_count++; dev_err(dcmi->dev, "%s: Cannot get JPEG size from DMA\n", __func__); /* Return JPEG buffer to V4L2 in ERROR state */ dcmi_buffer_done(dcmi, buf, 0, -EIO); } /* Abort DMA operation */ dmaengine_terminate_sync(dcmi->dma_chan); /* Restart capture */ if (dcmi_restart_capture(dcmi)) dev_err(dcmi->dev, "%s: Cannot restart capture on JPEG received\n", __func__); } static irqreturn_t dcmi_irq_thread(int irq, void *arg) { struct stm32_dcmi *dcmi = arg; spin_lock_irq(&dcmi->irqlock); if (dcmi->misr & IT_OVR) { dcmi->overrun_count++; if (dcmi->overrun_count > OVERRUN_ERROR_THRESHOLD) dcmi->errors_count++; } if (dcmi->misr & IT_ERR) dcmi->errors_count++; if (dcmi->sd_format->fourcc == V4L2_PIX_FMT_JPEG && dcmi->misr & IT_FRAME) { /* JPEG received */ spin_unlock_irq(&dcmi->irqlock); dcmi_process_jpeg(dcmi); return IRQ_HANDLED; } spin_unlock_irq(&dcmi->irqlock); return IRQ_HANDLED; } static irqreturn_t dcmi_irq_callback(int irq, void *arg) { struct stm32_dcmi *dcmi = arg; unsigned long flags; spin_lock_irqsave(&dcmi->irqlock, flags); dcmi->misr = reg_read(dcmi->regs, DCMI_MIS); /* Clear interrupt */ reg_set(dcmi->regs, DCMI_ICR, IT_FRAME | IT_OVR | IT_ERR); spin_unlock_irqrestore(&dcmi->irqlock, flags); return IRQ_WAKE_THREAD; } static int dcmi_queue_setup(struct vb2_queue *vq, unsigned int *nbuffers, unsigned int *nplanes, unsigned int sizes[], struct device *alloc_devs[]) { struct stm32_dcmi *dcmi = vb2_get_drv_priv(vq); unsigned int size; size = dcmi->fmt.fmt.pix.sizeimage; /* Make sure the image size is large enough */ if (*nplanes) return sizes[0] < size ? -EINVAL : 0; *nplanes = 1; sizes[0] = size; dev_dbg(dcmi->dev, "Setup queue, count=%d, size=%d\n", *nbuffers, size); return 0; } static int dcmi_buf_init(struct vb2_buffer *vb) { struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct dcmi_buf *buf = container_of(vbuf, struct dcmi_buf, vb); INIT_LIST_HEAD(&buf->list); return 0; } static int dcmi_buf_prepare(struct vb2_buffer *vb) { struct stm32_dcmi *dcmi = vb2_get_drv_priv(vb->vb2_queue); struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct dcmi_buf *buf = container_of(vbuf, struct dcmi_buf, vb); unsigned long size; size = dcmi->fmt.fmt.pix.sizeimage; if (vb2_plane_size(vb, 0) < size) { dev_err(dcmi->dev, "%s data will not fit into plane (%lu < %lu)\n", __func__, vb2_plane_size(vb, 0), size); return -EINVAL; } vb2_set_plane_payload(vb, 0, size); if (!buf->prepared) { /* Get memory addresses */ buf->paddr = vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0); buf->size = vb2_plane_size(&buf->vb.vb2_buf, 0); buf->prepared = true; vb2_set_plane_payload(&buf->vb.vb2_buf, 0, buf->size); dev_dbg(dcmi->dev, "buffer[%d] phy=%pad size=%zu\n", vb->index, &buf->paddr, buf->size); } return 0; } static void dcmi_buf_queue(struct vb2_buffer *vb) { struct stm32_dcmi *dcmi = vb2_get_drv_priv(vb->vb2_queue); struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct dcmi_buf *buf = container_of(vbuf, struct dcmi_buf, vb); spin_lock_irq(&dcmi->irqlock); /* Enqueue to video buffers list */ list_add_tail(&buf->list, &dcmi->buffers); if (dcmi->state == WAIT_FOR_BUFFER) { dcmi->state = RUNNING; dcmi->active = buf; dev_dbg(dcmi->dev, "Starting capture on buffer[%d] queued\n", buf->vb.vb2_buf.index); spin_unlock_irq(&dcmi->irqlock); if (dcmi_start_capture(dcmi, buf)) dev_err(dcmi->dev, "%s: Cannot restart capture on overflow or error\n", __func__); return; } spin_unlock_irq(&dcmi->irqlock); } static struct media_entity *dcmi_find_source(struct stm32_dcmi *dcmi) { struct media_entity *entity = &dcmi->vdev->entity; struct media_pad *pad; /* Walk searching for entity having no sink */ while (1) { pad = &entity->pads[0]; if (!(pad->flags & MEDIA_PAD_FL_SINK)) break; pad = media_entity_remote_pad(pad); if (!pad || !is_media_entity_v4l2_subdev(pad->entity)) break; entity = pad->entity; } return entity; } static int dcmi_pipeline_s_fmt(struct stm32_dcmi *dcmi, struct v4l2_subdev_pad_config *pad_cfg, struct v4l2_subdev_format *format) { struct media_entity *entity = &dcmi->source->entity; struct v4l2_subdev *subdev; struct media_pad *sink_pad = NULL; struct media_pad *src_pad = NULL; struct media_pad *pad = NULL; struct v4l2_subdev_format fmt = *format; bool found = false; int ret; /* * Starting from sensor subdevice, walk within * pipeline and set format on each subdevice */ while (1) { unsigned int i; /* Search if current entity has a source pad */ for (i = 0; i < entity->num_pads; i++) { pad = &entity->pads[i]; if (pad->flags & MEDIA_PAD_FL_SOURCE) { src_pad = pad; found = true; break; } } if (!found) break; subdev = media_entity_to_v4l2_subdev(entity); /* Propagate format on sink pad if any, otherwise source pad */ if (sink_pad) pad = sink_pad; dev_dbg(dcmi->dev, "\"%s\":%d pad format set to 0x%x %ux%u\n", subdev->name, pad->index, format->format.code, format->format.width, format->format.height); fmt.pad = pad->index; ret = v4l2_subdev_call(subdev, pad, set_fmt, pad_cfg, &fmt); if (ret < 0) { dev_err(dcmi->dev, "%s: Failed to set format 0x%x %ux%u on \"%s\":%d