/* * ImgTec IR Hardware Decoder found in PowerDown Controller. * * Copyright 2010-2014 Imagination Technologies Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * This ties into the input subsystem using the RC-core. Protocol support is * provided in separate modules which provide the parameters and scancode * translation functions to set up the hardware decoder and interpret the * resulting input. */ #include #include #include #include #include #include #include "img-ir.h" /* Decoders lock (only modified to preprocess them) */ static DEFINE_SPINLOCK(img_ir_decoders_lock); extern struct img_ir_decoder img_ir_nec; extern struct img_ir_decoder img_ir_jvc; extern struct img_ir_decoder img_ir_sony; extern struct img_ir_decoder img_ir_sharp; extern struct img_ir_decoder img_ir_sanyo; static bool img_ir_decoders_preprocessed; static struct img_ir_decoder *img_ir_decoders[] = { #ifdef CONFIG_IR_IMG_NEC &img_ir_nec, #endif #ifdef CONFIG_IR_IMG_JVC &img_ir_jvc, #endif #ifdef CONFIG_IR_IMG_SONY &img_ir_sony, #endif #ifdef CONFIG_IR_IMG_SHARP &img_ir_sharp, #endif #ifdef CONFIG_IR_IMG_SANYO &img_ir_sanyo, #endif NULL }; #define IMG_IR_F_FILTER BIT(RC_FILTER_NORMAL) /* enable filtering */ #define IMG_IR_F_WAKE BIT(RC_FILTER_WAKEUP) /* enable waking */ /* code type quirks */ #define IMG_IR_QUIRK_CODE_BROKEN 0x1 /* Decode is broken */ #define IMG_IR_QUIRK_CODE_LEN_INCR 0x2 /* Bit length needs increment */ /* functions for preprocessing timings, ensuring max is set */ static void img_ir_timing_preprocess(struct img_ir_timing_range *range, unsigned int unit) { if (range->max < range->min) range->max = range->min; if (unit) { /* multiply by unit and convert to microseconds */ range->min = (range->min*unit)/1000; range->max = (range->max*unit + 999)/1000; /* round up */ } } static void img_ir_symbol_timing_preprocess(struct img_ir_symbol_timing *timing, unsigned int unit) { img_ir_timing_preprocess(&timing->pulse, unit); img_ir_timing_preprocess(&timing->space, unit); } static void img_ir_timings_preprocess(struct img_ir_timings *timings, unsigned int unit) { img_ir_symbol_timing_preprocess(&timings->ldr, unit); img_ir_symbol_timing_preprocess(&timings->s00, unit); img_ir_symbol_timing_preprocess(&timings->s01, unit); img_ir_symbol_timing_preprocess(&timings->s10, unit); img_ir_symbol_timing_preprocess(&timings->s11, unit); /* default s10 and s11 to s00 and s01 if no leader */ if (unit) /* multiply by unit and convert to microseconds (round up) */ timings->ft.ft_min = (timings->ft.ft_min*unit + 999)/1000; } /* functions for filling empty fields with defaults */ static void img_ir_timing_defaults(struct img_ir_timing_range *range, struct img_ir_timing_range *defaults) { if (!range->min) range->min = defaults->min; if (!range->max) range->max = defaults->max; } static void img_ir_symbol_timing_defaults(struct img_ir_symbol_timing *timing, struct img_ir_symbol_timing *defaults) { img_ir_timing_defaults(&timing->pulse, &defaults->pulse); img_ir_timing_defaults(&timing->space, &defaults->space); } static void img_ir_timings_defaults(struct img_ir_timings *timings, struct img_ir_timings *defaults) { img_ir_symbol_timing_defaults(&timings->ldr, &defaults->ldr); img_ir_symbol_timing_defaults(&timings->s00, &defaults->s00); img_ir_symbol_timing_defaults(&timings->s01, &defaults->s01); img_ir_symbol_timing_defaults(&timings->s10, &defaults->s10); img_ir_symbol_timing_defaults(&timings->s11, &defaults->s11); if (!timings->ft.ft_min) timings->ft.ft_min = defaults->ft.ft_min; } /* functions for converting timings to register values */ /** * img_ir_control() - Convert control struct to control register value. * @control: Control