// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2019 HabanaLabs, Ltd. * All Rights Reserved. */ #include "habanalabs.h" #include "../include/hw_ip/mmu/mmu_general.h" #include #include #include #define MMU_ADDR_BUF_SIZE 40 #define MMU_ASID_BUF_SIZE 10 #define MMU_KBUF_SIZE (MMU_ADDR_BUF_SIZE + MMU_ASID_BUF_SIZE) static struct dentry *hl_debug_root; static int hl_debugfs_i2c_read(struct hl_device *hdev, u8 i2c_bus, u8 i2c_addr, u8 i2c_reg, long *val) { struct cpucp_packet pkt; u64 result; int rc; if (!hl_device_operational(hdev, NULL)) return -EBUSY; memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_I2C_RD << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.i2c_bus = i2c_bus; pkt.i2c_addr = i2c_addr; pkt.i2c_reg = i2c_reg; rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result); *val = (long) result; if (rc) dev_err(hdev->dev, "Failed to read from I2C, error %d\n", rc); return rc; } static int hl_debugfs_i2c_write(struct hl_device *hdev, u8 i2c_bus, u8 i2c_addr, u8 i2c_reg, u32 val) { struct cpucp_packet pkt; int rc; if (!hl_device_operational(hdev, NULL)) return -EBUSY; memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_I2C_WR << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.i2c_bus = i2c_bus; pkt.i2c_addr = i2c_addr; pkt.i2c_reg = i2c_reg; pkt.value = cpu_to_le64(val); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL); if (rc) dev_err(hdev->dev, "Failed to write to I2C, error %d\n", rc); return rc; } static void hl_debugfs_led_set(struct hl_device *hdev, u8 led, u8 state) { struct cpucp_packet pkt; int rc; if (!hl_device_operational(hdev, NULL)) return; memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_LED_SET << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.led_index = cpu_to_le32(led); pkt.value = cpu_to_le64(state); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL); if (rc) dev_err(hdev->dev, "Failed to set LED %d, error %d\n", led, rc); } static int command_buffers_show(struct seq_file *s, void *data) { struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; struct hl_cb *cb; bool first = true; spin_lock(&dev_entry->cb_spinlock); list_for_each_entry(cb, &dev_entry->cb_list, debugfs_list) { if (first) { first = false; seq_puts(s, "\n"); seq_puts(s, " CB ID CTX ID CB size CB RefCnt mmap? CS counter\n"); seq_puts(s, "---------------------------------------------------------------\n"); } seq_printf(s, " %03llu %d 0x%08x %d %d %d\n", cb->id, cb->ctx->asid, cb->size, kref_read(&cb->refcount), cb->mmap, atomic_read(&cb->cs_cnt)); } spin_unlock(&dev_entry->cb_spinlock); if (!first) seq_puts(s, "\n"); return 0; } static int command_submission_show(struct seq_file *s, void *data) { struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; struct hl_cs *cs; bool first = true; spin_lock(&dev_entry->cs_spinlock); list_for_each_entry(cs, &dev_entry->cs_list, debugfs_list) { if (first) { first = false; seq_puts(s, "\n"); seq_puts(s, " CS ID CTX ASID CS RefCnt Submitted Completed\n"); seq_puts(s, "------------------------------------------------------\n"); } seq_printf(s, " %llu %d %d %d %d\n", cs->sequence, cs->ctx->asid, kref_read(&cs->refcount), cs->submitted, cs->completed); } spin_unlock(&dev_entry->cs_spinlock); if (!first) seq_puts(s, "\n"); return 0; } static int command_submission_jobs_show(struct seq_file *s, void *data) { struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; struct hl_cs_job *job; bool first = true; spin_lock(&dev_entry->cs_job_spinlock); list_for_each_entry(job, &dev_entry->cs_job_list, debugfs_list) { if (first) { first = false; seq_puts(s, "\n"); seq_puts(s, " JOB ID CS ID CTX ASID JOB RefCnt H/W Queue\n"); seq_puts(s, "----------------------------------------------------\n"); } if (job->cs) seq_printf(s, " %02d %llu %d %d %d\n", job->id, job->cs->sequence, job->cs->ctx->asid, kref_read(&job->refcount), job->hw_queue_id); else seq_printf(s, " %02d 0 %d %d %d\n", job->id, HL_KERNEL_ASID_ID, kref_read(&job->refcount), job->hw_queue_id); } spin_unlock(&dev_entry->cs_job_spinlock); if (!first) seq_puts(s, "\n"); return 0; } static int userptr_show(struct seq_file *s, void *data) { struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; struct hl_userptr *userptr; char dma_dir[4][30] = {"DMA_BIDIRECTIONAL", "DMA_TO_DEVICE", "DMA_FROM_DEVICE", "DMA_NONE"}; bool first = true; spin_lock(&dev_entry->userptr_spinlock); list_for_each_entry(userptr, &dev_entry->userptr_list, debugfs_list) { if (first) { first = false; seq_puts(s, "\n"); seq_puts(s, " user virtual address size dma dir\n"); seq_puts(s, "----------------------------------------------------------\n"); } seq_printf(s, " 0x%-14llx %-10u %-30s\n", userptr->addr, userptr->size, dma_dir[userptr->dir]); } spin_unlock(&dev_entry->userptr_spinlock); if (!first) seq_puts(s, "\n"); return 0; } static int vm_show(struct seq_file *s, void *data) { struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; struct hl_vm_hw_block_list_node *lnode; struct hl_ctx *ctx; struct hl_vm *vm; struct hl_vm_hash_node *hnode; struct hl_userptr *userptr; struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; enum vm_type_t *vm_type; bool once = true; u64 j; int i; if (!dev_entry->hdev->mmu_enable) return 0; spin_lock(&dev_entry->ctx_mem_hash_spinlock); list_for_each_entry(ctx, &dev_entry->ctx_mem_hash_list, debugfs_list) { once = false; seq_puts(s, "\n\n----------------------------------------------------"); seq_puts(s, "\n----------------------------------------------------\n\n"); seq_printf(s, "ctx asid: %u\n", ctx->asid); seq_puts(s, "\nmappings:\n\n"); seq_puts(s, " virtual address size handle\n"); seq_puts(s, "----------------------------------------------------\n"); mutex_lock(&ctx->mem_hash_lock); hash_for_each(ctx->mem_hash, i, hnode, node) { vm_type = hnode->ptr; if (*vm_type == VM_TYPE_USERPTR) { userptr = hnode->ptr; seq_printf(s, " 0x%-14llx %-10u\n", hnode->vaddr, userptr->size); } else { phys_pg_pack = hnode->ptr; seq_printf(s, " 0x%-14llx %-10llu %-4u\n", hnode->vaddr, phys_pg_pack->total_size, phys_pg_pack->handle); } } mutex_unlock(&ctx->mem_hash_lock); if (ctx->asid != HL_KERNEL_ASID_ID && !list_empty(&ctx->hw_block_mem_list)) { seq_puts(s, "\nhw_block mappings:\n\n"); seq_puts(s, " virtual address size HW block id\n"); seq_puts(s, "-------------------------------------------\n"); mutex_lock(&ctx->hw_block_list_lock); list_for_each_entry(lnode, &ctx->hw_block_mem_list, node) { seq_printf(s, " 0x%-14lx %-6u %-9u\n", lnode->vaddr, lnode->size, lnode->id); } mutex_unlock(&ctx->hw_block_list_lock); } vm = &ctx->hdev->vm; spin_lock(&vm->idr_lock); if (!idr_is_empty(&vm->phys_pg_pack_handles)) seq_puts(s, "\n\nallocations:\n"); idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_pack, i) { if (phys_pg_pack->asid != ctx->asid) continue; seq_printf(s, "\nhandle: %u\n", phys_pg_pack->handle); seq_printf(s, "page size: %u\n\n", phys_pg_pack->page_size); seq_puts(s, " physical address\n"); seq_puts(s, "---------------------\n"); for (j = 0 ; j < phys_pg_pack->npages ; j++) { seq_printf(s, " 0x%-14llx\n", phys_pg_pack->pages[j]); } } spin_unlock(&vm->idr_lock); } spin_unlock(&dev_entry->ctx_mem_hash_spinlock); if (!once) seq_puts(s, "\n"); return 0; } static int mmu_show(struct seq_file *s, void *data) { struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; struct hl_device *hdev = dev_entry->hdev; struct hl_ctx *ctx; struct hl_mmu_hop_info