// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2022 HabanaLabs, Ltd. * All Rights Reserved. */ #define pr_fmt(fmt) "habanalabs: " fmt #include #include "habanalabs.h" #include #include #include #include #include #include static u32 hl_debug_struct_size[HL_DEBUG_OP_TIMESTAMP + 1] = { [HL_DEBUG_OP_ETR] = sizeof(struct hl_debug_params_etr), [HL_DEBUG_OP_ETF] = sizeof(struct hl_debug_params_etf), [HL_DEBUG_OP_STM] = sizeof(struct hl_debug_params_stm), [HL_DEBUG_OP_FUNNEL] = 0, [HL_DEBUG_OP_BMON] = sizeof(struct hl_debug_params_bmon), [HL_DEBUG_OP_SPMU] = sizeof(struct hl_debug_params_spmu), [HL_DEBUG_OP_TIMESTAMP] = 0 }; static int device_status_info(struct hl_device *hdev, struct hl_info_args *args) { struct hl_info_device_status dev_stat = {0}; u32 size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; if ((!size) || (!out)) return -EINVAL; dev_stat.status = hl_device_status(hdev); return copy_to_user(out, &dev_stat, min((size_t)size, sizeof(dev_stat))) ? -EFAULT : 0; } static int hw_ip_info(struct hl_device *hdev, struct hl_info_args *args) { struct hl_info_hw_ip_info hw_ip = {0}; u32 size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 sram_kmd_size, dram_kmd_size, dram_available_size; if ((!size) || (!out)) return -EINVAL; sram_kmd_size = (prop->sram_user_base_address - prop->sram_base_address); dram_kmd_size = (prop->dram_user_base_address - prop->dram_base_address); hw_ip.device_id = hdev->asic_funcs->get_pci_id(hdev); hw_ip.sram_base_address = prop->sram_user_base_address; hw_ip.dram_base_address = hdev->mmu_enable && prop->dram_supports_virtual_memory ? prop->dmmu.start_addr : prop->dram_user_base_address; hw_ip.tpc_enabled_mask = prop->tpc_enabled_mask & 0xFF; hw_ip.tpc_enabled_mask_ext = prop->tpc_enabled_mask; hw_ip.sram_size = prop->sram_size - sram_kmd_size; dram_available_size = prop->dram_size - dram_kmd_size; if (hdev->mmu_enable == MMU_EN_ALL) hw_ip.dram_size = DIV_ROUND_DOWN_ULL(dram_available_size, prop->dram_page_size) * prop->dram_page_size; else hw_ip.dram_size = dram_available_size; if (hw_ip.dram_size > PAGE_SIZE) hw_ip.dram_enabled = 1; hw_ip.dram_page_size = prop->dram_page_size; hw_ip.device_mem_alloc_default_page_size = prop->device_mem_alloc_default_page_size; hw_ip.num_of_events = prop->num_of_events; memcpy(hw_ip.cpucp_version, prop->cpucp_info.cpucp_version, min(VERSION_MAX_LEN, HL_INFO_VERSION_MAX_LEN)); memcpy(hw_ip.card_name, prop->cpucp_info.card_name, min(CARD_NAME_MAX_LEN, HL_INFO_CARD_NAME_MAX_LEN)); hw_ip.cpld_version = le32_to_cpu(prop->cpucp_info.cpld_version); hw_ip.module_id = le32_to_cpu(prop->cpucp_info.card_location); hw_ip.psoc_pci_pll_nr = prop->psoc_pci_pll_nr; hw_ip.psoc_pci_pll_nf = prop->psoc_pci_pll_nf; hw_ip.psoc_pci_pll_od = prop->psoc_pci_pll_od; hw_ip.psoc_pci_pll_div_factor = prop->psoc_pci_pll_div_factor; hw_ip.decoder_enabled_mask = prop->decoder_enabled_mask; hw_ip.mme_master_slave_mode = prop->mme_master_slave_mode; hw_ip.first_available_interrupt_id = prop->first_available_user_interrupt; hw_ip.number_of_user_interrupts = prop->user_interrupt_count; hw_ip.edma_enabled_mask = prop->edma_enabled_mask; hw_ip.server_type = prop->server_type; hw_ip.security_enabled = prop->fw_security_enabled; hw_ip.revision_id = hdev->pdev->revision; return copy_to_user(out, &hw_ip, min((size_t) size, sizeof(hw_ip))) ? -EFAULT : 0; } static int hw_events_info(struct hl_device *hdev, bool aggregate, struct hl_info_args *args) { u32 size, max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; void *arr; if ((!max_size) || (!out)) return -EINVAL; arr = hdev->asic_funcs->get_events_stat(hdev, aggregate, &size); if (!arr) { dev_err(hdev->dev, "Events info not supported\n"); return -EOPNOTSUPP; } return copy_to_user(out, arr, min(max_size, size)) ? -EFAULT : 0; } static int events_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { u32 max_size = args->return_size; u64 