data * * Returns: The control register value equivalent of @control. */ static u32 img_ir_control(const struct img_ir_control *control) { u32 ctrl = control->code_type << IMG_IR_CODETYPE_SHIFT; if (control->decoden) ctrl |= IMG_IR_DECODEN; if (control->hdrtog) ctrl |= IMG_IR_HDRTOG; if (control->ldrdec) ctrl |= IMG_IR_LDRDEC; if (control->decodinpol) ctrl |= IMG_IR_DECODINPOL; if (control->bitorien) ctrl |= IMG_IR_BITORIEN; if (control->d1validsel) ctrl |= IMG_IR_D1VALIDSEL; if (control->bitinv) ctrl |= IMG_IR_BITINV; if (control->decodend2) ctrl |= IMG_IR_DECODEND2; if (control->bitoriend2) ctrl |= IMG_IR_BITORIEND2; if (control->bitinvd2) ctrl |= IMG_IR_BITINVD2; return ctrl; } /** * img_ir_timing_range_convert() - Convert microsecond range. * @out: Output timing range in clock cycles with a shift. * @in: Input timing range in microseconds. * @tolerance: Tolerance as a fraction of 128 (roughly percent). * @clock_hz: IR clock rate in Hz. * @shift: Shift of output units. * * Converts min and max from microseconds to IR clock cycles, applies a * tolerance, and shifts for the register, rounding in the right direction. * Note that in and out can safely be the same object. */ static void img_ir_timing_range_convert(struct img_ir_timing_range *out, const struct img_ir_timing_range *in, unsigned int tolerance, unsigned long clock_hz, unsigned int shift) { unsigned int min = in->min; unsigned int max = in->max; /* add a tolerance */ min = min - (min*tolerance >> 7); max = max + (max*tolerance >> 7); /* convert from microseconds into clock cycles */ min = min*clock_hz / 1000000; max = (max*clock_hz + 999999) / 1000000; /* round up */ /* apply shift and copy to output */ out->min = min >> shift; out->max = (max + ((1 << shift) - 1)) >> shift; /* round up */ } /** * img_ir_symbol_timing() - Convert symbol timing struct to register value. * @timing: Symbol timing data * @tolerance: Timing tolerance where 0-128 represents 0-100% * @clock_hz: Frequency of source clock in Hz * @pd_shift: Shift to apply to symbol period * @w_shift: Shift to apply to symbol width * * Returns: Symbol timing register value based on arguments. */ static u32 img_ir_symbol_timing(const struct img_ir_symbol_timing *timing, unsigned int tolerance, unsigned long clock_hz, unsigned int pd_shift, unsigned int w_shift) { struct img_ir_timing_range hw_pulse, hw_period; /* we calculate period in hw_period, then convert in place */ hw_period.min = timing->pulse.min + timing->space.min; hw_period.max = timing->pulse.max + timing->space.max; img_ir_timing_range_convert(&hw_period, &hw_period, tolerance, clock_hz, pd_shift); img_ir_timing_range_convert(&hw_pulse, &timing->pulse, tolerance, clock_hz, w_shift); /* construct register value */ return (hw_period.max << IMG_IR_PD_MAX_SHIFT) | (hw_period.min << IMG_IR_PD_MIN_SHIFT) | (hw_pulse.max << IMG_IR_W_MAX_SHIFT) | (hw_pulse.min << IMG_IR_W_MIN_SHIFT); } /** * img_ir_free_timing() - Convert free time timing struct to register value. * @timing: Free symbol timing data * @clock_hz: Source clock frequency in Hz * * Returns: Free symbol timing register value. */ static u32 img_ir_free_timing(const struct img_ir_free_timing *timing, unsigned long clock_hz) { unsigned int minlen, maxlen, ft_min; /* minlen is only 5 bits, and round minlen to multiple of 2 */ if (timing->minlen < 30) minlen = timing->minlen & -2; else minlen = 30; /* maxlen has maximum value of 48, and round maxlen to multiple of 2 */ if (timing->maxlen < 48) maxlen = (timing->maxlen + 1) & -2; else maxlen = 48; /* convert and shift ft_min, rounding upwards */ ft_min = (timing->ft_min*clock_hz + 999999) / 1000000; ft_min = (ft_min + 7) >> 