hops_info = {0}; u64 virt_addr = dev_entry->mmu_addr, phys_addr; int i; if (!hdev->mmu_enable) return 0; if (dev_entry->mmu_asid == HL_KERNEL_ASID_ID) ctx = hdev->kernel_ctx; else ctx = hdev->compute_ctx; if (!ctx) { dev_err(hdev->dev, "no ctx available\n"); return 0; } if (hl_mmu_get_tlb_info(ctx, virt_addr, &hops_info)) { dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", virt_addr); return 0; } phys_addr = hops_info.hop_info[hops_info.used_hops - 1].hop_pte_val; if (hops_info.scrambled_vaddr && (dev_entry->mmu_addr != hops_info.scrambled_vaddr)) seq_printf(s, "asid: %u, virt_addr: 0x%llx, scrambled virt_addr: 0x%llx,\nphys_addr: 0x%llx, scrambled_phys_addr: 0x%llx\n", dev_entry->mmu_asid, dev_entry->mmu_addr, hops_info.scrambled_vaddr, hops_info.unscrambled_paddr, phys_addr); else seq_printf(s, "asid: %u, virt_addr: 0x%llx, phys_addr: 0x%llx\n", dev_entry->mmu_asid, dev_entry->mmu_addr, phys_addr); for (i = 0 ; i < hops_info.used_hops ; i++) { seq_printf(s, "hop%d_addr: 0x%llx\n", i, hops_info.hop_info[i].hop_addr); seq_printf(s, "hop%d_pte_addr: 0x%llx\n", i, hops_info.hop_info[i].hop_pte_addr); seq_printf(s, "hop%d_pte: 0x%llx\n", i, hops_info.hop_info[i].hop_pte_val); } return 0; } static ssize_t mmu_asid_va_write(struct file *file, const char __user *buf, size_t count, loff_t *f_pos) { struct seq_file *s = file->private_data; struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; struct hl_device *hdev = dev_entry->hdev; char kbuf[MMU_KBUF_SIZE]; char *c; ssize_t rc; if (!hdev->mmu_enable) return count; if (count > sizeof(kbuf) - 1) goto err; if (copy_from_user(kbuf, buf, count)) goto err; kbuf[count] = 0; c = strchr(kbuf, ' '); if (!c) goto err; *c = '\0'; rc = kstrtouint(kbuf, 10, &dev_entry->mmu_asid); if (rc) goto err; if (strncmp(c+1, "0x", 2)) goto err; rc = kstrtoull(c+3, 16, &dev_entry->mmu_addr); if (rc) goto err; return count; err: dev_err(hdev->dev, "usage: echo <0xaddr> > mmu\n"); return -EINVAL; } static int engines_show(struct seq_file *s, void *data) { struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; struct hl_device *hdev = dev_entry->hdev; if (atomic_read(&hdev->in_reset)) { dev_warn_ratelimited(hdev->dev, "Can't check device idle during reset\n"); return 0; } hdev->asic_funcs->is_device_idle(hdev, NULL, 0, s); return 0; } static bool hl_is_device_va(struct hl_device *hdev, u64 addr) { struct asic_fixed_properties *prop = &hdev->asic_prop; if (!hdev->mmu_enable) goto out; if (prop->dram_supports_virtual_memory && (addr >= prop->dmmu.start_addr && addr < prop->dmmu.end_addr)) return true; if (addr >= prop->pmmu.start_addr && addr < prop->pmmu.end_addr) return true; if (addr >= prop->pmmu_huge.start_addr && addr < prop->pmmu_huge.end_addr) return true; out: return false; } static bool hl_is_device_internal_memory_va(struct hl_device *hdev, u64 addr, u32 size) { struct asic_fixed_properties *prop = &hdev->asic_prop; u64 dram_start_addr, dram_end_addr; if (!hdev->mmu_enable) return false; if (prop->dram_supports_virtual_memory) { dram_start_addr = prop->dmmu.start_addr; dram_end_addr = prop->dmmu.end_addr; } else { dram_start_addr = prop->dram_base_address; dram_end_addr = prop->dram_end_address; } if (hl_mem_area_inside_range(addr, size, dram_start_addr, dram_end_addr)) return true; if (hl_mem_area_inside_range(addr, size, prop->sram_base_address, prop->sram_end_address)) return true; return false; } static int device_va_to_pa(struct hl_device *hdev, u64 virt_addr, u32 size, u64 *phys_addr) { struct hl_vm_phys_pg_pack *phys_pg_pack; struct hl_ctx *ctx = hdev->compute_ctx; struct hl_vm_hash_node *hnode; struct hl_userptr *userptr; enum vm_type_t *vm_type; bool valid = false; u64 end_address; u32 