// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2019 HabanaLabs, Ltd. * All Rights Reserved. */ #include "goyaP.h" #include "../include/hw_ip/mmu/mmu_general.h" #include "../include/hw_ip/mmu/mmu_v1_0.h" #include "../include/goya/asic_reg/goya_masks.h" #include "../include/goya/goya_reg_map.h" #include #include #include #include /* * GOYA security scheme: * * 1. Host is protected by: * - Range registers (When MMU is enabled, DMA RR does NOT protect host) * - MMU * * 2. DRAM is protected by: * - Range registers (protect the first 512MB) * - MMU (isolation between users) * * 3. Configuration is protected by: * - Range registers * - Protection bits * * When MMU is disabled: * * QMAN DMA: PQ, CQ, CP, DMA are secured. * PQ, CB and the data are on the host. * * QMAN TPC/MME: * PQ, CQ and CP are not secured. * PQ, CB and the data are on the SRAM/DRAM. * * Since QMAN DMA is secured, the driver is parsing the DMA CB: * - checks DMA pointer * - WREG, MSG_PROT are not allowed. * - MSG_LONG/SHORT are allowed. * * A read/write transaction by the QMAN to a protected area will succeed if * and only if the QMAN's CP is secured and MSG_PROT is used * * * When MMU is enabled: * * QMAN DMA: PQ, CQ and CP are secured. * MMU is set to bypass on the Secure props register of the QMAN. * The reasons we don't enable MMU for PQ, CQ and CP are: * - PQ entry is in kernel address space and the driver doesn't map it. * - CP writes to MSIX register and to kernel address space (completion * queue). * * DMA is not secured but because CP is secured, the driver still needs to parse * the CB, but doesn't need to check the DMA addresses. * * For QMAN DMA 0, DMA is also secured because only the driver uses this DMA and * the driver doesn't map memory in MMU. * * QMAN TPC/MME: PQ, CQ and CP aren't secured (no change from MMU disabled mode) * * DMA RR does NOT protect host because DMA is not secured * */ #define GOYA_BOOT_FIT_FILE "habanalabs/goya/goya-boot-fit.itb" #define GOYA_LINUX_FW_FILE "habanalabs/goya/goya-fit.itb" #define GOYA_MMU_REGS_NUM 63 #define GOYA_DMA_POOL_BLK_SIZE 0x100 /* 256 bytes */ #define GOYA_RESET_TIMEOUT_MSEC 500 /* 500ms */ #define GOYA_PLDM_RESET_TIMEOUT_MSEC 20000 /* 20s */ #define GOYA_RESET_WAIT_MSEC 1 /* 1ms */ #define GOYA_CPU_RESET_WAIT_MSEC 100 /* 100ms */ #define GOYA_PLDM_RESET_WAIT_MSEC 1000 /* 1s */ #define GOYA_TEST_QUEUE_WAIT_USEC 100000 /* 100ms */ #define GOYA_PLDM_MMU_TIMEOUT_USEC (MMU_CONFIG_TIMEOUT_USEC * 100) #define GOYA_PLDM_QMAN0_TIMEOUT_USEC (HL_DEVICE_TIMEOUT_USEC * 30) #define GOYA_BOOT_FIT_REQ_TIMEOUT_USEC 1000000 /* 1s */ #define GOYA_MSG_TO_CPU_TIMEOUT_USEC 4000000 /* 4s */ #define GOYA_QMAN0_FENCE_VAL 0xD169B243 #define GOYA_MAX_STRING_LEN 20 #define GOYA_CB_POOL_CB_CNT 512 #define GOYA_CB_POOL_CB_SIZE 0x20000 /* 128KB */ #define IS_QM_IDLE(engine, qm_glbl_sts0) \ (((qm_glbl_sts0) & engine##_QM_IDLE_MASK) == engine##_QM_IDLE_MASK) #define IS_DMA_QM_IDLE(qm_glbl_sts0) IS_QM_IDLE(DMA, qm_glbl_sts0) #define IS_TPC_QM_IDLE(qm_glbl_sts0) IS_QM_IDLE(TPC, qm_glbl_sts0) #define IS_MME_QM_IDLE(qm_glbl_sts0) IS_QM_IDLE(MME, qm_glbl_sts0) #define IS_CMDQ_IDLE(engine, cmdq_glbl_sts0) \ (((cmdq_glbl_sts0) & engine##_CMDQ_IDLE_MASK) == \ engine##_CMDQ_IDLE_MASK) #define IS_TPC_CMDQ_IDLE(cmdq_glbl_sts0) \ IS_CMDQ_IDLE(TPC, cmdq_glbl_sts0) #define IS_MME_CMDQ_IDLE(cmdq_glbl_sts0) \ IS_CMDQ_IDLE(MME, cmdq_glbl_sts0) #define IS_DMA_IDLE(dma_core_sts0) \ !((dma_core_sts0) & DMA_CH_0_STS0_DMA_BUSY_MASK) #define IS_TPC_IDLE(tpc_cfg_sts) \ (((tpc_cfg_sts) & TPC_CFG_IDLE_MASK) == TPC_CFG_IDLE_MASK) #define IS_MME_IDLE(mme_arch_sts) \ (((mme_arch_sts) & MME_ARCH_IDLE_MASK) == MME_ARCH_IDLE_MASK) /* * this enum kept here for compatibility with old FW (in which each asic has * unique PLL numbering */ enum goya_pll_index { GOYA_CPU_PLL = 0, GOYA_IC_PLL, GOYA_MC_PLL, GOYA_MME_PLL, GOYA_PCI_PLL, GOYA_EMMC_PLL, GOYA_TPC_PLL, }; static enum pll_index goya_pll_map[PLL_MAX] = { [CPU_PLL] = GOYA_CPU_PLL, [IC_PLL] = GOYA_IC_PLL, [MC_PLL] = GOYA_MC_PLL, [MME_PLL] = GOYA_MME_PLL, [PCI_PLL] = GOYA_PCI_PLL, [EMMC_PLL] = GOYA_EMMC_PLL, [TPC_PLL] = GOYA_TPC_PLL, }; static const char goya_irq_name[GOYA_MSIX_ENTRIES][GOYA_MAX_STRING_LEN] = { "goya cq 0", "goya cq 1", "goya cq 2", "goya cq 3", "goya cq 4", "goya cpu eq" }; static u16 goya_packet_sizes[MAX_PACKET_ID] = { [PACKET_WREG_32] = sizeof(struct packet_wreg32), [PACKET_WREG_BULK] = sizeof(struct packet_wreg_bulk), [PACKET_MSG_LONG] = sizeof(struct packet_msg_long), [PACKET_MSG_SHORT] = sizeof(struct packet_msg_short), [PACKET_CP_DMA] = sizeof(struct packet_cp_dma), [PACKET_MSG_PROT] = sizeof(struct packet_msg_prot), [PACKET_FENCE] = sizeof(struct packet_fence), [PACKET_LIN_DMA] = sizeof(struct packet_lin_dma), [PACKET_NOP] = sizeof(struct packet_nop), [PACKET_STOP] = sizeof(struct packet_stop) }; static inline bool validate_packet_id(enum packet_id id) { switch (id) { case PACKET_WREG_32: case PACKET_WREG_BULK: case PACKET_MSG_LONG: case PACKET_MSG_SHORT: case PACKET_CP_DMA: case PACKET_MSG_PROT: case PACKET_FENCE: case PACKET_LIN_DMA: case PACKET_NOP: case PACKET_STOP: return true; default: return false; } } static u64 goya_mmu_regs[GOYA_MMU_REGS_NUM] = { mmDMA_QM_0_GLBL_NON_SECURE_PROPS, mmDMA_QM_1_GLBL_NON_SECURE_PROPS, mmDMA_QM_2_GLBL_NON_SECURE_PROPS, mmDMA_QM_3_GLBL_NON_SECURE_PROPS, mmDMA_QM_4_GLBL_NON_SECURE_PROPS, mmTPC0_QM_GLBL_SECURE_PROPS, mmTPC0_QM_GLBL_NON_SECURE_PROPS, mmTPC0_CMDQ_GLBL_SECURE_PROPS, mmTPC0_CMDQ_GLBL_NON_SECURE_PROPS, mmTPC0_CFG_ARUSER, mmTPC0_CFG_AWUSER, mmTPC1_QM_GLBL_SECURE_PROPS, mmTPC1_QM_GLBL_NON_SECURE_PROPS, mmTPC1_CMDQ_GLBL_SECURE_PROPS, mmTPC1_CMDQ_GLBL_NON_SECURE_PROPS, mmTPC1_CFG_ARUSER, mmTPC1_CFG_AWUSER, mmTPC2_QM_GLBL_SECURE_PROPS, mmTPC2_QM_GLBL_NON_SECURE_PROPS, mmTPC2_CMDQ_GLBL_SECURE_PROPS, mmTPC2_CMDQ_GLBL_NON_SECURE_PROPS, mmTPC2_CFG_ARUSER, mmTPC2_CFG_AWUSER, mmTPC3_QM_GLBL_SECURE_PROPS, mmTPC3_QM_GLBL_NON_SECURE_PROPS, mmTPC3_CMDQ_GLBL_SECURE_PROPS, mmTPC3_CMDQ_GLBL_NON_SECURE_PROPS, mmTPC3_CFG_ARUSER, mmTPC3_CFG_AWUSER, mmTPC4_QM_GLBL_SECURE_PROPS, mmTPC4_QM_GLBL_NON_SECURE_PROPS, mmTPC4_CMDQ_GLBL_SECURE_PROPS, mmTPC4_CMDQ_GLBL_NON_SECURE_PROPS, mmTPC4_CFG_ARUSER, mmTPC4_CFG_AWUSER, mmTPC5_QM_GLBL_SECURE_PROPS, mmTPC5_QM_GLBL_NON_SECURE_PROPS, mmTPC5_CMDQ_GLBL_SECURE_PROPS, mmTPC5_CMDQ_GLBL_NON_SECURE_PROPS, mmTPC5_CFG_ARUSER, mmTPC5_CFG_AWUSER, mmTPC6_QM_GLBL_SECURE_PROPS, mmTPC6_QM_GLBL_NON_SECURE_PROPS, mmTPC6_CMDQ_GLBL_SECURE_PROPS, mmTPC6_CMDQ_GLBL_NON_SECURE_PROPS, mmTPC6_CFG_ARUSER, mmTPC6_CFG_AWUSER, mmTPC7_QM_GLBL_SECURE_PROPS, mmTPC7_QM_GLBL_NON_SECURE_PROPS, mmTPC7_CMDQ_GLBL_SECURE_PROPS, mmTPC7_CMDQ_GLBL_NON_SECURE_PROPS, mmTPC7_CFG_ARUSER, mmTPC7_CFG_AWUSER, mmMME_QM_GLBL_SECURE_PROPS, mmMME_QM_GLBL_NON_SECURE_PROPS, mmMME_CMDQ_GLBL_SECURE_PROPS, mmMME_CMDQ_GLBL_NON_SECURE_PROPS, mmMME_SBA_CONTROL_DATA, mmMME_SBB_CONTROL_DATA, mmMME_SBC_CONTROL_DATA, mmMME_WBC_CONTROL_DATA, mmPCIE_WRAP_PSOC_ARUSER, mmPCIE_WRAP_PSOC_AWUSER }; static u32 goya_all_events[] = { GOYA_ASYNC_EVENT_ID_PCIE_IF, GOYA_ASYNC_EVENT_ID_TPC0_ECC, GOYA_ASYNC_EVENT_ID_TPC1_ECC, GOYA_ASYNC_EVENT_ID_TPC2_ECC, GOYA_ASYNC_EVENT_ID_TPC3_ECC, GOYA_ASYNC_EVENT_ID_TPC4_ECC, GOYA_ASYNC_EVENT_ID_TPC5_ECC, GOYA_ASYNC_EVENT_ID_TPC6_ECC, GOYA_ASYNC_EVENT_ID_TPC7_ECC, GOYA_ASYNC_EVENT_ID_MME_ECC, GOYA_ASYNC_EVENT_ID_MME_ECC_EXT, GOYA_ASYNC_EVENT_ID_MMU_ECC, GOYA_ASYNC_EVENT_ID_DMA_MACRO, GOYA_ASYNC_EVENT_ID_DMA_ECC, GOYA_ASYNC_EVENT_ID_CPU_IF_ECC, GOYA_ASYNC_EVENT_ID_PSOC_MEM, GOYA_ASYNC_EVENT_ID_PSOC_CORESIGHT, GOYA_ASYNC_EVENT_ID_SRAM0, GOYA_ASYNC_EVENT_ID_SRAM1, GOYA_ASYNC_EVENT_ID_SRAM2, GOYA_ASYNC_EVENT_ID_SRAM3, GOYA_ASYNC_EVENT_ID_SRAM4, GOYA_ASYNC_EVENT_ID_SRAM5, GOYA_ASYNC_EVENT_ID_SRAM6, GOYA_ASYNC_EVENT_ID_SRAM7, GOYA_ASYNC_EVENT_ID_SRAM8, GOYA_ASYNC_EVENT_ID_SRAM9, GOYA_ASYNC_EVENT_ID_SRAM10, GOYA_ASYNC_EVENT_ID_SRAM11, GOYA_ASYNC_EVENT_ID_SRAM12, GOYA_ASYNC_EVENT_ID_SRAM13, GOYA_ASYNC_EVENT_ID_SRAM14, GOYA_ASYNC_EVENT_ID_SRAM15, GOYA_ASYNC_EVENT_ID_SRAM16, GOYA_ASYNC_EVENT_ID_SRAM17, GOYA_ASYNC_EVENT_ID_SRAM18, GOYA_ASYNC_EVENT_ID_SRAM19, GOYA_ASYNC_EVENT_ID_SRAM20, GOYA_ASYNC_EVENT_ID_SRAM21, GOYA_ASYNC_EVENT_ID_SRAM22, GOYA_ASYNC_EVENT_ID_SRAM23, GOYA_ASYNC_EVENT_ID_SRAM24, GOYA_ASYNC_EVENT_ID_SRAM25, GOYA_ASYNC_EVENT_ID_SRAM26, GOYA_ASYNC_EVENT_ID_SRAM27, GOYA_ASYNC_EVENT_ID_SRAM28, GOYA_ASYNC_EVENT_ID_SRAM29, GOYA_ASYNC_EVENT_ID_GIC500, GOYA_ASYNC_EVENT_ID_PLL0, GOYA_ASYNC_EVENT_ID_PLL1, GOYA_ASYNC_EVENT_ID_PLL3, GOYA_ASYNC_EVENT_ID_PLL4, GOYA_ASYNC_EVENT_ID_PLL5, GOYA_ASYNC_EVENT_ID_PLL6, GOYA_ASYNC_EVENT_ID_AXI_ECC, GOYA_ASYNC_EVENT_ID_L2_RAM_ECC, GOYA_ASYNC_EVENT_ID_PSOC_GPIO_05_SW_RESET, GOYA_ASYNC_EVENT_ID_PSOC_GPIO_10_VRHOT_ICRIT, GOYA_ASYNC_EVENT_ID_PCIE_DEC, GOYA_ASYNC_EVENT_ID_TPC0_DEC, GOYA_ASYNC_EVENT_ID_TPC1_DEC, GOYA_ASYNC_EVENT_ID_TPC2_DEC, GOYA_ASYNC_EVENT_ID_TPC3_DEC, GOYA_ASYNC_EVENT_ID_TPC4_DEC, GOYA_ASYNC_EVENT_ID_TPC5_DEC, GOYA_ASYNC_EVENT_ID_TPC6_DEC, GOYA_ASYNC_EVENT_ID_TPC7_DEC, GOYA_ASYNC_EVENT_ID_MME_WACS, GOYA_ASYNC_EVENT_ID_MME_WACSD, GOYA_ASYNC_EVENT_ID_CPU_AXI_SPLITTER, GOYA_ASYNC_EVENT_ID_PSOC_AXI_DEC, GOYA_ASYNC_EVENT_ID_PSOC, GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR, GOYA_ASYNC_EVENT_ID_TPC1_KRN_ERR, GOYA_ASYNC_EVENT_ID_TPC2_KRN_ERR, GOYA_ASYNC_EVENT_ID_TPC3_KRN_ERR, GOYA_ASYNC_EVENT_ID_TPC4_KRN_ERR, GOYA_ASYNC_EVENT_ID_TPC5_KRN_ERR, GOYA_ASYNC_EVENT_ID_TPC6_KRN_ERR, GOYA_ASYNC_EVENT_ID_TPC7_KRN_ERR, GOYA_ASYNC_EVENT_ID_TPC0_CMDQ, GOYA_ASYNC_EVENT_ID_TPC1_CMDQ, GOYA_ASYNC_EVENT_ID_TPC2_CMDQ, GOYA_ASYNC_EVENT_ID_TPC3_CMDQ, GOYA_ASYNC_EVENT_ID_TPC4_CMDQ, GOYA_ASYNC_EVENT_ID_TPC5_CMDQ, GOYA_ASYNC_EVENT_ID_TPC6_CMDQ, GOYA_ASYNC_EVENT_ID_TPC7_CMDQ, GOYA_ASYNC_EVENT_ID_TPC0_QM, GOYA_ASYNC_EVENT_ID_TPC1_QM, GOYA_ASYNC_EVENT_ID_TPC2_QM, GOYA_ASYNC_EVENT_ID_TPC3_QM, GOYA_ASYNC_EVENT_ID_TPC4_QM, GOYA_ASYNC_EVENT_ID_TPC5_QM, GOYA_ASYNC_EVENT_ID_TPC6_QM, GOYA_ASYNC_EVENT_ID_TPC7_QM, GOYA_ASYNC_EVENT_ID_MME_QM, GOYA_ASYNC_EVENT_ID_MME_CMDQ, GOYA_ASYNC_EVENT_ID_DMA0_QM, GOYA_ASYNC_EVENT_ID_DMA1_QM, GOYA_ASYNC_EVENT_ID_DMA2_QM, GOYA_ASYNC_EVENT_ID_DMA3_QM, GOYA_ASYNC_EVENT_ID_DMA4_QM, GOYA_ASYNC_EVENT_ID_DMA0_CH, GOYA_ASYNC_EVENT_ID_DMA1_CH, GOYA_ASYNC_EVENT_ID_DMA2_CH, GOYA_ASYNC_EVENT_ID_DMA3_CH, GOYA_ASYNC_EVENT_ID_DMA4_CH, GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU, GOYA_ASYNC_EVENT_ID_TPC1_BMON_SPMU, GOYA_ASYNC_EVENT_ID_TPC2_BMON_SPMU, GOYA_ASYNC_EVENT_ID_TPC3_BMON_SPMU, GOYA_ASYNC_EVENT_ID_TPC4_BMON_SPMU, GOYA_ASYNC_EVENT_ID_TPC5_BMON_SPMU, GOYA_ASYNC_EVENT_ID_TPC6_BMON_SPMU, GOYA_ASYNC_EVENT_ID_TPC7_BMON_SPMU, GOYA_ASYNC_EVENT_ID_DMA_BM_CH0, GOYA_ASYNC_EVENT_ID_DMA_BM_CH1, GOYA_ASYNC_EVENT_ID_DMA_BM_CH2, GOYA_ASYNC_EVENT_ID_DMA_BM_CH3, GOYA_ASYNC_EVENT_ID_DMA_BM_CH4, GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_S, GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_E, GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_S, GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_E }; static int goya_mmu_clear_pgt_range(struct hl_device *hdev); static int goya_mmu_set_dram_default_page(struct hl_device *hdev); static int goya_mmu_add_mappings_for_device_cpu(struct hl_device *hdev); static void goya_mmu_prepare(struct hl_device *hdev, u32 asid); int goya_get_fixed_properties(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; int i; prop->max_queues = GOYA_QUEUE_ID_SIZE; prop->hw_queues_props = kcalloc(prop->max_queues, sizeof(struct hw_queue_properties), GFP_KERNEL); if (!prop->hw_queues_props) return -ENOMEM; for (i = 0 ; i < NUMBER_OF_EXT_HW_QUEUES ; i++) { prop->hw_queues_props[i].type = QUEUE_TYPE_EXT; prop->hw_queues_props[i].driver_only = 0; prop->hw_queues_props[i].cb_alloc_flags = CB_ALLOC_KERNEL; } for (; i < NUMBER_OF_EXT_HW_QUEUES + NUMBER_OF_CPU_HW_QUEUES ; i++) { prop->hw_queues_props[i].type = QUEUE_TYPE_CPU; prop->hw_queues_props[i].driver_only = 1; prop->hw_queues_props[i].cb_alloc_flags = CB_ALLOC_KERNEL; } for (; i < NUMBER_OF_EXT_HW_QUEUES + NUMBER_OF_CPU_HW_QUEUES + NUMBER_OF_INT_HW_QUEUES; i++) { prop->hw_queues_props[i].type = QUEUE_TYPE_INT; prop->hw_queues_props[i].driver_only = 0; prop->hw_queues_props[i].cb_alloc_flags = CB_ALLOC_USER; } prop->completion_queues_count = NUMBER_OF_CMPLT_QUEUES; prop->dram_base_address = DRAM_PHYS_BASE; prop->dram_size = DRAM_PHYS_DEFAULT_SIZE; prop->dram_end_address = prop->dram_base_address + prop->dram_size; prop->dram_user_base_address = DRAM_BASE_ADDR_USER; prop->sram_base_address = SRAM_BASE_ADDR; prop->sram_size = SRAM_SIZE; prop->sram_end_address = prop->sram_base_address + prop->sram_size; prop->sram_user_base_address = prop->sram_base_address + SRAM_USER_BASE_OFFSET; prop->mmu_pgt_addr = MMU_PAGE_TABLES_ADDR; prop->mmu_dram_default_page_addr = MMU_DRAM_DEFAULT_PAGE_ADDR; if (hdev->pldm) prop->mmu_pgt_size = 0x800000; /* 8MB */ else prop->mmu_pgt_size = MMU_PAGE_TABLES_SIZE; prop->mmu_pte_size = HL_PTE_SIZE; prop->mmu_hop_table_size = HOP_TABLE_SIZE; prop->mmu_hop0_tables_total_size = HOP0_TABLES_TOTAL_SIZE; prop->dram_page_size = PAGE_SIZE_2MB; prop->dram_supports_virtual_memory = true; prop->dmmu.hop0_shift = HOP0_SHIFT; prop->dmmu.hop1_shift = HOP1_SHIFT; prop->dmmu.hop2_shift = HOP2_SHIFT; prop->dmmu.hop3_shift = HOP3_SHIFT; prop->dmmu.hop4_shift = HOP4_SHIFT; prop->dmmu.hop0_mask = HOP0_MASK; prop->dmmu.hop1_mask = HOP1_MASK; prop->dmmu.hop2_mask = HOP2_MASK; prop->dmmu.hop3_mask = HOP3_MASK; prop->dmmu.hop4_mask = HOP4_MASK; prop->dmmu.start_addr = VA_DDR_SPACE_START; prop->dmmu.end_addr = VA_DDR_SPACE_END; prop->dmmu.page_size = PAGE_SIZE_2MB; prop->dmmu.num_hops = MMU_ARCH_5_HOPS; /* shifts and masks are the same in PMMU and DMMU */ memcpy(&prop->pmmu, &prop->dmmu, sizeof(prop->dmmu)); prop->pmmu.start_addr = VA_HOST_SPACE_START; prop->pmmu.end_addr = VA_HOST_SPACE_END; prop->pmmu.page_size = PAGE_SIZE_4KB; prop->pmmu.num_hops = MMU_ARCH_5_HOPS; /* PMMU and HPMMU are the same except of page size */ memcpy(&prop->pmmu_huge, &prop->pmmu, sizeof(prop->pmmu)); prop->pmmu_huge.page_size = PAGE_SIZE_2MB; prop->dram_size_for_default_page_mapping = VA_DDR_SPACE_END; prop->cfg_size = CFG_SIZE; prop->max_asid = MAX_ASID; prop->num_of_events = GOYA_ASYNC_EVENT_ID_SIZE; prop->high_pll = PLL_HIGH_DEFAULT; prop->cb_pool_cb_cnt = GOYA_CB_POOL_CB_CNT; prop->cb_pool_cb_size = GOYA_CB_POOL_CB_SIZE; prop->max_power_default = MAX_POWER_DEFAULT; prop->tpc_enabled_mask = TPC_ENABLED_MASK; prop->pcie_dbi_base_address = mmPCIE_DBI_BASE; prop->pcie_aux_dbi_reg_addr = CFG_BASE + mmPCIE_AUX_DBI; strncpy(prop->cpucp_info.card_name, GOYA_DEFAULT_CARD_NAME, CARD_NAME_MAX_LEN); prop->max_pending_cs = GOYA_MAX_PENDING_CS; prop->first_available_user_msix_interrupt = USHRT_MAX; for (i = 0 ; i < HL_MAX_DCORES ; i++) prop->first_available_cq[i] = USHRT_MAX; /* disable fw security for now, set it in a later stage */ prop->fw_security_disabled = true; prop->fw_security_status_valid = false; prop->hard_reset_done_by_fw = false; return 0; } /* * goya_pci_bars_map - Map PCI BARS of Goya device * * @hdev: pointer to hl_device structure * * Request PCI regions and map them to kernel virtual addresses. * Returns 0 on success * */ static int goya_pci_bars_map(struct hl_device *hdev) { static const char * const name[] = {"SRAM_CFG", "MSIX", "DDR"}; bool is_wc[3] = {false, false, true}; int rc; rc = hl_pci_bars_map(hdev, name, is_wc); if (rc) return rc; hdev->rmmio = hdev->pcie_bar[SRAM_CFG_BAR_ID] + (CFG_BASE - SRAM_BASE_ADDR); return 0; } static u64 goya_set_ddr_bar_base(struct hl_device *hdev, u64 addr) { struct goya_device *goya = hdev->asic_specific; struct hl_inbound_pci_region pci_region; u64 old_addr = addr; int rc; if ((goya) && (goya->ddr_bar_cur_addr == addr)) return old_addr; /* Inbound Region 1 - Bar 4 - Point to DDR */ pci_region.mode = PCI_BAR_MATCH_MODE; pci_region.bar = DDR_BAR_ID; pci_region.addr = addr; rc = hl_pci_set_inbound_region(hdev, 1, &pci_region); if (rc) return U64_MAX; if (goya) { old_addr = goya->ddr_bar_cur_addr; goya->ddr_bar_cur_addr = addr; } return old_addr; } /* * goya_init_iatu - Initialize the iATU unit inside the PCI controller * * @hdev: pointer to hl_device structure * * This is needed in case the firmware doesn't initialize the iATU * */ static int goya_init_iatu(struct hl_device *hdev) { struct hl_inbound_pci_region inbound_region; struct hl_outbound_pci_region outbound_region; int rc; /* Inbound Region 0 - Bar 0 - Point to SRAM and CFG */ inbound_region.mode = PCI_BAR_MATCH_MODE; inbound_region.bar = SRAM_CFG_BAR_ID; inbound_region.addr = SRAM_BASE_ADDR; rc = hl_pci_set_inbound_region(hdev, 0, &inbound_region); if (rc) goto done; /* Inbound Region 1 - Bar 4 - Point to DDR */ inbound_region.mode = PCI_BAR_MATCH_MODE; inbound_region.bar = DDR_BAR_ID; inbound_region.addr = DRAM_PHYS_BASE; rc = hl_pci_set_inbound_region(hdev, 1, &inbound_region); if (rc) goto done; hdev->asic_funcs->set_dma_mask_from_fw(hdev); /* Outbound Region 0 - Point to Host */ outbound_region.addr = HOST_PHYS_BASE; outbound_region.size = HOST_PHYS_SIZE; rc = hl_pci_set_outbound_region(hdev, &outbound_region); done: return rc; } static enum hl_device_hw_state goya_get_hw_state(struct hl_device *hdev) { return RREG32(mmHW_STATE); } /* * goya_early_init - GOYA early initialization code * * @hdev: pointer to hl_device structure * * Verify PCI bars * Set DMA masks * PCI controller initialization * Map PCI bars * */ static int goya_early_init(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; struct pci_dev *pdev = hdev->pdev; u32 val; int rc; rc = goya_get_fixed_properties(hdev); if (rc) { dev_err(hdev->dev, "Failed to get fixed properties\n"); return rc; } /* Check BAR sizes */ if (pci_resource_len(pdev, SRAM_CFG_BAR_ID) != CFG_BAR_SIZE) { dev_err(hdev->dev, "Not " HL_NAME "? BAR %d size %llu, expecting %llu\n", SRAM_CFG_BAR_ID, (unsigned long long) pci_resource_len(pdev, SRAM_CFG_BAR_ID), CFG_BAR_SIZE); rc = -ENODEV; goto free_queue_props; } if (pci_resource_len(pdev, MSIX_BAR_ID) != MSIX_BAR_SIZE) { dev_err(hdev->dev, "Not " HL_NAME "? BAR %d size %llu, expecting %llu\n", MSIX_BAR_ID, (unsigned long long) pci_resource_len(pdev, MSIX_BAR_ID), MSIX_BAR_SIZE); rc = -ENODEV; goto free_queue_props; } prop->dram_pci_bar_size = pci_resource_len(pdev, DDR_BAR_ID); rc = hl_pci_init(hdev); if (rc) goto free_queue_props; /* Before continuing in the initialization, we need to read the preboot * version to determine whether we run with a security-enabled firmware */ rc = hl_fw_read_preboot_status(hdev, mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS, mmCPU_BOOT_DEV_STS0, mmCPU_BOOT_ERR0, GOYA_BOOT_FIT_REQ_TIMEOUT_USEC); if (rc) { if (hdev->reset_on_preboot_fail) hdev->asic_funcs->hw_fini(hdev, true); goto pci_fini; } if (goya_get_hw_state(hdev) == HL_DEVICE_HW_STATE_DIRTY) { dev_info(hdev->dev, "H/W state is dirty, must reset before initializing\n"); hdev->asic_funcs->hw_fini(hdev, true); } if (!hdev->pldm) { val = RREG32(mmPSOC_GLOBAL_CONF_BOOT_STRAP_PINS); if (val & PSOC_GLOBAL_CONF_BOOT_STRAP_PINS_SRIOV_EN_MASK) dev_warn(hdev->dev, "PCI strap is not configured correctly, PCI bus errors may occur\n"); } return 0; pci_fini: hl_pci_fini(hdev); free_queue_props: kfree(hdev->asic_prop.hw_queues_props); return rc; } /* * goya_early_fini - GOYA early finalization code * * @hdev: pointer to hl_device structure * * Unmap PCI bars * */ static int goya_early_fini(struct hl_device *hdev) { kfree(hdev->asic_prop.hw_queues_props); hl_pci_fini(hdev); return 0; } static void goya_mmu_prepare_reg(struct hl_device *hdev, u64 reg, u32 asid) { /* mask to zero the MMBP and ASID bits */ WREG32_AND(reg, ~0x7FF); WREG32_OR(reg, asid); } static void goya_qman0_set_security(struct hl_device *hdev, bool secure) { struct goya_device *goya = hdev->asic_specific; if (!