3; /* construct register value */ return (maxlen << IMG_IR_MAXLEN_SHIFT) | (minlen << IMG_IR_MINLEN_SHIFT) | (ft_min << IMG_IR_FT_MIN_SHIFT); } /** * img_ir_free_timing_dynamic() - Update free time register value. * @st_ft: Static free time register value from img_ir_free_timing. * @filter: Current filter which may additionally restrict min/max len. * * Returns: Updated free time register value based on the current filter. */ static u32 img_ir_free_timing_dynamic(u32 st_ft, struct img_ir_filter *filter) { unsigned int minlen, maxlen, newminlen, newmaxlen; /* round minlen, maxlen to multiple of 2 */ newminlen = filter->minlen & -2; newmaxlen = (filter->maxlen + 1) & -2; /* extract min/max len from register */ minlen = (st_ft & IMG_IR_MINLEN) >> IMG_IR_MINLEN_SHIFT; maxlen = (st_ft & IMG_IR_MAXLEN) >> IMG_IR_MAXLEN_SHIFT; /* if the new values are more restrictive, update the register value */ if (newminlen > minlen) { st_ft &= ~IMG_IR_MINLEN; st_ft |= newminlen << IMG_IR_MINLEN_SHIFT; } if (newmaxlen < maxlen) { st_ft &= ~IMG_IR_MAXLEN; st_ft |= newmaxlen << IMG_IR_MAXLEN_SHIFT; } return st_ft; } /** * img_ir_timings_convert() - Convert timings to register values * @regs: Output timing register values * @timings: Input timing data * @tolerance: Timing tolerance where 0-128 represents 0-100% * @clock_hz: Source clock frequency in Hz */ static void img_ir_timings_convert(struct img_ir_timing_regvals *regs, const struct img_ir_timings *timings, unsigned int tolerance, unsigned int clock_hz) { /* leader symbol timings are divided by 16 */ regs->ldr = img_ir_symbol_timing(&timings->ldr, tolerance, clock_hz, 4, 4); /* other symbol timings, pd fields only are divided by 2 */ regs->s00 = img_ir_symbol_timing(&timings->s00, tolerance, clock_hz, 1, 0); regs->s01 = img_ir_symbol_timing(&timings->s01, tolerance, clock_hz, 1, 0); regs->s10 = img_ir_symbol_timing(&timings->s10, tolerance, clock_hz, 1, 0); regs->s11 = img_ir_symbol_timing(&timings->s11, tolerance, clock_hz, 1, 0); regs->ft = img_ir_free_timing(&timings->ft, clock_hz); } /** * img_ir_decoder_preprocess() - Preprocess timings in decoder. * @decoder: Decoder to be preprocessed. * * Ensures that the symbol timing ranges are valid with respect to ordering, and * does some fixed conversion on them. */ static void img_ir_decoder_preprocess(struct img_ir_decoder *decoder) { /* default tolerance */ if (!decoder->tolerance) decoder->tolerance = 10; /* percent */ /* and convert tolerance to fraction out of 128 */ decoder->tolerance = decoder->tolerance * 128 / 100; /* fill in implicit fields */ img_ir_timings_preprocess(&decoder->timings, decoder->unit); /* do the same for repeat timings if applicable */ if (decoder->repeat) { img_ir_timings_preprocess(&decoder->rtimings, decoder->unit); img_ir_timings_defaults(&decoder->rtimings, &decoder->timings); } } /** * img_ir_decoder_convert() - Generate internal timings in decoder. * @decoder: Decoder to be converted to internal timings. * @timings: Timing register values. * @clock_hz: IR clock rate in Hz. * * Fills out the repeat timings and timing register values for a specific clock * rate. */ static void img_ir_decoder_convert(const struct img_ir_decoder *decoder, struct img_ir_reg_timings *reg_timings, unsigned int clock_hz) { /* calculate control value */ reg_timings->ctrl = img_ir_control(&decoder->control); /* fill in implicit fields and calculate register values */ img_ir_timings_convert(®_timings->timings, &decoder->timings, decoder->tolerance, clock_hz); /* do the same for repeat timings if applicable */ if (decoder->repeat) img_ir_timings_convert(®_timings->rtimings, &decoder->rtimings, decoder->tolerance, clock_hz); } /** * img_ir_write_timings() - Write