range_size; int i, rc = 0; if (!ctx) { dev_err(hdev->dev, "no ctx available\n"); return -EINVAL; } /* Verify address is mapped */ mutex_lock(&ctx->mem_hash_lock); hash_for_each(ctx->mem_hash, i, hnode, node) { vm_type = hnode->ptr; if (*vm_type == VM_TYPE_USERPTR) { userptr = hnode->ptr; range_size = userptr->size; } else { phys_pg_pack = hnode->ptr; range_size = phys_pg_pack->total_size; } end_address = virt_addr + size; if ((virt_addr >= hnode->vaddr) && (end_address <= hnode->vaddr + range_size)) { valid = true; break; } } mutex_unlock(&ctx->mem_hash_lock); if (!valid) { dev_err(hdev->dev, "virt addr 0x%llx is not mapped\n", virt_addr); return -EINVAL; } rc = hl_mmu_va_to_pa(ctx, virt_addr, phys_addr); if (rc) { dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", virt_addr); rc = -EINVAL; } return rc; } static ssize_t hl_data_read32(struct file *f, char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u64 addr = entry->addr; bool user_address; char tmp_buf[32]; ssize_t rc; u32 val; if (atomic_read(&hdev->in_reset)) { dev_warn_ratelimited(hdev->dev, "Can't read during reset\n"); return 0; } if (*ppos) return 0; user_address = hl_is_device_va(hdev, addr); if (user_address) { rc = device_va_to_pa(hdev, addr, sizeof(val), &addr); if (rc) return rc; } rc = hdev->asic_funcs->debugfs_read32(hdev, addr, user_address, &val); if (rc) { dev_err(hdev->dev, "Failed to read from 0x%010llx\n", addr); return rc; } sprintf(tmp_buf, "0x%08x\n", val); return simple_read_from_buffer(buf, count, ppos, tmp_buf, strlen(tmp_buf)); } static ssize_t hl_data_write32(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u64 addr = entry->addr; bool user_address; u32 value; ssize_t rc; if (atomic_read(&hdev->in_reset)) { dev_warn_ratelimited(hdev->dev, "Can't write during reset\n"); return 0; } rc = kstrtouint_from_user(buf, count, 16, &value); if (rc) return rc; user_address = hl_is_device_va(hdev, addr); if (user_address) { rc = device_va_to_pa(hdev, addr, sizeof(value), &addr); if (rc) return rc; } rc = hdev->asic_funcs->debugfs_write32(hdev, addr, user_address, value); if (rc) { dev_err(hdev->dev, "Failed to write 0x%08x to 0x%010llx\n", value, addr); return rc; } return count; } static ssize_t hl_data_read64(struct file *f, char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u64 addr = entry->addr; bool user_address; char tmp_buf[32]; ssize_t rc; u64 val; if (atomic_read(&hdev->in_reset)) { dev_warn_ratelimited(hdev->dev, "Can't read during reset\n"); return 0; } if (*ppos) return 0; user_address = hl_is_device_va(hdev, addr); if (user_address) { rc = device_va_to_pa(hdev, addr, sizeof(val), &addr); if (rc) return rc; } rc = hdev->asic_funcs->debugfs_read64(hdev, addr, user_address, &val); if (rc) { dev_err(hdev->dev, "Failed to read from 0x%010llx\n", addr); return rc; } sprintf(tmp_buf, "0x%016llx\n", val); return simple_read_from_buffer(buf, count, ppos, tmp_buf, strlen(tmp_buf)); } static ssize_t hl_data_write64(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u64 addr = entry->addr; bool user_address; u64 value; ssize_t rc; if (atomic_read(&hdev->in_reset)) { dev_warn_ratelimited(hdev->dev, "Can't write during reset\n"); return 0; } rc = kstrtoull_from_user(buf, count, 16, &value); if (rc) return rc; user_address = hl_is_device_va(hdev, addr); if (user_address) { rc = device_va_to_pa(hdev, addr, sizeof(value), &addr); if (rc) return rc; } rc = hdev->asic_funcs->debugfs_write64(hdev, addr, user_address, value); if (rc) { dev_err(hdev->dev, "Failed to write 0x%016llx to 0x%010llx\n", value, addr); return rc; } return count; } static ssize_t hl_dma_size_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u64 addr = entry->addr; ssize_t rc; u32 