(goya->hw_cap_initialized & HW_CAP_MMU)) return; if (secure) WREG32(mmDMA_QM_0_GLBL_PROT, QMAN_DMA_FULLY_TRUSTED); else WREG32(mmDMA_QM_0_GLBL_PROT, QMAN_DMA_PARTLY_TRUSTED); RREG32(mmDMA_QM_0_GLBL_PROT); } /* * goya_fetch_psoc_frequency - Fetch PSOC frequency values * * @hdev: pointer to hl_device structure * */ static void goya_fetch_psoc_frequency(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; u32 nr = 0, nf = 0, od = 0, div_fctr = 0, pll_clk, div_sel; u16 pll_freq_arr[HL_PLL_NUM_OUTPUTS], freq; int rc; if (hdev->asic_prop.fw_security_disabled) { div_fctr = RREG32(mmPSOC_PCI_PLL_DIV_FACTOR_1); div_sel = RREG32(mmPSOC_PCI_PLL_DIV_SEL_1); nr = RREG32(mmPSOC_PCI_PLL_NR); nf = RREG32(mmPSOC_PCI_PLL_NF); od = RREG32(mmPSOC_PCI_PLL_OD); if (div_sel == DIV_SEL_REF_CLK || div_sel == DIV_SEL_DIVIDED_REF) { if (div_sel == DIV_SEL_REF_CLK) freq = PLL_REF_CLK; else freq = PLL_REF_CLK / (div_fctr + 1); } else if (div_sel == DIV_SEL_PLL_CLK || div_sel == DIV_SEL_DIVIDED_PLL) { pll_clk = PLL_REF_CLK * (nf + 1) / ((nr + 1) * (od + 1)); if (div_sel == DIV_SEL_PLL_CLK) freq = pll_clk; else freq = pll_clk / (div_fctr + 1); } else { dev_warn(hdev->dev, "Received invalid div select value: %d", div_sel); freq = 0; } } else { rc = hl_fw_cpucp_pll_info_get(hdev, PCI_PLL, pll_freq_arr); if (rc) return; freq = pll_freq_arr[1]; } prop->psoc_timestamp_frequency = freq; prop->psoc_pci_pll_nr = nr; prop->psoc_pci_pll_nf = nf; prop->psoc_pci_pll_od = od; prop->psoc_pci_pll_div_factor = div_fctr; } int goya_late_init(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; int rc; goya_fetch_psoc_frequency(hdev); rc = goya_mmu_clear_pgt_range(hdev); if (rc) { dev_err(hdev->dev, "Failed to clear MMU page tables range %d\n", rc); return rc; } rc = goya_mmu_set_dram_default_page(hdev); if (rc) { dev_err(hdev->dev, "Failed to set DRAM default page %d\n", rc); return rc; } rc = goya_mmu_add_mappings_for_device_cpu(hdev); if (rc) return rc; rc = goya_init_cpu_queues(hdev); if (rc) return rc; rc = goya_test_cpu_queue(hdev); if (rc) return rc; rc = goya_cpucp_info_get(hdev); if (rc) { dev_err(hdev->dev, "Failed to get cpucp info %d\n", rc); return rc; } /* Now that we have the DRAM size in ASIC prop, we need to check * its size and configure the DMA_IF DDR wrap protection (which is in * the MMU block) accordingly. The value is the log2 of the DRAM size */ WREG32(mmMMU_LOG2_DDR_SIZE, ilog2(prop->dram_size)); rc = hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_ENABLE_PCI_ACCESS); if (rc) { dev_err(hdev->dev, "Failed to enable PCI access from CPU %d\n", rc); return rc; } return 0; } /* * goya_late_fini - GOYA late tear-down code * * @hdev: pointer to hl_device structure * * Free sensors allocated structures */ void goya_late_fini(struct hl_device *hdev) { const struct hwmon_channel_info **channel_info_arr; int i = 0; if (!hdev->hl_chip_info->info) return; channel_info_arr = hdev->hl_chip_info->info; while (channel_info_arr[i]) { kfree(channel_info_arr[i]->config); kfree(channel_info_arr[i]); i++; } kfree(channel_info_arr); hdev->hl_chip_info->info = NULL; } /* * goya_sw_init - Goya software initialization code * * @hdev: pointer to hl_device structure * */ static int goya_sw_init(struct hl_device *hdev) { struct goya_device *goya; int rc; /* Allocate device structure */ goya = kzalloc(sizeof(*goya), GFP_KERNEL); if (!goya) return -ENOMEM; /* according to goya_init_iatu */ goya->ddr_bar_cur_addr = DRAM_PHYS_BASE; goya->mme_clk = GOYA_PLL_FREQ_LOW; goya->tpc_clk = GOYA_PLL_FREQ_LOW; goya->ic_clk = GOYA_PLL_FREQ_LOW; hdev->asic_specific = goya; /* store legacy PLL map */ hdev->legacy_pll_map = goya_pll_map; /* Create DMA pool for small allocations */ hdev->dma_pool = dma_pool_create(dev_name(hdev->dev), &hdev->pdev->dev, GOYA_DMA_POOL_BLK_SIZE, 8, 0); if (!hdev->dma_pool) { dev_err(hdev->dev, "failed to create DMA pool\n"); rc = -ENOMEM; goto free_goya_device; } hdev->cpu_accessible_dma_mem = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, &hdev->cpu_accessible_dma_address, GFP_KERNEL | __GFP_ZERO); if (!hdev->cpu_accessible_dma_mem) { rc = -ENOMEM; goto free_dma_pool; } dev_dbg(hdev->dev, "cpu accessible memory at bus address %pad\n", &hdev->cpu_accessible_dma_address); hdev->cpu_accessible_dma_pool = gen_pool_create(ilog2(32), -1); if (!hdev->cpu_accessible_dma_pool) { dev_err(hdev->dev, "Failed to create CPU accessible DMA pool\n"); rc = -ENOMEM; goto free_cpu_dma_mem; } rc = gen_pool_add(hdev->cpu_accessible_dma_pool, (uintptr_t) hdev->cpu_accessible_dma_mem, HL_CPU_ACCESSIBLE_MEM_SIZE, -1); if (rc) { dev_err(hdev->dev, "Failed to add memory to CPU accessible DMA pool\n"); rc = -EFAULT; goto free_cpu_accessible_dma_pool; } spin_lock_init(&goya->hw_queues_lock); hdev->supports_coresight = true; hdev->supports_soft_reset = true; return 0; free_cpu_accessible_dma_pool: gen_pool_destroy(hdev->cpu_accessible_dma_pool); free_cpu_dma_mem: hdev->asic_funcs->asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, hdev->cpu_accessible_dma_mem, hdev->cpu_accessible_dma_address); free_dma_pool: dma_pool_destroy(hdev->dma_pool); free_goya_device: kfree(goya); return rc; } /* * goya_sw_fini - Goya software tear-down code * * @hdev: pointer to hl_device structure * */ static int goya_sw_fini(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; gen_pool_destroy(hdev->cpu_accessible_dma_pool); hdev->asic_funcs->asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, hdev->cpu_accessible_dma_mem, hdev->cpu_accessible_dma_address); dma_pool_destroy(hdev->dma_pool); kfree(goya); return 0; } static void goya_init_dma_qman(struct hl_device *hdev, int dma_id, dma_addr_t bus_address) { struct goya_device *goya = hdev->asic_specific; u32 mtr_base_lo, mtr_base_hi; u32 so_base_lo, so_base_hi; u32 gic_base_lo, gic_base_hi; u32 reg_off = dma_id * (mmDMA_QM_1_PQ_PI - mmDMA_QM_0_PQ_PI); u32 dma_err_cfg = QMAN_DMA_ERR_MSG_EN; mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0); mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0); so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0); so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0); gic_base_lo = lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR); gic_base_hi = upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR); WREG32(mmDMA_QM_0_PQ_BASE_LO + reg_off, lower_32_bits(bus_address)); WREG32(mmDMA_QM_0_PQ_BASE_HI + reg_off, upper_32_bits(bus_address)); WREG32(mmDMA_QM_0_PQ_SIZE + reg_off, ilog2(HL_QUEUE_LENGTH)); WREG32(mmDMA_QM_0_PQ_PI + reg_off, 0); WREG32(mmDMA_QM_0_PQ_CI + reg_off, 0); WREG32(mmDMA_QM_0_CP_MSG_BASE0_ADDR_LO + reg_off, mtr_base_lo); WREG32(mmDMA_QM_0_CP_MSG_BASE0_ADDR_HI + reg_off, mtr_base_hi); WREG32(mmDMA_QM_0_CP_MSG_BASE1_ADDR_LO + reg_off, so_base_lo); WREG32(mmDMA_QM_0_CP_MSG_BASE1_ADDR_HI + reg_off, so_base_hi); WREG32(mmDMA_QM_0_GLBL_ERR_ADDR_LO + reg_off, gic_base_lo); WREG32(mmDMA_QM_0_GLBL_ERR_ADDR_HI + reg_off, gic_base_hi); WREG32(mmDMA_QM_0_GLBL_ERR_WDATA + reg_off, GOYA_ASYNC_EVENT_ID_DMA0_QM + dma_id); /* PQ has buffer of 2 cache lines, while CQ has 8 lines */ WREG32(mmDMA_QM_0_PQ_CFG1 + reg_off, 0x00020002); WREG32(mmDMA_QM_0_CQ_CFG1 + reg_off, 0x00080008); if (goya->hw_cap_initialized & HW_CAP_MMU) WREG32(mmDMA_QM_0_GLBL_PROT + reg_off, QMAN_DMA_PARTLY_TRUSTED); else WREG32(mmDMA_QM_0_GLBL_PROT + reg_off, QMAN_DMA_FULLY_TRUSTED); if (hdev->stop_on_err) dma_err_cfg |= 1 << DMA_QM_0_GLBL_ERR_CFG_DMA_STOP_ON_ERR_SHIFT; WREG32(mmDMA_QM_0_GLBL_ERR_CFG + reg_off, dma_err_cfg); WREG32(mmDMA_QM_0_GLBL_CFG0 + reg_off, QMAN_DMA_ENABLE); } static void goya_init_dma_ch(struct hl_device *hdev, int dma_id) { u32 gic_base_lo, gic_base_hi; u64 sob_addr; u32 reg_off = dma_id * (mmDMA_CH_1_CFG1 - mmDMA_CH_0_CFG1); gic_base_lo = lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR); gic_base_hi = upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR); WREG32(mmDMA_CH_0_ERRMSG_ADDR_LO + reg_off, gic_base_lo); WREG32(mmDMA_CH_0_ERRMSG_ADDR_HI + reg_off, gic_base_hi); WREG32(mmDMA_CH_0_ERRMSG_WDATA + reg_off, GOYA_ASYNC_EVENT_ID_DMA0_CH + dma_id); if (dma_id) sob_addr = CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1000 + (dma_id - 1) * 4; else sob_addr = CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1007; WREG32(mmDMA_CH_0_WR_COMP_ADDR_HI + reg_off, upper_32_bits(sob_addr)); WREG32(mmDMA_CH_0_WR_COMP_WDATA + reg_off, 0x80000001); } /* * goya_init_dma_qmans - Initialize QMAN DMA registers * * @hdev: pointer to hl_device structure * * Initialize the H/W registers of the QMAN DMA channels * */ void goya_init_dma_qmans(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; struct hl_hw_queue *q; int i; if (goya->hw_cap_initialized & HW_CAP_DMA) return; q = &hdev->kernel_queues[0]; for (i = 0 ; i < NUMBER_OF_EXT_HW_QUEUES ; i++, q++) { q->cq_id = q->msi_vec = i; goya_init_dma_qman(hdev, i, q->bus_address); goya_init_dma_ch(hdev, i); } goya->hw_cap_initialized |= HW_CAP_DMA; } /* * goya_disable_external_queues - Disable external queues * * @hdev: pointer to hl_device structure * */ static void goya_disable_external_queues(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; if (!(goya->hw_cap_initialized & HW_CAP_DMA)) return; WREG32(mmDMA_QM_0_GLBL_CFG0, 0); WREG32(mmDMA_QM_1_GLBL_CFG0, 0); WREG32(mmDMA_QM_2_GLBL_CFG0, 0); WREG32(mmDMA_QM_3_GLBL_CFG0, 0); WREG32(mmDMA_QM_4_GLBL_CFG0, 0); } static int goya_stop_queue(struct hl_device *hdev, u32 cfg_reg, u32 cp_sts_reg, u32 glbl_sts0_reg) { int rc; u32 status; /* use the values of TPC0 as they are all the same*/ WREG32(cfg_reg, 1 << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT); status = RREG32(cp_sts_reg); if (status & TPC0_QM_CP_STS_FENCE_IN_PROGRESS_MASK) { rc = hl_poll_timeout( hdev, cp_sts_reg, status, !(status & TPC0_QM_CP_STS_FENCE_IN_PROGRESS_MASK), 1000, QMAN_FENCE_TIMEOUT_USEC); /* if QMAN is stuck in fence no need to check for stop */ if (rc) return 0; } rc = hl_poll_timeout( hdev, glbl_sts0_reg, status, (status & TPC0_QM_GLBL_STS0_CP_IS_STOP_MASK), 1000, QMAN_STOP_TIMEOUT_USEC); if (rc) { dev_err(hdev->dev, "Timeout while waiting for QMAN to stop\n"); return -EINVAL; } return 0; } /* * goya_stop_external_queues - Stop external queues * * @hdev: pointer to hl_device structure * * Returns 0 on success * */ static int goya_stop_external_queues(struct hl_device *hdev) { int rc, retval = 0; struct goya_device *goya = hdev->asic_specific; if (!(goya->hw_cap_initialized & HW_CAP_DMA)) return retval; rc = goya_stop_queue(hdev, mmDMA_QM_0_GLBL_CFG1, mmDMA_QM_0_CP_STS, mmDMA_QM_0_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop DMA QMAN 0\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmDMA_QM_1_GLBL_CFG1, mmDMA_QM_1_CP_STS, mmDMA_QM_1_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop DMA QMAN 1\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmDMA_QM_2_GLBL_CFG1, mmDMA_QM_2_CP_STS, mmDMA_QM_2_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop DMA QMAN 2\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmDMA_QM_3_GLBL_CFG1, mmDMA_QM_3_CP_STS, mmDMA_QM_3_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop DMA QMAN 3\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmDMA_QM_4_GLBL_CFG1, mmDMA_QM_4_CP_STS, mmDMA_QM_4_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop DMA QMAN 4\n"); retval = -EIO; } return retval; } /* * goya_init_cpu_queues - Initialize PQ/CQ/EQ of CPU * * @hdev: pointer to hl_device structure * * Returns 0 on success * */ int goya_init_cpu_queues(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_eq *eq; u32 status; struct hl_hw_queue *cpu_pq = &hdev->kernel_queues[GOYA_QUEUE_ID_CPU_PQ]; int err; if (!hdev->cpu_queues_enable) return 0; if (goya->hw_cap_initialized & HW_CAP_CPU_Q) return 0; eq = &hdev->event_queue; WREG32(mmCPU_PQ_BASE_ADDR_LOW, lower_32_bits(cpu_pq->bus_address)); WREG32(mmCPU_PQ_BASE_ADDR_HIGH, upper_32_bits(cpu_pq->bus_address)); WREG32(mmCPU_EQ_BASE_ADDR_LOW, lower_32_bits(eq->bus_address)); WREG32(mmCPU_EQ_BASE_ADDR_HIGH, upper_32_bits(eq->bus_address)); WREG32(mmCPU_CQ_BASE_ADDR_LOW, lower_32_bits(VA_CPU_ACCESSIBLE_MEM_ADDR)); WREG32(mmCPU_CQ_BASE_ADDR_HIGH, upper_32_bits(VA_CPU_ACCESSIBLE_MEM_ADDR)); WREG32(mmCPU_PQ_LENGTH, HL_QUEUE_SIZE_IN_BYTES); WREG32(mmCPU_EQ_LENGTH, HL_EQ_SIZE_IN_BYTES); WREG32(mmCPU_CQ_LENGTH, HL_CPU_ACCESSIBLE_MEM_SIZE); /* Used for EQ CI */ WREG32(mmCPU_EQ_CI, 0); WREG32(mmCPU_IF_PF_PQ_PI, 0); WREG32(mmCPU_PQ_INIT_STATUS, PQ_INIT_STATUS_READY_FOR_CP); WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR, GOYA_ASYNC_EVENT_ID_PI_UPDATE); err = hl_poll_timeout( hdev, mmCPU_PQ_INIT_STATUS, status, (status == PQ_INIT_STATUS_READY_FOR_HOST), 1000, GOYA_CPU_TIMEOUT_USEC); if (err) { dev_err(hdev->dev, "Failed to setup communication with device CPU\n"); return -EIO; } /* update FW application security bits */ if (prop->fw_security_status_valid) prop->fw_app_security_map = RREG32(mmCPU_BOOT_DEV_STS0); goya->hw_cap_initialized |= HW_CAP_CPU_Q; return 0; } static void goya_set_pll_refclk(struct hl_device *hdev) { WREG32(mmCPU_PLL_DIV_SEL_0, 0x0); WREG32(mmCPU_PLL_DIV_SEL_1, 0x0); WREG32(mmCPU_PLL_DIV_SEL_2, 0x0); WREG32(mmCPU_PLL_DIV_SEL_3, 0x0); WREG32(mmIC_PLL_DIV_SEL_0, 0x0); WREG32(mmIC_PLL_DIV_SEL_1, 0x0); WREG32(mmIC_PLL_DIV_SEL_2, 0x0); WREG32(mmIC_PLL_DIV_SEL_3, 0x0); WREG32(mmMC_PLL_DIV_SEL_0, 0x0); WREG32(mmMC_PLL_DIV_SEL_1, 0x0); WREG32(mmMC_PLL_DIV_SEL_2, 0x0); WREG32(mmMC_PLL_DIV_SEL_3, 0x0); WREG32(mmPSOC_MME_PLL_DIV_SEL_0, 0x0); WREG32(mmPSOC_MME_PLL_DIV_SEL_1, 0x0); WREG32(mmPSOC_MME_PLL_DIV_SEL_2, 0x0); WREG32(mmPSOC_MME_PLL_DIV_SEL_3, 0x0); WREG32(mmPSOC_PCI_PLL_DIV_SEL_0, 0x0); WREG32(mmPSOC_PCI_PLL_DIV_SEL_1, 0x0); WREG32(mmPSOC_PCI_PLL_DIV_SEL_2, 0x0); WREG32(mmPSOC_PCI_PLL_DIV_SEL_3, 0x0); WREG32(mmPSOC_EMMC_PLL_DIV_SEL_0, 0x0); WREG32(mmPSOC_EMMC_PLL_DIV_SEL_1, 0x0); WREG32(mmPSOC_EMMC_PLL_DIV_SEL_2, 0x0); WREG32(mmPSOC_EMMC_PLL_DIV_SEL_3, 0x0); WREG32(mmTPC_PLL_DIV_SEL_0, 0x0); WREG32(mmTPC_PLL_DIV_SEL_1, 0x0); WREG32(mmTPC_PLL_DIV_SEL_2, 0x0); WREG32(mmTPC_PLL_DIV_SEL_3, 0x0); } static void goya_disable_clk_rlx(struct hl_device *hdev) { WREG32(mmPSOC_MME_PLL_CLK_RLX_0, 0x100010); WREG32(mmIC_PLL_CLK_RLX_0, 0x100010); } static void _goya_tpc_mbist_workaround(struct hl_device *hdev, u8 tpc_id) { u64 tpc_eml_address; u32 val, tpc_offset, tpc_eml_offset, tpc_slm_offset; int err, slm_index; tpc_offset = tpc_id * 0x40000; tpc_eml_offset = tpc_id * 0x200000; tpc_eml_address = (mmTPC0_EML_CFG_BASE + tpc_eml_offset - CFG_BASE); tpc_slm_offset = tpc_eml_address + 0x100000; /* * Workaround for Bug H2 #2443 : * "TPC SB is not initialized on chip reset" */ val = RREG32(mmTPC0_CFG_FUNC_MBIST_CNTRL + tpc_offset); if (val & TPC0_CFG_FUNC_MBIST_CNTRL_MBIST_ACTIVE_MASK) dev_warn(hdev->dev, "TPC%d MBIST ACTIVE is not cleared\n", tpc_id); WREG32(mmTPC0_CFG_FUNC_MBIST_PAT + tpc_offset, val & 0xFFFFF000); WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_0 + tpc_offset, 0x37FF); WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_1 + tpc_offset, 0x303F); WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_2 + tpc_offset, 0x71FF); WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_3 + tpc_offset, 