timings to the hardware now * @priv: IR private data * @regs: Timing register values to write * @type: RC filter type (RC_FILTER_*) * * Write timing register values @regs to the hardware, taking into account the * current filter which may impose restrictions on the length of the expected * data. */ static void img_ir_write_timings(struct img_ir_priv *priv, struct img_ir_timing_regvals *regs, enum rc_filter_type type) { struct img_ir_priv_hw *hw = &priv->hw; /* filter may be more restrictive to minlen, maxlen */ u32 ft = regs->ft; if (hw->flags & BIT(type)) ft = img_ir_free_timing_dynamic(regs->ft, &hw->filters[type]); /* write to registers */ img_ir_write(priv, IMG_IR_LEAD_SYMB_TIMING, regs->ldr); img_ir_write(priv, IMG_IR_S00_SYMB_TIMING, regs->s00); img_ir_write(priv, IMG_IR_S01_SYMB_TIMING, regs->s01); img_ir_write(priv, IMG_IR_S10_SYMB_TIMING, regs->s10); img_ir_write(priv, IMG_IR_S11_SYMB_TIMING, regs->s11); img_ir_write(priv, IMG_IR_FREE_SYMB_TIMING, ft); dev_dbg(priv->dev, "timings: ldr=%#x, s=[%#x, %#x, %#x, %#x], ft=%#x\n", regs->ldr, regs->s00, regs->s01, regs->s10, regs->s11, ft); } static void img_ir_write_filter(struct img_ir_priv *priv, struct img_ir_filter *filter) { if (filter) { dev_dbg(priv->dev, "IR filter=%016llx & %016llx\n", (unsigned long long)filter->data, (unsigned long long)filter->mask); img_ir_write(priv, IMG_IR_IRQ_MSG_DATA_LW, (u32)filter->data); img_ir_write(priv, IMG_IR_IRQ_MSG_DATA_UP, (u32)(filter->data >> 32)); img_ir_write(priv, IMG_IR_IRQ_MSG_MASK_LW, (u32)filter->mask); img_ir_write(priv, IMG_IR_IRQ_MSG_MASK_UP, (u32)(filter->mask >> 32)); } else { dev_dbg(priv->dev, "IR clearing filter\n"); img_ir_write(priv, IMG_IR_IRQ_MSG_MASK_LW, 0); img_ir_write(priv, IMG_IR_IRQ_MSG_MASK_UP, 0); } } /* caller must have lock */ static void _img_ir_set_filter(struct img_ir_priv *priv, struct img_ir_filter *filter) { struct img_ir_priv_hw *hw = &priv->hw; u32 irq_en, irq_on; irq_en = img_ir_read(priv, IMG_IR_IRQ_ENABLE); if (filter) { /* Only use the match interrupt */ hw->filters[RC_FILTER_NORMAL] = *filter; hw->flags |= IMG_IR_F_FILTER; irq_on = IMG_IR_IRQ_DATA_MATCH; irq_en &= ~(IMG_IR_IRQ_DATA_VALID | IMG_IR_IRQ_DATA2_VALID); } else { /* Only use the valid interrupt */ hw->flags &= ~IMG_IR_F_FILTER; irq_en &= ~IMG_IR_IRQ_DATA_MATCH; irq_on = IMG_IR_IRQ_DATA_VALID | IMG_IR_IRQ_DATA2_VALID; } irq_en |= irq_on; img_ir_write_filter(priv, filter); /* clear any interrupts we're enabling so we don't handle old ones */ img_ir_write(priv, IMG_IR_IRQ_CLEAR, irq_on); img_ir_write(priv, IMG_IR_IRQ_ENABLE, irq_en); } /* caller must have lock */ static void _img_ir_set_wake_filter(struct img_ir_priv *priv, struct img_ir_filter *filter) { struct img_ir_priv_hw *hw = &priv->hw; if (filter) { /* Enable wake, and copy filter for later */ hw->filters[RC_FILTER_WAKEUP] = *filter; hw->flags |= IMG_IR_F_WAKE; } else { /* Disable wake */ hw->flags &= ~IMG_IR_F_WAKE; } } /* Callback for setting scancode filter */ static int img_ir_set_filter(struct rc_dev *dev, enum rc_filter_type type, struct rc_scancode_filter *sc_filter) { struct img_ir_priv *priv = dev->priv; struct img_ir_priv_hw *hw = &priv->hw; struct img_ir_filter filter, *filter_ptr = &filter; int ret = 0; dev_dbg(priv->dev, "IR scancode %sfilter=%08x & %08x\n", type == RC_FILTER_WAKEUP ? "wake " : "", sc_filter->data, sc_filter->mask); spin_lock_irq(&priv->lock); /* filtering can always be disabled */ if (!sc_filter->mask) { filter_ptr = NULL; goto set_unlock; } /* current decoder must support scancode filtering */ if (!hw->decoder || !hw->decoder->filter) { ret = -EINVAL; goto