pad (%d)\n", __func__, format->format.code, format->format.width, format->format.height, subdev->name, pad->index, ret); return ret; } if (fmt.format.code != format->format.code || fmt.format.width != format->format.width || fmt.format.height != format->format.height) { dev_dbg(dcmi->dev, "\"%s\":%d pad format has been changed to 0x%x %ux%u\n", subdev->name, pad->index, fmt.format.code, fmt.format.width, fmt.format.height); } /* Walk to next entity */ sink_pad = media_entity_remote_pad(src_pad); if (!sink_pad || !is_media_entity_v4l2_subdev(sink_pad->entity)) break; entity = sink_pad->entity; } *format = fmt; return 0; } static int dcmi_pipeline_s_stream(struct stm32_dcmi *dcmi, int state) { struct media_entity *entity = &dcmi->vdev->entity; struct v4l2_subdev *subdev; struct media_pad *pad; int ret; /* Start/stop all entities within pipeline */ while (1) { pad = &entity->pads[0]; if (!(pad->flags & MEDIA_PAD_FL_SINK)) break; pad = media_entity_remote_pad(pad); if (!pad || !is_media_entity_v4l2_subdev(pad->entity)) break; entity = pad->entity; subdev = media_entity_to_v4l2_subdev(entity); ret = v4l2_subdev_call(subdev, video, s_stream, state); if (ret < 0 && ret != -ENOIOCTLCMD) { dev_err(dcmi->dev, "%s: \"%s\" failed to %s streaming (%d)\n", __func__, subdev->name, state ? "start" : "stop", ret); return ret; } dev_dbg(dcmi->dev, "\"%s\" is %s\n", subdev->name, state ? "started" : "stopped"); } return 0; } static int dcmi_pipeline_start(struct stm32_dcmi *dcmi) { return dcmi_pipeline_s_stream(dcmi, 1); } static void dcmi_pipeline_stop(struct stm32_dcmi *dcmi) { dcmi_pipeline_s_stream(dcmi, 0); } static int dcmi_start_streaming(struct vb2_queue *vq, unsigned int count) { struct stm32_dcmi *dcmi = vb2_get_drv_priv(vq); struct dcmi_buf *buf, *node; u32 val = 0; int ret; ret = pm_runtime_get_sync(dcmi->dev); if (ret < 0) { dev_err(dcmi->dev, "%s: Failed to start streaming, cannot get sync (%d)\n", __func__, ret); goto err_pm_put; } ret = media_pipeline_start(&dcmi->vdev->entity, &dcmi->pipeline); if (ret < 0) { dev_err(dcmi->dev, "%s: Failed to start streaming, media pipeline start error (%d)\n", __func__, ret); goto err_pm_put; } ret = dcmi_pipeline_start(dcmi); if (ret) goto err_media_pipeline_stop; spin_lock_irq(&dcmi->irqlock); /* Set bus width */ switch (dcmi->bus.bus_width) { case 14: val |= CR_EDM_0 | CR_EDM_1; break; case 12: val |= CR_EDM_1; break; case 10: val |= CR_EDM_0; break; default: /* Set bus width to 8 bits by default */ break; } /* Set vertical synchronization polarity */ if (dcmi->bus.flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH) val |= CR_VSPOL; /* Set horizontal synchronization polarity */ if (dcmi->bus.flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH) val |= CR_HSPOL; /* Set pixel clock polarity */ if (dcmi->bus.flags & V4L2_MBUS_PCLK_SAMPLE_RISING) val |= CR_PCKPOL; /* * BT656 embedded synchronisation bus mode. * * Default SAV/EAV mode is supported here with default codes * SAV=0xff000080 & EAV=0xff00009d. * With DCMI this means LSC=SAV=0x80 & LEC=EAV=0x9d. */ if (dcmi->bus_type == V4L2_MBUS_BT656) { val |= CR_ESS; /* Unmask all codes */ reg_write(dcmi->regs, DCMI_ESUR, 0xffffffff);/* FEC:LEC:LSC:FSC */ /* Trig on LSC=0x80 & LEC=0x9d codes, ignore FSC and FEC */ reg_write(dcmi->regs, DCMI_ESCR, 0xff9d80ff);/* FEC:LEC:LSC:FSC */ } reg_write(dcmi->regs, DCMI_CR, val); /* Set crop */ if (dcmi->do_crop) dcmi_set_crop(dcmi); /* Enable jpeg capture */ if (dcmi->sd_format->fourcc == V4L2_PIX_FMT_JPEG) reg_set(dcmi->regs, DCMI_CR, CR_CM);/* Snapshot mode */ /* Enable dcmi */ reg_set(dcmi->regs, DCMI_CR, CR_ENABLE); dcmi->sequence = 0; dcmi->errors_count = 0; dcmi->overrun_count = 0; dcmi->buffers_count = 0; /* * Start transfer if at least one buffer has been queued, * otherwise transfer is deferred at buffer queueing */ if (list_empty(&dcmi->buffers)) { dev_dbg(dcmi->dev, "Start streaming is deferred to next buffer queueing\n"); dcmi->state = WAIT_FOR_BUFFER; spin_unlock_irq(&dcmi->irqlock); return 0; } buf = list_entry(dcmi->buffers.next, struct dcmi_buf, list); dcmi->active = buf; dcmi->state = RUNNING; dev_dbg(dcmi->dev, "Start streaming, starting capture\n"); spin_unlock_irq(&dcmi->irqlock); ret = dcmi_start_capture(dcmi, buf); if (ret) { dev_err(dcmi->dev, "%s: Start streaming failed, cannot start capture\n", __func__); goto err_pipeline_stop; } /* Enable interruptions */ if (dcmi->sd_format->fourcc == V4L2_PIX_FMT_JPEG) reg_set(dcmi->regs, DCMI_IER, IT_FRAME | IT_OVR | IT_ERR); else reg_set(dcmi->regs, DCMI_IER, IT_OVR | IT_ERR); return 0; err_pipeline_stop: dcmi_pipeline_stop(dcmi); err_media_pipeline_stop: media_pipeline_stop(&dcmi->vdev->entity); err_pm_put: pm_runtime_put(dcmi->dev); spin_lock_irq(&dcmi->irqlock); /* * Return all buffers to vb2 in QUEUED state. * This will give ownership back to userspace */ list_for_each_entry_safe(buf, node, &dcmi->buffers, list) { list_del_init(&buf->list); vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_QUEUED); } dcmi->active = NULL; spin_unlock_irq(&dcmi->irqlock); return