0x71FF); WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_4 + tpc_offset, 0x70FF); WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_5 + tpc_offset, 0x70FF); WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_6 + tpc_offset, 0x70FF); WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_7 + tpc_offset, 0x70FF); WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_8 + tpc_offset, 0x70FF); WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_9 + tpc_offset, 0x70FF); WREG32_OR(mmTPC0_CFG_FUNC_MBIST_CNTRL + tpc_offset, 1 << TPC0_CFG_FUNC_MBIST_CNTRL_MBIST_START_SHIFT); err = hl_poll_timeout( hdev, mmTPC0_CFG_FUNC_MBIST_CNTRL + tpc_offset, val, (val & TPC0_CFG_FUNC_MBIST_CNTRL_MBIST_DONE_MASK), 1000, HL_DEVICE_TIMEOUT_USEC); if (err) dev_err(hdev->dev, "Timeout while waiting for TPC%d MBIST DONE\n", tpc_id); WREG32_OR(mmTPC0_EML_CFG_DBG_CNT + tpc_eml_offset, 1 << TPC0_EML_CFG_DBG_CNT_CORE_RST_SHIFT); msleep(GOYA_RESET_WAIT_MSEC); WREG32_AND(mmTPC0_EML_CFG_DBG_CNT + tpc_eml_offset, ~(1 << TPC0_EML_CFG_DBG_CNT_CORE_RST_SHIFT)); msleep(GOYA_RESET_WAIT_MSEC); for (slm_index = 0 ; slm_index < 256 ; slm_index++) WREG32(tpc_slm_offset + (slm_index << 2), 0); val = RREG32(tpc_slm_offset); } static void goya_tpc_mbist_workaround(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; int i; if (hdev->pldm) return; if (goya->hw_cap_initialized & HW_CAP_TPC_MBIST) return; /* Workaround for H2 #2443 */ for (i = 0 ; i < TPC_MAX_NUM ; i++) _goya_tpc_mbist_workaround(hdev, i); goya->hw_cap_initialized |= HW_CAP_TPC_MBIST; } /* * goya_init_golden_registers - Initialize golden registers * * @hdev: pointer to hl_device structure * * Initialize the H/W registers of the device * */ static void goya_init_golden_registers(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; u32 polynom[10], tpc_intr_mask, offset; int i; if (goya->hw_cap_initialized & HW_CAP_GOLDEN) return; polynom[0] = 0x00020080; polynom[1] = 0x00401000; polynom[2] = 0x00200800; polynom[3] = 0x00002000; polynom[4] = 0x00080200; polynom[5] = 0x00040100; polynom[6] = 0x00100400; polynom[7] = 0x00004000; polynom[8] = 0x00010000; polynom[9] = 0x00008000; /* Mask all arithmetic interrupts from TPC */ tpc_intr_mask = 0x7FFF; for (i = 0, offset = 0 ; i < 6 ; i++, offset += 0x20000) { WREG32(mmSRAM_Y0_X0_RTR_HBW_RD_RQ_L_ARB + offset, 0x302); WREG32(mmSRAM_Y0_X1_RTR_HBW_RD_RQ_L_ARB + offset, 0x302); WREG32(mmSRAM_Y0_X2_RTR_HBW_RD_RQ_L_ARB + offset, 0x302); WREG32(mmSRAM_Y0_X3_RTR_HBW_RD_RQ_L_ARB + offset, 0x302); WREG32(mmSRAM_Y0_X4_RTR_HBW_RD_RQ_L_ARB + offset, 0x302); WREG32(mmSRAM_Y0_X0_RTR_HBW_DATA_L_ARB + offset, 0x204); WREG32(mmSRAM_Y0_X1_RTR_HBW_DATA_L_ARB + offset, 0x204); WREG32(mmSRAM_Y0_X2_RTR_HBW_DATA_L_ARB + offset, 0x204); WREG32(mmSRAM_Y0_X3_RTR_HBW_DATA_L_ARB + offset, 0x204); WREG32(mmSRAM_Y0_X4_RTR_HBW_DATA_L_ARB + offset, 0x204); WREG32(mmSRAM_Y0_X0_RTR_HBW_DATA_E_ARB + offset, 0x206); WREG32(mmSRAM_Y0_X1_RTR_HBW_DATA_E_ARB + offset, 0x206); WREG32(mmSRAM_Y0_X2_RTR_HBW_DATA_E_ARB + offset, 0x206); WREG32(mmSRAM_Y0_X3_RTR_HBW_DATA_E_ARB + offset, 0x207); WREG32(mmSRAM_Y0_X4_RTR_HBW_DATA_E_ARB + offset, 0x207); WREG32(mmSRAM_Y0_X0_RTR_HBW_DATA_W_ARB + offset, 0x207); WREG32(mmSRAM_Y0_X1_RTR_HBW_DATA_W_ARB + offset, 0x207); WREG32(mmSRAM_Y0_X2_RTR_HBW_DATA_W_ARB + offset, 0x206); WREG32(mmSRAM_Y0_X3_RTR_HBW_DATA_W_ARB + offset, 0x206); WREG32(mmSRAM_Y0_X4_RTR_HBW_DATA_W_ARB + offset, 0x206); WREG32(mmSRAM_Y0_X0_RTR_HBW_WR_RS_E_ARB + offset, 0x101); WREG32(mmSRAM_Y0_X1_RTR_HBW_WR_RS_E_ARB + offset, 0x102); WREG32(mmSRAM_Y0_X2_RTR_HBW_WR_RS_E_ARB + offset, 0x103); WREG32(mmSRAM_Y0_X3_RTR_HBW_WR_RS_E_ARB + offset, 0x104); WREG32(mmSRAM_Y0_X4_RTR_HBW_WR_RS_E_ARB + offset, 0x105); WREG32(mmSRAM_Y0_X0_RTR_HBW_WR_RS_W_ARB + offset, 0x105); WREG32(mmSRAM_Y0_X1_RTR_HBW_WR_RS_W_ARB + offset, 0x104); WREG32(mmSRAM_Y0_X2_RTR_HBW_WR_RS_W_ARB + offset, 0x103); WREG32(mmSRAM_Y0_X3_RTR_HBW_WR_RS_W_ARB + offset, 0x102); WREG32(mmSRAM_Y0_X4_RTR_HBW_WR_RS_W_ARB + offset, 0x101); } WREG32(mmMME_STORE_MAX_CREDIT, 0x21); WREG32(mmMME_AGU, 0x0f0f0f10); WREG32(mmMME_SEI_MASK, ~0x0); WREG32(mmMME6_RTR_HBW_RD_RQ_N_ARB, 0x01010101); WREG32(mmMME5_RTR_HBW_RD_RQ_N_ARB, 0x01040101); WREG32(mmMME4_RTR_HBW_RD_RQ_N_ARB, 0x01030101); WREG32(mmMME3_RTR_HBW_RD_RQ_N_ARB, 0x01020101); WREG32(mmMME2_RTR_HBW_RD_RQ_N_ARB, 0x01010101); WREG32(mmMME1_RTR_HBW_RD_RQ_N_ARB, 0x07010701); WREG32(mmMME6_RTR_HBW_RD_RQ_S_ARB, 0x04010401); WREG32(mmMME5_RTR_HBW_RD_RQ_S_ARB, 0x04050401); WREG32(mmMME4_RTR_HBW_RD_RQ_S_ARB, 0x03070301); WREG32(mmMME3_RTR_HBW_RD_RQ_S_ARB, 0x01030101); WREG32(mmMME2_RTR_HBW_RD_RQ_S_ARB, 0x01040101); WREG32(mmMME1_RTR_HBW_RD_RQ_S_ARB, 0x01050105); WREG32(mmMME6_RTR_HBW_RD_RQ_W_ARB, 0x01010501); WREG32(mmMME5_RTR_HBW_RD_RQ_W_ARB, 0x01010501); WREG32(mmMME4_RTR_HBW_RD_RQ_W_ARB, 0x01040301); WREG32(mmMME3_RTR_HBW_RD_RQ_W_ARB, 0x01030401); WREG32(mmMME2_RTR_HBW_RD_RQ_W_ARB, 0x01040101); WREG32(mmMME1_RTR_HBW_RD_RQ_W_ARB, 0x01050101); WREG32(mmMME6_RTR_HBW_WR_RQ_N_ARB, 0x02020202); WREG32(mmMME5_RTR_HBW_WR_RQ_N_ARB, 0x01070101); WREG32(mmMME4_RTR_HBW_WR_RQ_N_ARB, 0x02020201); WREG32(mmMME3_RTR_HBW_WR_RQ_N_ARB, 0x07020701); WREG32(mmMME2_RTR_HBW_WR_RQ_N_ARB, 0x01020101); WREG32(mmMME1_RTR_HBW_WR_RQ_S_ARB, 0x01010101); WREG32(mmMME6_RTR_HBW_WR_RQ_S_ARB, 0x01070101); WREG32(mmMME5_RTR_HBW_WR_RQ_S_ARB, 0x01070101); WREG32(mmMME4_RTR_HBW_WR_RQ_S_ARB, 0x07020701); WREG32(mmMME3_RTR_HBW_WR_RQ_S_ARB, 0x02020201); WREG32(mmMME2_RTR_HBW_WR_RQ_S_ARB, 0x01070101); WREG32(mmMME1_RTR_HBW_WR_RQ_S_ARB, 0x01020102); WREG32(mmMME6_RTR_HBW_WR_RQ_W_ARB, 0x01020701); WREG32(mmMME5_RTR_HBW_WR_RQ_W_ARB, 0x01020701); WREG32(mmMME4_RTR_HBW_WR_RQ_W_ARB, 0x07020707); WREG32(mmMME3_RTR_HBW_WR_RQ_W_ARB, 0x01020201); WREG32(mmMME2_RTR_HBW_WR_RQ_W_ARB, 0x01070201); WREG32(mmMME1_RTR_HBW_WR_RQ_W_ARB, 0x01070201); WREG32(mmMME6_RTR_HBW_RD_RS_N_ARB, 0x01070102); WREG32(mmMME5_RTR_HBW_RD_RS_N_ARB, 0x01070102); WREG32(mmMME4_RTR_HBW_RD_RS_N_ARB, 0x01060102); WREG32(mmMME3_RTR_HBW_RD_RS_N_ARB, 0x01040102); WREG32(mmMME2_RTR_HBW_RD_RS_N_ARB, 0x01020102); WREG32(mmMME1_RTR_HBW_RD_RS_N_ARB, 0x01020107); WREG32(mmMME6_RTR_HBW_RD_RS_S_ARB, 0x01020106); WREG32(mmMME5_RTR_HBW_RD_RS_S_ARB, 0x01020102); WREG32(mmMME4_RTR_HBW_RD_RS_S_ARB, 0x01040102); WREG32(mmMME3_RTR_HBW_RD_RS_S_ARB, 0x01060102); WREG32(mmMME2_RTR_HBW_RD_RS_S_ARB, 0x01070102); WREG32(mmMME1_RTR_HBW_RD_RS_S_ARB, 0x01070102); WREG32(mmMME6_RTR_HBW_RD_RS_E_ARB, 0x01020702); WREG32(mmMME5_RTR_HBW_RD_RS_E_ARB, 0x01020702); WREG32(mmMME4_RTR_HBW_RD_RS_E_ARB, 0x01040602); WREG32(mmMME3_RTR_HBW_RD_RS_E_ARB, 0x01060402); WREG32(mmMME2_RTR_HBW_RD_RS_E_ARB, 0x01070202); WREG32(mmMME1_RTR_HBW_RD_RS_E_ARB, 0x01070102); WREG32(mmMME6_RTR_HBW_RD_RS_W_ARB, 0x01060401); WREG32(mmMME5_RTR_HBW_RD_RS_W_ARB, 0x01060401); WREG32(mmMME4_RTR_HBW_RD_RS_W_ARB, 0x01060401); WREG32(mmMME3_RTR_HBW_RD_RS_W_ARB, 0x01060401); WREG32(mmMME2_RTR_HBW_RD_RS_W_ARB, 0x01060401); WREG32(mmMME1_RTR_HBW_RD_RS_W_ARB, 0x01060401); WREG32(mmMME6_RTR_HBW_WR_RS_N_ARB, 0x01050101); WREG32(mmMME5_RTR_HBW_WR_RS_N_ARB, 0x01040101); WREG32(mmMME4_RTR_HBW_WR_RS_N_ARB, 0x01030101); WREG32(mmMME3_RTR_HBW_WR_RS_N_ARB, 0x01020101); WREG32(mmMME2_RTR_HBW_WR_RS_N_ARB, 0x01010101); WREG32(mmMME1_RTR_HBW_WR_RS_N_ARB, 0x01010107); WREG32(mmMME6_RTR_HBW_WR_RS_S_ARB, 0x01010107); WREG32(mmMME5_RTR_HBW_WR_RS_S_ARB, 0x01010101); WREG32(mmMME4_RTR_HBW_WR_RS_S_ARB, 0x01020101); WREG32(mmMME3_RTR_HBW_WR_RS_S_ARB, 0x01030101); WREG32(mmMME2_RTR_HBW_WR_RS_S_ARB, 0x01040101); WREG32(mmMME1_RTR_HBW_WR_RS_S_ARB, 0x01050101); WREG32(mmMME6_RTR_HBW_WR_RS_E_ARB, 0x01010501); WREG32(mmMME5_RTR_HBW_WR_RS_E_ARB, 0x01010501); WREG32(mmMME4_RTR_HBW_WR_RS_E_ARB, 0x01040301); WREG32(mmMME3_RTR_HBW_WR_RS_E_ARB, 0x01030401); WREG32(mmMME2_RTR_HBW_WR_RS_E_ARB, 0x01040101); WREG32(mmMME1_RTR_HBW_WR_RS_E_ARB, 0x01050101); WREG32(mmMME6_RTR_HBW_WR_RS_W_ARB, 0x01010101); WREG32(mmMME5_RTR_HBW_WR_RS_W_ARB, 0x01010101); WREG32(mmMME4_RTR_HBW_WR_RS_W_ARB, 0x01010101); WREG32(mmMME3_RTR_HBW_WR_RS_W_ARB, 0x01010101); WREG32(mmMME2_RTR_HBW_WR_RS_W_ARB, 0x01010101); WREG32(mmMME1_RTR_HBW_WR_RS_W_ARB, 0x01010101); WREG32(mmTPC1_RTR_HBW_RD_RQ_N_ARB, 0x01010101); WREG32(mmTPC1_RTR_HBW_RD_RQ_S_ARB, 0x01010101); WREG32(mmTPC1_RTR_HBW_RD_RQ_E_ARB, 0x01060101); WREG32(mmTPC1_RTR_HBW_WR_RQ_N_ARB, 0x02020102); WREG32(mmTPC1_RTR_HBW_WR_RQ_S_ARB, 0x01010101); WREG32(mmTPC1_RTR_HBW_WR_RQ_E_ARB, 0x02070202); WREG32(mmTPC1_RTR_HBW_RD_RS_N_ARB, 0x01020201); WREG32(mmTPC1_RTR_HBW_RD_RS_S_ARB, 0x01070201); WREG32(mmTPC1_RTR_HBW_RD_RS_W_ARB, 0x01070202); WREG32(mmTPC1_RTR_HBW_WR_RS_N_ARB, 0x01010101); WREG32(mmTPC1_RTR_HBW_WR_RS_S_ARB, 0x01050101); WREG32(mmTPC1_RTR_HBW_WR_RS_W_ARB, 0x01050101); WREG32(mmTPC2_RTR_HBW_RD_RQ_N_ARB, 0x01020101); WREG32(mmTPC2_RTR_HBW_RD_RQ_S_ARB, 0x01050101); WREG32(mmTPC2_RTR_HBW_RD_RQ_E_ARB, 0x01010201); WREG32(mmTPC2_RTR_HBW_WR_RQ_N_ARB, 0x02040102); WREG32(mmTPC2_RTR_HBW_WR_RQ_S_ARB, 0x01050101); WREG32(mmTPC2_RTR_HBW_WR_RQ_E_ARB, 0x02060202); WREG32(mmTPC2_RTR_HBW_RD_RS_N_ARB, 0x01020201); WREG32(mmTPC2_RTR_HBW_RD_RS_S_ARB, 0x01070201); WREG32(mmTPC2_RTR_HBW_RD_RS_W_ARB, 0x01070202); WREG32(mmTPC2_RTR_HBW_WR_RS_N_ARB, 0x01010101); WREG32(mmTPC2_RTR_HBW_WR_RS_S_ARB, 0x01040101); WREG32(mmTPC2_RTR_HBW_WR_RS_W_ARB, 0x01040101); WREG32(mmTPC3_RTR_HBW_RD_RQ_N_ARB, 0x01030101); WREG32(mmTPC3_RTR_HBW_RD_RQ_S_ARB, 0x01040101); WREG32(mmTPC3_RTR_HBW_RD_RQ_E_ARB, 0x01040301); WREG32(mmTPC3_RTR_HBW_WR_RQ_N_ARB, 0x02060102); WREG32(mmTPC3_RTR_HBW_WR_RQ_S_ARB, 0x01040101); WREG32(mmTPC3_RTR_HBW_WR_RQ_E_ARB, 0x01040301); WREG32(mmTPC3_RTR_HBW_RD_RS_N_ARB, 0x01040201); WREG32(mmTPC3_RTR_HBW_RD_RS_S_ARB, 0x01060201); WREG32(mmTPC3_RTR_HBW_RD_RS_W_ARB, 0x01060402); WREG32(mmTPC3_RTR_HBW_WR_RS_N_ARB, 0x01020101); WREG32(mmTPC3_RTR_HBW_WR_RS_S_ARB, 0x01030101); WREG32(mmTPC3_RTR_HBW_WR_RS_W_ARB, 0x01030401); WREG32(mmTPC4_RTR_HBW_RD_RQ_N_ARB, 0x01040101); WREG32(mmTPC4_RTR_HBW_RD_RQ_S_ARB, 0x01030101); WREG32(mmTPC4_RTR_HBW_RD_RQ_E_ARB, 0x01030401); WREG32(mmTPC4_RTR_HBW_WR_RQ_N_ARB, 0x02070102); WREG32(mmTPC4_RTR_HBW_WR_RQ_S_ARB, 0x01030101); WREG32(mmTPC4_RTR_HBW_WR_RQ_E_ARB, 0x02060702); WREG32(mmTPC4_RTR_HBW_RD_RS_N_ARB, 0x01060201); WREG32(mmTPC4_RTR_HBW_RD_RS_S_ARB, 0x01040201); WREG32(mmTPC4_RTR_HBW_RD_RS_W_ARB, 0x01040602); WREG32(mmTPC4_RTR_HBW_WR_RS_N_ARB, 0x01030101); WREG32(mmTPC4_RTR_HBW_WR_RS_S_ARB, 0x01020101); WREG32(mmTPC4_RTR_HBW_WR_RS_W_ARB, 0x01040301); WREG32(mmTPC5_RTR_HBW_RD_RQ_N_ARB, 0x01050101); WREG32(mmTPC5_RTR_HBW_RD_RQ_S_ARB, 0x01020101); WREG32(mmTPC5_RTR_HBW_RD_RQ_E_ARB, 0x01200501); WREG32(mmTPC5_RTR_HBW_WR_RQ_N_ARB, 0x02070102); WREG32(mmTPC5_RTR_HBW_WR_RQ_S_ARB, 0x01020101); WREG32(mmTPC5_RTR_HBW_WR_RQ_E_ARB, 0x02020602); WREG32(mmTPC5_RTR_HBW_RD_RS_N_ARB, 0x01070201); WREG32(mmTPC5_RTR_HBW_RD_RS_S_ARB, 0x01020201); WREG32(mmTPC5_RTR_HBW_RD_RS_W_ARB, 0x01020702); WREG32(mmTPC5_RTR_HBW_WR_RS_N_ARB, 0x01040101); WREG32(mmTPC5_RTR_HBW_WR_RS_S_ARB, 0x01010101); WREG32(mmTPC5_RTR_HBW_WR_RS_W_ARB, 0x01010501); WREG32(mmTPC6_RTR_HBW_RD_RQ_N_ARB, 0x01010101); WREG32(mmTPC6_RTR_HBW_RD_RQ_S_ARB, 0x01010101); WREG32(mmTPC6_RTR_HBW_RD_RQ_E_ARB, 0x01010601); WREG32(mmTPC6_RTR_HBW_WR_RQ_N_ARB, 0x01010101); WREG32(mmTPC6_RTR_HBW_WR_RQ_S_ARB, 0x01010101); WREG32(mmTPC6_RTR_HBW_WR_RQ_E_ARB, 0x02020702); WREG32(mmTPC6_RTR_HBW_RD_RS_N_ARB, 0x01010101); WREG32(mmTPC6_RTR_HBW_RD_RS_S_ARB, 0x01010101); WREG32(mmTPC6_RTR_HBW_RD_RS_W_ARB, 0x01020702); WREG32(mmTPC6_RTR_HBW_WR_RS_N_ARB, 0x01050101); WREG32(mmTPC6_RTR_HBW_WR_RS_S_ARB, 0x01010101); WREG32(mmTPC6_RTR_HBW_WR_RS_W_ARB, 0x01010501); for (i = 0, offset = 0 ; i < 10 ; i++, offset += 4) { WREG32(mmMME1_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7); WREG32(mmMME2_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7); WREG32(mmMME3_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7); WREG32(mmMME4_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7); WREG32(mmMME5_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7); WREG32(mmMME6_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7); WREG32(mmTPC0_NRTR_SPLIT_COEF_0 + offset, polynom[i] >> 7); WREG32(mmTPC1_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7); WREG32(mmTPC2_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7); WREG32(mmTPC3_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7); WREG32(mmTPC4_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7); WREG32(mmTPC5_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7); WREG32(mmTPC6_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7); WREG32(mmTPC7_NRTR_SPLIT_COEF_0 + offset, polynom[i] >> 7); WREG32(mmPCI_NRTR_SPLIT_COEF_0 + offset, polynom[i] >> 7); WREG32(mmDMA_NRTR_SPLIT_COEF_0 + offset, polynom[i] >> 7); } for (i = 0, offset = 0 ; i < 6 ; i++, offset += 0x40000) { WREG32(mmMME1_RTR_SCRAMB_EN + offset, 1 << MME1_RTR_SCRAMB_EN_VAL_SHIFT); WREG32(mmMME1_RTR_NON_LIN_SCRAMB + offset, 1 << MME1_RTR_NON_LIN_SCRAMB_EN_SHIFT); } for (i = 0, offset = 0 ; i < 8 ; i++, offset += 0x40000) { /* * Workaround for Bug H2 #2441 : * "ST.NOP set trace event illegal opcode" */ WREG32(mmTPC0_CFG_TPC_INTR_MASK + offset, tpc_intr_mask); WREG32(mmTPC0_NRTR_SCRAMB_EN + offset, 1 << TPC0_NRTR_SCRAMB_EN_VAL_SHIFT); WREG32(mmTPC0_NRTR_NON_LIN_SCRAMB + offset, 1 << TPC0_NRTR_NON_LIN_SCRAMB_EN_SHIFT); WREG32_FIELD(TPC0_CFG_MSS_CONFIG, offset, ICACHE_FETCH_LINE_NUM, 2); } WREG32(mmDMA_NRTR_SCRAMB_EN, 1 << DMA_NRTR_SCRAMB_EN_VAL_SHIFT); WREG32(mmDMA_NRTR_NON_LIN_SCRAMB, 1 << DMA_NRTR_NON_LIN_SCRAMB_EN_SHIFT); WREG32(mmPCI_NRTR_SCRAMB_EN, 1 << PCI_NRTR_SCRAMB_EN_VAL_SHIFT); WREG32(mmPCI_NRTR_NON_LIN_SCRAMB, 1 << PCI_NRTR_NON_LIN_SCRAMB_EN_SHIFT); /* * Workaround for H2 #HW-23 bug * Set DMA max outstanding read requests to 240 on DMA CH 1. * This limitation is still large enough to not affect Gen4 bandwidth. * We need to only limit that DMA channel because the user can only read * from Host using DMA CH 1 */ WREG32(mmDMA_CH_1_CFG0, 0x0fff00F0); WREG32(mmTPC_PLL_CLK_RLX_0, 0x200020); goya->hw_cap_initialized |= HW_CAP_GOLDEN; } static void goya_init_mme_qman(struct hl_device *hdev) { u32 mtr_base_lo, mtr_base_hi; u32 so_base_lo, so_base_hi; u32 gic_base_lo, gic_base_hi; u64 qman_base_addr; mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0); mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0); so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0); so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0); gic_base_lo = lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR); gic_base_hi = upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR); qman_base_addr = hdev->asic_prop.sram_base_address + MME_QMAN_BASE_OFFSET; WREG32(mmMME_QM_PQ_BASE_LO, lower_32_bits(qman_base_addr)); WREG32(mmMME_QM_PQ_BASE_HI, upper_32_bits(qman_base_addr)); WREG32(mmMME_QM_PQ_SIZE, ilog2(MME_QMAN_LENGTH)); WREG32(mmMME_QM_PQ_PI, 0); WREG32(mmMME_QM_PQ_CI, 0); WREG32(mmMME_QM_CP_LDMA_SRC_BASE_LO_OFFSET, 0x10C0); WREG32(mmMME_QM_CP_LDMA_SRC_BASE_HI_OFFSET, 0x10C4); WREG32(mmMME_QM_CP_LDMA_TSIZE_OFFSET, 0x10C8); WREG32(mmMME_QM_CP_LDMA_COMMIT_OFFSET, 0x10CC); WREG32(mmMME_QM_CP_MSG_BASE0_ADDR_LO, mtr_base_lo); WREG32(mmMME_QM_CP_MSG_BASE0_ADDR_HI, mtr_base_hi); WREG32(mmMME_QM_CP_MSG_BASE1_ADDR_LO, so_base_lo); WREG32(mmMME_QM_CP_MSG_BASE1_ADDR_HI, so_base_hi); /* QMAN CQ has 8 cache lines */ WREG32(mmMME_QM_CQ_CFG1, 0x00080008); WREG32(mmMME_QM_GLBL_ERR_ADDR_LO, gic_base_lo); WREG32(mmMME_QM_GLBL_ERR_ADDR_HI, gic_base_hi); WREG32(mmMME_QM_GLBL_ERR_WDATA, GOYA_ASYNC_EVENT_ID_MME_QM); WREG32(mmMME_QM_GLBL_ERR_CFG, QMAN_MME_ERR_MSG_EN); WREG32(mmMME_QM_GLBL_PROT, QMAN_MME_ERR_PROT); WREG32(mmMME_QM_GLBL_CFG0, QMAN_MME_ENABLE); } static void goya_init_mme_cmdq(struct hl_device *hdev) { u32 mtr_base_lo, mtr_base_hi; u32 so_base_lo, so_base_hi; u32 gic_base_lo, gic_base_hi; mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0); mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0); so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0); so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0); gic_base_lo = lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR); gic_base_hi = upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR); WREG32(mmMME_CMDQ_CP_MSG_BASE0_ADDR_LO, mtr_base_lo); WREG32(mmMME_CMDQ_CP_MSG_BASE0_ADDR_HI, mtr_base_hi); WREG32(mmMME_CMDQ_CP_MSG_BASE1_ADDR_LO, so_base_lo); WREG32(mmMME_CMDQ_CP_MSG_BASE1_ADDR_HI, so_base_hi); /* CMDQ CQ has 20 cache lines */ WREG32(mmMME_CMDQ_CQ_CFG1, 0x00140014); WREG32(mmMME_CMDQ_GLBL_ERR_ADDR_LO, gic_base_lo); WREG32(mmMME_CMDQ_GLBL_ERR_ADDR_HI, gic_base_hi); WREG32(mmMME_CMDQ_GLBL_ERR_WDATA, GOYA_ASYNC_EVENT_ID_MME_CMDQ); WREG32(mmMME_CMDQ_GLBL_ERR_CFG, CMDQ_MME_ERR_MSG_EN); WREG32(mmMME_CMDQ_GLBL_PROT, CMDQ_MME_ERR_PROT); WREG32(mmMME_CMDQ_GLBL_CFG0, CMDQ_MME_ENABLE); } void goya_init_mme_qmans(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; u32 so_base_lo, so_base_hi; if (goya->hw_cap_initialized & HW_CAP_MME) return; so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0); so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0); WREG32(mmMME_SM_BASE_ADDRESS_LOW, so_base_lo); WREG32(mmMME_SM_BASE_ADDRESS_HIGH, so_base_hi); goya_init_mme_qman(hdev); goya_init_mme_cmdq(hdev); goya->hw_cap_initialized |= HW_CAP_MME; } static void goya_init_tpc_qman(struct hl_device *hdev, u32 base_off, int tpc_id) { u32 mtr_base_lo, mtr_base_hi; u32 so_base_lo, so_base_hi; u32 