size; if (atomic_read(&hdev->in_reset)) { dev_warn_ratelimited(hdev->dev, "Can't DMA during reset\n"); return 0; } rc = kstrtouint_from_user(buf, count, 16, &size); if (rc) return rc; if (!size) { dev_err(hdev->dev, "DMA read failed. size can't be 0\n"); return -EINVAL; } if (size > SZ_128M) { dev_err(hdev->dev, "DMA read failed. size can't be larger than 128MB\n"); return -EINVAL; } if (!hl_is_device_internal_memory_va(hdev, addr, size)) { dev_err(hdev->dev, "DMA read failed. Invalid 0x%010llx + 0x%08x\n", addr, size); return -EINVAL; } /* Free the previous allocation, if there was any */ entry->blob_desc.size = 0; vfree(entry->blob_desc.data); entry->blob_desc.data = vmalloc(size); if (!entry->blob_desc.data) return -ENOMEM; rc = hdev->asic_funcs->debugfs_read_dma(hdev, addr, size, entry->blob_desc.data); if (rc) { dev_err(hdev->dev, "Failed to DMA from 0x%010llx\n", addr); vfree(entry->blob_desc.data); entry->blob_desc.data = NULL; return -EIO; } entry->blob_desc.size = size; return count; } static ssize_t hl_get_power_state(struct file *f, char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; char tmp_buf[200]; int i; if (*ppos) return 0; if (hdev->pdev->current_state == PCI_D0) i = 1; else if (hdev->pdev->current_state == PCI_D3hot) i = 2; else i = 3; sprintf(tmp_buf, "current power state: %d\n1 - D0\n2 - D3hot\n3 - Unknown\n", i); return simple_read_from_buffer(buf, count, ppos, tmp_buf, strlen(tmp_buf)); } static ssize_t hl_set_power_state(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u32 value; ssize_t rc; rc = kstrtouint_from_user(buf, count, 10, &value); if (rc) return rc; if (value == 1) { pci_set_power_state(hdev->pdev, PCI_D0); pci_restore_state(hdev->pdev); rc = pci_enable_device(hdev->pdev); } else if (value == 2) { pci_save_state(hdev->pdev); pci_disable_device(hdev->pdev); pci_set_power_state(hdev->pdev, PCI_D3hot); } else { dev_dbg(hdev->dev, "invalid power state value %u\n", value); return -EINVAL; } return count; } static ssize_t hl_i2c_data_read(struct file *f, char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; char tmp_buf[32]; long val; ssize_t rc; if (*ppos) return 0; rc = hl_debugfs_i2c_read(hdev, entry->i2c_bus, entry->i2c_addr, entry->i2c_reg, &val); if (rc) { dev_err(hdev->dev, "Failed to read from I2C bus %d, addr %d, reg %d\n", entry->i2c_bus, entry->i2c_addr, entry->i2c_reg); return rc; } sprintf(tmp_buf, "0x%02lx\n", val); rc = simple_read_from_buffer(buf, count, ppos, tmp_buf, strlen(tmp_buf)); return rc; } static ssize_t hl_i2c_data_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u32 value; ssize_t rc; rc = kstrtouint_from_user(buf, count, 16, &value); if (rc) return rc; rc = hl_debugfs_i2c_write(hdev, entry->i2c_bus, entry->i2c_addr, entry->i2c_reg, value); if (rc) { dev_err(hdev->dev, "Failed to write 0x%02x to I2C bus %d, addr %d, reg %d\n", value, entry->i2c_bus, entry->i2c_addr, entry->i2c_reg); return rc; } return count; } static ssize_t hl_led0_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u32 value; ssize_t rc; rc = kstrtouint_from_user(buf, count, 10, &value); if (rc) return rc; value = value ? 1 : 0; hl_debugfs_led_set(hdev, 0, value); return count; } static ssize_t hl_led1_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u32 value; ssize_t rc; rc = kstrtouint_from_user(buf, count, 10, &value); if (rc) return rc; value = value ? 1 : 0; hl_debugfs_led_set(hdev, 1, value); return count; } static ssize_t hl_led2_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u32 value; ssize_t rc; rc = kstrtouint_from_user(buf, count, 10, &value); if (rc) return rc; value = value ? 