unlock; } /* convert scancode filter to raw filter */ filter.minlen = 0; filter.maxlen = ~0; ret = hw->decoder->filter(sc_filter, &filter, hw->enabled_protocols); if (ret) goto unlock; dev_dbg(priv->dev, "IR raw %sfilter=%016llx & %016llx\n", type == RC_FILTER_WAKEUP ? "wake " : "", (unsigned long long)filter.data, (unsigned long long)filter.mask); set_unlock: /* apply raw filters */ switch (type) { case RC_FILTER_NORMAL: _img_ir_set_filter(priv, filter_ptr); break; case RC_FILTER_WAKEUP: _img_ir_set_wake_filter(priv, filter_ptr); break; default: ret = -EINVAL; } unlock: spin_unlock_irq(&priv->lock); return ret; } static int img_ir_set_normal_filter(struct rc_dev *dev, struct rc_scancode_filter *sc_filter) { return img_ir_set_filter(dev, RC_FILTER_NORMAL, sc_filter); } static int img_ir_set_wakeup_filter(struct rc_dev *dev, struct rc_scancode_filter *sc_filter) { return img_ir_set_filter(dev, RC_FILTER_WAKEUP, sc_filter); } /** * img_ir_set_decoder() - Set the current decoder. * @priv: IR private data. * @decoder: Decoder to use with immediate effect. * @proto: Protocol bitmap (or 0 to use decoder->type). */ static void img_ir_set_decoder(struct img_ir_priv *priv, const struct img_ir_decoder *decoder, u64 proto) { struct img_ir_priv_hw *hw = &priv->hw; struct rc_dev *rdev = hw->rdev; u32 ir_status, irq_en; spin_lock_irq(&priv->lock); /* switch off and disable interrupts */ img_ir_write(priv, IMG_IR_CONTROL, 0); irq_en = img_ir_read(priv, IMG_IR_IRQ_ENABLE); img_ir_write(priv, IMG_IR_IRQ_ENABLE, irq_en & IMG_IR_IRQ_EDGE); img_ir_write(priv, IMG_IR_IRQ_CLEAR, IMG_IR_IRQ_ALL & ~IMG_IR_IRQ_EDGE); /* ack any data already detected */ ir_status = img_ir_read(priv, IMG_IR_STATUS); if (ir_status & (IMG_IR_RXDVAL | IMG_IR_RXDVALD2)) { ir_status &= ~(IMG_IR_RXDVAL | IMG_IR_RXDVALD2); img_ir_write(priv, IMG_IR_STATUS, ir_status); img_ir_read(priv, IMG_IR_DATA_LW); img_ir_read(priv, IMG_IR_DATA_UP); } /* stop the end timer and switch back to normal mode */ del_timer_sync(&hw->end_timer); hw->mode = IMG_IR_M_NORMAL; /* clear the wakeup scancode filter */ rdev->scancode_wakeup_filter.data = 0; rdev->scancode_wakeup_filter.mask = 0; /* clear raw filters */ _img_ir_set_filter(priv, NULL); _img_ir_set_wake_filter(priv, NULL); /* clear the enabled protocols */ hw->enabled_protocols = 0; /* switch decoder */ hw->decoder = decoder; if (!decoder) goto unlock; /* set the enabled protocols */ if (!proto) proto = decoder->type; hw->enabled_protocols = proto; /* write the new timings */ img_ir_decoder_convert(decoder, &hw->reg_timings, hw->clk_hz); img_ir_write_timings(priv, &hw->reg_timings.timings, RC_FILTER_NORMAL); /* set up and enable */ img_ir_write(priv, IMG_IR_CONTROL, hw->reg_timings.ctrl); unlock: spin_unlock_irq(&priv->lock); } /** * img_ir_decoder_compatable() - Find whether a decoder will work with a device. * @priv: IR private data. * @dec: Decoder to check. * * Returns: true if @dec is compatible with the device @priv refers to. */ static bool img_ir_decoder_compatible(struct img_ir_priv *priv, const struct img_ir_decoder *dec) { unsigned int ct; /* don't accept decoders using code types which aren't supported */ ct = dec->control.code_type; if (priv->hw.ct_quirks[ct] & IMG_IR_QUIRK_CODE_BROKEN) return false; return true; } /** * img_ir_allowed_protos() - Get allowed protocols from global decoder list. * @priv: IR private data. * * Returns: Mask of protocols supported by the device @priv refers to. */ static u64 img_ir_allowed_protos(struct img_ir_priv *priv) { u64 protos = 0; struct img_ir_decoder **decp; for (decp = img_ir_decoders; *decp; ++decp) { const struct img_ir_decoder *dec = *decp; if (img_ir_decoder_compatible(priv, dec)) protos |= dec->type; } return protos; } /* Callback for changing protocol using sysfs */ static int img_ir_change_protocol(struct rc_dev *dev, u64 *ir_type) { struct img_ir_priv *priv = dev->priv; struct img_ir_priv_hw *hw = &priv->hw; struct rc_dev *rdev = hw->rdev; struct img_ir_decoder **decp; u64 wakeup_protocols; if (!