gic_base_lo, gic_base_hi; u64 qman_base_addr; u32 reg_off = tpc_id * (mmTPC1_QM_PQ_PI - mmTPC0_QM_PQ_PI); mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0); mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0); so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0); so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0); gic_base_lo = lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR); gic_base_hi = upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR); qman_base_addr = hdev->asic_prop.sram_base_address + base_off; WREG32(mmTPC0_QM_PQ_BASE_LO + reg_off, lower_32_bits(qman_base_addr)); WREG32(mmTPC0_QM_PQ_BASE_HI + reg_off, upper_32_bits(qman_base_addr)); WREG32(mmTPC0_QM_PQ_SIZE + reg_off, ilog2(TPC_QMAN_LENGTH)); WREG32(mmTPC0_QM_PQ_PI + reg_off, 0); WREG32(mmTPC0_QM_PQ_CI + reg_off, 0); WREG32(mmTPC0_QM_CP_LDMA_SRC_BASE_LO_OFFSET + reg_off, 0x10C0); WREG32(mmTPC0_QM_CP_LDMA_SRC_BASE_HI_OFFSET + reg_off, 0x10C4); WREG32(mmTPC0_QM_CP_LDMA_TSIZE_OFFSET + reg_off, 0x10C8); WREG32(mmTPC0_QM_CP_LDMA_COMMIT_OFFSET + reg_off, 0x10CC); WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_LO + reg_off, mtr_base_lo); WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_HI + reg_off, mtr_base_hi); WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_LO + reg_off, so_base_lo); WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_HI + reg_off, so_base_hi); WREG32(mmTPC0_QM_CQ_CFG1 + reg_off, 0x00080008); WREG32(mmTPC0_QM_GLBL_ERR_ADDR_LO + reg_off, gic_base_lo); WREG32(mmTPC0_QM_GLBL_ERR_ADDR_HI + reg_off, gic_base_hi); WREG32(mmTPC0_QM_GLBL_ERR_WDATA + reg_off, GOYA_ASYNC_EVENT_ID_TPC0_QM + tpc_id); WREG32(mmTPC0_QM_GLBL_ERR_CFG + reg_off, QMAN_TPC_ERR_MSG_EN); WREG32(mmTPC0_QM_GLBL_PROT + reg_off, QMAN_TPC_ERR_PROT); WREG32(mmTPC0_QM_GLBL_CFG0 + reg_off, QMAN_TPC_ENABLE); } static void goya_init_tpc_cmdq(struct hl_device *hdev, int tpc_id) { u32 mtr_base_lo, mtr_base_hi; u32 so_base_lo, so_base_hi; u32 gic_base_lo, gic_base_hi; u32 reg_off = tpc_id * (mmTPC1_CMDQ_CQ_CFG1 - mmTPC0_CMDQ_CQ_CFG1); mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0); mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0); so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0); so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0); gic_base_lo = lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR); gic_base_hi = upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR); WREG32(mmTPC0_CMDQ_CP_MSG_BASE0_ADDR_LO + reg_off, mtr_base_lo); WREG32(mmTPC0_CMDQ_CP_MSG_BASE0_ADDR_HI + reg_off, mtr_base_hi); WREG32(mmTPC0_CMDQ_CP_MSG_BASE1_ADDR_LO + reg_off, so_base_lo); WREG32(mmTPC0_CMDQ_CP_MSG_BASE1_ADDR_HI + reg_off, so_base_hi); WREG32(mmTPC0_CMDQ_CQ_CFG1 + reg_off, 0x00140014); WREG32(mmTPC0_CMDQ_GLBL_ERR_ADDR_LO + reg_off, gic_base_lo); WREG32(mmTPC0_CMDQ_GLBL_ERR_ADDR_HI + reg_off, gic_base_hi); WREG32(mmTPC0_CMDQ_GLBL_ERR_WDATA + reg_off, GOYA_ASYNC_EVENT_ID_TPC0_CMDQ + tpc_id); WREG32(mmTPC0_CMDQ_GLBL_ERR_CFG + reg_off, CMDQ_TPC_ERR_MSG_EN); WREG32(mmTPC0_CMDQ_GLBL_PROT + reg_off, CMDQ_TPC_ERR_PROT); WREG32(mmTPC0_CMDQ_GLBL_CFG0 + reg_off, CMDQ_TPC_ENABLE); } void goya_init_tpc_qmans(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; u32 so_base_lo, so_base_hi; u32 cfg_off = mmTPC1_CFG_SM_BASE_ADDRESS_LOW - mmTPC0_CFG_SM_BASE_ADDRESS_LOW; int i; if (goya->hw_cap_initialized & HW_CAP_TPC) return; so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0); so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0); for (i = 0 ; i < TPC_MAX_NUM ; i++) { WREG32(mmTPC0_CFG_SM_BASE_ADDRESS_LOW + i * cfg_off, so_base_lo); WREG32(mmTPC0_CFG_SM_BASE_ADDRESS_HIGH + i * cfg_off, so_base_hi); } goya_init_tpc_qman(hdev, TPC0_QMAN_BASE_OFFSET, 0); goya_init_tpc_qman(hdev, TPC1_QMAN_BASE_OFFSET, 1); goya_init_tpc_qman(hdev, TPC2_QMAN_BASE_OFFSET, 2); goya_init_tpc_qman(hdev, TPC3_QMAN_BASE_OFFSET, 3); goya_init_tpc_qman(hdev, TPC4_QMAN_BASE_OFFSET, 4); goya_init_tpc_qman(hdev, TPC5_QMAN_BASE_OFFSET, 5); goya_init_tpc_qman(hdev, TPC6_QMAN_BASE_OFFSET, 6); goya_init_tpc_qman(hdev, TPC7_QMAN_BASE_OFFSET, 7); for (i = 0 ; i < TPC_MAX_NUM ; i++) goya_init_tpc_cmdq(hdev, i); goya->hw_cap_initialized |= HW_CAP_TPC; } /* * goya_disable_internal_queues - Disable internal queues * * @hdev: pointer to hl_device structure * */ static void goya_disable_internal_queues(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; if (!(goya->hw_cap_initialized & HW_CAP_MME)) goto disable_tpc; WREG32(mmMME_QM_GLBL_CFG0, 0); WREG32(mmMME_CMDQ_GLBL_CFG0, 0); disable_tpc: if (!(goya->hw_cap_initialized & HW_CAP_TPC)) return; WREG32(mmTPC0_QM_GLBL_CFG0, 0); WREG32(mmTPC0_CMDQ_GLBL_CFG0, 0); WREG32(mmTPC1_QM_GLBL_CFG0, 0); WREG32(mmTPC1_CMDQ_GLBL_CFG0, 0); WREG32(mmTPC2_QM_GLBL_CFG0, 0); WREG32(mmTPC2_CMDQ_GLBL_CFG0, 0); WREG32(mmTPC3_QM_GLBL_CFG0, 0); WREG32(mmTPC3_CMDQ_GLBL_CFG0, 0); WREG32(mmTPC4_QM_GLBL_CFG0, 0); WREG32(mmTPC4_CMDQ_GLBL_CFG0, 0); WREG32(mmTPC5_QM_GLBL_CFG0, 0); WREG32(mmTPC5_CMDQ_GLBL_CFG0, 0); WREG32(mmTPC6_QM_GLBL_CFG0, 0); WREG32(mmTPC6_CMDQ_GLBL_CFG0, 0); WREG32(mmTPC7_QM_GLBL_CFG0, 0); WREG32(mmTPC7_CMDQ_GLBL_CFG0, 0); } /* * goya_stop_internal_queues - Stop internal queues * * @hdev: pointer to hl_device structure * * Returns 0 on success * */ static int goya_stop_internal_queues(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; int rc, retval = 0; if (!(goya->hw_cap_initialized & HW_CAP_MME)) goto stop_tpc; /* * Each queue (QMAN) is a separate H/W logic. That means that each * QMAN can be stopped independently and failure to stop one does NOT * mandate we should not try to stop other QMANs */ rc = goya_stop_queue(hdev, mmMME_QM_GLBL_CFG1, mmMME_QM_CP_STS, mmMME_QM_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop MME QMAN\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmMME_CMDQ_GLBL_CFG1, mmMME_CMDQ_CP_STS, mmMME_CMDQ_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop MME CMDQ\n"); retval = -EIO; } stop_tpc: if (!(goya->hw_cap_initialized & HW_CAP_TPC)) return retval; rc = goya_stop_queue(hdev, mmTPC0_QM_GLBL_CFG1, mmTPC0_QM_CP_STS, mmTPC0_QM_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop TPC 0 QMAN\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmTPC0_CMDQ_GLBL_CFG1, mmTPC0_CMDQ_CP_STS, mmTPC0_CMDQ_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop TPC 0 CMDQ\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmTPC1_QM_GLBL_CFG1, mmTPC1_QM_CP_STS, mmTPC1_QM_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop TPC 1 QMAN\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmTPC1_CMDQ_GLBL_CFG1, mmTPC1_CMDQ_CP_STS, mmTPC1_CMDQ_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop TPC 1 CMDQ\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmTPC2_QM_GLBL_CFG1, mmTPC2_QM_CP_STS, mmTPC2_QM_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop TPC 2 QMAN\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmTPC2_CMDQ_GLBL_CFG1, mmTPC2_CMDQ_CP_STS, mmTPC2_CMDQ_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop TPC 2 CMDQ\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmTPC3_QM_GLBL_CFG1, mmTPC3_QM_CP_STS, mmTPC3_QM_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop TPC 3 QMAN\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmTPC3_CMDQ_GLBL_CFG1, mmTPC3_CMDQ_CP_STS, mmTPC3_CMDQ_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop TPC 3 CMDQ\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmTPC4_QM_GLBL_CFG1, mmTPC4_QM_CP_STS, mmTPC4_QM_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop TPC 4 QMAN\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmTPC4_CMDQ_GLBL_CFG1, mmTPC4_CMDQ_CP_STS, mmTPC4_CMDQ_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop TPC 4 CMDQ\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmTPC5_QM_GLBL_CFG1, mmTPC5_QM_CP_STS, mmTPC5_QM_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop TPC 5 QMAN\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmTPC5_CMDQ_GLBL_CFG1, mmTPC5_CMDQ_CP_STS, mmTPC5_CMDQ_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop TPC 5 CMDQ\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmTPC6_QM_GLBL_CFG1, mmTPC6_QM_CP_STS, mmTPC6_QM_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop TPC 6 QMAN\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmTPC6_CMDQ_GLBL_CFG1, mmTPC6_CMDQ_CP_STS, mmTPC6_CMDQ_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop TPC 6 CMDQ\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmTPC7_QM_GLBL_CFG1, mmTPC7_QM_CP_STS, mmTPC7_QM_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop TPC 7 QMAN\n"); retval = -EIO; } rc = goya_stop_queue(hdev, mmTPC7_CMDQ_GLBL_CFG1, mmTPC7_CMDQ_CP_STS, mmTPC7_CMDQ_GLBL_STS0); if (rc) { dev_err(hdev->dev, "failed to stop TPC 7 CMDQ\n"); retval = -EIO; } return retval; } static void goya_dma_stall(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; if (!(goya->hw_cap_initialized & HW_CAP_DMA)) return; WREG32(mmDMA_QM_0_GLBL_CFG1, 1 << DMA_QM_0_GLBL_CFG1_DMA_STOP_SHIFT); WREG32(mmDMA_QM_1_GLBL_CFG1, 1 << DMA_QM_1_GLBL_CFG1_DMA_STOP_SHIFT); WREG32(mmDMA_QM_2_GLBL_CFG1, 1 << DMA_QM_2_GLBL_CFG1_DMA_STOP_SHIFT); WREG32(mmDMA_QM_3_GLBL_CFG1, 1 << DMA_QM_3_GLBL_CFG1_DMA_STOP_SHIFT); WREG32(mmDMA_QM_4_GLBL_CFG1, 1 << DMA_QM_4_GLBL_CFG1_DMA_STOP_SHIFT); } static void goya_tpc_stall(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; if (!(goya->hw_cap_initialized & HW_CAP_TPC)) return; WREG32(mmTPC0_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT); WREG32(mmTPC1_CFG_TPC_STALL, 1 << TPC1_CFG_TPC_STALL_V_SHIFT); WREG32(mmTPC2_CFG_TPC_STALL, 1 << TPC2_CFG_TPC_STALL_V_SHIFT); WREG32(mmTPC3_CFG_TPC_STALL, 1 << TPC3_CFG_TPC_STALL_V_SHIFT); WREG32(mmTPC4_CFG_TPC_STALL, 1 << TPC4_CFG_TPC_STALL_V_SHIFT); WREG32(mmTPC5_CFG_TPC_STALL, 1 << TPC5_CFG_TPC_STALL_V_SHIFT); WREG32(mmTPC6_CFG_TPC_STALL, 1 << TPC6_CFG_TPC_STALL_V_SHIFT); WREG32(mmTPC7_CFG_TPC_STALL, 1 << TPC7_CFG_TPC_STALL_V_SHIFT); } static void goya_mme_stall(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; if (!(goya->hw_cap_initialized & HW_CAP_MME)) return; WREG32(mmMME_STALL, 0xFFFFFFFF); } static int goya_enable_msix(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; int cq_cnt = hdev->asic_prop.completion_queues_count; int rc, i, irq_cnt_init, irq; if (goya->hw_cap_initialized & HW_CAP_MSIX) return 0; rc = pci_alloc_irq_vectors(hdev->pdev, GOYA_MSIX_ENTRIES, GOYA_MSIX_ENTRIES, PCI_IRQ_MSIX); if (rc < 0) { dev_err(hdev->dev, "MSI-X: Failed to enable support -- %d/%d\n", GOYA_MSIX_ENTRIES, rc); return rc; } for (i = 0, irq_cnt_init = 0 ; i < cq_cnt ; i++, irq_cnt_init++) { irq = pci_irq_vector(hdev->pdev, i); rc = request_irq(irq, hl_irq_handler_cq, 0, goya_irq_name[i], &hdev->completion_queue[i]); if (rc) { dev_err(hdev->dev, "Failed to request IRQ %d", irq); goto free_irqs; } } irq = pci_irq_vector(hdev->pdev, GOYA_EVENT_QUEUE_MSIX_IDX); rc = request_irq(irq, hl_irq_handler_eq, 0, goya_irq_name[GOYA_EVENT_QUEUE_MSIX_IDX], &hdev->event_queue); if (rc) { dev_err(hdev->dev, "Failed to request IRQ %d", irq); goto free_irqs; } goya->hw_cap_initialized |= HW_CAP_MSIX; return 0; free_irqs: for (i = 0 ; i < irq_cnt_init ; i++) free_irq(pci_irq_vector(hdev->pdev, i), &hdev->completion_queue[i]); pci_free_irq_vectors(hdev->pdev); return rc; } static void goya_sync_irqs(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; int i; if (!(goya->hw_cap_initialized & HW_CAP_MSIX)) return; /* Wait for all pending IRQs to be finished */ for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) synchronize_irq(pci_irq_vector(hdev->pdev, i)); synchronize_irq(pci_irq_vector(hdev->pdev, GOYA_EVENT_QUEUE_MSIX_IDX)); } static void goya_disable_msix(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; int i, irq; if (!(goya->hw_cap_initialized & HW_CAP_MSIX)) return; goya_sync_irqs(hdev); irq = pci_irq_vector(hdev->pdev, GOYA_EVENT_QUEUE_MSIX_IDX); free_irq(irq, &hdev->event_queue); for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) { irq = pci_irq_vector(hdev->pdev, i); free_irq(irq, &hdev->completion_queue[i]); } pci_free_irq_vectors(hdev->pdev); goya->hw_cap_initialized &= ~HW_CAP_MSIX; } static void goya_enable_timestamp(struct hl_device *hdev) { /* Disable the timestamp counter */ WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 0); /* Zero the lower/upper parts of the 64-bit counter */ WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE + 0xC, 0); WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE + 0x8, 0); /* Enable the counter */ WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 1); } static void goya_disable_timestamp(struct hl_device *hdev) { /* Disable the timestamp counter */ WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 0); } static void goya_halt_engines(struct hl_device *hdev, bool hard_reset) { u32 wait_timeout_ms; dev_info(hdev->dev, "Halting compute engines and disabling interrupts\n"); if (hdev->pldm) wait_timeout_ms = GOYA_PLDM_RESET_WAIT_MSEC; else wait_timeout_ms = GOYA_RESET_WAIT_MSEC; goya_stop_external_queues(hdev); goya_stop_internal_queues(hdev); msleep(wait_timeout_ms); goya_dma_stall(hdev); goya_tpc_stall(hdev); goya_mme_stall(hdev); msleep(wait_timeout_ms); goya_disable_external_queues(hdev); goya_disable_internal_queues(hdev); goya_disable_timestamp(hdev); if (hard_reset) { goya_disable_msix(hdev); goya_mmu_remove_device_cpu_mappings(hdev); } else { goya_sync_irqs(hdev); } } /* * goya_load_firmware_to_device() - Load LINUX FW code to device. * @hdev: Pointer to hl_device structure. * * Copy LINUX fw code from firmware file to HBM BAR. * * Return: 0 on success, non-zero for failure. */ static int goya_load_firmware_to_device(struct hl_device *hdev) { void __iomem *dst; dst = hdev->pcie_bar[DDR_BAR_ID] + LINUX_FW_OFFSET; return hl_fw_load_fw_to_device(hdev, GOYA_LINUX_FW_FILE, dst, 0, 0); } /* * goya_load_boot_fit_to_device() - Load boot fit to device. * @hdev: Pointer to hl_device structure. * * Copy boot fit file to SRAM BAR. * * Return: 0 on success, non-zero for failure. */ static int goya_load_boot_fit_to_device(struct hl_device *hdev) { void __iomem *dst; dst = hdev->pcie_bar[SRAM_CFG_BAR_ID] + BOOT_FIT_SRAM_OFFSET; return hl_fw_load_fw_to_device(hdev, GOYA_BOOT_FIT_FILE, dst, 0, 0); } /* * FW component passes an offset from SRAM_BASE_ADDR in SCRATCHPAD_xx. * The version string should be located by that offset. */ static int goya_read_device_fw_version(struct hl_device *hdev, enum hl_fw_component fwc) { const char *name; u32 ver_off; char *dest; switch (fwc) { case FW_COMP_UBOOT: ver_off = RREG32(mmUBOOT_VER_OFFSET); dest = hdev->asic_prop.uboot_ver; name = "U-Boot"; break; case FW_COMP_PREBOOT: ver_off = RREG32(mmPREBOOT_VER_OFFSET); dest = hdev->asic_prop.preboot_ver; name = "Preboot"; break; default: dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc); return -EIO; } ver_off &= ~((u32)SRAM_BASE_ADDR); if (ver_off < SRAM_SIZE - VERSION_MAX_LEN) { memcpy_fromio(dest, hdev->pcie_bar[SRAM_CFG_BAR_ID] + ver_off, VERSION_MAX_LEN); } else { dev_err(hdev->dev, "%s version offset (0x%x) is above SRAM\n", name, ver_off); strcpy(dest, "unavailable"); return -EIO; } return 0; } static int goya_init_cpu(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; int rc; if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU)) return 0; if (goya->hw_cap_initialized & HW_CAP_CPU) return 0; /* * Before pushing u-boot/linux to device, need to set the ddr bar to * base address of dram */ if (goya_set_ddr_bar_base(hdev, DRAM_PHYS_BASE) == U64_MAX) { dev_err(hdev->dev, "failed to map DDR bar to DRAM base address\n"); return -EIO; } rc = hl_fw_init_cpu(hdev, mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS, mmPSOC_GLOBAL_CONF_UBOOT_MAGIC, mmCPU_CMD_STATUS_TO_HOST, mmCPU_BOOT_DEV_STS0, mmCPU_BOOT_ERR0, false, GOYA_CPU_TIMEOUT_USEC, GOYA_BOOT_FIT_REQ_TIMEOUT_USEC); if (rc) return rc; goya->hw_cap_initialized |= HW_CAP_CPU; return 0; } static int goya_mmu_update_asid_hop0_addr(struct hl_device *hdev, u32 asid, u64 phys_addr) { u32 status, timeout_usec; int rc; if (hdev->pldm) timeout_usec = GOYA_PLDM_MMU_TIMEOUT_USEC; else timeout_usec = MMU_CONFIG_TIMEOUT_USEC; WREG32(MMU_HOP0_PA43_12, phys_addr >> MMU_HOP0_PA43_12_SHIFT); WREG32(MMU_HOP0_PA49_44, phys_addr >> MMU_HOP0_PA49_44_SHIFT); WREG32(MMU_ASID_BUSY, 0x80000000 | asid); rc = hl_poll_timeout( hdev, MMU_ASID_BUSY, status, !