ret; } static void dcmi_stop_streaming(struct vb2_queue *vq) { struct stm32_dcmi *dcmi = vb2_get_drv_priv(vq); struct dcmi_buf *buf, *node; dcmi_pipeline_stop(dcmi); media_pipeline_stop(&dcmi->vdev->entity); spin_lock_irq(&dcmi->irqlock); /* Disable interruptions */ reg_clear(dcmi->regs, DCMI_IER, IT_FRAME | IT_OVR | IT_ERR); /* Disable DCMI */ reg_clear(dcmi->regs, DCMI_CR, CR_ENABLE); /* Return all queued buffers to vb2 in ERROR state */ list_for_each_entry_safe(buf, node, &dcmi->buffers, list) { list_del_init(&buf->list); vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR); } dcmi->active = NULL; dcmi->state = STOPPED; spin_unlock_irq(&dcmi->irqlock); /* Stop all pending DMA operations */ mutex_lock(&dcmi->dma_lock); dmaengine_terminate_sync(dcmi->dma_chan); mutex_unlock(&dcmi->dma_lock); pm_runtime_put(dcmi->dev); if (dcmi->errors_count) dev_warn(dcmi->dev, "Some errors found while streaming: errors=%d (overrun=%d), buffers=%d\n", dcmi->errors_count, dcmi->overrun_count, dcmi->buffers_count); dev_dbg(dcmi->dev, "Stop streaming, errors=%d (overrun=%d), buffers=%d\n", dcmi->errors_count, dcmi->overrun_count, dcmi->buffers_count); } static const struct vb2_ops dcmi_video_qops = { .queue_setup = dcmi_queue_setup, .buf_init = dcmi_buf_init, .buf_prepare = dcmi_buf_prepare, .buf_queue = dcmi_buf_queue, .start_streaming = dcmi_start_streaming, .stop_streaming = dcmi_stop_streaming, .wait_prepare = vb2_ops_wait_prepare, .wait_finish = vb2_ops_wait_finish, }; static int dcmi_g_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *fmt) { struct stm32_dcmi *dcmi = video_drvdata(file); *fmt = dcmi->fmt; return 0; } static const struct dcmi_format *find_format_by_fourcc(struct stm32_dcmi *dcmi, unsigned int fourcc) { unsigned int num_formats = dcmi->num_of_sd_formats; const struct dcmi_format *fmt; unsigned int i; for (i = 0; i < num_formats; i++) { fmt = dcmi->sd_formats[i]; if (fmt->fourcc == fourcc) return fmt; } return NULL; } static void __find_outer_frame_size(struct stm32_dcmi *dcmi, struct v4l2_pix_format *pix, struct dcmi_framesize *framesize) { struct dcmi_framesize *match = NULL; unsigned int i; unsigned int min_err = UINT_MAX; for (i = 0; i < dcmi->num_of_sd_framesizes; i++) { struct dcmi_framesize *fsize = &dcmi->sd_framesizes[i]; int w_err = (fsize->width - pix->width); int h_err = (fsize->height - pix->height); int err = w_err + h_err; if (w_err >= 0 && h_err >= 0 && err < min_err) { min_err = err; match = fsize; } } if (!match) match = &dcmi->sd_framesizes[0]; *framesize = *match; } static int dcmi_try_fmt(struct stm32_dcmi *dcmi, struct v4l2_format *f, const struct dcmi_format **sd_format, struct dcmi_framesize *sd_framesize) { const struct dcmi_format *sd_fmt; struct dcmi_framesize sd_fsize; struct v4l2_pix_format *pix = &f->fmt.pix; struct v4l2_subdev_pad_config pad_cfg; struct v4l2_subdev_format format = { .which = V4L2_SUBDEV_FORMAT_TRY, }; bool do_crop; int ret; sd_fmt = find_format_by_fourcc(dcmi, pix->pixelformat); if (!sd_fmt) { if (!dcmi->num_of_sd_formats) return -ENODATA; sd_fmt = dcmi->sd_formats[dcmi->num_of_sd_formats - 1]; pix->pixelformat = sd_fmt->fourcc; } /* Limit to hardware capabilities */ pix->width = clamp(pix->width, MIN_WIDTH, MAX_WIDTH); pix->height = clamp(pix->height, MIN_HEIGHT, MAX_HEIGHT); /* No crop if JPEG is requested */ do_crop = dcmi->do_crop && (pix->pixelformat != V4L2_PIX_FMT_JPEG); if (do_crop && dcmi->num_of_sd_framesizes) { struct dcmi_framesize outer_sd_fsize; /* * If crop is requested and sensor have discrete frame sizes, * select the frame size that is just larger than request */ __find_outer_frame_size(dcmi, pix, &outer_sd_fsize); pix->width = outer_sd_fsize.width; pix->height = outer_sd_fsize.height; } v4l2_fill_mbus_format(&format.format, pix, sd_fmt->mbus_code); ret = v4l2_subdev_call(dcmi->source, pad, set_fmt, &pad_cfg, &format); if (ret < 0) return ret; /* Update pix regarding to what sensor can do */ v4l2_fill_pix_format(pix, &format.format); /* Save resolution that sensor can actually do */ sd_fsize.width = pix->width; sd_fsize.height = pix->height; if (do_crop) { struct v4l2_rect c = dcmi->crop; struct v4l2_rect max_rect; /* * Adjust crop by making the intersection between * format resolution request and crop request */ max_rect.top = 0; max_rect.left = 0; max_rect.width = pix->width; max_rect.height = pix->height; v4l2_rect_map_inside(&c, &max_rect); c.top = clamp_t(s32, c.top, 0, pix->height - c.height); c.left = clamp_t(s32, c.left, 0, pix->width - c.width); dcmi->crop = c; /* Adjust format resolution request to crop */ pix->width = dcmi->crop.width; pix->height = dcmi->crop.height; } pix->field = V4L2_FIELD_NONE; pix->bytesperline = pix->width * sd_fmt->bpp; pix->sizeimage = pix->bytesperline * pix->height; if (sd_format) *sd_format = sd_fmt; if (sd_framesize) *sd_framesize = sd_fsize; return 0; } static int dcmi_set_fmt(struct stm32_dcmi *dcmi, struct v4l2_format *f) { struct v4l2_subdev_format format = { .which = V4L2_SUBDEV_FORMAT_ACTIVE, }; const struct dcmi_format *sd_format; struct dcmi_framesize sd_framesize; struct v4l2_mbus_framefmt *mf = &format.format; struct v4l2_pix_format *pix = &f->fmt.pix; int ret; /* * Try format, fmt.width/height could have been changed * to match sensor capability or crop request * sd_format & sd_framesize will contain what subdev * can do for this request. */ ret = dcmi_try_fmt(dcmi, f, &sd_format, &sd_framesize); if (ret) return ret; /* Disable crop if JPEG is requested or BT656 bus is selected */ if (pix->pixelformat == V4L2_PIX_FMT_JPEG && dcmi->bus_type != V4L2_MBUS_BT656) dcmi->do_crop = false; /* pix to mbus format */ v4l2_fill_mbus_format(mf, pix, sd_format->mbus_code); mf->width = sd_framesize.width; mf->height = sd_framesize.height; ret = dcmi_pipeline_s_fmt(dcmi, NULL, &format); if (ret < 0) return ret; dev_dbg(dcmi->dev, "Sensor format set to 0x%x %ux%u\n", mf->code, mf->width, mf->height); dev_dbg(dcmi->dev, "Buffer format set to %4.4s %ux%u\n", (char *)&pix->pixelformat, pix->width, pix->height); dcmi->fmt = *f; dcmi->sd_format = sd_format; dcmi->sd_framesize = sd_framesize; return 0; } static int dcmi_s_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *f) { struct stm32_dcmi *dcmi = video_drvdata(file); if (vb2_is_streaming(&dcmi->queue)) return -EBUSY; return dcmi_set_fmt(dcmi, f); } static int dcmi_try_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *f) { struct stm32_dcmi *dcmi = video_drvdata(file); return dcmi_try_fmt(dcmi, f, NULL, NULL); } static int dcmi_enum_fmt_vid_cap(struct file *file, void *priv, struct v4l2_fmtdesc *f) { struct stm32_dcmi *dcmi = video_drvdata(file); if (f->index >= dcmi->num_of_sd_formats) return -EINVAL; f->pixelformat = dcmi->sd_formats[f->index]->fourcc; return 0; } static int dcmi_get_sensor_format(struct stm32_dcmi *dcmi, struct v4l2_pix_format *pix) { struct v4l2_subdev_format fmt = { .which = V4L2_SUBDEV_FORMAT_ACTIVE, }; int ret; ret = v4l2_subdev_call(dcmi->source, pad, get_fmt, NULL, &fmt); if (ret) return ret; v4l2_fill_pix_format(pix, &fmt.format); return 0; } static int dcmi_set_sensor_format(struct stm32_dcmi *dcmi, struct v4l2_pix_format *pix) { const struct dcmi_format *sd_fmt; struct v4l2_subdev_format format = { .which = V4L2_SUBDEV_FORMAT_TRY, }; struct v4l2_subdev_pad_config pad_cfg; int ret; sd_fmt = find_format_by_fourcc(dcmi, pix->pixelformat); if (!sd_fmt) { if (!dcmi->num_of_sd_formats) return -ENODATA; sd_fmt = dcmi->sd_formats[dcmi->num_of_sd_formats - 1]; pix->pixelformat = sd_fmt->fourcc; } v4l2_fill_mbus_format(&format.format, pix, sd_fmt->mbus_code); ret = v4l2_subdev_call(dcmi->source, pad, set_fmt, &pad_cfg, &format); if (ret < 0) return ret; return 0; } static int dcmi_get_sensor_bounds(struct stm32_dcmi *dcmi, struct v4l2_rect *r) { struct v4l2_subdev_selection bounds = { .which = V4L2_SUBDEV_FORMAT_ACTIVE, .target = V4L2_SEL_TGT_CROP_BOUNDS, }; unsigned int max_width, max_height, max_pixsize; struct v4l2_pix_format pix; unsigned int i; int ret; /* * Get sensor bounds first */ ret = v4l2_subdev_call(dcmi->source, pad, get_selection, NULL, &bounds); if (!ret) *r = bounds.r; if (ret != -ENOIOCTLCMD) return ret; /* * If selection is not implemented, * fallback by enumerating sensor frame sizes * and take the largest one */ max_width = 0; max_height = 0; max_pixsize = 0; for (i = 0; i < dcmi->num_of_sd_framesizes; i++) { struct dcmi_framesize *fsize = &dcmi->sd_framesizes[i]; unsigned int pixsize = fsize->width * fsize->height; if (pixsize > max_pixsize) { max_pixsize = pixsize; max_width = fsize->width; max_height = fsize->height; } } if (max_pixsize > 0) { r->top = 0; r->left = 0; r->width = max_width; r->height = max_height; return 0; } /* * If frame sizes enumeration is not implemented, * fallback by getting current sensor frame size */ ret = dcmi_get_sensor_format(dcmi, &pix); if (ret) return ret; r->top = 0; r->left = 0; r->width = pix.width; r->height = pix.height; return 0; } static int dcmi_g_selection(struct file *file, void *fh, struct v4l2_selection *s) { struct stm32_dcmi *dcmi = video_drvdata(file); if (s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; switch (s->target) { case V4L2_SEL_TGT_CROP_DEFAULT: case V4L2_SEL_TGT_CROP_BOUNDS: s->r = dcmi->sd_bounds; return 0; case V4L2_SEL_TGT_CROP: if (dcmi->do_crop) { s->r = dcmi->crop; } else { s->r.top = 0; s->r.left = 0; s->r.width = dcmi->fmt.fmt.pix.width; s->r.height = dcmi->fmt.fmt.pix.height; } break; default: return -EINVAL; } return 0; } static int dcmi_s_selection(struct file *file, void *priv, struct v4l2_selection *s) { struct stm32_dcmi *dcmi = video_drvdata(file); struct v4l2_rect r = s->r; struct v4l2_rect max_rect; struct v4l2_pix_format pix; if (s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE || s->target != V4L2_SEL_TGT_CROP) return -EINVAL; /* Reset sensor resolution to max resolution */ pix.pixelformat = dcmi->fmt.fmt.pix.pixelformat; pix.width = dcmi->sd_bounds.width; pix.height = dcmi->sd_bounds.height; dcmi_set_sensor_format(dcmi, &pix); /* * Make the intersection between * sensor resolution * and crop request */ max_rect.top = 0; max_rect.left = 0; max_rect.width = pix.width; max_rect.height = pix.height; v4l2_rect_map_inside(&r, &max_rect); r.top = clamp_t(s32, r.top, 0, pix.height - r.height); r.left = clamp_t(s32, r.left, 0, pix.width - r.width); if (!