events_mask; void __user *out = (void __user *) (uintptr_t) args->return_pointer; if ((max_size < sizeof(u64)) || (!out)) return -EINVAL; mutex_lock(&hpriv->notifier_event.lock); events_mask = hpriv->notifier_event.events_mask; hpriv->notifier_event.events_mask = 0; mutex_unlock(&hpriv->notifier_event.lock); return copy_to_user(out, &events_mask, sizeof(u64)) ? -EFAULT : 0; } static int dram_usage_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_device *hdev = hpriv->hdev; struct hl_info_dram_usage dram_usage = {0}; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 dram_kmd_size; if ((!max_size) || (!out)) return -EINVAL; dram_kmd_size = (prop->dram_user_base_address - prop->dram_base_address); dram_usage.dram_free_mem = (prop->dram_size - dram_kmd_size) - atomic64_read(&hdev->dram_used_mem); if (hpriv->ctx) dram_usage.ctx_dram_mem = atomic64_read(&hpriv->ctx->dram_phys_mem); return copy_to_user(out, &dram_usage, min((size_t) max_size, sizeof(dram_usage))) ? -EFAULT : 0; } static int hw_idle(struct hl_device *hdev, struct hl_info_args *args) { struct hl_info_hw_idle hw_idle = {0}; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; if ((!max_size) || (!out)) return -EINVAL; hw_idle.is_idle = hdev->asic_funcs->is_device_idle(hdev, hw_idle.busy_engines_mask_ext, HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL); hw_idle.busy_engines_mask = lower_32_bits(hw_idle.busy_engines_mask_ext[0]); return copy_to_user(out, &hw_idle, min((size_t) max_size, sizeof(hw_idle))) ? -EFAULT : 0; } static int debug_coresight(struct hl_device *hdev, struct hl_ctx *ctx, struct hl_debug_args *args) { struct hl_debug_params *params; void *input = NULL, *output = NULL; int rc; params = kzalloc(sizeof(*params), GFP_KERNEL); if (!params) return -ENOMEM; params->reg_idx = args->reg_idx; params->enable = args->enable; params->op = args->op; if (args->input_ptr && args->input_size) { input = kzalloc(hl_debug_struct_size[args->op], GFP_KERNEL); if (!input) { rc = -ENOMEM; goto out; } if (copy_from_user(input, u64_to_user_ptr(args->input_ptr), args->input_size)) { rc = -EFAULT; dev_err(hdev->dev, "failed to copy input debug data\n"); goto out; } params->input = input; } if (args->output_ptr && args->output_size) { output = kzalloc(args->output_size, GFP_KERNEL); if (!output) { rc = -ENOMEM; goto out; } params->output = output; params->output_size = args->output_size; } rc = hdev->asic_funcs->debug_coresight(hdev, ctx, params); if (rc) { dev_err(hdev->dev, "debug coresight operation failed %d\n", rc); goto out; } if (output && copy_to_user((void __user *) (uintptr_t) args->output_ptr, output, args->output_size)) { dev_err(hdev->dev, "copy to user failed in debug ioctl\n"); rc = -EFAULT; goto out; } out: kfree(params); kfree(output); kfree(input); return rc; } static int device_utilization(struct hl_device *hdev, struct hl_info_args *args) { struct hl_info_device_utilization device_util = {0}; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; int rc; if ((!max_size) || (!out)) return -EINVAL; rc = hl_device_utilization(hdev, &device_util.utilization); if (rc) return -EINVAL; return copy_to_user(out, &device_util, min((size_t) max_size, sizeof(device_util))) ? -EFAULT : 0; } static int get_clk_rate(struct hl_device *hdev, struct hl_info_args *args) { struct hl_info_clk_rate clk_rate = {0}; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; int rc; if ((!max_size) || (!out)) return -EINVAL; rc = hl_fw_get_clk_rate(hdev, &clk_rate.cur_clk_rate_mhz, &clk_rate.max_clk_rate_mhz); if (rc) return rc; return copy_to_user(out, &clk_rate, min_t(size_t, max_size, sizeof(clk_rate))) ? -EFAULT : 0; } static int get_reset_count(struct hl_device *hdev, struct hl_info_args *args) { struct hl_info_reset_count reset_count = {0}; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; if ((!max_size) || (!out)) return -EINVAL; reset_count.hard_reset_cnt = hdev->reset_info.hard_reset_cnt; reset_count.soft_reset_cnt = hdev->reset_info.compute_reset_cnt; return copy_to_user(out, &reset_count, min((size_t) max_size, sizeof(reset_count))) ? -EFAULT : 0; } static int time_sync_info(struct hl_device *hdev, struct hl_info_args *args) { struct hl_info_time_sync time_sync = {0}; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; if ((!max_size) || (!out)) return -EINVAL; time_sync.device_time = hdev->asic_funcs->get_device_time(hdev); time_sync.host_time = ktime_get_raw_ns(); return copy_to_user(out, &time_sync, min((size_t) max_size, sizeof(time_sync))) ? -EFAULT : 0; } static int pci_counters_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_device *hdev = hpriv->hdev; struct hl_info_pci_counters pci_counters = {0}; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; int rc; if ((!max_size) || (!out)) return -EINVAL; rc = hl_fw_cpucp_pci_counters_get(hdev, &pci_counters); if (rc) return rc; return copy_to_user(out, &pci_counters, min((size_t) max_size, sizeof(pci_counters))) ? -EFAULT : 0; } static int clk_throttle_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { void __user *out = (void __user *) (uintptr_t) args->return_pointer; struct hl_device *hdev = hpriv->hdev; struct hl_info_clk_throttle clk_throttle = {0}; ktime_t end_time, zero_time = ktime_set(0, 0); u32 max_size = args->return_size; int i; if ((!max_size) || (!out)) return -EINVAL; mutex_lock(&hdev->clk_throttling.lock); clk_throttle.clk_throttling_reason = hdev->clk_throttling.current_reason; for (i = 0 ; i < HL_CLK_THROTTLE_TYPE_MAX ; i++) { if (!(hdev->clk_throttling.aggregated_reason & BIT(i))) continue; clk_throttle.clk_throttling_timestamp_us[i] = ktime_to_us(hdev->clk_throttling.timestamp[i].start); if (ktime_compare(hdev->clk_throttling.timestamp[i].end, zero_time)) end_time = hdev->clk_throttling.timestamp[i].end; else end_time = ktime_get(); clk_throttle.clk_throttling_duration_ns[i] = ktime_to_ns(ktime_sub(end_time, hdev->clk_throttling.timestamp[i].start)); } mutex_unlock(&hdev->clk_throttling.lock); return copy_to_user(out, &clk_throttle, min((size_t) max_size, sizeof(clk_throttle))) ? -EFAULT : 0; } static int cs_counters_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { void __user *out = (void __user *) (uintptr_t) args->return_pointer; struct hl_info_cs_counters cs_counters = {0}; struct hl_device *hdev = hpriv->hdev; struct hl_cs_counters_atomic *cntr; u32 max_size = args->return_size; cntr = &hdev->aggregated_cs_counters; if ((!max_size) || (!out)) return -EINVAL; cs_counters.total_out_of_mem_drop_cnt = atomic64_read(&cntr->out_of_mem_drop_cnt); cs_counters.total_parsing_drop_cnt = atomic64_read(&cntr->parsing_drop_cnt); cs_counters.total_queue_full_drop_cnt = atomic64_read(&cntr->queue_full_drop_cnt); cs_counters.total_device_in_reset_drop_cnt = atomic64_read(&cntr->device_in_reset_drop_cnt); cs_counters.total_max_cs_in_flight_drop_cnt = atomic64_read(&cntr->max_cs_in_flight_drop_cnt); cs_counters.total_validation_drop_cnt = atomic64_read(&cntr->validation_drop_cnt); if (hpriv->ctx) { cs_counters.ctx_out_of_mem_drop_cnt = atomic64_read( &hpriv->ctx->cs_counters.out_of_mem_drop_cnt); cs_counters.ctx_parsing_drop_cnt = atomic64_read( &hpriv->ctx->cs_counters.parsing_drop_cnt); cs_counters.ctx_queue_full_drop_cnt = atomic64_read( &hpriv->ctx->cs_counters.queue_full_drop_cnt); cs_counters.ctx_device_in_reset_drop_cnt = atomic64_read( &hpriv->ctx->cs_counters.device_in_reset_drop_cnt); cs_counters.ctx_max_cs_in_flight_drop_cnt = atomic64_read( &hpriv->ctx->cs_counters.max_cs_in_flight_drop_cnt); cs_counters.ctx_validation_drop_cnt = atomic64_read( &hpriv->ctx->cs_counters.validation_drop_cnt); } return copy_to_user(out, &cs_counters, min((size_t) max_size, sizeof(cs_counters))) ? -EFAULT : 0; } static int sync_manager_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_device *hdev = hpriv->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_info_sync_manager sm_info = {0}; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; if ((!max_size) || (!out)) return -EINVAL; if (args->dcore_id >= HL_MAX_DCORES) return -EINVAL; sm_info.first_available_sync_object = prop->first_available_user_sob[args->dcore_id]; sm_info.first_available_monitor = prop->first_available_user_mon[args->dcore_id]; sm_info.first_available_cq = prop->first_available_cq[args->dcore_id]; return copy_to_user(out, &sm_info, min_t(size_t, (size_t) max_size, sizeof(sm_info))) ? -EFAULT : 0; } static int total_energy_consumption_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_device *hdev = hpriv->hdev; struct hl_info_energy total_energy = {0}; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; int rc; if ((!max_size) || (!out)) return -EINVAL; rc = hl_fw_cpucp_total_energy_get(hdev, &total_energy.total_energy_consumption); if (rc) return rc; return copy_to_user(out, &total_energy, min((size_t) max_size, sizeof(total_energy))) ? -EFAULT : 0; } static int pll_frequency_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_device *hdev = hpriv->hdev; struct hl_pll_frequency_info freq_info = { {0} }; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; int rc; if ((!max_size) || (!out)) return -EINVAL; rc = hl_fw_cpucp_pll_info_get(hdev, args->pll_index, freq_info.output); if (rc) return rc; return copy_to_user(out, &freq_info, min((size_t) max_size, sizeof(freq_info))) ? -EFAULT : 0; } static int power_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_device *hdev = hpriv->hdev; u32 max_size = args->return_size; struct hl_power_info power_info = {0}; void __user *out = (void __user *) (uintptr_t) args->return_pointer; int rc; if ((!max_size) || (!out)) return -EINVAL; rc = hl_fw_cpucp_power_get(hdev, &power_info.power); if (rc) return rc; return copy_to_user(out, &power_info, min((size_t) max_size, sizeof(power_info))) ? -EFAULT : 0; } static int open_stats_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_device *hdev = hpriv->hdev; u32 max_size = args->return_size; struct hl_open_stats_info open_stats_info = {0}; void __user *out = (void __user *) (uintptr_t) args->return_pointer; if ((!max_size) || (!out)) return -EINVAL; open_stats_info.last_open_period_ms = jiffies64_to_msecs( hdev->last_open_session_duration_jif); open_stats_info.open_counter = hdev->open_counter; open_stats_info.is_compute_ctx_active = hdev->is_compute_ctx_active; open_stats_info.compute_ctx_in_release = hdev->compute_ctx_in_release; return copy_to_user(out, &open_stats_info, min((size_t) max_size, sizeof(open_stats_info))) ? -EFAULT : 0; } static int dram_pending_rows_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_device *hdev = hpriv->hdev; u32 max_size = args->return_size; u32 pend_rows_num = 0; void __user *out = (void __user *) (uintptr_t) args->return_pointer; int rc; if ((!max_size) || (!out)) return -EINVAL; rc = hl_fw_dram_pending_row_get(hdev, &pend_rows_num); if (rc) return rc; return copy_to_user(out, &pend_rows_num, min_t(size_t, max_size, sizeof(pend_rows_num))) ? -EFAULT : 0; } static int dram_replaced_rows_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_device *hdev = hpriv->hdev; u32 max_size = args->return_size; struct cpucp_hbm_row_info info = {0}; void __user *out = (void __user *) (uintptr_t) args->return_pointer; int rc; if ((!max_size) || (!out)) return -EINVAL; rc = hl_fw_dram_replaced_row_get(hdev, &info); if (rc) return rc; return copy_to_user(out, &info, min_t(size_t, max_size, sizeof(info))) ? -EFAULT : 0; } static int last_err_open_dev_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_info_last_err_open_dev_time info = {0}; struct hl_device *hdev = hpriv->hdev; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; if ((!max_size) || (!out)) return -EINVAL; info.timestamp = ktime_to_ns(hdev->last_successful_open_ktime); return