(status & 0x80000000), 1000, timeout_usec); if (rc) { dev_err(hdev->dev, "Timeout during MMU hop0 config of asid %d\n", asid); return rc; } return 0; } int goya_mmu_init(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; struct goya_device *goya = hdev->asic_specific; u64 hop0_addr; int rc, i; if (!hdev->mmu_enable) return 0; if (goya->hw_cap_initialized & HW_CAP_MMU) return 0; hdev->dram_default_page_mapping = true; for (i = 0 ; i < prop->max_asid ; i++) { hop0_addr = prop->mmu_pgt_addr + (i * prop->mmu_hop_table_size); rc = goya_mmu_update_asid_hop0_addr(hdev, i, hop0_addr); if (rc) { dev_err(hdev->dev, "failed to set hop0 addr for asid %d\n", i); goto err; } } goya->hw_cap_initialized |= HW_CAP_MMU; /* init MMU cache manage page */ WREG32(mmSTLB_CACHE_INV_BASE_39_8, lower_32_bits(MMU_CACHE_MNG_ADDR >> 8)); WREG32(mmSTLB_CACHE_INV_BASE_49_40, MMU_CACHE_MNG_ADDR >> 40); /* Remove follower feature due to performance bug */ WREG32_AND(mmSTLB_STLB_FEATURE_EN, (~STLB_STLB_FEATURE_EN_FOLLOWER_EN_MASK)); hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_USERPTR | VM_TYPE_PHYS_PACK); WREG32(mmMMU_MMU_ENABLE, 1); WREG32(mmMMU_SPI_MASK, 0xF); return 0; err: return rc; } /* * goya_hw_init - Goya hardware initialization code * * @hdev: pointer to hl_device structure * * Returns 0 on success * */ static int goya_hw_init(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; int rc; /* Perform read from the device to make sure device is up */ RREG32(mmPCIE_DBI_DEVICE_ID_VENDOR_ID_REG); /* * Let's mark in the H/W that we have reached this point. We check * this value in the reset_before_init function to understand whether * we need to reset the chip before doing H/W init. This register is * cleared by the H/W upon H/W reset */ WREG32(mmHW_STATE, HL_DEVICE_HW_STATE_DIRTY); rc = goya_init_cpu(hdev); if (rc) { dev_err(hdev->dev, "failed to initialize CPU\n"); return rc; } goya_tpc_mbist_workaround(hdev); goya_init_golden_registers(hdev); /* * After CPU initialization is finished, change DDR bar mapping inside * iATU to point to the start address of the MMU page tables */ if (goya_set_ddr_bar_base(hdev, (MMU_PAGE_TABLES_ADDR & ~(prop->dram_pci_bar_size - 0x1ull))) == U64_MAX) { dev_err(hdev->dev, "failed to map DDR bar to MMU page tables\n"); return -EIO; } rc = goya_mmu_init(hdev); if (rc) return rc; goya_init_security(hdev); goya_init_dma_qmans(hdev); goya_init_mme_qmans(hdev); goya_init_tpc_qmans(hdev); goya_enable_timestamp(hdev); /* MSI-X must be enabled before CPU queues are initialized */ rc = goya_enable_msix(hdev); if (rc) goto disable_queues; /* Perform read from the device to flush all MSI-X configuration */ RREG32(mmPCIE_DBI_DEVICE_ID_VENDOR_ID_REG); return 0; disable_queues: goya_disable_internal_queues(hdev); goya_disable_external_queues(hdev); return rc; } /* * goya_hw_fini - Goya hardware tear-down code * * @hdev: pointer to hl_device structure * @hard_reset: should we do hard reset to all engines or just reset the * compute/dma engines */ static void goya_hw_fini(struct hl_device *hdev, bool hard_reset) { struct goya_device *goya = hdev->asic_specific; u32 reset_timeout_ms, cpu_timeout_ms, status; if (hdev->pldm) { reset_timeout_ms = GOYA_PLDM_RESET_TIMEOUT_MSEC; cpu_timeout_ms = GOYA_PLDM_RESET_WAIT_MSEC; } else { reset_timeout_ms = GOYA_RESET_TIMEOUT_MSEC; cpu_timeout_ms = GOYA_CPU_RESET_WAIT_MSEC; } if (hard_reset) { /* I don't know what is the state of the CPU so make sure it is * stopped in any means necessary */ WREG32(mmPSOC_GLOBAL_CONF_UBOOT_MAGIC, KMD_MSG_GOTO_WFE); WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR, GOYA_ASYNC_EVENT_ID_HALT_MACHINE); msleep(cpu_timeout_ms); goya_set_ddr_bar_base(hdev, DRAM_PHYS_BASE); goya_disable_clk_rlx(hdev); goya_set_pll_refclk(hdev); WREG32(mmPSOC_GLOBAL_CONF_SW_ALL_RST_CFG, RESET_ALL); dev_info(hdev->dev, "Issued HARD reset command, going to wait %dms\n", reset_timeout_ms); } else { WREG32(mmPSOC_GLOBAL_CONF_SW_ALL_RST_CFG, DMA_MME_TPC_RESET); dev_info(hdev->dev, "Issued SOFT reset command, going to wait %dms\n", reset_timeout_ms); } /* * After hard reset, we can't poll the BTM_FSM register because the PSOC * itself is in reset. In either reset we need to wait until the reset * is deasserted */ msleep(reset_timeout_ms); status = RREG32(mmPSOC_GLOBAL_CONF_BTM_FSM); if (status & PSOC_GLOBAL_CONF_BTM_FSM_STATE_MASK) dev_err(hdev->dev, "Timeout while waiting for device to reset 0x%x\n", status); if (!hard_reset && goya) { goya->hw_cap_initialized &= ~(HW_CAP_DMA | HW_CAP_MME | HW_CAP_GOLDEN | HW_CAP_TPC); WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR, GOYA_ASYNC_EVENT_ID_SOFT_RESET); return; } /* Chicken bit to re-initiate boot sequencer flow */ WREG32(mmPSOC_GLOBAL_CONF_BOOT_SEQ_RE_START, 1 << PSOC_GLOBAL_CONF_BOOT_SEQ_RE_START_IND_SHIFT); /* Move boot manager FSM to pre boot sequencer init state */ WREG32(mmPSOC_GLOBAL_CONF_SW_BTM_FSM, 0xA << PSOC_GLOBAL_CONF_SW_BTM_FSM_CTRL_SHIFT); if (goya) { goya->hw_cap_initialized &= ~(HW_CAP_CPU | HW_CAP_CPU_Q | HW_CAP_DDR_0 | HW_CAP_DDR_1 | HW_CAP_DMA | HW_CAP_MME | HW_CAP_MMU | HW_CAP_TPC_MBIST | HW_CAP_GOLDEN | HW_CAP_TPC); memset(goya->events_stat, 0, sizeof(goya->events_stat)); } } int goya_suspend(struct hl_device *hdev) { int rc; rc = hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS); if (rc) dev_err(hdev->dev, "Failed to disable PCI access from CPU\n"); return rc; } int goya_resume(struct hl_device *hdev) { return goya_init_iatu(hdev); } static int goya_cb_mmap(struct hl_device *hdev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size) { int rc; vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE; rc = dma_mmap_coherent(hdev->dev, vma, cpu_addr, (dma_addr - HOST_PHYS_BASE), size); if (rc) dev_err(hdev->dev, "dma_mmap_coherent error %d", rc); return rc; } void goya_ring_doorbell(struct hl_device *hdev, u32 hw_queue_id, u32 pi) { u32 db_reg_offset, db_value; switch (hw_queue_id) { case GOYA_QUEUE_ID_DMA_0: db_reg_offset = mmDMA_QM_0_PQ_PI; break; case GOYA_QUEUE_ID_DMA_1: db_reg_offset = mmDMA_QM_1_PQ_PI; break; case GOYA_QUEUE_ID_DMA_2: db_reg_offset = mmDMA_QM_2_PQ_PI; break; case GOYA_QUEUE_ID_DMA_3: db_reg_offset = mmDMA_QM_3_PQ_PI; break; case GOYA_QUEUE_ID_DMA_4: db_reg_offset = mmDMA_QM_4_PQ_PI; break; case GOYA_QUEUE_ID_CPU_PQ: db_reg_offset = mmCPU_IF_PF_PQ_PI; break; case GOYA_QUEUE_ID_MME: db_reg_offset = mmMME_QM_PQ_PI; break; case GOYA_QUEUE_ID_TPC0: db_reg_offset = mmTPC0_QM_PQ_PI; break; case GOYA_QUEUE_ID_TPC1: db_reg_offset = mmTPC1_QM_PQ_PI; break; case GOYA_QUEUE_ID_TPC2: db_reg_offset = mmTPC2_QM_PQ_PI; break; case GOYA_QUEUE_ID_TPC3: db_reg_offset = mmTPC3_QM_PQ_PI; break; case GOYA_QUEUE_ID_TPC4: db_reg_offset = mmTPC4_QM_PQ_PI; break; case GOYA_QUEUE_ID_TPC5: db_reg_offset = mmTPC5_QM_PQ_PI; break; case GOYA_QUEUE_ID_TPC6: db_reg_offset = mmTPC6_QM_PQ_PI; break; case GOYA_QUEUE_ID_TPC7: db_reg_offset = mmTPC7_QM_PQ_PI; break; default: /* Should never get here */ dev_err(hdev->dev, "H/W queue %d is invalid. Can't set pi\n", hw_queue_id); return; } db_value = pi; /* ring the doorbell */ WREG32(db_reg_offset, db_value); if (hw_queue_id == GOYA_QUEUE_ID_CPU_PQ) { /* make sure device CPU will read latest data from host */ mb(); WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR, GOYA_ASYNC_EVENT_ID_PI_UPDATE); } } void goya_pqe_write(struct hl_device *hdev, __le64 *pqe, struct hl_bd *bd) { /* The QMANs are on the SRAM so need to copy to IO space */ memcpy_toio((void __iomem *) pqe, bd, sizeof(struct hl_bd)); } static void *goya_dma_alloc_coherent(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, gfp_t flags) { void *kernel_addr = dma_alloc_coherent(&hdev->pdev->dev, size, dma_handle, flags); /* Shift to the device's base physical address of host memory */ if (kernel_addr) *dma_handle += HOST_PHYS_BASE; return kernel_addr; } static void goya_dma_free_coherent(struct hl_device *hdev, size_t size, void *cpu_addr, dma_addr_t dma_handle) { /* Cancel the device's base physical address of host memory */ dma_addr_t fixed_dma_handle = dma_handle - HOST_PHYS_BASE; dma_free_coherent(&hdev->pdev->dev, size, cpu_addr, fixed_dma_handle); } int goya_scrub_device_mem(struct hl_device *hdev, u64 addr, u64 size) { return 0; } void *goya_get_int_queue_base(struct hl_device *hdev, u32 queue_id, dma_addr_t *dma_handle, u16 *queue_len) { void *base; u32 offset; *dma_handle = hdev->asic_prop.sram_base_address; base = (void *) hdev->pcie_bar[SRAM_CFG_BAR_ID]; switch (queue_id) { case GOYA_QUEUE_ID_MME: offset = MME_QMAN_BASE_OFFSET; *queue_len = MME_QMAN_LENGTH; break; case GOYA_QUEUE_ID_TPC0: offset = TPC0_QMAN_BASE_OFFSET; *queue_len = TPC_QMAN_LENGTH; break; case GOYA_QUEUE_ID_TPC1: offset = TPC1_QMAN_BASE_OFFSET; *queue_len = TPC_QMAN_LENGTH; break; case GOYA_QUEUE_ID_TPC2: offset = TPC2_QMAN_BASE_OFFSET; *queue_len = TPC_QMAN_LENGTH; break; case GOYA_QUEUE_ID_TPC3: offset = TPC3_QMAN_BASE_OFFSET; *queue_len = TPC_QMAN_LENGTH; break; case GOYA_QUEUE_ID_TPC4: offset = TPC4_QMAN_BASE_OFFSET; *queue_len = TPC_QMAN_LENGTH; break; case GOYA_QUEUE_ID_TPC5: offset = TPC5_QMAN_BASE_OFFSET; *queue_len = TPC_QMAN_LENGTH; break; case GOYA_QUEUE_ID_TPC6: offset = TPC6_QMAN_BASE_OFFSET; *queue_len = TPC_QMAN_LENGTH; break; case GOYA_QUEUE_ID_TPC7: offset = TPC7_QMAN_BASE_OFFSET; *queue_len = TPC_QMAN_LENGTH; break; default: dev_err(hdev->dev, "Got invalid queue id %d\n", queue_id); return NULL; } base += offset; *dma_handle += offset; return base; } static int goya_send_job_on_qman0(struct hl_device *hdev, struct hl_cs_job *job) { struct packet_msg_prot *fence_pkt; u32 *fence_ptr; dma_addr_t fence_dma_addr; struct hl_cb *cb; u32 tmp, timeout; int rc; if (hdev->pldm) timeout = GOYA_PLDM_QMAN0_TIMEOUT_USEC; else timeout = HL_DEVICE_TIMEOUT_USEC; if (!hdev->asic_funcs->is_device_idle(hdev, NULL, 0, NULL)) { dev_err_ratelimited(hdev->dev, "Can't send driver job on QMAN0 because the device is not idle\n"); return -EBUSY; } fence_ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, 4, GFP_KERNEL, &fence_dma_addr); if (!fence_ptr) { dev_err(hdev->dev, "Failed to allocate fence memory for QMAN0\n"); return -ENOMEM; } goya_qman0_set_security(hdev, true); cb = job->patched_cb; fence_pkt = cb->kernel_address + job->job_cb_size - sizeof(struct packet_msg_prot); tmp = (PACKET_MSG_PROT << GOYA_PKT_CTL_OPCODE_SHIFT) | (1 << GOYA_PKT_CTL_EB_SHIFT) | (1 << GOYA_PKT_CTL_MB_SHIFT); fence_pkt->ctl = cpu_to_le32(tmp); fence_pkt->value = cpu_to_le32(GOYA_QMAN0_FENCE_VAL); fence_pkt->addr = cpu_to_le64(fence_dma_addr); rc = hl_hw_queue_send_cb_no_cmpl(hdev, GOYA_QUEUE_ID_DMA_0, job->job_cb_size, cb->bus_address); if (rc) { dev_err(hdev->dev, "Failed to send CB on QMAN0, %d\n", rc); goto free_fence_ptr; } rc = hl_poll_timeout_memory(hdev, fence_ptr, tmp, (tmp == GOYA_QMAN0_FENCE_VAL), 1000, timeout, true); hl_hw_queue_inc_ci_kernel(hdev, GOYA_QUEUE_ID_DMA_0); if (rc == -ETIMEDOUT) { dev_err(hdev->dev, "QMAN0 Job timeout (0x%x)\n", tmp); goto free_fence_ptr; } free_fence_ptr: hdev->asic_funcs->asic_dma_pool_free(hdev, (void *) fence_ptr, fence_dma_addr); goya_qman0_set_security(hdev, false); return rc; } int goya_send_cpu_message(struct hl_device *hdev, u32 *msg, u16 len, u32 timeout, u64 *result) { struct goya_device *goya = hdev->asic_specific; if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q)) { if (result) *result = 0; return 0; } if (!timeout) timeout = GOYA_MSG_TO_CPU_TIMEOUT_USEC; return hl_fw_send_cpu_message(hdev, GOYA_QUEUE_ID_CPU_PQ, msg, len, timeout, result); } int goya_test_queue(struct hl_device *hdev, u32 hw_queue_id) { struct packet_msg_prot *fence_pkt; dma_addr_t pkt_dma_addr; u32 fence_val, tmp; dma_addr_t fence_dma_addr; u32 *fence_ptr; int rc; fence_val = GOYA_QMAN0_FENCE_VAL; fence_ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, 4, GFP_KERNEL, &fence_dma_addr); if (!fence_ptr) { dev_err(hdev->dev, "Failed to allocate memory for H/W queue %d testing\n", hw_queue_id); return -ENOMEM; } *fence_ptr = 0; fence_pkt = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, sizeof(struct packet_msg_prot), GFP_KERNEL, &pkt_dma_addr); if (!fence_pkt) { dev_err(hdev->dev, "Failed to allocate packet for H/W queue %d testing\n", hw_queue_id); rc = -ENOMEM; goto free_fence_ptr; } tmp = (PACKET_MSG_PROT << GOYA_PKT_CTL_OPCODE_SHIFT) | (1 << GOYA_PKT_CTL_EB_SHIFT) | (1 << GOYA_PKT_CTL_MB_SHIFT); fence_pkt->ctl = cpu_to_le32(tmp); fence_pkt->value = cpu_to_le32(fence_val); fence_pkt->addr = cpu_to_le64(fence_dma_addr); rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id, sizeof(struct packet_msg_prot), pkt_dma_addr); if (rc) { dev_err(hdev->dev, "Failed to send fence packet to H/W queue %d\n", hw_queue_id); goto free_pkt; } rc = hl_poll_timeout_memory(hdev, fence_ptr, tmp, (tmp == fence_val), 1000, GOYA_TEST_QUEUE_WAIT_USEC, true); hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id); if (rc == -ETIMEDOUT) { dev_err(hdev->dev, "H/W queue %d test failed (scratch(0x%08llX) == 0x%08X)\n", hw_queue_id, (unsigned long long) fence_dma_addr, tmp); rc = -EIO; } free_pkt: hdev->asic_funcs->asic_dma_pool_free(hdev, (void *) fence_pkt, pkt_dma_addr); free_fence_ptr: hdev->asic_funcs->asic_dma_pool_free(hdev, (void *) fence_ptr, fence_dma_addr); return rc; } int goya_test_cpu_queue(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; /* * check capability here as send_cpu_message() won't update the result * value if no capability */ if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q)) return 0; return hl_fw_test_cpu_queue(hdev); } int goya_test_queues(struct hl_device *hdev) { int i, rc, ret_val = 0; for (i = 0 ; i < NUMBER_OF_EXT_HW_QUEUES ; i++) { rc = goya_test_queue(hdev, i); if (rc) ret_val = -EINVAL; } return ret_val; } static void *goya_dma_pool_zalloc(struct hl_device *hdev, size_t size, gfp_t mem_flags, dma_addr_t *dma_handle) { void *kernel_addr; if (size > GOYA_DMA_POOL_BLK_SIZE) return NULL; kernel_addr = dma_pool_zalloc(hdev->dma_pool, mem_flags, dma_handle); /* Shift to the device's base physical address of host memory */ if (kernel_addr) *dma_handle += HOST_PHYS_BASE; return kernel_addr; } static void goya_dma_pool_free(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr) { /* Cancel the device's base physical address of host memory */ dma_addr_t fixed_dma_addr = dma_addr - HOST_PHYS_BASE; dma_pool_free(hdev->dma_pool, vaddr, fixed_dma_addr); } void *goya_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle) { void *vaddr; vaddr = hl_fw_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle); *dma_handle = (*dma_handle) - hdev->cpu_accessible_dma_address + VA_CPU_ACCESSIBLE_MEM_ADDR; return vaddr; } void goya_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr) { hl_fw_cpu_accessible_dma_pool_free(hdev, size, vaddr); } static int goya_dma_map_sg(struct hl_device *hdev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { struct scatterlist *sg; int i; if (!dma_map_sg(&hdev->pdev->dev, sgl, nents, dir)) return -ENOMEM; /* Shift to the device's base physical address of host memory */ for_each_sg(sgl, sg, nents, i) sg->dma_address += HOST_PHYS_BASE; return 0; } static void goya_dma_unmap_sg(struct hl_device *hdev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { struct scatterlist *sg; int i; /* Cancel the device's base physical address of host memory */ for_each_sg(sgl, sg, nents, i) sg->dma_address -= HOST_PHYS_BASE; dma_unmap_sg(&hdev->pdev->dev, sgl, nents, dir); } u32 goya_get_dma_desc_list_size(struct hl_device *hdev, struct sg_table *sgt) { struct scatterlist *sg, *sg_next_iter; u32 count, dma_desc_cnt; u64 len, len_next; dma_addr_t addr, addr_next; dma_desc_cnt = 0; for_each_sg(sgt->sgl, sg, sgt->nents, count) { len = sg_dma_len(sg); addr = sg_dma_address(sg); if (len == 0) break; while ((count + 1) < sgt->nents) { sg_next_iter = sg_next(sg); len_next = sg_dma_len(sg_next_iter); addr_next = sg_dma_address(sg_next_iter); if (len_next == 0) break; if ((addr + len == addr_next) && (len + len_next <= DMA_MAX_TRANSFER_SIZE)) { len += len_next; count++; sg = sg_next_iter; } else { break; } } dma_desc_cnt++; } return dma_desc_cnt * sizeof(struct packet_lin_dma); } static int goya_pin_memory_before_cs(struct hl_device *hdev, struct hl_cs_parser *parser, struct packet_lin_dma *user_dma_pkt, u64 addr, enum dma_data_direction dir) { struct hl_userptr *userptr; int rc; if (hl_userptr_is_pinned(hdev, addr, le32_to_cpu(user_dma_pkt->tsize), parser->job_userptr_list, &userptr)) goto already_pinned; userptr = kzalloc(sizeof(*userptr), GFP_KERNEL); if (!userptr) return -ENOMEM; rc = hl_pin_host_memory(hdev, addr, le32_to_cpu(user_dma_pkt->tsize), userptr); if (rc) goto free_userptr; list_add_tail(&userptr->job_node, parser->job_userptr_list); rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl, userptr->sgt->nents, dir); if (rc) { dev_err(hdev->dev, "failed to map sgt with DMA region\n"); goto unpin_memory; } userptr->dma_mapped = true; userptr->dir = dir; already_pinned: parser->patched_cb_size += goya_get_dma_desc_list_size(hdev, userptr->sgt); return 0; unpin_memory: hl_unpin_host_memory(hdev, userptr); free_userptr: kfree(userptr); return rc; } static int goya_validate_dma_pkt_host(struct hl_device *hdev, struct hl_cs_parser *parser, struct packet_lin_dma *user_dma_pkt) { u64 device_memory_addr, addr; enum dma_data_direction dir; enum goya_dma_direction user_dir; bool sram_addr = true; bool skip_host_mem_pin = false; bool user_memset; u32 ctl; int rc = 0; ctl = le32_to_cpu(user_dma_pkt->ctl); user_dir = (ctl & GOYA_PKT_LIN_DMA_CTL_DMA_DIR_MASK) >> GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT; user_memset = (ctl & GOYA_PKT_LIN_DMA_CTL_MEMSET_MASK) >> GOYA_PKT_LIN_DMA_CTL_MEMSET_SHIFT; switch (user_dir) { case DMA_HOST_TO_DRAM: dev_dbg(hdev->dev, "DMA direction is HOST --> DRAM\n"); dir = DMA_TO_DEVICE; sram_addr = false; addr = le64_to_cpu(user_dma_pkt->src_addr); device_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr); if (user_memset) skip_host_mem_pin = true; break; case DMA_DRAM_TO_HOST: dev_dbg(hdev->dev, "DMA direction is DRAM --> HOST\n"); dir = DMA_FROM_DEVICE; sram_addr = false; addr = le64_to_cpu(user_dma_pkt->dst_addr); device_memory_addr = le64_to_cpu(user_dma_pkt->src_addr); break; case DMA_HOST_TO_SRAM: dev_dbg(hdev->dev, "DMA direction is HOST --> SRAM\n"); dir = DMA_TO_DEVICE; addr = le64_to_cpu(user_dma_pkt->src_addr); device_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr); if (user_memset) skip_host_mem_pin = true; break; case DMA_SRAM_TO_HOST: dev_dbg(hdev->dev, "DMA direction