(r.top == dcmi->sd_bounds.top && r.left == dcmi->sd_bounds.left && r.width == dcmi->sd_bounds.width && r.height == dcmi->sd_bounds.height)) { /* Crop if request is different than sensor resolution */ dcmi->do_crop = true; dcmi->crop = r; dev_dbg(dcmi->dev, "s_selection: crop %ux%u@(%u,%u) from %ux%u\n", r.width, r.height, r.left, r.top, pix.width, pix.height); } else { /* Disable crop */ dcmi->do_crop = false; dev_dbg(dcmi->dev, "s_selection: crop is disabled\n"); } s->r = r; return 0; } static int dcmi_querycap(struct file *file, void *priv, struct v4l2_capability *cap) { strscpy(cap->driver, DRV_NAME, sizeof(cap->driver)); strscpy(cap->card, "STM32 Camera Memory Interface", sizeof(cap->card)); strscpy(cap->bus_info, "platform:dcmi", sizeof(cap->bus_info)); return 0; } static int dcmi_enum_input(struct file *file, void *priv, struct v4l2_input *i) { if (i->index != 0) return -EINVAL; i->type = V4L2_INPUT_TYPE_CAMERA; strscpy(i->name, "Camera", sizeof(i->name)); return 0; } static int dcmi_g_input(struct file *file, void *priv, unsigned int *i) { *i = 0; return 0; } static int dcmi_s_input(struct file *file, void *priv, unsigned int i) { if (i > 0) return -EINVAL; return 0; } static int dcmi_enum_framesizes(struct file *file, void *fh, struct v4l2_frmsizeenum *fsize) { struct stm32_dcmi *dcmi = video_drvdata(file); const struct dcmi_format *sd_fmt; struct v4l2_subdev_frame_size_enum fse = { .index = fsize->index, .which = V4L2_SUBDEV_FORMAT_ACTIVE, }; int ret; sd_fmt = find_format_by_fourcc(dcmi, fsize->pixel_format); if (!sd_fmt) return -EINVAL; fse.code = sd_fmt->mbus_code; ret = v4l2_subdev_call(dcmi->source, pad, enum_frame_size, NULL, &fse); if (ret) return ret; fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE; fsize->discrete.width = fse.max_width; fsize->discrete.height = fse.max_height; return 0; } static int dcmi_g_parm(struct file *file, void *priv, struct v4l2_streamparm *p) { struct stm32_dcmi *dcmi = video_drvdata(file); return v4l2_g_parm_cap(video_devdata(file), dcmi->source, p); } static int dcmi_s_parm(struct file *file, void *priv, struct v4l2_streamparm *p) { struct stm32_dcmi *dcmi = video_drvdata(file); return v4l2_s_parm_cap(video_devdata(file), dcmi->source, p); } static int dcmi_enum_frameintervals(struct file *file, void *fh, struct v4l2_frmivalenum *fival) { struct stm32_dcmi *dcmi = video_drvdata(file); const struct dcmi_format *sd_fmt; struct v4l2_subdev_frame_interval_enum fie = { .index = fival->index, .width = fival->width, .height = fival->height, .which = V4L2_SUBDEV_FORMAT_ACTIVE, }; int ret; sd_fmt = find_format_by_fourcc(dcmi, fival->pixel_format); if (!sd_fmt) return -EINVAL; fie.code = sd_fmt->mbus_code; ret = v4l2_subdev_call(dcmi->source, pad, enum_frame_interval, NULL, &fie); if (ret) return ret; fival->type = V4L2_FRMIVAL_TYPE_DISCRETE; fival->discrete = fie.interval; return 0; } static const struct of_device_id stm32_dcmi_of_match[] = { { .compatible = "st,stm32-dcmi"}, { /* end node */ }, }; MODULE_DEVICE_TABLE(of, stm32_dcmi_of_match); static int dcmi_open(struct file *file) { struct stm32_dcmi *dcmi = video_drvdata(file); struct v4l2_subdev *sd = dcmi->source; int ret; if (mutex_lock_interruptible(&dcmi->lock)) return -ERESTARTSYS; ret = v4l2_fh_open(file); if (ret < 0) goto unlock; if (!v4l2_fh_is_singular_file(file)) goto fh_rel; ret = v4l2_subdev_call(sd, core, s_power, 1); if (ret < 0 && ret != -ENOIOCTLCMD) goto fh_rel; ret = dcmi_set_fmt(dcmi, &dcmi->fmt); if (ret) v4l2_subdev_call(sd, core, s_power, 0); fh_rel: if (ret) v4l2_fh_release(file); unlock: mutex_unlock(&dcmi->lock); return ret; } static int dcmi_release(struct file *file) { struct stm32_dcmi *dcmi = video_drvdata(file); struct v4l2_subdev *sd = dcmi->source; bool fh_singular; int ret; mutex_lock(&dcmi->lock); fh_singular = v4l2_fh_is_singular_file(file); ret = _vb2_fop_release(file, NULL); if (fh_singular) v4l2_subdev_call(sd, core, s_power, 0); mutex_unlock(&dcmi->lock); return ret; } static const struct v4l2_ioctl_ops dcmi_ioctl_ops = { .vidioc_querycap = dcmi_querycap, .vidioc_try_fmt_vid_cap = dcmi_try_fmt_vid_cap, .vidioc_g_fmt_vid_cap = dcmi_g_fmt_vid_cap, .vidioc_s_fmt_vid_cap = dcmi_s_fmt_vid_cap, .vidioc_enum_fmt_vid_cap = dcmi_enum_fmt_vid_cap, .vidioc_g_selection = dcmi_g_selection, .vidioc_s_selection = dcmi_s_selection, .vidioc_enum_input = dcmi_enum_input, .vidioc_g_input = dcmi_g_input, .vidioc_s_input = dcmi_s_input, .vidioc_g_parm = dcmi_g_parm, .vidioc_s_parm = dcmi_s_parm, .vidioc_enum_framesizes = dcmi_enum_framesizes, .vidioc_enum_frameintervals = dcmi_enum_frameintervals, .vidioc_reqbufs = vb2_ioctl_reqbufs, .vidioc_create_bufs = vb2_ioctl_create_bufs, .vidioc_querybuf = vb2_ioctl_querybuf, .vidioc_qbuf = vb2_ioctl_qbuf, .vidioc_dqbuf = vb2_ioctl_dqbuf, .vidioc_expbuf = vb2_ioctl_expbuf, .vidioc_prepare_buf = vb2_ioctl_prepare_buf, .vidioc_streamon = vb2_ioctl_streamon, .vidioc_streamoff = vb2_ioctl_streamoff, .vidioc_log_status = v4l2_ctrl_log_status, .vidioc_subscribe_event = v4l2_ctrl_subscribe_event, .vidioc_unsubscribe_event = v4l2_event_unsubscribe, }; static const struct v4l2_file_operations dcmi_fops = { .owner = THIS_MODULE, .unlocked_ioctl = video_ioctl2, .open = dcmi_open, .release = dcmi_release, .poll = vb2_fop_poll, .mmap = vb2_fop_mmap, #ifndef CONFIG_MMU .get_unmapped_area = vb2_fop_get_unmapped_area, #endif .read = vb2_fop_read, }; static int dcmi_set_default_fmt(struct stm32_dcmi *dcmi) { struct v4l2_format f = { .type = V4L2_BUF_TYPE_VIDEO_CAPTURE, .fmt.pix = { .width = CIF_WIDTH, .height = CIF_HEIGHT, .field = V4L2_FIELD_NONE, .pixelformat = dcmi->sd_formats[0]->fourcc, }, }; int ret; ret = dcmi_try_fmt(dcmi, &f, NULL, NULL); if (ret) return ret; dcmi->sd_format = dcmi->sd_formats[0]; dcmi->fmt = f; return 0; } /* * FIXME: For the time being we only support subdevices * which expose RGB & YUV "parallel form" mbus code (_2X8). * Nevertheless, this allows to support serial source subdevices * and serial to parallel bridges which conform to this. */ static const struct dcmi_format dcmi_formats[] = { { .fourcc = V4L2_PIX_FMT_RGB565, .mbus_code = MEDIA_BUS_FMT_RGB565_2X8_LE, .bpp = 2, }, { .fourcc = V4L2_PIX_FMT_YUYV, .mbus_code = MEDIA_BUS_FMT_YUYV8_2X8, .bpp = 2, }, { .fourcc = V4L2_PIX_FMT_UYVY, .mbus_code = MEDIA_BUS_FMT_UYVY8_2X8, .bpp = 2, }, { .fourcc = V4L2_PIX_FMT_JPEG, .mbus_code = MEDIA_BUS_FMT_JPEG_1X8, .bpp = 1, }, { .fourcc = V4L2_PIX_FMT_SBGGR8, .mbus_code = MEDIA_BUS_FMT_SBGGR8_1X8, .bpp = 1, }, { .fourcc = V4L2_PIX_FMT_SGBRG8, .mbus_code = MEDIA_BUS_FMT_SGBRG8_1X8, .bpp = 1, }, { .fourcc = V4L2_PIX_FMT_SGRBG8, .mbus_code = MEDIA_BUS_FMT_SGRBG8_1X8, .bpp = 1, }, { .fourcc = V4L2_PIX_FMT_SRGGB8, .mbus_code = MEDIA_BUS_FMT_SRGGB8_1X8, .bpp = 1, }, }; static int dcmi_formats_init(struct stm32_dcmi *dcmi) { const struct dcmi_format *sd_fmts[ARRAY_SIZE(dcmi_formats)]; unsigned int num_fmts = 0, i, j; struct v4l2_subdev *subdev = dcmi->source; struct v4l2_subdev_mbus_code_enum mbus_code = { .which = V4L2_SUBDEV_FORMAT_ACTIVE, }; while (!v4l2_subdev_call(subdev, pad, enum_mbus_code, NULL, &mbus_code)) { for (i = 0; i < ARRAY_SIZE(dcmi_formats); i++) { if (dcmi_formats[i].mbus_code != mbus_code.code) continue; /* Exclude JPEG if BT656 bus is selected */ if (dcmi_formats[i].fourcc == V4L2_PIX_FMT_JPEG && dcmi->bus_type == V4L2_MBUS_BT656) continue; /* Code supported, have we got this fourcc yet? */ for (j = 0; j < num_fmts; j++) if (sd_fmts[j]->fourcc == dcmi_formats[i].fourcc) { /* Already available */ dev_dbg(dcmi->dev, "Skipping fourcc/code: %4.4s/0x%x\n", (char *)&sd_fmts[j]->fourcc, mbus_code.code); break; } if (j == num_fmts) { /* New */ sd_fmts[num_fmts++] = dcmi_formats + i; dev_dbg(dcmi->dev, "Supported fourcc/code: %4.4s/0x%x\n", (char *)&sd_fmts[num_fmts - 1]->fourcc, sd_fmts[num_fmts - 1]->mbus_code); } } mbus_code.index++; } if (!num_fmts) return -ENXIO; dcmi->num_of_sd_formats = num_fmts; dcmi->sd_formats = devm_kcalloc(dcmi->dev, num_fmts, sizeof(struct dcmi_format *), GFP_KERNEL); if (!dcmi->sd_formats) { dev_err(dcmi->dev, "Could not allocate memory\n"); return -ENOMEM; } memcpy(dcmi->sd_formats, sd_fmts, num_fmts * sizeof(struct dcmi_format *)); dcmi->sd_format = dcmi->sd_formats[0]; return 0; } static int dcmi_framesizes_init(struct stm32_dcmi *dcmi) { unsigned int num_fsize = 0; struct v4l2_subdev *subdev = dcmi->source; struct v4l2_subdev_frame_size_enum fse = { .which = V4L2_SUBDEV_FORMAT_ACTIVE, .code = dcmi->sd_format->mbus_code, }; unsigned int ret; unsigned int i; /* Allocate discrete framesizes array */ while (!v4l2_subdev_call(subdev, pad, enum_frame_size, NULL, &fse)) fse.index++; num_fsize = fse.index; if (!num_fsize) return 0; dcmi->num_of_sd_framesizes = num_fsize; dcmi->sd_framesizes = devm_kcalloc(dcmi->dev, num_fsize, sizeof(struct dcmi_framesize), GFP_KERNEL); if (!dcmi->sd_framesizes) { dev_err(dcmi->dev, "Could not allocate memory\n"); return -ENOMEM; } /* Fill array with sensor supported framesizes */ dev_dbg(dcmi->dev, "Sensor supports %u frame sizes:\n", num_fsize); for (i = 0; i < dcmi->num_of_sd_framesizes; i++) { fse.index = i; ret = v4l2_subdev_call(subdev, pad, enum_frame_size, NULL, &fse); if (ret) return ret; dcmi->sd_framesizes[fse.index].width = fse.max_width; dcmi->sd_framesizes[fse.index].height = fse.max_height; dev_dbg(dcmi->dev, "%ux%u\n", fse.max_width, fse.max_height); } return 0; } static int dcmi_graph_notify_complete(struct v4l2_async_notifier *notifier) { struct stm32_dcmi *dcmi = notifier_to_dcmi(notifier); int ret; /* * Now that the graph is complete, * we search for the source subdevice * in order to expose it through V4L2 interface */ dcmi->source = media_entity_to_v4l2_subdev(dcmi_find_source(dcmi)); if (!dcmi->source) { dev_err(dcmi->dev, "Source subdevice not found\n"); return -ENODEV; } dcmi->vdev->ctrl_handler = dcmi->source->ctrl_handler; ret = dcmi_formats_init(dcmi); if (ret) { dev_err(dcmi->dev, "No supported mediabus format found\n"); return ret; } ret = dcmi_framesizes_init(dcmi); if (ret) { dev_err(dcmi->dev, "Could not initialize framesizes\n"); return ret; } ret = dcmi_get_sensor_bounds(dcmi, &dcmi->sd_bounds); if (ret) { dev_err(dcmi->dev, "Could not get sensor bounds\n"); return ret; } ret = dcmi_set_default_fmt(dcmi); if (ret) { dev_err(dcmi->dev, "Could not set default format\n"); return ret; } return 0; } static void dcmi_graph_notify_unbind(struct v4l2_async_notifier *notifier, struct v4l2_subdev *sd, struct v4l2_async_subdev *asd) { struct stm32_dcmi *dcmi = notifier_to_dcmi(notifier); dev_dbg(dcmi->dev, "Removing %s\n", video_device_node_name(dcmi->vdev)); /* Checks internally if vdev has been init or not */ video_unregister_device(dcmi->vdev); } static int dcmi_graph_notify_bound(struct v4l2_async_notifier *notifier, struct v4l2_subdev *subdev, struct v4l2_async_subdev *asd) { struct stm32_dcmi *dcmi = notifier_to_dcmi(notifier); unsigned int ret; int src_pad; dev_dbg(dcmi->dev, "Subdev \"%s\" bound\n", subdev->name); /* * Link this sub-device to DCMI, it could be * a parallel camera sensor or a bridge */ src_pad = media_entity_get_fwnode_pad(&subdev->entity, subdev->fwnode, MEDIA_PAD_FL_SOURCE); ret = media_create_pad_link(&subdev->entity, src_pad, &dcmi->vdev->entity, 0, MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); if (ret) dev_err(dcmi->dev, "Failed to create media pad link with subdev \"%s\"\n", subdev->name); else dev_dbg(dcmi->dev, "DCMI is now linked to \"%s\"\n", subdev->name); return ret; } static const struct v4l2_async_notifier_operations dcmi_graph_notify_ops = { .bound = dcmi_graph_notify_bound, .unbind = dcmi_graph_notify_unbind, .complete = dcmi_graph_notify_complete, }; static int dcmi_graph_init(struct stm32_dcmi *dcmi) { struct v4l2_async_subdev *asd; struct device_node *ep; int ret; ep = of_graph_get_next_endpoint(dcmi->dev->of_node, NULL); if (!ep) { dev_err(dcmi->dev, "Failed to get next endpoint\n"); return -EINVAL; } v4l2_async_notifier_init(&dcmi->notifier); asd = v4l2_async_notifier_add_fwnode_remote_subdev( &dcmi->notifier, of_fwnode_handle(ep), struct v4l2_async_subdev); of_node_put(ep); if (IS_ERR(asd)) { dev_err(dcmi->dev, "Failed to add subdev notifier\n"); return PTR_ERR(asd); } dcmi->notifier.ops = &dcmi_graph_notify_ops; ret = v4l2_async_notifier_register(&dcmi->v4l2_dev, &dcmi->notifier); if (ret < 0) { dev_err(dcmi->dev, "Failed to register notifier\n"); v4l2_async_notifier_cleanup(&dcmi->notifier); return ret; } return 0; } static int dcmi_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; const struct of_device_id *match = NULL; struct v4l2_fwnode_endpoint ep = { .bus_type = 0 }; struct stm32_dcmi *dcmi; struct vb2_queue *q; struct dma_chan *chan; struct clk *mclk; int irq; int ret = 0; match = of_match_device(of_match_ptr(stm32_dcmi_of_match), &pdev->dev); if (!match) { dev_err(&pdev->dev, "Could not find a match in devicetree\n"); return -ENODEV; } dcmi = devm_kzalloc(&pdev->dev, sizeof(struct stm32_dcmi), GFP_KERNEL); if (!dcmi) return -ENOMEM; dcmi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL); if (IS_ERR(dcmi->rstc)) { if (PTR_ERR(dcmi->rstc) != -EPROBE_DEFER) dev_err(&pdev->dev, "Could not get reset control\n"); return PTR_ERR(dcmi->rstc); } /* Get bus characteristics from devicetree */ np = of_graph_get_next_endpoint(np, NULL); if (!np) { dev_err(&pdev->dev, "Could not find the endpoint\n"); return -ENODEV; } ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(np), &ep); of_node_put(np); if (ret) { dev_err(&pdev->dev, "Could not parse the endpoint\n"); return ret; } if (ep.bus_type == V4L2_MBUS_CSI2_DPHY) { dev_err(&pdev->dev, "CSI bus not supported\n"); return -ENODEV; } if (ep.bus_type == V4L2_MBUS_BT656 && ep.bus.parallel.bus_width != 8) { dev_err(&pdev->dev, "BT656 bus conflicts with %u bits bus width (8 bits required)\n", ep.bus.parallel.bus_width); return -ENODEV; } dcmi->bus.flags = ep.bus.parallel.flags; dcmi->bus.bus_width = ep.bus.parallel.bus_width; dcmi->bus.data_shift = ep.bus.parallel.data_shift; dcmi->bus_type = ep.bus_type; irq = platform_get_irq(pdev, 0); if (irq <= 0) return irq ? irq : -ENXIO; dcmi->res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!dcmi->res) { dev_err(&pdev->dev, "Could not get resource\n"); return -ENODEV; } dcmi->regs = devm_ioremap_resource(&pdev->dev, dcmi->res); if (IS_ERR(dcmi->regs)) { dev_err(&pdev->dev, "Could not map registers\n"); return PTR_ERR(dcmi->regs); } ret = devm_request_threaded_irq(&pdev->dev, irq, dcmi_irq_callback, dcmi_irq_thread, IRQF_ONESHOT, dev_name(&pdev->dev), dcmi); if (ret) { dev_err(&pdev->dev, "Unable to request irq %d\n", irq); return ret; } mclk = devm_clk_get(&pdev->dev, "mclk"); if (IS_ERR(mclk)) { if (PTR_ERR(mclk) != -EPROBE_DEFER) dev_err(&pdev->dev, "Unable to get mclk\n"); return PTR_ERR(mclk); } chan = dma_request_chan(&pdev->dev, "tx"); if (IS_ERR(chan)) { ret = PTR_ERR(chan); if (ret != -EPROBE_DEFER) dev_err(&pdev->dev, "Failed to request DMA channel: %d\n", ret); return ret; } spin_lock_init(&dcmi->irqlock); mutex_init(&dcmi->lock); mutex_init(&dcmi->dma_lock); init_completion(&dcmi->complete); INIT_LIST_HEAD(&dcmi->buffers); dcmi->dev = &pdev->dev; dcmi->mclk = mclk; dcmi->state = STOPPED; dcmi->dma_chan = chan; q = &dcmi->queue; dcmi->v4l2_dev.mdev = &dcmi->mdev; /* Initialize media device */ strscpy(dcmi->mdev.model, DRV_NAME, sizeof(dcmi->mdev.model)); snprintf(dcmi->mdev.bus_info, sizeof(dcmi->mdev.bus_info), "platform:%s", DRV_NAME); dcmi->mdev.dev = &pdev->dev; media_device_init(&dcmi->mdev); /* Initialize the top-level structure */ ret = v4l2_device_register(&pdev->dev, &dcmi->v4l2_dev); if (ret) goto err_media_device_cleanup; dcmi->vdev = video_device_alloc(); if (!dcmi->vdev) { ret = -ENOMEM; goto err_device_unregister; } /* Video node */ dcmi->vdev->fops = &dcmi_fops; dcmi->vdev->v4l2_dev = &dcmi->v4l2_dev; dcmi->vdev->queue = &dcmi->queue; strscpy(dcmi->vdev->name, KBUILD_MODNAME, sizeof(dcmi->vdev->name)); dcmi->vdev->release = video_device_release; dcmi->vdev->ioctl_ops = &dcmi_ioctl_ops; dcmi->vdev->lock = &dcmi->lock; dcmi->vdev->device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING | V4L2_CAP_READWRITE; video_set_drvdata(dcmi->vdev, dcmi); /* Media entity pads */ dcmi->vid_cap_pad.flags = MEDIA_PAD_FL_SINK; ret = media_entity_pads_init(&dcmi->vdev->entity, 1, &dcmi->vid_cap_pad); if (ret) { dev_err(dcmi->dev, "Failed to init media entity pad\n"); goto err_device_release; } dcmi->vdev->entity.flags |= MEDIA_ENT_FL_DEFAULT; ret = video_register_device(dcmi->vdev, VFL_TYPE_VIDEO, -1); if (ret) { dev_err(dcmi->dev, "Failed to register video device\n"); goto err_media_entity_cleanup; } dev_dbg(dcmi->dev, "Device registered as %s\n", video_device_node_name(dcmi->vdev)); /* Buffer queue */ q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE; q->io_modes = VB2_MMAP | VB2_READ | VB2_DMABUF; q->lock = &dcmi->lock; q->drv_priv = dcmi; q->buf_struct_size = sizeof(struct dcmi_buf); q->ops = &dcmi_video_qops; q->mem_ops = &vb2_dma_contig_memops; q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC; q->min_buffers_needed = 2; q->dev = &pdev->dev; ret = vb2_queue_init(q); if (ret < 0) { dev_err(&pdev->dev, "Failed to initialize vb2 queue\n"); goto err_media_entity_cleanup; } ret = dcmi_graph_init(dcmi); if (ret < 0) goto err_media_entity_cleanup; /* Reset device */ ret = reset_control_assert(dcmi->rstc); if (ret) { dev_err(&pdev->dev, "Failed to assert the reset line\n"); goto err_cleanup; } usleep_range(3000, 5000); ret = reset_control_deassert(dcmi->rstc); if (ret) { dev_err(&pdev->dev, "Failed to deassert the reset line\n"); goto err_cleanup; } dev_info(&pdev->dev, "Probe done\n"); platform_set_drvdata(pdev, dcmi); pm_runtime_enable(&pdev->dev); return 0; err_cleanup: v4l2_async_notifier_cleanup(&dcmi->notifier); err_media_entity_cleanup: media_entity_cleanup(&dcmi->vdev->entity); err_device_release: video_device_release(dcmi->vdev); err_device_unregister: v4l2_device_unregister(&dcmi->v4l2_dev); err_media_device_cleanup: media_device_cleanup(&dcmi->mdev); dma_release_channel(dcmi->dma_chan); return ret; } static int dcmi_remove(struct platform_device *pdev) { struct stm32_dcmi *dcmi = platform_get_drvdata(pdev); pm_runtime_disable(&pdev->dev); v4l2_async_notifier_unregister(&dcmi->notifier); v4l2_async_notifier_cleanup(&dcmi->notifier); media_entity_cleanup(&dcmi->vdev->entity); v4l2_device_unregister(&dcmi->v4l2_dev); media_device_cleanup(&dcmi->mdev); dma_release_channel(dcmi->dma_chan); return 0; } static __maybe_unused int dcmi_runtime_suspend(struct device *dev) { struct stm32_dcmi *dcmi = dev_get_drvdata(dev); clk_disable_unprepare(dcmi->mclk); return 0; } static __maybe_unused int dcmi_runtime_resume(struct device *dev) { struct stm32_dcmi *dcmi = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(dcmi->mclk); if (ret) dev_err(dev, "%s: Failed to prepare_enable clock\n", __func__); return ret; } static __maybe_unused int dcmi_suspend(struct device *dev) { /* disable clock */ pm_runtime_force_suspend(dev); /* change pinctrl state */ pinctrl_pm_select_sleep_state(dev); return 0; } static __maybe_unused int dcmi_resume(struct device *dev) { /* restore pinctl default state */ pinctrl_pm_select_default_state(dev); /* clock enable */ pm_runtime_force_resume(dev); return 0; } static const struct dev_pm_ops dcmi_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(dcmi_suspend, dcmi_resume) SET_RUNTIME_PM_OPS(dcmi_runtime_suspend, dcmi_runtime_resume, NULL) }; static struct platform_driver stm32_dcmi_driver = { .probe = dcmi_probe, .remove = dcmi_remove, .driver = { .name = DRV_NAME, .of_match_table = of_match_ptr(stm32_dcmi_of_match), .pm = &dcmi_pm_ops, }, }; module_platform_driver(stm32_dcmi_driver); MODULE_AUTHOR("Yannick Fertre "); MODULE_AUTHOR("Hugues Fruchet "); MODULE_DESCRIPTION("STMicroelectronics STM32 Digital Camera Memory Interface driver"); MODULE_LICENSE("GPL"); MODULE_SUPPORTED_DEVICE("video");