copy_to_user(out, &info, min_t(size_t, max_size, sizeof(info))) ? -EFAULT : 0; } static int cs_timeout_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_info_cs_timeout_event info = {0}; struct hl_device *hdev = hpriv->hdev; u32 max_size = args->return_size; void __user *out = (void __user *) (uintptr_t) args->return_pointer; if ((!max_size) || (!out)) return -EINVAL; info.seq = hdev->captured_err_info.cs_timeout.seq; info.timestamp = ktime_to_ns(hdev->captured_err_info.cs_timeout.timestamp); return copy_to_user(out, &info, min_t(size_t, max_size, sizeof(info))) ? -EFAULT : 0; } static int razwi_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_device *hdev = hpriv->hdev; u32 max_size = args->return_size; struct hl_info_razwi_event *info = &hdev->captured_err_info.razwi; void __user *out = (void __user *) (uintptr_t) args->return_pointer; if ((!max_size) || (!out)) return -EINVAL; return copy_to_user(out, info, min_t(size_t, max_size, sizeof(struct hl_info_razwi_event))) ? -EFAULT : 0; } static int undefined_opcode_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_device *hdev = hpriv->hdev; u32 max_size = args->return_size; struct hl_info_undefined_opcode_event info = {0}; void __user *out = (void __user *) (uintptr_t) args->return_pointer; if ((!max_size) || (!out)) return -EINVAL; info.timestamp = ktime_to_ns(hdev->captured_err_info.undef_opcode.timestamp); info.engine_id = hdev->captured_err_info.undef_opcode.engine_id; info.cq_addr = hdev->captured_err_info.undef_opcode.cq_addr; info.cq_size = hdev->captured_err_info.undef_opcode.cq_size; info.stream_id = hdev->captured_err_info.undef_opcode.stream_id; info.cb_addr_streams_len = hdev->captured_err_info.undef_opcode.cb_addr_streams_len; memcpy(info.cb_addr_streams, hdev->captured_err_info.undef_opcode.cb_addr_streams, sizeof(info.cb_addr_streams)); return copy_to_user(out, &info, min_t(size_t, max_size, sizeof(info))) ? -EFAULT : 0; } static int dev_mem_alloc_page_sizes_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { void __user *out = (void __user *) (uintptr_t) args->return_pointer; struct hl_info_dev_memalloc_page_sizes info = {0}; struct hl_device *hdev = hpriv->hdev; u32 max_size = args->return_size; if ((!max_size) || (!out)) return -EINVAL; /* * Future ASICs that will support multiple DRAM page sizes will support only "powers of 2" * pages (unlike some of the ASICs before supporting multiple page sizes). * For this reason for all ASICs that not support multiple page size the function will * return an empty bitmask indicating that multiple page sizes is not supported. */ info.page_order_bitmask = hdev->asic_prop.dmmu.supported_pages_mask; return copy_to_user(out, &info, min_t(size_t, max_size, sizeof(info))) ? -EFAULT : 0; } static int sec_attest_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { void __user *out = (void __user *) (uintptr_t) args->return_pointer; struct cpucp_sec_attest_info *sec_attest_info; struct hl_info_sec_attest *info; u32 max_size = args->return_size; int rc; if ((!max_size) || (!out)) return -EINVAL; sec_attest_info = kmalloc(sizeof(*sec_attest_info), GFP_KERNEL); if (!sec_attest_info) return -ENOMEM; info = kmalloc(sizeof(*info), GFP_KERNEL); if (!info) { rc = -ENOMEM; goto free_sec_attest_info; } rc = hl_fw_get_sec_attest_info(hpriv->hdev, sec_attest_info, args->sec_attest_nonce); if (rc) goto free_info; info->nonce = le32_to_cpu(sec_attest_info->nonce); info->pcr_quote_len = le16_to_cpu(sec_attest_info->pcr_quote_len); info->pub_data_len = le16_to_cpu(sec_attest_info->pub_data_len); info->certificate_len = le16_to_cpu(sec_attest_info->certificate_len); info->pcr_num_reg = sec_attest_info->pcr_num_reg; info->pcr_reg_len = sec_attest_info->pcr_reg_len; info->quote_sig_len = sec_attest_info->quote_sig_len; memcpy(&info->pcr_data, &sec_attest_info->pcr_data, sizeof(info->pcr_data)); memcpy(&info->pcr_quote, &sec_attest_info->pcr_quote, sizeof(info->pcr_quote)); memcpy(&info->public_data, &sec_attest_info->public_data, sizeof(info->public_data)); memcpy(&info->certificate, &sec_attest_info->certificate, sizeof(info->certificate)); memcpy(&info->quote_sig, &sec_attest_info->quote_sig, sizeof(info->quote_sig)); rc = copy_to_user(out, info, min_t(size_t, max_size, sizeof(*info))) ? -EFAULT : 0; free_info: kfree(info); free_sec_attest_info: kfree(sec_attest_info); return rc; } static int eventfd_register(struct hl_fpriv *hpriv, struct hl_info_args *args) { int rc; /* check if there is already a registered on that process */ mutex_lock(&hpriv->notifier_event.lock); if (hpriv->notifier_event.eventfd) { mutex_unlock(&hpriv->notifier_event.lock); return -EINVAL; } hpriv->notifier_event.eventfd = eventfd_ctx_fdget(args->eventfd); if (IS_ERR(hpriv->notifier_event.eventfd)) { rc = PTR_ERR(hpriv->notifier_event.eventfd); hpriv->notifier_event.eventfd = NULL; mutex_unlock(&hpriv->notifier_event.lock); return rc; } mutex_unlock(&hpriv->notifier_event.lock); return 0; } static int eventfd_unregister(struct hl_fpriv *hpriv, struct hl_info_args *args) { mutex_lock(&hpriv->notifier_event.lock); if (!hpriv->notifier_event.eventfd) { mutex_unlock(&hpriv->notifier_event.lock); return -EINVAL; } eventfd_ctx_put(hpriv->notifier_event.eventfd); hpriv->notifier_event.eventfd = NULL; mutex_unlock(&hpriv->notifier_event.lock); return 0; } static int engine_status_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { void __user *out = (void __user *) (uintptr_t) args->return_pointer; u32 status_buf_size = args->return_size; struct hl_device *hdev = hpriv->hdev; struct engines_data eng_data; int rc; if ((status_buf_size < SZ_1K) || (status_buf_size > HL_ENGINES_DATA_MAX_SIZE) || (!out)) return -EINVAL; eng_data.actual_size = 0; eng_data.allocated_buf_size = status_buf_size; eng_data.buf = vmalloc(status_buf_size); if (!eng_data.buf) return -ENOMEM; hdev->asic_funcs->is_device_idle(hdev, NULL, 0, &eng_data); if (eng_data.actual_size > eng_data.allocated_buf_size) { dev_err(hdev->dev, "Engines data size (%d Bytes) is bigger than allocated size (%u Bytes)\n", eng_data.actual_size, status_buf_size); vfree(eng_data.buf); return -ENOMEM; } args->user_buffer_actual_size = eng_data.actual_size; rc = copy_to_user(out, eng_data.buf, min_t(size_t, status_buf_size, eng_data.actual_size)) ? -EFAULT : 0; vfree(eng_data.buf); return rc; } static int page_fault_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { struct hl_device *hdev = hpriv->hdev; u32 max_size = args->return_size; struct hl_page_fault_info *info = &hdev->captured_err_info.pgf_info.pgf; void __user *out = (void __user *) (uintptr_t) args->return_pointer; if ((!max_size) || (!out)) return -EINVAL; return copy_to_user(out, info, min_t(size_t, max_size, sizeof(struct hl_page_fault_info))) ? -EFAULT : 0; } static int user_mappings_info(struct hl_fpriv *hpriv, struct hl_info_args *args) { void __user *out = (void __user *) (uintptr_t) args->return_pointer; u32 user_buf_size = args->return_size; struct hl_device *hdev = hpriv->hdev; struct page_fault_info *pgf_info; u64 actual_size; pgf_info = &hdev->captured_err_info.pgf_info; args->array_size = pgf_info->num_of_user_mappings; if (!out) return -EINVAL; actual_size = pgf_info->num_of_user_mappings * sizeof(struct hl_user_mapping); if (user_buf_size < actual_size) return -ENOMEM; return copy_to_user(out, pgf_info->user_mappings, min_t(size_t, user_buf_size, actual_size)) ? -EFAULT : 0; } static int send_fw_generic_request(struct hl_device *hdev, struct hl_info_args *info_args) { void __user *buff = (void __user *) (uintptr_t) info_args->return_pointer; u32 size = info_args->return_size; dma_addr_t dma_handle; bool need_input_buff; void *fw_buff; int rc = 0; switch (info_args->fw_sub_opcode) { case HL_PASSTHROUGH_VERSIONS: need_input_buff = false; break; default: return -EINVAL; } if (size > SZ_1M) { dev_err(hdev->dev, "buffer size cannot exceed 1MB\n"); return -EINVAL; } fw_buff = hl_cpu_accessible_dma_pool_alloc(hdev, size, &dma_handle); if (!fw_buff) return -ENOMEM; if (need_input_buff && copy_from_user(fw_buff, buff, size)) { dev_dbg(hdev->dev, "Failed to copy from user FW buff\n"); rc = -EFAULT; goto free_buff; } rc = hl_fw_send_generic_request(hdev, info_args->fw_sub_opcode, dma_handle, &size); if (rc) goto free_buff; if (copy_to_user(buff, fw_buff, min(size, info_args->return_size))) { dev_dbg(hdev->dev, "Failed to copy to user FW generic req output\n"); rc = -EFAULT; } free_buff: hl_cpu_accessible_dma_pool_free(hdev, info_args->return_size, fw_buff); return rc; } static int _hl_info_ioctl(struct hl_fpriv *hpriv, void *data, struct device *dev) { enum hl_device_status status; struct hl_info_args *args = data; struct hl_device *hdev = hpriv->hdev; int rc; /* * Information is returned for the following opcodes even if the device * is disabled or in reset. */ switch (args->op) { case HL_INFO_HW_IP_INFO: return hw_ip_info(hdev, args); case HL_INFO_DEVICE_STATUS: return device_status_info(hdev, args); case HL_INFO_RESET_COUNT: return get_reset_count(hdev, args); case HL_INFO_HW_EVENTS: return hw_events_info(hdev, false, args); case HL_INFO_HW_EVENTS_AGGREGATE: return hw_events_info(hdev, true, args); case HL_INFO_CS_COUNTERS: return cs_counters_info(hpriv, args); case HL_INFO_CLK_THROTTLE_REASON: return clk_throttle_info(hpriv, args); case HL_INFO_SYNC_MANAGER: return sync_manager_info(hpriv, args); case HL_INFO_OPEN_STATS: return open_stats_info(hpriv, args); case HL_INFO_LAST_ERR_OPEN_DEV_TIME: return last_err_open_dev_info(hpriv, args); case HL_INFO_CS_TIMEOUT_EVENT: return cs_timeout_info(hpriv, args); case HL_INFO_RAZWI_EVENT: return razwi_info(hpriv, args); case HL_INFO_UNDEFINED_OPCODE_EVENT: return undefined_opcode_info(hpriv, args); case HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES: return dev_mem_alloc_page_sizes_info(hpriv, args); case HL_INFO_GET_EVENTS: return events_info(hpriv, args); case HL_INFO_PAGE_FAULT_EVENT: return page_fault_info(hpriv, args); case HL_INFO_USER_MAPPINGS: return user_mappings_info(hpriv, args); case HL_INFO_UNREGISTER_EVENTFD: return eventfd_unregister(hpriv, args); default: break; } if (!hl_device_operational(hdev, &status)) { dev_warn_ratelimited(dev, "Device is %s. Can't execute INFO IOCTL\n", hdev->status[status]); return -EBUSY; } switch (args->op) { case HL_INFO_DRAM_USAGE: rc = dram_usage_info(hpriv, args); break; case HL_INFO_HW_IDLE: rc = hw_idle(hdev, args); break; case HL_INFO_DEVICE_UTILIZATION: rc = device_utilization(hdev, args); break; case HL_INFO_CLK_RATE: rc = get_clk_rate(hdev, args); break; case HL_INFO_TIME_SYNC: return time_sync_info(hdev, args); case HL_INFO_PCI_COUNTERS: return pci_counters_info(hpriv, args); case HL_INFO_TOTAL_ENERGY: return total_energy_consumption_info(hpriv, args); case HL_INFO_PLL_FREQUENCY: return pll_frequency_info(hpriv, args); case HL_INFO_POWER: return power_info(hpriv, args); case HL_INFO_DRAM_REPLACED_ROWS: return dram_replaced_rows_info(hpriv, args); case HL_INFO_DRAM_PENDING_ROWS: return dram_pending_rows_info(hpriv, args); case HL_INFO_SECURED_ATTESTATION: return sec_attest_info(hpriv, args); case HL_INFO_REGISTER_EVENTFD: return eventfd_register(hpriv, args); case HL_INFO_ENGINE_STATUS: return engine_status_info(hpriv, args); case HL_INFO_FW_GENERIC_REQ: return send_fw_generic_request(hdev, args); default: dev_err(dev, "Invalid request %d\n", args->op); rc = -EINVAL; break; } return rc; } static int hl_info_ioctl(struct hl_fpriv *hpriv, void *data) { return _hl_info_ioctl(hpriv, data, hpriv->hdev->dev); } static int hl_info_ioctl_control(struct hl_fpriv *hpriv, void *data) { return _hl_info_ioctl(hpriv, data, hpriv->hdev->dev_ctrl); } static int hl_debug_ioctl(struct hl_fpriv *hpriv, void *data) { struct hl_debug_args *args = data; struct hl_device *hdev = hpriv->hdev; enum hl_device_status status; int rc = 0; if (!hl_device_operational(hdev, &status)) { dev_warn_ratelimited(hdev->dev, "Device is %s. Can't execute DEBUG IOCTL\n", hdev->status[status]); return -EBUSY; } switch (args->op) { case HL_DEBUG_OP_ETR: case HL_DEBUG_OP_ETF: case HL_DEBUG_OP_STM: case HL_DEBUG_OP_FUNNEL: case HL_DEBUG_OP_BMON: case HL_DEBUG_OP_SPMU: case HL_DEBUG_OP_TIMESTAMP: if (!hdev->in_debug) { dev_err_ratelimited(hdev->dev, "Rejecting debug configuration request because device not in debug mode\n"); return -EFAULT; } args->input_size = min(args->input_size, hl_debug_struct_size[args->op]); rc = debug_coresight(hdev, hpriv->ctx, args); break; case HL_DEBUG_OP_SET_MODE: rc = hl_device_set_debug_mode(hdev, hpriv->ctx, (bool) args->enable); break; default: dev_err(hdev->dev, "Invalid request %d\n", args->op); rc = -EINVAL; break; } return rc; } #define HL_IOCTL_DEF(ioctl, _func) \ [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func} static const struct hl_ioctl_desc hl_ioctls[] = { HL_IOCTL_DEF(HL_IOCTL_INFO, hl_info_ioctl), HL_IOCTL_DEF(HL_IOCTL_CB, hl_cb_ioctl), HL_IOCTL_DEF(HL_IOCTL_CS, hl_cs_ioctl), HL_IOCTL_DEF(HL_IOCTL_WAIT_CS, hl_wait_ioctl), HL_IOCTL_DEF(HL_IOCTL_MEMORY, hl_mem_ioctl), HL_IOCTL_DEF(HL_IOCTL_DEBUG, hl_debug_ioctl) }; static const struct hl_ioctl_desc hl_ioctls_control[] = { HL_IOCTL_DEF(HL_IOCTL_INFO, hl_info_ioctl_control) }; static long _hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg, const struct hl_ioctl_desc *ioctl, struct device *dev) { struct hl_fpriv *hpriv = filep->private_data; unsigned int nr = _IOC_NR(cmd); char stack_kdata[128] = {0}; char *kdata = NULL; unsigned int usize, asize; hl_ioctl_t *func; u32 hl_size; int retcode; /* Do not trust userspace, use our own definition */ func = ioctl->func; if (unlikely(!func)) { dev_dbg(dev, "no function\n"); retcode = -ENOTTY; goto out_err; } hl_size = _IOC_SIZE(ioctl->cmd); usize = asize = _IOC_SIZE(cmd); if (hl_size > asize) asize = hl_size; cmd = ioctl->cmd; if (cmd & (IOC_IN | IOC_OUT)) { if (asize <= sizeof(stack_kdata)) { kdata = stack_kdata; } else { kdata = kzalloc(asize, GFP_KERNEL); if (!kdata) { retcode = -ENOMEM; goto out_err; } } } if (cmd & IOC_IN) { if (copy_from_user(kdata, (void __user *)arg, usize)) { retcode = -EFAULT; goto out_err; } } else if (cmd & IOC_OUT) { memset(kdata, 0, usize); } retcode = func(hpriv, kdata); if ((cmd & IOC_OUT) && copy_to_user((void __user *)arg, kdata, usize)) retcode = -EFAULT; out_err: if (retcode) dev_dbg(dev, "error in ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n", task_pid_nr(current), cmd, nr); if (kdata != stack_kdata) kfree(kdata); return retcode; } long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) { struct hl_fpriv *hpriv = filep->private_data; struct hl_device *hdev = hpriv->hdev; const struct hl_ioctl_desc *ioctl = NULL; unsigned int nr = _IOC_NR(cmd); if (!hdev) { pr_err_ratelimited("Sending ioctl after device was removed! Please close FD\n"); return -ENODEV; } if ((nr >= HL_COMMAND_START) && (nr < HL_COMMAND_END)) { ioctl = &hl_ioctls[nr]; } else { dev_err(hdev->dev, "invalid ioctl: pid=%d, nr=0x%02x\n", task_pid_nr(current), nr); return -ENOTTY; } return _hl_ioctl(filep, cmd, arg, ioctl, hdev->dev); } long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg) { struct hl_fpriv *hpriv = filep->private_data; struct hl_device *hdev = hpriv->hdev; const struct hl_ioctl_desc *ioctl = NULL; unsigned int nr = _IOC_NR(cmd); if (!hdev) { pr_err_ratelimited("Sending ioctl after device was removed! Please close FD\n"); return -ENODEV; } if (nr == _IOC_NR(HL_IOCTL_INFO)) { ioctl = &hl_ioctls_control[nr]; } else { dev_err(hdev->dev_ctrl, "invalid ioctl: pid=%d, nr=0x%02x\n", task_pid_nr(current), nr); return -ENOTTY; } return _hl_ioctl(filep, cmd, arg, ioctl, hdev->dev_ctrl); }