is SRAM --> HOST\n"); dir = DMA_FROM_DEVICE; addr = le64_to_cpu(user_dma_pkt->dst_addr); device_memory_addr = le64_to_cpu(user_dma_pkt->src_addr); break; default: dev_err(hdev->dev, "DMA direction is undefined\n"); return -EFAULT; } if (sram_addr) { if (!hl_mem_area_inside_range(device_memory_addr, le32_to_cpu(user_dma_pkt->tsize), hdev->asic_prop.sram_user_base_address, hdev->asic_prop.sram_end_address)) { dev_err(hdev->dev, "SRAM address 0x%llx + 0x%x is invalid\n", device_memory_addr, user_dma_pkt->tsize); return -EFAULT; } } else { if (!hl_mem_area_inside_range(device_memory_addr, le32_to_cpu(user_dma_pkt->tsize), hdev->asic_prop.dram_user_base_address, hdev->asic_prop.dram_end_address)) { dev_err(hdev->dev, "DRAM address 0x%llx + 0x%x is invalid\n", device_memory_addr, user_dma_pkt->tsize); return -EFAULT; } } if (skip_host_mem_pin) parser->patched_cb_size += sizeof(*user_dma_pkt); else { if ((dir == DMA_TO_DEVICE) && (parser->hw_queue_id > GOYA_QUEUE_ID_DMA_1)) { dev_err(hdev->dev, "Can't DMA from host on queue other then 1\n"); return -EFAULT; } rc = goya_pin_memory_before_cs(hdev, parser, user_dma_pkt, addr, dir); } return rc; } static int goya_validate_dma_pkt_no_host(struct hl_device *hdev, struct hl_cs_parser *parser, struct packet_lin_dma *user_dma_pkt) { u64 sram_memory_addr, dram_memory_addr; enum goya_dma_direction user_dir; u32 ctl; ctl = le32_to_cpu(user_dma_pkt->ctl); user_dir = (ctl & GOYA_PKT_LIN_DMA_CTL_DMA_DIR_MASK) >> GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT; if (user_dir == DMA_DRAM_TO_SRAM) { dev_dbg(hdev->dev, "DMA direction is DRAM --> SRAM\n"); dram_memory_addr = le64_to_cpu(user_dma_pkt->src_addr); sram_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr); } else { dev_dbg(hdev->dev, "DMA direction is SRAM --> DRAM\n"); sram_memory_addr = le64_to_cpu(user_dma_pkt->src_addr); dram_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr); } if (!hl_mem_area_inside_range(sram_memory_addr, le32_to_cpu(user_dma_pkt->tsize), hdev->asic_prop.sram_user_base_address, hdev->asic_prop.sram_end_address)) { dev_err(hdev->dev, "SRAM address 0x%llx + 0x%x is invalid\n", sram_memory_addr, user_dma_pkt->tsize); return -EFAULT; } if (!hl_mem_area_inside_range(dram_memory_addr, le32_to_cpu(user_dma_pkt->tsize), hdev->asic_prop.dram_user_base_address, hdev->asic_prop.dram_end_address)) { dev_err(hdev->dev, "DRAM address 0x%llx + 0x%x is invalid\n", dram_memory_addr, user_dma_pkt->tsize); return -EFAULT; } parser->patched_cb_size += sizeof(*user_dma_pkt); return 0; } static int goya_validate_dma_pkt_no_mmu(struct hl_device *hdev, struct hl_cs_parser *parser, struct packet_lin_dma *user_dma_pkt) { enum goya_dma_direction user_dir; u32 ctl; int rc; dev_dbg(hdev->dev, "DMA packet details:\n"); dev_dbg(hdev->dev, "source == 0x%llx\n", le64_to_cpu(user_dma_pkt->src_addr)); dev_dbg(hdev->dev, "destination == 0x%llx\n", le64_to_cpu(user_dma_pkt->dst_addr)); dev_dbg(hdev->dev, "size == %u\n", le32_to_cpu(user_dma_pkt->tsize)); ctl = le32_to_cpu(user_dma_pkt->ctl); user_dir = (ctl & GOYA_PKT_LIN_DMA_CTL_DMA_DIR_MASK) >> GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT; /* * Special handling for DMA with size 0. The H/W has a bug where * this can cause the QMAN DMA to get stuck, so block it here. */ if (user_dma_pkt->tsize == 0) { dev_err(hdev->dev, "Got DMA with size 0, might reset the device\n"); return -EINVAL; } if ((user_dir == DMA_DRAM_TO_SRAM) || (user_dir == DMA_SRAM_TO_DRAM)) rc = goya_validate_dma_pkt_no_host(hdev, parser, user_dma_pkt); else rc = goya_validate_dma_pkt_host(hdev, parser, user_dma_pkt); return rc; } static int goya_validate_dma_pkt_mmu(struct hl_device *hdev, struct hl_cs_parser *parser, struct packet_lin_dma *user_dma_pkt) { dev_dbg(hdev->dev, "DMA packet details:\n"); dev_dbg(hdev->dev, "source == 0x%llx\n", le64_to_cpu(user_dma_pkt->src_addr)); dev_dbg(hdev->dev, "destination == 0x%llx\n", le64_to_cpu(user_dma_pkt->dst_addr)); dev_dbg(hdev->dev, "size == %u\n", le32_to_cpu(user_dma_pkt->tsize)); /* * WA for HW-23. * We can't allow user to read from Host using QMANs other than 1. * PMMU and HPMMU addresses are equal, check only one of them. */ if (parser->hw_queue_id != GOYA_QUEUE_ID_DMA_1 && hl_mem_area_inside_range(le64_to_cpu(user_dma_pkt->src_addr), le32_to_cpu(user_dma_pkt->tsize), hdev->asic_prop.pmmu.start_addr, hdev->asic_prop.pmmu.end_addr)) { dev_err(hdev->dev, "Can't DMA from host on queue other then 1\n"); return -EFAULT; } if (user_dma_pkt->tsize == 0) { dev_err(hdev->dev, "Got DMA with size 0, might reset the device\n"); return -EINVAL; } parser->patched_cb_size += sizeof(*user_dma_pkt); return 0; } static int goya_validate_wreg32(struct hl_device *hdev, struct hl_cs_parser *parser, struct packet_wreg32 *wreg_pkt) { struct goya_device *goya = hdev->asic_specific; u32 sob_start_addr, sob_end_addr; u16 reg_offset; reg_offset = le32_to_cpu(wreg_pkt->ctl) & GOYA_PKT_WREG32_CTL_REG_OFFSET_MASK; dev_dbg(hdev->dev, "WREG32 packet details:\n"); dev_dbg(hdev->dev, "reg_offset == 0x%x\n", reg_offset); dev_dbg(hdev->dev, "value == 0x%x\n", le32_to_cpu(wreg_pkt->value)); if (reg_offset != (mmDMA_CH_0_WR_COMP_ADDR_LO & 0x1FFF)) { dev_err(hdev->dev, "WREG32 packet with illegal address 0x%x\n", reg_offset); return -EPERM; } /* * With MMU, DMA channels are not secured, so it doesn't matter where * the WR COMP will be written to because it will go out with * non-secured property */ if (goya->hw_cap_initialized & HW_CAP_MMU) return 0; sob_start_addr = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0); sob_end_addr = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1023); if ((le32_to_cpu(wreg_pkt->value) < sob_start_addr) || (le32_to_cpu(wreg_pkt->value) > sob_end_addr)) { dev_err(hdev->dev, "WREG32 packet with illegal value 0x%x\n", wreg_pkt->value); return -EPERM; } return 0; } static int goya_validate_cb(struct hl_device *hdev, struct hl_cs_parser *parser, bool is_mmu) { u32 cb_parsed_length = 0; int rc = 0; parser->patched_cb_size = 0; /* cb_user_size is more than 0 so loop will always be executed */ while (cb_parsed_length < parser->user_cb_size) { enum packet_id pkt_id; u16 pkt_size; struct goya_packet *user_pkt; user_pkt = parser->user_cb->kernel_address + cb_parsed_length; pkt_id = (enum packet_id) ( (le64_to_cpu(user_pkt->header) & PACKET_HEADER_PACKET_ID_MASK) >> PACKET_HEADER_PACKET_ID_SHIFT); if (!validate_packet_id(pkt_id)) { dev_err(hdev->dev, "Invalid packet id %u\n", pkt_id); rc = -EINVAL; break; } pkt_size = goya_packet_sizes[pkt_id]; cb_parsed_length += pkt_size; if (cb_parsed_length > parser->user_cb_size) { dev_err(hdev->dev, "packet 0x%x is out of CB boundary\n", pkt_id); rc = -EINVAL; break; } switch (pkt_id) { case PACKET_WREG_32: /* * Although it is validated after copy in patch_cb(), * need to validate here as well because patch_cb() is * not called in MMU path while this function is called */ rc = goya_validate_wreg32(hdev, parser, (struct packet_wreg32 *) user_pkt); parser->patched_cb_size += pkt_size; break; case PACKET_WREG_BULK: dev_err(hdev->dev, "User not allowed to use WREG_BULK\n"); rc = -EPERM; break; case PACKET_MSG_PROT: dev_err(hdev->dev, "User not allowed to use MSG_PROT\n"); rc = -EPERM; break; case PACKET_CP_DMA: dev_err(hdev->dev, "User not allowed to use CP_DMA\n"); rc = -EPERM; break; case PACKET_STOP: dev_err(hdev->dev, "User not allowed to use STOP\n"); rc = -EPERM; break; case PACKET_LIN_DMA: if (is_mmu) rc = goya_validate_dma_pkt_mmu(hdev, parser, (struct packet_lin_dma *) user_pkt); else rc = goya_validate_dma_pkt_no_mmu(hdev, parser, (struct packet_lin_dma *) user_pkt); break; case PACKET_MSG_LONG: case PACKET_MSG_SHORT: case PACKET_FENCE: case PACKET_NOP: parser->patched_cb_size += pkt_size; break; default: dev_err(hdev->dev, "Invalid packet header 0x%x\n", pkt_id); rc = -EINVAL; break; } if (rc) break; } /* * The new CB should have space at the end for two MSG_PROT packets: * 1. A packet that will act as a completion packet * 2. A packet that will generate MSI-X interrupt */ parser->patched_cb_size += sizeof(struct packet_msg_prot) * 2; return rc; } static int goya_patch_dma_packet(struct hl_device *hdev, struct hl_cs_parser *parser, struct packet_lin_dma *user_dma_pkt, struct packet_lin_dma *new_dma_pkt, u32 *new_dma_pkt_size) { struct hl_userptr *userptr; struct scatterlist *sg, *sg_next_iter; u32 count, dma_desc_cnt; u64 len, len_next; dma_addr_t dma_addr, dma_addr_next; enum goya_dma_direction user_dir; u64 device_memory_addr, addr; enum dma_data_direction dir; struct sg_table *sgt; bool skip_host_mem_pin = false; bool user_memset; u32 user_rdcomp_mask, user_wrcomp_mask, ctl; ctl = le32_to_cpu(user_dma_pkt->ctl); user_dir = (ctl & GOYA_PKT_LIN_DMA_CTL_DMA_DIR_MASK) >> GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT; user_memset = (ctl & GOYA_PKT_LIN_DMA_CTL_MEMSET_MASK) >> GOYA_PKT_LIN_DMA_CTL_MEMSET_SHIFT; if ((user_dir == DMA_DRAM_TO_SRAM) || (user_dir == DMA_SRAM_TO_DRAM) || (user_dma_pkt->tsize == 0)) { memcpy(new_dma_pkt, user_dma_pkt, sizeof(*new_dma_pkt)); *new_dma_pkt_size = sizeof(*new_dma_pkt); return 0; } if ((user_dir == DMA_HOST_TO_DRAM) || (user_dir == DMA_HOST_TO_SRAM)) { addr = le64_to_cpu(user_dma_pkt->src_addr); device_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr); dir = DMA_TO_DEVICE; if (user_memset) skip_host_mem_pin = true; } else { addr = le64_to_cpu(user_dma_pkt->dst_addr); device_memory_addr = le64_to_cpu(user_dma_pkt->src_addr); dir = DMA_FROM_DEVICE; } if ((!skip_host_mem_pin) && (hl_userptr_is_pinned(hdev, addr, le32_to_cpu(user_dma_pkt->tsize), parser->job_userptr_list, &userptr) == false)) { dev_err(hdev->dev, "Userptr 0x%llx + 0x%x NOT mapped\n", addr, user_dma_pkt->tsize); return -EFAULT; } if ((user_memset) && (dir == DMA_TO_DEVICE)) { memcpy(new_dma_pkt, user_dma_pkt, sizeof(*user_dma_pkt)); *new_dma_pkt_size = sizeof(*user_dma_pkt); return 0; } user_rdcomp_mask = ctl & GOYA_PKT_LIN_DMA_CTL_RDCOMP_MASK; user_wrcomp_mask = ctl & GOYA_PKT_LIN_DMA_CTL_WRCOMP_MASK; sgt = userptr->sgt; dma_desc_cnt = 0; for_each_sg(sgt->sgl, sg, sgt->nents, count) { len = sg_dma_len(sg); dma_addr = sg_dma_address(sg); if (len == 0) break; while ((count + 1) < sgt->nents) { sg_next_iter = sg_next(sg); len_next = sg_dma_len(sg_next_iter); dma_addr_next = sg_dma_address(sg_next_iter); if (len_next == 0) break; if ((dma_addr + len == dma_addr_next) && (len + len_next <= DMA_MAX_TRANSFER_SIZE)) { len += len_next; count++; sg = sg_next_iter; } else { break; } } ctl = le32_to_cpu(user_dma_pkt->ctl); if (likely(dma_desc_cnt)) ctl &= ~GOYA_PKT_CTL_EB_MASK; ctl &= ~(GOYA_PKT_LIN_DMA_CTL_RDCOMP_MASK | GOYA_PKT_LIN_DMA_CTL_WRCOMP_MASK); new_dma_pkt->ctl = cpu_to_le32(ctl); new_dma_pkt->tsize = cpu_to_le32((u32) len); if (dir == DMA_TO_DEVICE) { new_dma_pkt->src_addr = cpu_to_le64(dma_addr); new_dma_pkt->dst_addr = cpu_to_le64(device_memory_addr); } else { new_dma_pkt->src_addr = cpu_to_le64(device_memory_addr); new_dma_pkt->dst_addr = cpu_to_le64(dma_addr); } if (!user_memset) device_memory_addr += len; dma_desc_cnt++; new_dma_pkt++; } if (!dma_desc_cnt) { dev_err(hdev->dev, "Error of 0 SG entries when patching DMA packet\n"); return -EFAULT; } /* Fix the last dma packet - rdcomp/wrcomp must be as user set them */ new_dma_pkt--; new_dma_pkt->ctl |= cpu_to_le32(user_rdcomp_mask | user_wrcomp_mask); *new_dma_pkt_size = dma_desc_cnt * sizeof(struct packet_lin_dma); return 0; } static int goya_patch_cb(struct hl_device *hdev, struct hl_cs_parser *parser) { u32 cb_parsed_length = 0; u32 cb_patched_cur_length = 0; int rc = 0; /* cb_user_size is more than 0 so loop will always be executed */ while (cb_parsed_length < parser->user_cb_size) { enum packet_id pkt_id; u16 pkt_size; u32 new_pkt_size = 0; struct goya_packet *user_pkt, *kernel_pkt; user_pkt = parser->user_cb->kernel_address + cb_parsed_length; kernel_pkt = parser->patched_cb->kernel_address + cb_patched_cur_length; pkt_id = (enum packet_id) ( (le64_to_cpu(user_pkt->header) & PACKET_HEADER_PACKET_ID_MASK) >> PACKET_HEADER_PACKET_ID_SHIFT); if (!validate_packet_id(pkt_id)) { dev_err(hdev->dev, "Invalid packet id %u\n", pkt_id); rc = -EINVAL; break; } pkt_size = goya_packet_sizes[pkt_id]; cb_parsed_length += pkt_size; if (cb_parsed_length > parser->user_cb_size) { dev_err(hdev->dev, "packet 0x%x is out of CB boundary\n", pkt_id); rc = -EINVAL; break; } switch (pkt_id) { case PACKET_LIN_DMA: rc = goya_patch_dma_packet(hdev, parser, (struct packet_lin_dma *) user_pkt, (struct packet_lin_dma *) kernel_pkt, &new_pkt_size); cb_patched_cur_length += new_pkt_size; break; case PACKET_WREG_32: memcpy(kernel_pkt, user_pkt, pkt_size); cb_patched_cur_length += pkt_size; rc = goya_validate_wreg32(hdev, parser, (struct packet_wreg32 *) kernel_pkt); break; case PACKET_WREG_BULK: dev_err(hdev->dev, "User not allowed to use WREG_BULK\n"); rc = -EPERM; break; case PACKET_MSG_PROT: dev_err(hdev->dev, "User not allowed to use MSG_PROT\n"); rc = -EPERM; break; case PACKET_CP_DMA: dev_err(hdev->dev, "User not allowed to use CP_DMA\n"); rc = -EPERM; break; case PACKET_STOP: dev_err(hdev->dev, "User not allowed to use STOP\n"); rc = -EPERM; break; case PACKET_MSG_LONG: case PACKET_MSG_SHORT: case PACKET_FENCE: case PACKET_NOP: memcpy(kernel_pkt, user_pkt, pkt_size); cb_patched_cur_length += pkt_size; break; default: dev_err(hdev->dev, "Invalid packet header 0x%x\n", pkt_id); rc = -EINVAL; break; } if (rc) break; } return rc; } static int goya_parse_cb_mmu(struct hl_device *hdev, struct hl_cs_parser *parser) { u64 patched_cb_handle; u32 patched_cb_size; struct hl_cb *user_cb; int rc; /* * The new CB should have space at the end for two MSG_PROT pkt: * 1. A packet that will act as a completion packet * 2. A packet that will generate MSI-X interrupt */ parser->patched_cb_size = parser->user_cb_size + sizeof(struct packet_msg_prot) * 2; rc = hl_cb_create(hdev, &hdev->kernel_cb_mgr, hdev->kernel_ctx, parser->patched_cb_size, false, false, &patched_cb_handle); if (rc) { dev_err(hdev->dev, "Failed to allocate patched CB for DMA CS %d\n", rc); return rc; } patched_cb_handle >>= PAGE_SHIFT; parser->patched_cb = hl_cb_get(hdev, &hdev->kernel_cb_mgr, (u32) patched_cb_handle); /* hl_cb_get should never fail here */ if (!parser->patched_cb) { dev_crit(hdev->dev, "DMA CB handle invalid 0x%x\n", (u32) patched_cb_handle); rc = -EFAULT; goto out; } /* * The check that parser->user_cb_size <= parser->user_cb->size was done * in validate_queue_index(). */ memcpy(parser->patched_cb->kernel_address, parser->user_cb->kernel_address, parser->user_cb_size); patched_cb_size = parser->patched_cb_size; /* validate patched CB instead of user CB */ user_cb = parser->user_cb; parser->user_cb = parser->patched_cb; rc = goya_validate_cb(hdev, parser, true); parser->user_cb = user_cb; if (rc) { hl_cb_put(parser->patched_cb); goto out; } if (patched_cb_size != parser->patched_cb_size) { dev_err(hdev->dev, "user CB size mismatch\n"); hl_cb_put(parser->patched_cb); rc = -EINVAL; goto out; } out: /* * Always call cb destroy here because we still have 1 reference * to it by calling cb_get earlier. After the job will be completed, * cb_put will release it, but here we want to remove it from the * idr */ hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, patched_cb_handle << PAGE_SHIFT); return rc; } static int goya_parse_cb_no_mmu(struct hl_device *hdev, struct hl_cs_parser *parser) { u64 patched_cb_handle; int rc; rc = goya_validate_cb(hdev, parser, false); if (rc) goto free_userptr; rc = hl_cb_create(hdev, &hdev->kernel_cb_mgr, hdev->kernel_ctx, parser->patched_cb_size, false, false, &patched_cb_handle); if (rc) { dev_err(hdev->dev, "Failed to allocate patched CB for DMA CS %d\n", rc); goto free_userptr; } patched_cb_handle >>= PAGE_SHIFT; parser->patched_cb = hl_cb_get(hdev, &hdev->kernel_cb_mgr, (u32) patched_cb_handle); /* hl_cb_get should never fail here */ if (!parser->patched_cb) { dev_crit(hdev->dev, "DMA CB handle invalid 0x%x\n", (u32) patched_cb_handle); rc = -EFAULT; goto out; } rc = goya_patch_cb(hdev, parser); if (rc) hl_cb_put(parser->patched_cb); out: /* * Always call cb destroy here because we still have 1 reference * to it by calling cb_get earlier. After the job will be completed, * cb_put will release it, but here we want to remove it from the * idr */ hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, patched_cb_handle << PAGE_SHIFT); free_userptr: if (rc) hl_userptr_delete_list(hdev, parser->job_userptr_list); return rc; } static int goya_parse_cb_no_ext_queue(struct hl_device *hdev, struct hl_cs_parser *parser) { struct asic_fixed_properties *asic_prop = &hdev->asic_prop; struct goya_device *goya = hdev->asic_specific; if (goya->hw_cap_initialized & HW_CAP_MMU) return 0; /* For internal queue jobs, just check if CB address is valid */ if (hl_mem_area_inside_range( (u64) (uintptr_t) parser->user_cb, parser->user_cb_size, asic_prop->sram_user_base_address, asic_prop->sram_end_address)) return 0; if (hl_mem_area_inside_range( (u64) (uintptr_t) parser->user_cb, parser->user_cb_size, asic_prop->dram_user_base_address, asic_prop->dram_end_address)) return 0; dev_err(hdev->dev, "Internal CB address 0x%px + 0x%x is not in SRAM nor in DRAM\n", parser->user_cb, parser->user_cb_size); return -EFAULT; } int goya_cs_parser(struct hl_device *hdev, struct hl_cs_parser *parser) { struct goya_device *goya = hdev->asic_specific; if (parser->queue_type == QUEUE_TYPE_INT) return goya_parse_cb_no_ext_queue(hdev, parser); if (goya->hw_cap_initialized & HW_CAP_MMU) return goya_parse_cb_mmu(hdev, parser); else return goya_parse_cb_no_mmu(hdev, parser); } void goya_add_end_of_cb_packets(struct hl_device *hdev, void *kernel_address, u32 len, u64 cq_addr, u32 cq_val, u32 msix_vec, bool eb) { struct packet_msg_prot *cq_pkt; u32 tmp; cq_pkt = kernel_address + len - (sizeof(struct packet_msg_prot) * 2); tmp = (PACKET_MSG_PROT << GOYA_PKT_CTL_OPCODE_SHIFT) | (1 << GOYA_PKT_CTL_EB_SHIFT) | (1 << GOYA_PKT_CTL_MB_SHIFT); cq_pkt->ctl = cpu_to_le32(tmp); cq_pkt->value = cpu_to_le32(cq_val); cq_pkt->addr = cpu_to_le64(cq_addr); cq_pkt++; tmp = (PACKET_MSG_PROT << GOYA_PKT_CTL_OPCODE_SHIFT) | (1 << GOYA_PKT_CTL_MB_SHIFT); cq_pkt->ctl = cpu_to_le32(tmp); cq_pkt->value = cpu_to_le32(msix_vec & 0x7FF); cq_pkt->addr = cpu_to_le64(CFG_BASE + mmPCIE_DBI_MSIX_DOORBELL_OFF); } void goya_update_eq_ci(struct hl_device *hdev, u32 val) { WREG32(mmCPU_EQ_CI, val); } void goya_restore_phase_topology(struct hl_device *hdev) { } static void goya_clear_sm_regs(struct hl_device *hdev) { int i, num_of_sob_in_longs, num_of_mon_in_longs; num_of_sob_in_longs = ((mmSYNC_MNGR_SOB_OBJ_1023 - mmSYNC_MNGR_SOB_OBJ_0) + 4); num_of_mon_in_longs = ((mmSYNC_MNGR_MON_STATUS_255 - mmSYNC_MNGR_MON_STATUS_0) + 4); for (i = 0 ; i < num_of_sob_in_longs ; i += 4) WREG32(mmSYNC_MNGR_SOB_OBJ_0 + i, 0); for (i = 0 ; i < num_of_mon_in_longs ; i += 4) WREG32(mmSYNC_MNGR_MON_STATUS_0 + i, 0); /* Flush all WREG to prevent race */ i = RREG32(mmSYNC_MNGR_SOB_OBJ_0); } /* * goya_debugfs_read32 - read a 32bit value from a given device or a host mapped * address. * * @hdev: pointer to hl_device structure * @addr: device or host mapped address * @val: returned value * * In case of DDR address that is not mapped into the default aperture that * the DDR bar exposes, the function will configure the iATU so that the DDR * bar will be positioned at a base address that allows reading from the * required address. Configuring the iATU during normal operation can * lead to undefined behavior and therefore, should be done with extreme care * */ static int goya_debugfs_read32(struct hl_device *hdev, u64 addr, bool user_address, u32 *val) { struct asic_fixed_properties *prop = &hdev->asic_prop; u64 ddr_bar_addr, host_phys_end; int rc = 0; host_phys_end = HOST_PHYS_BASE + HOST_PHYS_SIZE; if ((addr >= CFG_BASE) && (addr < CFG_BASE + CFG_SIZE)) { *val = RREG32(addr - CFG_BASE); } else if ((addr >= SRAM_BASE_ADDR) && (addr < SRAM_BASE_ADDR + SRAM_SIZE)) { *val = readl(hdev->pcie_bar[SRAM_CFG_BAR_ID] + (addr - SRAM_BASE_ADDR)); } else if (addr < DRAM_PHYS_BASE + hdev->asic_prop.dram_size) { u64 bar_base_addr = DRAM_PHYS_BASE + (addr & ~(prop->dram_pci_bar_size - 0x1ull)); ddr_bar_addr = goya_set_ddr_bar_base(hdev, bar_base_addr); if (ddr_bar_addr != U64_MAX) { *val = readl(hdev->pcie_bar[DDR_BAR_ID] + (addr - bar_base_addr)); ddr_bar_addr = goya_set_ddr_bar_base(hdev, ddr_bar_addr); } if (ddr_bar_addr == U64_MAX) rc = -EIO; } else if (addr >= HOST_PHYS_BASE && addr < host_phys_end && user_address && !iommu_present(&pci_bus_type)) { *val = *(u32 *) phys_to_virt(addr - HOST_PHYS_BASE); } else { rc = -EFAULT; } return rc; } /* * goya_debugfs_write32 - write a 32bit value to a given device or a host mapped * address. * * @hdev: pointer to hl_device structure * @addr: device or host mapped address * @val: returned value * * In case of DDR address that is not mapped into the default aperture that * the DDR bar exposes, the function will configure the iATU so that the DDR * bar will be positioned at a base address that allows writing to the * required address. Configuring the iATU during normal operation can * lead to undefined behavior and therefore, should be done with extreme care * */ static int goya_debugfs_write32(struct hl_device *hdev, u64 addr, bool user_address, u32 val) { struct asic_fixed_properties *prop = &hdev->asic_prop; u64 ddr_bar_addr, host_phys_end; int rc = 0; host_phys_end = HOST_PHYS_BASE + HOST_PHYS_SIZE; if ((addr >= CFG_BASE) && (addr < CFG_BASE + CFG_SIZE)) { WREG32(addr - CFG_BASE, val); } else if ((addr >= SRAM_BASE_ADDR) && (addr < SRAM_BASE_ADDR + SRAM_SIZE)) { writel(val, hdev->pcie_bar[SRAM_CFG_BAR_ID] + (addr - SRAM_BASE_ADDR)); } else if (addr < DRAM_PHYS_BASE + hdev->asic_prop.dram_size) { u64 bar_base_addr = DRAM_PHYS_BASE + (addr & ~(prop->dram_pci_bar_size - 0x1ull)); ddr_bar_addr = goya_set_ddr_bar_base(hdev, bar_base_addr); if (ddr_bar_addr != U64_MAX) { writel(val, hdev->pcie_bar[DDR_BAR_ID] + (addr - bar_base_addr)); ddr_bar_addr = goya_set_ddr_bar_base(hdev, ddr_bar_addr); } if (ddr_bar_addr == U64_MAX) rc = -EIO; } else if (addr >= HOST_PHYS_BASE && addr < host_phys_end && user_address && !iommu_present(&pci_bus_type)) { *(u32 *) phys_to_virt(addr - HOST_PHYS_BASE) = val; } else { rc = -EFAULT; } return rc; } static int goya_debugfs_read64(struct hl_device *hdev, u64 addr, bool user_address, u64 *val) { struct asic_fixed_properties *prop = &hdev->asic_prop; u64 ddr_bar_addr, host_phys_end; int rc = 0; host_phys_end = HOST_PHYS_BASE + HOST_PHYS_SIZE; if ((addr >= CFG_BASE) && (addr <= CFG_BASE + CFG_SIZE - sizeof(u64))) { u32 val_l = RREG32(addr - CFG_BASE); u32 val_h = RREG32(addr + sizeof(u32) - CFG_BASE); *val = (((u64) val_h) << 32) | val_l; } else if ((addr >= SRAM_BASE_ADDR) && (addr <= SRAM_BASE_ADDR + SRAM_SIZE - sizeof(u64))) { *val = readq(hdev->pcie_bar[SRAM_CFG_BAR_ID] + (addr - SRAM_BASE_ADDR)); } else if (addr <= DRAM_PHYS_BASE + hdev->asic_prop.dram_size - sizeof(u64)) { u64 bar_base_addr = DRAM_PHYS_BASE + (addr & ~(prop->dram_pci_bar_size - 0x1ull)); ddr_bar_addr = goya_set_ddr_bar_base(hdev, bar_base_addr); if (ddr_bar_addr != U64_MAX) { *val = readq(hdev->pcie_bar[DDR_BAR_ID] + (addr - bar_base_addr)); ddr_bar_addr = goya_set_ddr_bar_base(hdev, ddr_bar_addr); } if (ddr_bar_addr == U64_MAX) rc = -EIO; } else if (addr >= HOST_PHYS_BASE && addr < host_phys_end && user_address && !iommu_present(&pci_bus_type)) { *val = *(u64 *) phys_to_virt(addr - HOST_PHYS_BASE); } else { rc = -EFAULT; } return rc; } static int goya_debugfs_write64(struct hl_device *hdev, u64 addr, bool user_address, u64 val) { struct asic_fixed_properties *prop = &hdev->asic_prop; u64 ddr_bar_addr, host_phys_end; int rc = 0; host_phys_end = HOST_PHYS_BASE + HOST_PHYS_SIZE; if ((addr >= CFG_BASE) && (addr <= CFG_BASE + CFG_SIZE - sizeof(u64))) { WREG32(addr - CFG_BASE, lower_32_bits(val)); WREG32(addr + sizeof(u32) - CFG_BASE, upper_32_bits(val)); } else if ((addr >= SRAM_BASE_ADDR) && (addr <= SRAM_BASE_ADDR + SRAM_SIZE - sizeof(u64))) { writeq(val, hdev->pcie_bar[SRAM_CFG_BAR_ID] + (addr - SRAM_BASE_ADDR)); } else if (addr <= DRAM_PHYS_BASE + hdev->asic_prop.dram_size - sizeof(u64)) { u64 bar_base_addr = DRAM_PHYS_BASE + (addr & ~(prop->dram_pci_bar_size - 0x1ull)); ddr_bar_addr = goya_set_ddr_bar_base(hdev, bar_base_addr); if (ddr_bar_addr != U64_MAX) { writeq(val, hdev->pcie_bar[DDR_BAR_ID] + (addr - bar_base_addr)); ddr_bar_addr = goya_set_ddr_bar_base(hdev, ddr_bar_addr); } if (ddr_bar_addr == U64_MAX) rc = -EIO; } else if (addr >= HOST_PHYS_BASE && addr < host_phys_end && user_address && !iommu_present(&pci_bus_type)) { *(u64 *) phys_to_virt(addr - HOST_PHYS_BASE) = val; } else { rc = -EFAULT; } return rc; } static u64 goya_read_pte(struct hl_device *hdev, u64 addr) { struct goya_device *goya = hdev->asic_specific; if (hdev->hard_reset_pending) return U64_MAX; return readq(hdev->pcie_bar[DDR_BAR_ID] + (addr - goya->ddr_bar_cur_addr)); } static void goya_write_pte(struct hl_device *hdev, u64 addr, u64 val) { struct goya_device *goya = hdev->asic_specific; if (hdev->hard_reset_pending) return; writeq(val, hdev->pcie_bar[DDR_BAR_ID] + (addr - goya->ddr_bar_cur_addr)); } static const char *_goya_get_event_desc(u16 event_type) { switch (event_type) { case GOYA_ASYNC_EVENT_ID_PCIE_IF: return "PCIe_if"; case GOYA_ASYNC_EVENT_ID_TPC0_ECC: case GOYA_ASYNC_EVENT_ID_TPC1_ECC: case GOYA_ASYNC_EVENT_ID_TPC2_ECC: case GOYA_ASYNC_EVENT_ID_TPC3_ECC: case GOYA_ASYNC_EVENT_ID_TPC4_ECC: case GOYA_ASYNC_EVENT_ID_TPC5_ECC: case GOYA_ASYNC_EVENT_ID_TPC6_ECC: case GOYA_ASYNC_EVENT_ID_TPC7_ECC: return "TPC%d_ecc"; case GOYA_ASYNC_EVENT_ID_MME_ECC: return "MME_ecc"; case GOYA_ASYNC_EVENT_ID_MME_ECC_EXT: return "MME_ecc_ext"; case GOYA_ASYNC_EVENT_ID_MMU_ECC: return "MMU_ecc"; case GOYA_ASYNC_EVENT_ID_DMA_MACRO: return "DMA_macro"; case GOYA_ASYNC_EVENT_ID_DMA_ECC: return "DMA_ecc"; case GOYA_ASYNC_EVENT_ID_CPU_IF_ECC: return "CPU_if_ecc"; case GOYA_ASYNC_EVENT_ID_PSOC_MEM: return "PSOC_mem"; case GOYA_ASYNC_EVENT_ID_PSOC_CORESIGHT: return "PSOC_coresight"; case GOYA_ASYNC_EVENT_ID_SRAM0 ... GOYA_ASYNC_EVENT_ID_SRAM29: return "SRAM%d"; case GOYA_ASYNC_EVENT_ID_GIC500: return "GIC500"; case GOYA_ASYNC_EVENT_ID_PLL0 ... GOYA_ASYNC_EVENT_ID_PLL6: return "PLL%d"; case GOYA_ASYNC_EVENT_ID_AXI_ECC: return "AXI_ecc"; case GOYA_ASYNC_EVENT_ID_L2_RAM_ECC: return "L2_ram_ecc"; case GOYA_ASYNC_EVENT_ID_PSOC_GPIO_05_SW_RESET: return "PSOC_gpio_05_sw_reset"; case GOYA_ASYNC_EVENT_ID_PSOC_GPIO_10_VRHOT_ICRIT: return "PSOC_gpio_10_vrhot_icrit"; case GOYA_ASYNC_EVENT_ID_PCIE_DEC: return "PCIe_dec"; case GOYA_ASYNC_EVENT_ID_TPC0_DEC: case GOYA_ASYNC_EVENT_ID_TPC1_DEC: case GOYA_ASYNC_EVENT_ID_TPC2_DEC: case GOYA_ASYNC_EVENT_ID_TPC3_DEC: case GOYA_ASYNC_EVENT_ID_TPC4_DEC: case GOYA_ASYNC_EVENT_ID_TPC5_DEC: case GOYA_ASYNC_EVENT_ID_TPC6_DEC: case GOYA_ASYNC_EVENT_ID_TPC7_DEC: return "TPC%d_dec"; case GOYA_ASYNC_EVENT_ID_MME_WACS: return "MME_wacs"; case GOYA_ASYNC_EVENT_ID_MME_WACSD: return "MME_wacsd"; case GOYA_ASYNC_EVENT_ID_CPU_AXI_SPLITTER: return "CPU_axi_splitter"; case GOYA_ASYNC_EVENT_ID_PSOC_AXI_DEC: return "PSOC_axi_dec"; case GOYA_ASYNC_EVENT_ID_PSOC: return "PSOC"; case GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC1_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC2_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC3_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC4_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC5_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC6_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC7_KRN_ERR: return "TPC%d_krn_err"; case GOYA_ASYNC_EVENT_ID_TPC0_CMDQ ... GOYA_ASYNC_EVENT_ID_TPC7_CMDQ: return "TPC%d_cq"; case GOYA_ASYNC_EVENT_ID_TPC0_QM ... GOYA_ASYNC_EVENT_ID_TPC7_QM: return "TPC%d_qm"; case GOYA_ASYNC_EVENT_ID_MME_QM: return "MME_qm"; case GOYA_ASYNC_EVENT_ID_MME_CMDQ: return "MME_cq"; case GOYA_ASYNC_EVENT_ID_DMA0_QM ... GOYA_ASYNC_EVENT_ID_DMA4_QM: return "DMA%d_qm"; case GOYA_ASYNC_EVENT_ID_DMA0_CH ... GOYA_ASYNC_EVENT_ID_DMA4_CH: return "DMA%d_ch"; case GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC1_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC2_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC3_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC4_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC5_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC6_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC7_BMON_SPMU: return "TPC%d_bmon_spmu"; case GOYA_ASYNC_EVENT_ID_DMA_BM_CH0 ... GOYA_ASYNC_EVENT_ID_DMA_BM_CH4: return "DMA_bm_ch%d"; case GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_S: return "POWER_ENV_S"; case GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_E: return "POWER_ENV_E"; case GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_S: return "THERMAL_ENV_S"; case GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_E: return "THERMAL_ENV_E"; case GOYA_ASYNC_EVENT_PKT_QUEUE_OUT_SYNC: return "QUEUE_OUT_OF_SYNC"; default: return "N/A"; } } static void goya_get_event_desc(u16 event_type, char *desc, size_t size) { u8 index; switch (event_type) { case GOYA_ASYNC_EVENT_ID_TPC0_ECC: case GOYA_ASYNC_EVENT_ID_TPC1_ECC: case GOYA_ASYNC_EVENT_ID_TPC2_ECC: case GOYA_ASYNC_EVENT_ID_TPC3_ECC: case GOYA_ASYNC_EVENT_ID_TPC4_ECC: case GOYA_ASYNC_EVENT_ID_TPC5_ECC: case GOYA_ASYNC_EVENT_ID_TPC6_ECC: case GOYA_ASYNC_EVENT_ID_TPC7_ECC: index = (event_type - GOYA_ASYNC_EVENT_ID_TPC0_ECC) / 3; snprintf(desc, size, _goya_get_event_desc(event_type), index); break; case GOYA_ASYNC_EVENT_ID_SRAM0 ... GOYA_ASYNC_EVENT_ID_SRAM29: index = event_type - GOYA_ASYNC_EVENT_ID_SRAM0; snprintf(desc, size, _goya_get_event_desc(event_type), index); break; case GOYA_ASYNC_EVENT_ID_PLL0 ... GOYA_ASYNC_EVENT_ID_PLL6: index = event_type - GOYA_ASYNC_EVENT_ID_PLL0; snprintf(desc, size, _goya_get_event_desc(event_type), index); break; case GOYA_ASYNC_EVENT_ID_TPC0_DEC: case GOYA_ASYNC_EVENT_ID_TPC1_DEC: case GOYA_ASYNC_EVENT_ID_TPC2_DEC: case GOYA_ASYNC_EVENT_ID_TPC3_DEC: case GOYA_ASYNC_EVENT_ID_TPC4_DEC: case GOYA_ASYNC_EVENT_ID_TPC5_DEC: case GOYA_ASYNC_EVENT_ID_TPC6_DEC: case GOYA_ASYNC_EVENT_ID_TPC7_DEC: index = (event_type - GOYA_ASYNC_EVENT_ID_TPC0_DEC) / 3; snprintf(desc, size, _goya_get_event_desc(event_type), index); break; case GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC1_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC2_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC3_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC4_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC5_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC6_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC7_KRN_ERR: index = (event_type - GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR) / 10; snprintf(desc, size, _goya_get_event_desc(event_type), index); break; case GOYA_ASYNC_EVENT_ID_TPC0_CMDQ ... GOYA_ASYNC_EVENT_ID_TPC7_CMDQ: index = event_type - GOYA_ASYNC_EVENT_ID_TPC0_CMDQ; snprintf(desc, size, _goya_get_event_desc(event_type), index); break; case GOYA_ASYNC_EVENT_ID_TPC0_QM ... GOYA_ASYNC_EVENT_ID_TPC7_QM: index = event_type - GOYA_ASYNC_EVENT_ID_TPC0_QM; snprintf(desc, size, _goya_get_event_desc(event_type), index); break; case GOYA_ASYNC_EVENT_ID_DMA0_QM ... GOYA_ASYNC_EVENT_ID_DMA4_QM: index = event_type - GOYA_ASYNC_EVENT_ID_DMA0_QM; snprintf(desc, size, _goya_get_event_desc(event_type), index); break; case GOYA_ASYNC_EVENT_ID_DMA0_CH ... GOYA_ASYNC_EVENT_ID_DMA4_CH: index = event_type - GOYA_ASYNC_EVENT_ID_DMA0_CH; snprintf(desc, size, _goya_get_event_desc(event_type), index); break; case GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC1_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC2_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC3_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC4_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC5_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC6_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC7_BMON_SPMU: index = (event_type - GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU) / 10; snprintf(desc, size, _goya_get_event_desc(event_type), index); break; case GOYA_ASYNC_EVENT_ID_DMA_BM_CH0 ... GOYA_ASYNC_EVENT_ID_DMA_BM_CH4: index = event_type - GOYA_ASYNC_EVENT_ID_DMA_BM_CH0; snprintf(desc, size, _goya_get_event_desc(event_type), index); break; case GOYA_ASYNC_EVENT_PKT_QUEUE_OUT_SYNC: snprintf(desc, size, _goya_get_event_desc(event_type)); break; default: snprintf(desc, size, _goya_get_event_desc(event_type)); break; } } static void goya_print_razwi_info(struct hl_device *hdev) { if (RREG32(mmDMA_MACRO_RAZWI_LBW_WT_VLD)) { dev_err_ratelimited(hdev->dev, "Illegal write to LBW\n"); WREG32(mmDMA_MACRO_RAZWI_LBW_WT_VLD, 0); } if (RREG32(mmDMA_MACRO_RAZWI_LBW_RD_VLD)) { dev_err_ratelimited(hdev->dev, "Illegal read from LBW\n"); WREG32(mmDMA_MACRO_RAZWI_LBW_RD_VLD, 0); } if (RREG32(mmDMA_MACRO_RAZWI_HBW_WT_VLD)) { dev_err_ratelimited(hdev->dev, "Illegal write to HBW\n"); WREG32(mmDMA_MACRO_RAZWI_HBW_WT_VLD, 0); } if (RREG32(mmDMA_MACRO_RAZWI_HBW_RD_VLD)) { dev_err_ratelimited(hdev->dev, "Illegal read from HBW\n"); WREG32(mmDMA_MACRO_RAZWI_HBW_RD_VLD, 0); } } static void goya_print_mmu_error_info(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; u64 addr; u32 val; if (!