*ir_type) { /* disable all protocols */ img_ir_set_decoder(priv, NULL, 0); goto success; } for (decp = img_ir_decoders; *decp; ++decp) { const struct img_ir_decoder *dec = *decp; if (!img_ir_decoder_compatible(priv, dec)) continue; if (*ir_type & dec->type) { *ir_type &= dec->type; img_ir_set_decoder(priv, dec, *ir_type); goto success; } } return -EINVAL; success: /* * Only allow matching wakeup protocols for now, and only if filtering * is supported. */ wakeup_protocols = *ir_type; if (!hw->decoder || !hw->decoder->filter) wakeup_protocols = 0; rdev->allowed_wakeup_protocols = wakeup_protocols; rdev->enabled_wakeup_protocols = wakeup_protocols; return 0; } /* Changes ir-core protocol device attribute */ static void img_ir_set_protocol(struct img_ir_priv *priv, u64 proto) { struct rc_dev *rdev = priv->hw.rdev; spin_lock_irq(&rdev->rc_map.lock); rdev->rc_map.rc_type = __ffs64(proto); spin_unlock_irq(&rdev->rc_map.lock); mutex_lock(&rdev->lock); rdev->enabled_protocols = proto; rdev->allowed_wakeup_protocols = proto; rdev->enabled_wakeup_protocols = proto; mutex_unlock(&rdev->lock); } /* Set up IR decoders */ static void img_ir_init_decoders(void) { struct img_ir_decoder **decp; spin_lock(&img_ir_decoders_lock); if (!img_ir_decoders_preprocessed) { for (decp = img_ir_decoders; *decp; ++decp) img_ir_decoder_preprocess(*decp); img_ir_decoders_preprocessed = true; } spin_unlock(&img_ir_decoders_lock); } #ifdef CONFIG_PM_SLEEP /** * img_ir_enable_wake() - Switch to wake mode. * @priv: IR private data. * * Returns: non-zero if the IR can wake the system. */ static int img_ir_enable_wake(struct img_ir_priv *priv) { struct img_ir_priv_hw *hw = &priv->hw; int ret = 0; spin_lock_irq(&priv->lock); if (hw->flags & IMG_IR_F_WAKE) { /* interrupt only on a match */ hw->suspend_irqen = img_ir_read(priv, IMG_IR_IRQ_ENABLE); img_ir_write(priv, IMG_IR_IRQ_ENABLE, IMG_IR_IRQ_DATA_MATCH); img_ir_write_filter(priv, &hw->filters[RC_FILTER_WAKEUP]); img_ir_write_timings(priv, &hw->reg_timings.timings, RC_FILTER_WAKEUP); hw->mode = IMG_IR_M_WAKE; ret = 1; } spin_unlock_irq(&priv->lock); return ret; } /** * img_ir_disable_wake() - Switch out of wake mode. * @priv: IR private data * * Returns: 1 if the hardware should be allowed to wake from a sleep state. * 0 otherwise. */ static int img_ir_disable_wake(struct img_ir_priv *priv) { struct img_ir_priv_hw *hw = &priv->hw; int ret = 0; spin_lock_irq(&priv->lock); if (hw->flags & IMG_IR_F_WAKE) { /* restore normal filtering */ if (hw->flags & IMG_IR_F_FILTER) { img_ir_write(priv, IMG_IR_IRQ_ENABLE, (hw->suspend_irqen & IMG_IR_IRQ_EDGE) | IMG_IR_IRQ_DATA_MATCH); img_ir_write_filter(priv, &hw->filters[RC_FILTER_NORMAL]); } else { img_ir_write(priv, IMG_IR_IRQ_ENABLE, (hw->suspend_irqen & IMG_IR_IRQ_EDGE) | IMG_IR_IRQ_DATA_VALID | IMG_IR_IRQ_DATA2_VALID); img_ir_write_filter(priv, NULL); } img_ir_write_timings(priv, &hw->reg_timings.timings, RC_FILTER_NORMAL); hw->mode = IMG_IR_M_NORMAL; ret = 1; } spin_unlock_irq(&priv->lock); return ret; } #endif /* CONFIG_PM_SLEEP */ /* lock must be held */ static void img_ir_begin_repeat(struct img_ir_priv *priv) { struct img_ir_priv_hw *hw = &priv->hw; if (hw->mode == IMG_IR_M_NORMAL) { /* switch to repeat timings */ img_ir_write(priv, IMG_IR_CONTROL, 0); hw->mode = IMG_IR_M_REPEATING; img_ir_write_timings(priv, &hw->reg_timings.rtimings, RC_FILTER_NORMAL); img_ir_write(priv, IMG_IR_CONTROL, hw->reg_timings.ctrl); } } /* lock must be held */ static void img_ir_end_repeat(struct img_ir_priv *priv) { struct img_ir_priv_hw *hw = &priv->hw; if (hw->mode == IMG_IR_M_REPEATING) { /* switch to normal timings */ img_ir_write(priv, IMG_IR_CONTROL, 0); hw->mode = IMG_IR_M_NORMAL; img_ir_write_timings(priv, &hw->reg_timings.timings, RC_FILTER_NORMAL); img_ir_write(priv, IMG_IR_CONTROL, hw->reg_timings.ctrl); } } /* lock must be held */ static void img_ir_handle_data(struct img_ir_priv *priv, u32 len, u64 raw) { struct img_ir_priv_hw *hw = &priv->hw; const struct img_ir_decoder *dec = hw->decoder; int ret = IMG_IR_SCANCODE; u32 scancode; enum rc_type protocol = RC_TYPE_UNKNOWN; if (dec->scancode) ret = dec->scancode(len, raw, &protocol, &scancode, hw->enabled_protocols); else if (len >= 32) scancode = (u32)raw; else if (len < 32) scancode = (u32)raw & ((1 << len)-1); dev_dbg(priv->dev, "data (%u bits) = %#llx\n", len, (unsigned long long)raw); if (ret == IMG_IR_SCANCODE) { dev_dbg(priv->dev, "decoded scan code %#x\n", scancode); rc_keydown(hw->rdev, protocol, scancode, 0); img_ir_end_repeat(priv); } else if (ret == IMG_IR_REPEATCODE) { if (hw->mode == IMG_IR_M_REPEATING) { dev_dbg(priv->dev, "decoded repeat code\n"); rc_repeat(hw->rdev); } else { dev_dbg(priv->dev, "decoded unexpected repeat code, ignoring\n"); } } else { dev_dbg(priv->dev, "decode failed (%d)\n", ret); return; } if (dec->repeat) { unsigned long interval; img_ir_begin_repeat(priv); /* update timer, but allowing for 1/8th tolerance */ interval = dec->repeat + (dec->repeat >> 3); mod_timer(&hw->end_timer, jiffies + msecs_to_jiffies(interval)); } } /* timer function to end waiting for repeat. */ static void img_ir_end_timer(unsigned long arg) { struct img_ir_priv *priv = (struct img_ir_priv *)arg; spin_lock_irq(&priv->lock); img_ir_end_repeat(priv); spin_unlock_irq(&priv->lock); } #ifdef CONFIG_COMMON_CLK static void img_ir_change_frequency(struct img_ir_priv *priv, struct clk_notifier_data *change) { struct img_ir_priv_hw *hw = &priv->hw; dev_dbg(priv->dev, "clk changed %lu HZ -> %lu HZ\n", change->old_rate, change->new_rate); spin_lock_irq(&priv->lock); if (hw->clk_hz == change->new_rate) goto unlock; hw->clk_hz = change->new_rate; /* refresh current timings */ if (hw->decoder) { img_ir_decoder_convert(hw->decoder, &hw->reg_timings, hw->clk_hz); switch (hw->mode) { case IMG_IR_M_NORMAL: img_ir_write_timings(priv, &hw->reg_timings.timings, RC_FILTER_NORMAL); break; case IMG_IR_M_REPEATING: img_ir_write_timings(priv, &hw->reg_timings.rtimings, RC_FILTER_NORMAL); break; #ifdef CONFIG_PM_SLEEP case IMG_IR_M_WAKE: img_ir_write_timings(priv, &hw->reg_timings.timings, RC_FILTER_WAKEUP); break; #endif } } unlock: spin_unlock_irq(&priv->lock); } static int img_ir_clk_notify(struct notifier_block *self, unsigned long action, void *data) { struct img_ir_priv *priv = container_of(self, struct img_ir_priv, hw.clk_nb); switch (action) { case POST_RATE_CHANGE: img_ir_change_frequency(priv, data); break; default: break; } return NOTIFY_OK; } #endif /* CONFIG_COMMON_CLK */ /* called with priv->lock held */ void img_ir_isr_hw(struct img_ir_priv *priv, u32 irq_status) { struct img_ir_priv_hw *hw = &priv->hw; u32 ir_status, len, lw, up; unsigned int ct; /* use the current decoder */ if (!hw->decoder) return; ir_status = img_ir_read(priv, IMG_IR_STATUS); if (!