1 : 0; hl_debugfs_led_set(hdev, 2, value); return count; } static ssize_t hl_device_read(struct file *f, char __user *buf, size_t count, loff_t *ppos) { static const char *help = "Valid values: disable, enable, suspend, resume, cpu_timeout\n"; return simple_read_from_buffer(buf, count, ppos, help, strlen(help)); } static ssize_t hl_device_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; char data[30] = {0}; /* don't allow partial writes */ if (*ppos != 0) return 0; simple_write_to_buffer(data, 29, ppos, buf, count); if (strncmp("disable", data, strlen("disable")) == 0) { hdev->disabled = true; } else if (strncmp("enable", data, strlen("enable")) == 0) { hdev->disabled = false; } else if (strncmp("suspend", data, strlen("suspend")) == 0) { hdev->asic_funcs->suspend(hdev); } else if (strncmp("resume", data, strlen("resume")) == 0) { hdev->asic_funcs->resume(hdev); } else if (strncmp("cpu_timeout", data, strlen("cpu_timeout")) == 0) { hdev->device_cpu_disabled = true; } else { dev_err(hdev->dev, "Valid values: disable, enable, suspend, resume, cpu_timeout\n"); count = -EINVAL; } return count; } static ssize_t hl_clk_gate_read(struct file *f, char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; char tmp_buf[200]; ssize_t rc; if (*ppos) return 0; sprintf(tmp_buf, "0x%llx\n", hdev->clock_gating_mask); rc = simple_read_from_buffer(buf, count, ppos, tmp_buf, strlen(tmp_buf) + 1); return rc; } static ssize_t hl_clk_gate_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u64 value; ssize_t rc; if (atomic_read(&hdev->in_reset)) { dev_warn_ratelimited(hdev->dev, "Can't change clock gating during reset\n"); return 0; } rc = kstrtoull_from_user(buf, count, 16, &value); if (rc) return rc; hdev->clock_gating_mask = value; hdev->asic_funcs->set_clock_gating(hdev); return count; } static ssize_t hl_stop_on_err_read(struct file *f, char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; char tmp_buf[200]; ssize_t rc; if (*ppos) return 0; sprintf(tmp_buf, "%d\n", hdev->stop_on_err); rc = simple_read_from_buffer(buf, strlen(tmp_buf) + 1, ppos, tmp_buf, strlen(tmp_buf) + 1); return rc; } static ssize_t hl_stop_on_err_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u32 value; ssize_t rc; if (atomic_read(&hdev->in_reset)) { dev_warn_ratelimited(hdev->dev, "Can't change stop on error during reset\n"); return 0; } rc = kstrtouint_from_user(buf, count, 10, &value); if (rc) return rc; hdev->stop_on_err = value ? 1 : 0; hl_device_reset(hdev, 0); return count; } static ssize_t hl_security_violations_read(struct file *f, char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; hdev->asic_funcs->ack_protection_bits_errors(hdev); return 0; } static const struct file_operations hl_data32b_fops = { .owner = THIS_MODULE, .read = hl_data_read32, .write = hl_data_write32 }; static const struct file_operations hl_data64b_fops = { .owner = THIS_MODULE, .read = hl_data_read64, .write = hl_data_write64 }; static const struct file_operations hl_dma_size_fops = { .owner = THIS_MODULE, .write = hl_dma_size_write }; static const struct file_operations hl_i2c_data_fops = { .owner = THIS_MODULE, .read = hl_i2c_data_read, .write = hl_i2c_data_write }; static const struct file_operations hl_power_fops = { .owner = THIS_MODULE, .read = hl_get_power_state, .write = hl_set_power_state }; static const struct file_operations hl_led0_fops = { .owner = THIS_MODULE, .write = hl_led0_write }; static const struct file_operations hl_led1_fops = { .owner = THIS_MODULE, .write = hl_led1_write }; static const struct file_operations hl_led2_fops = { .owner = THIS_MODULE, .write = hl_led2_write }; static const struct file_operations hl_device_fops = { .owner = THIS_MODULE, .read = hl_device_read, .write = hl_device_write }; static const struct file_operations hl_clk_gate_fops = { .owner = THIS_MODULE, .read = hl_clk_gate_read, .write = hl_clk_gate_write }; static const struct file_operations hl_stop_on_err_fops = { .owner = THIS_MODULE, .read = hl_stop_on_err_read, .write = hl_stop_on_err_write }; static const struct file_operations hl_security_violations_fops = { .owner = THIS_MODULE, .read = hl_security_violations_read }; static const struct hl_info_list hl_debugfs_list[] = { {"command_buffers", command_buffers_show, NULL}, {"command_submission", command_submission_show, NULL}, {"command_submission_jobs", command_submission_jobs_show, NULL}, {"userptr", userptr_show, NULL}, {"vm", vm_show, NULL}, {"mmu", mmu_show, mmu_asid_va_write}, {"engines", engines_show, NULL} }; static int hl_debugfs_open(struct inode *inode, struct file *file) { struct hl_debugfs_entry *node = inode->i_private; return single_open(file, node->info_ent->show, node); } static ssize_t hl_debugfs_write(struct file *file, const char __user *buf, size_t count, loff_t *f_pos) { struct hl_debugfs_entry *node = file->f_inode->i_private; if (node->info_ent->write) return node->info_ent->write(file, buf, count, f_pos); else return -EINVAL; } static const struct file_operations hl_debugfs_fops = { .owner = THIS_MODULE, .open = hl_debugfs_open, .read = seq_read, .write = hl_debugfs_write, .llseek = seq_lseek, .release = single_release, }; void hl_debugfs_add_device(struct hl_device *hdev) { struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; int count = ARRAY_SIZE(hl_debugfs_list); struct hl_debugfs_entry *entry; int i; dev_entry->hdev = hdev; dev_entry->entry_arr = kmalloc_array(count, sizeof(struct hl_debugfs_entry), GFP_KERNEL); if (!dev_entry->entry_arr) return; dev_entry->blob_desc.size = 0; dev_entry->blob_desc.data = NULL; INIT_LIST_HEAD(&dev_entry->file_list); INIT_LIST_HEAD(&dev_entry->cb_list); INIT_LIST_HEAD(&dev_entry->cs_list); INIT_LIST_HEAD(&dev_entry->cs_job_list); INIT_LIST_HEAD(&dev_entry->userptr_list); INIT_LIST_HEAD(&dev_entry->ctx_mem_hash_list); mutex_init(&dev_entry->file_mutex); spin_lock_init(&dev_entry->cb_spinlock); spin_lock_init(&dev_entry->cs_spinlock); spin_lock_init(&dev_entry->cs_job_spinlock); spin_lock_init(&dev_entry->userptr_spinlock); spin_lock_init(&dev_entry->ctx_mem_hash_spinlock); dev_entry->root = debugfs_create_dir(dev_name(hdev->dev), hl_debug_root); debugfs_create_x64("addr", 0644, dev_entry->root, &dev_entry->addr); debugfs_create_file("data32", 0644, dev_entry->root, dev_entry, &hl_data32b_fops); debugfs_create_file("data64", 0644, dev_entry->root, dev_entry, &hl_data64b_fops); debugfs_create_file("set_power_state", 0200, dev_entry->root, dev_entry, &hl_power_fops); debugfs_create_u8("i2c_bus", 0644, dev_entry->root, &dev_entry->i2c_bus); debugfs_create_u8("i2c_addr", 0644, dev_entry->root, &dev_entry->i2c_addr); debugfs_create_u8("i2c_reg", 0644, dev_entry->root, &dev_entry->i2c_reg); debugfs_create_file("i2c_data", 0644, dev_entry->root, dev_entry, &hl_i2c_data_fops); debugfs_create_file("led0", 0200, dev_entry->root, dev_entry, &hl_led0_fops); debugfs_create_file("led1", 0200, dev_entry->root, dev_entry, &hl_led1_fops); debugfs_create_file("led2", 0200, dev_entry->root, dev_entry, &hl_led2_fops); debugfs_create_file("device", 0200, dev_entry->root, dev_entry, &hl_device_fops); debugfs_create_file("clk_gate", 0200, dev_entry->root, dev_entry, &hl_clk_gate_fops); debugfs_create_file("stop_on_err", 0644, dev_entry->root, dev_entry, &hl_stop_on_err_fops); debugfs_create_file("dump_security_violations", 0644, dev_entry->root, dev_entry, &hl_security_violations_fops); debugfs_create_file("dma_size", 0200, dev_entry->root, dev_entry, &hl_dma_size_fops); debugfs_create_blob("data_dma", 