(ir_status & (IMG_IR_RXDVAL | IMG_IR_RXDVALD2))) return; ir_status &= ~(IMG_IR_RXDVAL | IMG_IR_RXDVALD2); img_ir_write(priv, IMG_IR_STATUS, ir_status); len = (ir_status & IMG_IR_RXDLEN) >> IMG_IR_RXDLEN_SHIFT; /* some versions report wrong length for certain code types */ ct = hw->decoder->control.code_type; if (hw->ct_quirks[ct] & IMG_IR_QUIRK_CODE_LEN_INCR) ++len; lw = img_ir_read(priv, IMG_IR_DATA_LW); up = img_ir_read(priv, IMG_IR_DATA_UP); img_ir_handle_data(priv, len, (u64)up << 32 | lw); } void img_ir_setup_hw(struct img_ir_priv *priv) { struct img_ir_decoder **decp; if (!priv->hw.rdev) return; /* Use the first available decoder (or disable stuff if NULL) */ for (decp = img_ir_decoders; *decp; ++decp) { const struct img_ir_decoder *dec = *decp; if (img_ir_decoder_compatible(priv, dec)) { img_ir_set_protocol(priv, dec->type); img_ir_set_decoder(priv, dec, 0); return; } } img_ir_set_decoder(priv, NULL, 0); } /** * img_ir_probe_hw_caps() - Probe capabilities of the hardware. * @priv: IR private data. */ static void img_ir_probe_hw_caps(struct img_ir_priv *priv) { struct img_ir_priv_hw *hw = &priv->hw; /* * When a version of the block becomes available without these quirks, * they'll have to depend on the core revision. */ hw->ct_quirks[IMG_IR_CODETYPE_PULSELEN] |= IMG_IR_QUIRK_CODE_LEN_INCR; hw->ct_quirks[IMG_IR_CODETYPE_BIPHASE] |= IMG_IR_QUIRK_CODE_BROKEN; hw->ct_quirks[IMG_IR_CODETYPE_2BITPULSEPOS] |= IMG_IR_QUIRK_CODE_BROKEN; } int img_ir_probe_hw(struct img_ir_priv *priv) { struct img_ir_priv_hw *hw = &priv->hw; struct rc_dev *rdev; int error; /* Ensure hardware decoders have been preprocessed */ img_ir_init_decoders(); /* Probe hardware capabilities */ img_ir_probe_hw_caps(priv); /* Set up the end timer */ setup_timer(&hw->end_timer, img_ir_end_timer, (unsigned long)priv); /* Register a clock notifier */ if (!IS_ERR(priv->clk)) { hw->clk_hz = clk_get_rate(priv->clk); #ifdef CONFIG_COMMON_CLK hw->clk_nb.notifier_call = img_ir_clk_notify; error = clk_notifier_register(priv->clk, &hw->clk_nb); if (error) dev_warn(priv->dev, "failed to register clock notifier\n"); #endif } else { hw->clk_hz = 32768; } /* Allocate hardware decoder */ hw->rdev = rdev = rc_allocate_device(); if (!rdev) { dev_err(priv->dev, "cannot allocate input device\n"); error = -ENOMEM; goto err_alloc_rc; } rdev->priv = priv; rdev->map_name = RC_MAP_EMPTY; rdev->allowed_protocols = img_ir_allowed_protos(priv); rdev->input_name = "IMG Infrared Decoder"; rdev->s_filter = img_ir_set_normal_filter; rdev->s_wakeup_filter = img_ir_set_wakeup_filter; /* Register hardware decoder */ error = rc_register_device(rdev); if (error) { dev_err(priv->dev, "failed to register IR input device\n"); goto err_register_rc; } /* * Set this after rc_register_device as no protocols have been * registered yet. */ rdev->change_protocol = img_ir_change_protocol; device_init_wakeup(priv->dev, 1); return 0; err_register_rc: img_ir_set_decoder(priv, NULL, 0); hw->rdev = NULL; rc_free_device(rdev); err_alloc_rc: #ifdef CONFIG_COMMON_CLK if (!IS_ERR(priv->clk)) clk_notifier_unregister(priv->clk, &hw->clk_nb); #endif return error; } void img_ir_remove_hw(struct img_ir_priv *priv) { struct img_ir_priv_hw *hw = &priv->hw; struct rc_dev *rdev = hw->rdev; if (!rdev) return; img_ir_set_decoder(priv, NULL, 0); hw->rdev = NULL; rc_unregister_device(rdev); #ifdef CONFIG_COMMON_CLK if (!IS_ERR(priv->clk)) clk_notifier_unregister(priv->clk, &hw->clk_nb); #endif } #ifdef CONFIG_PM_SLEEP int img_ir_suspend(struct device *dev) { struct img_ir_priv *priv = dev_get_drvdata(dev); if (device_may_wakeup(dev) && img_ir_enable_wake(priv)) enable_irq_wake(priv->irq); return 0; } int img_ir_resume(struct device *dev) { struct img_ir_priv *priv = dev_get_drvdata(dev); if (device_may_wakeup(dev) && img_ir_disable_wake(priv)) disable_irq_wake(priv->irq); return 0; } #endif /* CONFIG_PM_SLEEP */