0400, dev_entry->root, &dev_entry->blob_desc); debugfs_create_x8("skip_reset_on_timeout", 0644, dev_entry->root, &hdev->skip_reset_on_timeout); for (i = 0, entry = dev_entry->entry_arr ; i < count ; i++, entry++) { debugfs_create_file(hl_debugfs_list[i].name, 0444, dev_entry->root, entry, &hl_debugfs_fops); entry->info_ent = &hl_debugfs_list[i]; entry->dev_entry = dev_entry; } } void hl_debugfs_remove_device(struct hl_device *hdev) { struct hl_dbg_device_entry *entry = &hdev->hl_debugfs; debugfs_remove_recursive(entry->root); mutex_destroy(&entry->file_mutex); vfree(entry->blob_desc.data); kfree(entry->entry_arr); } void hl_debugfs_add_file(struct hl_fpriv *hpriv) { struct hl_dbg_device_entry *dev_entry = &hpriv->hdev->hl_debugfs; mutex_lock(&dev_entry->file_mutex); list_add(&hpriv->debugfs_list, &dev_entry->file_list); mutex_unlock(&dev_entry->file_mutex); } void hl_debugfs_remove_file(struct hl_fpriv *hpriv) { struct hl_dbg_device_entry *dev_entry = &hpriv->hdev->hl_debugfs; mutex_lock(&dev_entry->file_mutex); list_del(&hpriv->debugfs_list); mutex_unlock(&dev_entry->file_mutex); } void hl_debugfs_add_cb(struct hl_cb *cb) { struct hl_dbg_device_entry *dev_entry = &cb->hdev->hl_debugfs; spin_lock(&dev_entry->cb_spinlock); list_add(&cb->debugfs_list, &dev_entry->cb_list); spin_unlock(&dev_entry->cb_spinlock); } void hl_debugfs_remove_cb(struct hl_cb *cb) { struct hl_dbg_device_entry *dev_entry = &cb->hdev->hl_debugfs; spin_lock(&dev_entry->cb_spinlock); list_del(&cb->debugfs_list); spin_unlock(&dev_entry->cb_spinlock); } void hl_debugfs_add_cs(struct hl_cs *cs) { struct hl_dbg_device_entry *dev_entry = &cs->ctx->hdev->hl_debugfs; spin_lock(&dev_entry->cs_spinlock); list_add(&cs->debugfs_list, &dev_entry->cs_list); spin_unlock(&dev_entry->cs_spinlock); } void hl_debugfs_remove_cs(struct hl_cs *cs) { struct hl_dbg_device_entry *dev_entry = &cs->ctx->hdev->hl_debugfs; spin_lock(&dev_entry->cs_spinlock); list_del(&cs->debugfs_list); spin_unlock(&dev_entry->cs_spinlock); } void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job) { struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; spin_lock(&dev_entry->cs_job_spinlock); list_add(&job->debugfs_list, &dev_entry->cs_job_list); spin_unlock(&dev_entry->cs_job_spinlock); } void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job) { struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; spin_lock(&dev_entry->cs_job_spinlock); list_del(&job->debugfs_list); spin_unlock(&dev_entry->cs_job_spinlock); } void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr) { struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; spin_lock(&dev_entry->userptr_spinlock); list_add(&userptr->debugfs_list, &dev_entry->userptr_list); spin_unlock(&dev_entry->userptr_spinlock); } void hl_debugfs_remove_userptr(struct hl_device *hdev, struct hl_userptr *userptr) { struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; spin_lock(&dev_entry->userptr_spinlock); list_del(&userptr->debugfs_list); spin_unlock(&dev_entry->userptr_spinlock); } void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx) { struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; spin_lock(&dev_entry->ctx_mem_hash_spinlock); list_add(&ctx->debugfs_list, &dev_entry->ctx_mem_hash_list); spin_unlock(&dev_entry->ctx_mem_hash_spinlock); } void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx) { struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; spin_lock(&dev_entry->ctx_mem_hash_spinlock); list_del(&ctx->debugfs_list); spin_unlock(&dev_entry->ctx_mem_hash_spinlock); } void __init hl_debugfs_init(void) { hl_debug_root = debugfs_create_dir("habanalabs", NULL); } void hl_debugfs_fini(void) { debugfs_remove_recursive(hl_debug_root); }