(goya->hw_cap_initialized & HW_CAP_MMU)) return; val = RREG32(mmMMU_PAGE_ERROR_CAPTURE); if (val & MMU_PAGE_ERROR_CAPTURE_ENTRY_VALID_MASK) { addr = val & MMU_PAGE_ERROR_CAPTURE_VA_49_32_MASK; addr <<= 32; addr |= RREG32(mmMMU_PAGE_ERROR_CAPTURE_VA); dev_err_ratelimited(hdev->dev, "MMU page fault on va 0x%llx\n", addr); WREG32(mmMMU_PAGE_ERROR_CAPTURE, 0); } } static void goya_print_out_of_sync_info(struct hl_device *hdev, struct cpucp_pkt_sync_err *sync_err) { struct hl_hw_queue *q = &hdev->kernel_queues[GOYA_QUEUE_ID_CPU_PQ]; dev_err(hdev->dev, "Out of sync with FW, FW: pi=%u, ci=%u, LKD: pi=%u, ci=%u\n", sync_err->pi, sync_err->ci, q->pi, atomic_read(&q->ci)); } static void goya_print_irq_info(struct hl_device *hdev, u16 event_type, bool razwi) { char desc[20] = ""; goya_get_event_desc(event_type, desc, sizeof(desc)); dev_err_ratelimited(hdev->dev, "Received H/W interrupt %d [\"%s\"]\n", event_type, desc); if (razwi) { goya_print_razwi_info(hdev); goya_print_mmu_error_info(hdev); } } static int goya_unmask_irq_arr(struct hl_device *hdev, u32 *irq_arr, size_t irq_arr_size) { struct cpucp_unmask_irq_arr_packet *pkt; size_t total_pkt_size; u64 result; int rc; int irq_num_entries, irq_arr_index; __le32 *goya_irq_arr; total_pkt_size = sizeof(struct cpucp_unmask_irq_arr_packet) + irq_arr_size; /* data should be aligned to 8 bytes in order to CPU-CP to copy it */ total_pkt_size = (total_pkt_size + 0x7) & ~0x7; /* total_pkt_size is casted to u16 later on */ if (total_pkt_size > USHRT_MAX) { dev_err(hdev->dev, "too many elements in IRQ array\n"); return -EINVAL; } pkt = kzalloc(total_pkt_size, GFP_KERNEL); if (!pkt) return -ENOMEM; irq_num_entries = irq_arr_size / sizeof(irq_arr[0]); pkt->length = cpu_to_le32(irq_num_entries); /* We must perform any necessary endianness conversation on the irq * array being passed to the goya hardware */ for (irq_arr_index = 0, goya_irq_arr = (__le32 *) &pkt->irqs; irq_arr_index < irq_num_entries ; irq_arr_index++) goya_irq_arr[irq_arr_index] = cpu_to_le32(irq_arr[irq_arr_index]); pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY << CPUCP_PKT_CTL_OPCODE_SHIFT); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) pkt, total_pkt_size, 0, &result); if (rc) dev_err(hdev->dev, "failed to unmask IRQ array\n"); kfree(pkt); return rc; } static int goya_soft_reset_late_init(struct hl_device *hdev) { /* * Unmask all IRQs since some could have been received * during the soft reset */ return goya_unmask_irq_arr(hdev, goya_all_events, sizeof(goya_all_events)); } static int goya_unmask_irq(struct hl_device *hdev, u16 event_type) { struct cpucp_packet pkt; u64 result; int rc; memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.value = cpu_to_le64(event_type); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result); if (rc) dev_err(hdev->dev, "failed to unmask RAZWI IRQ %d", event_type); return rc; } static void goya_print_clk_change_info(struct hl_device *hdev, u16 event_type) { switch (event_type) { case GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_S: hdev->clk_throttling_reason |= HL_CLK_THROTTLE_POWER; dev_info_ratelimited(hdev->dev, "Clock throttling due to power consumption\n"); break; case GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_E: hdev->clk_throttling_reason &= ~HL_CLK_THROTTLE_POWER; dev_info_ratelimited(hdev->dev, "Power envelop is safe, back to optimal clock\n"); break; case GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_S: hdev->clk_throttling_reason |= HL_CLK_THROTTLE_THERMAL; dev_info_ratelimited(hdev->dev, "Clock throttling due to overheating\n"); break; case GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_E: hdev->clk_throttling_reason &= ~HL_CLK_THROTTLE_THERMAL; dev_info_ratelimited(hdev->dev, "Thermal envelop is safe, back to optimal clock\n"); break; default: dev_err(hdev->dev, "Received invalid clock change event %d\n", event_type); break; } } void goya_handle_eqe(struct hl_device *hdev, struct hl_eq_entry *eq_entry) { u32 ctl = le32_to_cpu(eq_entry->hdr.ctl); u16 event_type = ((ctl & EQ_CTL_EVENT_TYPE_MASK) >> EQ_CTL_EVENT_TYPE_SHIFT); struct goya_device *goya = hdev->asic_specific; goya->events_stat[event_type]++; goya->events_stat_aggregate[event_type]++; switch (event_type) { case GOYA_ASYNC_EVENT_ID_PCIE_IF: case GOYA_ASYNC_EVENT_ID_TPC0_ECC: case GOYA_ASYNC_EVENT_ID_TPC1_ECC: case GOYA_ASYNC_EVENT_ID_TPC2_ECC: case GOYA_ASYNC_EVENT_ID_TPC3_ECC: case GOYA_ASYNC_EVENT_ID_TPC4_ECC: case GOYA_ASYNC_EVENT_ID_TPC5_ECC: case GOYA_ASYNC_EVENT_ID_TPC6_ECC: case GOYA_ASYNC_EVENT_ID_TPC7_ECC: case GOYA_ASYNC_EVENT_ID_MME_ECC: case GOYA_ASYNC_EVENT_ID_MME_ECC_EXT: case GOYA_ASYNC_EVENT_ID_MMU_ECC: case GOYA_ASYNC_EVENT_ID_DMA_MACRO: case GOYA_ASYNC_EVENT_ID_DMA_ECC: case GOYA_ASYNC_EVENT_ID_CPU_IF_ECC: case GOYA_ASYNC_EVENT_ID_PSOC_MEM: case GOYA_ASYNC_EVENT_ID_PSOC_CORESIGHT: case GOYA_ASYNC_EVENT_ID_SRAM0 ... GOYA_ASYNC_EVENT_ID_SRAM29: case GOYA_ASYNC_EVENT_ID_GIC500: case GOYA_ASYNC_EVENT_ID_PLL0 ... GOYA_ASYNC_EVENT_ID_PLL6: case GOYA_ASYNC_EVENT_ID_AXI_ECC: case GOYA_ASYNC_EVENT_ID_L2_RAM_ECC: case GOYA_ASYNC_EVENT_ID_PSOC_GPIO_05_SW_RESET: goya_print_irq_info(hdev, event_type, false); if (hdev->hard_reset_on_fw_events) hl_device_reset(hdev, HL_RESET_HARD); break; case GOYA_ASYNC_EVENT_ID_PCIE_DEC: case GOYA_ASYNC_EVENT_ID_TPC0_DEC: case GOYA_ASYNC_EVENT_ID_TPC1_DEC: case GOYA_ASYNC_EVENT_ID_TPC2_DEC: case GOYA_ASYNC_EVENT_ID_TPC3_DEC: case GOYA_ASYNC_EVENT_ID_TPC4_DEC: case GOYA_ASYNC_EVENT_ID_TPC5_DEC: case GOYA_ASYNC_EVENT_ID_TPC6_DEC: case GOYA_ASYNC_EVENT_ID_TPC7_DEC: case GOYA_ASYNC_EVENT_ID_MME_WACS: case GOYA_ASYNC_EVENT_ID_MME_WACSD: case GOYA_ASYNC_EVENT_ID_CPU_AXI_SPLITTER: case GOYA_ASYNC_EVENT_ID_PSOC_AXI_DEC: case GOYA_ASYNC_EVENT_ID_PSOC: case GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC1_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC2_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC3_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC4_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC5_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC6_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC7_KRN_ERR: case GOYA_ASYNC_EVENT_ID_TPC0_CMDQ ... GOYA_ASYNC_EVENT_ID_TPC7_QM: case GOYA_ASYNC_EVENT_ID_MME_QM: case GOYA_ASYNC_EVENT_ID_MME_CMDQ: case GOYA_ASYNC_EVENT_ID_DMA0_QM ... GOYA_ASYNC_EVENT_ID_DMA4_QM: case GOYA_ASYNC_EVENT_ID_DMA0_CH ... GOYA_ASYNC_EVENT_ID_DMA4_CH: goya_print_irq_info(hdev, event_type, true); goya_unmask_irq(hdev, event_type); break; case GOYA_ASYNC_EVENT_ID_PSOC_GPIO_10_VRHOT_ICRIT: case GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC1_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC2_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC3_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC4_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC5_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC6_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_TPC7_BMON_SPMU: case GOYA_ASYNC_EVENT_ID_DMA_BM_CH0 ... GOYA_ASYNC_EVENT_ID_DMA_BM_CH4: goya_print_irq_info(hdev, event_type, false); goya_unmask_irq(hdev, event_type); break; case GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_S: case GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_E: case GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_S: case GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_E: goya_print_clk_change_info(hdev, event_type); goya_unmask_irq(hdev, event_type); break; case GOYA_ASYNC_EVENT_PKT_QUEUE_OUT_SYNC: goya_print_irq_info(hdev, event_type, false); goya_print_out_of_sync_info(hdev, &eq_entry->pkt_sync_err); if (hdev->hard_reset_on_fw_events) hl_device_reset(hdev, HL_RESET_HARD); else hl_fw_unmask_irq(hdev, event_type); break; default: dev_err(hdev->dev, "Received invalid H/W interrupt %d\n", event_type); break; } } void *goya_get_events_stat(struct hl_device *hdev, bool aggregate, u32 *size) { struct goya_device *goya = hdev->asic_specific; if (aggregate) { *size = (u32) sizeof(goya->events_stat_aggregate); return goya->events_stat_aggregate; } *size = (u32) sizeof(goya->events_stat); return goya->events_stat; } static int goya_memset_device_memory(struct hl_device *hdev, u64 addr, u64 size, u64 val, bool is_dram) { struct packet_lin_dma *lin_dma_pkt; struct hl_cs_job *job; u32 cb_size, ctl; struct hl_cb *cb; int rc, lin_dma_pkts_cnt; lin_dma_pkts_cnt = DIV_ROUND_UP_ULL(size, SZ_2G); cb_size = lin_dma_pkts_cnt * sizeof(struct packet_lin_dma) + sizeof(struct packet_msg_prot); cb = hl_cb_kernel_create(hdev, cb_size, false); if (!cb) return -ENOMEM; lin_dma_pkt = cb->kernel_address; do { memset(lin_dma_pkt, 0, sizeof(*lin_dma_pkt)); ctl = ((PACKET_LIN_DMA << GOYA_PKT_CTL_OPCODE_SHIFT) | (1 << GOYA_PKT_LIN_DMA_CTL_MEMSET_SHIFT) | (1 << GOYA_PKT_LIN_DMA_CTL_WO_SHIFT) | (1 << GOYA_PKT_CTL_RB_SHIFT) | (1 << GOYA_PKT_CTL_MB_SHIFT)); ctl |= (is_dram ? DMA_HOST_TO_DRAM : DMA_HOST_TO_SRAM) << GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT; lin_dma_pkt->ctl = cpu_to_le32(ctl); lin_dma_pkt->src_addr = cpu_to_le64(val); lin_dma_pkt->dst_addr = cpu_to_le64(addr); if (lin_dma_pkts_cnt > 1) lin_dma_pkt->tsize = cpu_to_le32(SZ_2G); else lin_dma_pkt->tsize = cpu_to_le32(size); size -= SZ_2G; addr += SZ_2G; lin_dma_pkt++; } while (--lin_dma_pkts_cnt); job = hl_cs_allocate_job(hdev, QUEUE_TYPE_EXT, true); if (!job) { dev_err(hdev->dev, "Failed to allocate a new job\n"); rc = -ENOMEM; goto release_cb; } job->id = 0; job->user_cb = cb; atomic_inc(&job->user_cb->cs_cnt); job->user_cb_size = cb_size; job->hw_queue_id = GOYA_QUEUE_ID_DMA_0; job->patched_cb = job->user_cb; job->job_cb_size = job->user_cb_size; hl_debugfs_add_job(hdev, job); rc = goya_send_job_on_qman0(hdev, job); hl_debugfs_remove_job(hdev, job); kfree(job); atomic_dec(&cb->cs_cnt); release_cb: hl_cb_put(cb); hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT); return rc; } int goya_context_switch(struct hl_device *hdev, u32 asid) { struct asic_fixed_properties *prop = &hdev->asic_prop; u64 addr = prop->sram_base_address, sob_addr; u32 size = hdev->pldm ? 0x10000 : prop->sram_size; u64 val = 0x7777777777777777ull; int rc, dma_id; u32 channel_off = mmDMA_CH_1_WR_COMP_ADDR_LO - mmDMA_CH_0_WR_COMP_ADDR_LO; rc = goya_memset_device_memory(hdev, addr, size, val, false); if (rc) { dev_err(hdev->dev, "Failed to clear SRAM in context switch\n"); return rc; } /* we need to reset registers that the user is allowed to change */ sob_addr = CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1007; WREG32(mmDMA_CH_0_WR_COMP_ADDR_LO, lower_32_bits(sob_addr)); for (dma_id = 1 ; dma_id < NUMBER_OF_EXT_HW_QUEUES ; dma_id++) { sob_addr = CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1000 + (dma_id - 1) * 4; WREG32(mmDMA_CH_0_WR_COMP_ADDR_LO + channel_off * dma_id, lower_32_bits(sob_addr)); } WREG32(mmTPC_PLL_CLK_RLX_0, 0x200020); goya_clear_sm_regs(hdev); return 0; } static int goya_mmu_clear_pgt_range(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; struct goya_device *goya = hdev->asic_specific; u64 addr = prop->mmu_pgt_addr; u32 size = prop->mmu_pgt_size + MMU_DRAM_DEFAULT_PAGE_SIZE + MMU_CACHE_MNG_SIZE; if (!(goya->hw_cap_initialized & HW_CAP_MMU)) return 0; return goya_memset_device_memory(hdev, addr, size, 0, true); } static int goya_mmu_set_dram_default_page(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; u64 addr = hdev->asic_prop.mmu_dram_default_page_addr; u32 size = MMU_DRAM_DEFAULT_PAGE_SIZE; u64 val = 0x9999999999999999ull; if (!(goya->hw_cap_initialized & HW_CAP_MMU)) return 0; return goya_memset_device_memory(hdev, addr, size, val, true); } static int goya_mmu_add_mappings_for_device_cpu(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; struct goya_device *goya = hdev->asic_specific; s64 off, cpu_off; int rc; if (!(goya->hw_cap_initialized & HW_CAP_MMU)) return 0; for (off = 0 ; off < CPU_FW_IMAGE_SIZE ; off += PAGE_SIZE_2MB) { rc = hl_mmu_map_page(hdev->kernel_ctx, prop->dram_base_address + off, prop->dram_base_address + off, PAGE_SIZE_2MB, (off + PAGE_SIZE_2MB) == CPU_FW_IMAGE_SIZE); if (rc) { dev_err(hdev->dev, "Map failed for address 0x%llx\n", prop->dram_base_address + off); goto unmap; } } if (!(hdev->cpu_accessible_dma_address & (PAGE_SIZE_2MB - 1))) { rc = hl_mmu_map_page(hdev->kernel_ctx, VA_CPU_ACCESSIBLE_MEM_ADDR, hdev->cpu_accessible_dma_address, PAGE_SIZE_2MB, true); if (rc) { dev_err(hdev->dev, "Map failed for CPU accessible memory\n"); off -= PAGE_SIZE_2MB; goto unmap; } } else { for (cpu_off = 0 ; cpu_off < SZ_2M ; cpu_off += PAGE_SIZE_4KB) { rc = hl_mmu_map_page(hdev->kernel_ctx, VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off, hdev->cpu_accessible_dma_address + cpu_off, PAGE_SIZE_4KB, true); if (rc) { dev_err(hdev->dev, "Map failed for CPU accessible memory\n"); cpu_off -= PAGE_SIZE_4KB; goto unmap_cpu; } } } goya_mmu_prepare_reg(hdev, mmCPU_IF_ARUSER_OVR, HL_KERNEL_ASID_ID); goya_mmu_prepare_reg(hdev, mmCPU_IF_AWUSER_OVR, HL_KERNEL_ASID_ID); WREG32(mmCPU_IF_ARUSER_OVR_EN, 0x7FF); WREG32(mmCPU_IF_AWUSER_OVR_EN, 0x7FF); /* Make sure configuration is flushed to device */ RREG32(mmCPU_IF_AWUSER_OVR_EN); goya->device_cpu_mmu_mappings_done = true; return 0; unmap_cpu: for (; cpu_off >= 0 ; cpu_off -= PAGE_SIZE_4KB) if (hl_mmu_unmap_page(hdev->kernel_ctx, VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off, PAGE_SIZE_4KB, true)) dev_warn_ratelimited(hdev->dev, "failed to unmap address 0x%llx\n", VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off); unmap: for (; off >= 0 ; off -= PAGE_SIZE_2MB) if (hl_mmu_unmap_page(hdev->kernel_ctx, prop->dram_base_address + off, PAGE_SIZE_2MB, true)) dev_warn_ratelimited(hdev->dev, "failed to unmap address 0x%llx\n", prop->dram_base_address + off); return rc; } void goya_mmu_remove_device_cpu_mappings(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; struct goya_device *goya = hdev->asic_specific; u32 off, cpu_off; if (!(goya->hw_cap_initialized & HW_CAP_MMU)) return; if (!goya->device_cpu_mmu_mappings_done) return; WREG32(mmCPU_IF_ARUSER_OVR_EN, 0); WREG32(mmCPU_IF_AWUSER_OVR_EN, 0); if (!(hdev->cpu_accessible_dma_address & (PAGE_SIZE_2MB - 1))) { if (hl_mmu_unmap_page(hdev->kernel_ctx, VA_CPU_ACCESSIBLE_MEM_ADDR, PAGE_SIZE_2MB, true)) dev_warn(hdev->dev, "Failed to unmap CPU accessible memory\n"); } else { for (cpu_off = 0 ; cpu_off < SZ_2M ; cpu_off += PAGE_SIZE_4KB) if (hl_mmu_unmap_page(hdev->kernel_ctx, VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off, PAGE_SIZE_4KB, (cpu_off + PAGE_SIZE_4KB) >= SZ_2M)) dev_warn_ratelimited(hdev->dev, "failed to unmap address 0x%llx\n", VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off); } for (off = 0 ; off < CPU_FW_IMAGE_SIZE ; off += PAGE_SIZE_2MB) if (hl_mmu_unmap_page(hdev->kernel_ctx, prop->dram_base_address + off, PAGE_SIZE_2MB, (off + PAGE_SIZE_2MB) >= CPU_FW_IMAGE_SIZE)) dev_warn_ratelimited(hdev->dev, "Failed to unmap address 0x%llx\n", prop->dram_base_address + off); goya->device_cpu_mmu_mappings_done = false; } static void goya_mmu_prepare(struct hl_device *hdev, u32 asid) { struct goya_device *goya = hdev->asic_specific; int i; if (!(goya->hw_cap_initialized & HW_CAP_MMU)) return; if (asid & ~MME_QM_GLBL_SECURE_PROPS_ASID_MASK) { dev_crit(hdev->dev, "asid %u is too big\n", asid); return; } /* zero the MMBP and ASID bits and then set the ASID */ for (i = 0 ; i < GOYA_MMU_REGS_NUM ; i++) goya_mmu_prepare_reg(hdev, goya_mmu_regs[i], asid); } static int goya_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags) { struct goya_device *goya = hdev->asic_specific; u32 status, timeout_usec; int rc; if (!(goya->hw_cap_initialized & HW_CAP_MMU) || hdev->hard_reset_pending) return 0; /* no need in L1 only invalidation in Goya */ if (!is_hard) return 0; if (hdev->pldm) timeout_usec = GOYA_PLDM_MMU_TIMEOUT_USEC; else timeout_usec = MMU_CONFIG_TIMEOUT_USEC; /* L0 & L1 invalidation */ WREG32(mmSTLB_INV_ALL_START, 1); rc = hl_poll_timeout( hdev, mmSTLB_INV_ALL_START, status, !status, 1000, timeout_usec); if (rc) { dev_err_ratelimited(hdev->dev, "MMU cache invalidation timeout\n"); hl_device_reset(hdev, HL_RESET_HARD); } return rc; } static int goya_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, u32 asid, u64 va, u64 size) { struct goya_device *goya = hdev->asic_specific; u32 status, timeout_usec, inv_data, pi; int rc; if (!(goya->hw_cap_initialized & HW_CAP_MMU) || hdev->hard_reset_pending) return 0; /* no need in L1 only invalidation in Goya */ if (!is_hard) return 0; if (hdev->pldm) timeout_usec = GOYA_PLDM_MMU_TIMEOUT_USEC; else timeout_usec = MMU_CONFIG_TIMEOUT_USEC; /* * TODO: currently invalidate entire L0 & L1 as in regular hard * invalidation. Need to apply invalidation of specific cache lines with * mask of ASID & VA & size. * Note that L1 with be flushed entirely in any case. */ /* L0 & L1 invalidation */ inv_data = RREG32(mmSTLB_CACHE_INV); /* PI is 8 bit */ pi = ((inv_data & STLB_CACHE_INV_PRODUCER_INDEX_MASK) + 1) & 0xFF; WREG32(mmSTLB_CACHE_INV, (inv_data & STLB_CACHE_INV_INDEX_MASK_MASK) | pi); rc = hl_poll_timeout( hdev, mmSTLB_INV_CONSUMER_INDEX, status, status == pi, 1000, timeout_usec); if (rc) { dev_err_ratelimited(hdev->dev, "MMU cache invalidation timeout\n"); hl_device_reset(hdev, HL_RESET_HARD); } return rc; } int goya_send_heartbeat(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q)) return 0; return hl_fw_send_heartbeat(hdev); } int goya_cpucp_info_get(struct hl_device *hdev) { struct goya_device *goya = hdev->asic_specific; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 dram_size; int rc; if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q)) return 0; rc = hl_fw_cpucp_info_get(hdev, mmCPU_BOOT_DEV_STS0, mmCPU_BOOT_ERR0); if (rc) return rc; dram_size = le64_to_cpu(prop->cpucp_info.dram_size); if (dram_size) { if ((!is_power_of_2(dram_size)) || (dram_size < DRAM_PHYS_DEFAULT_SIZE)) { dev_err(hdev->dev, "F/W reported invalid DRAM size %llu. Trying to use default size\n", dram_size); dram_size = DRAM_PHYS_DEFAULT_SIZE; } prop->dram_size = dram_size; prop->dram_end_address = prop->dram_base_address + dram_size; } if (!strlen(prop->cpucp_info.card_name)) strncpy(prop->cpucp_info.card_name, GOYA_DEFAULT_CARD_NAME, CARD_NAME_MAX_LEN); return 0; } static void goya_set_clock_gating(struct hl_device *hdev) { /* clock gating not supported in Goya */ } static void goya_disable_clock_gating(struct hl_device *hdev) { /* clock gating not supported in Goya */ } static bool goya_is_device_idle(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, struct seq_file *s) { const char *fmt = "%-5d%-9s%#-14x%#-16x%#x\n"; const char *dma_fmt = "%-5d%-9s%#-14x%#x\n"; unsigned long *mask = (unsigned long *)mask_arr; u32 qm_glbl_sts0, cmdq_glbl_sts0, dma_core_sts0, tpc_cfg_sts, mme_arch_sts; bool is_idle = true, is_eng_idle; u64 offset; int i; if (s) seq_puts(s, "\nDMA is_idle QM_GLBL_STS0 DMA_CORE_STS0\n" "--- ------- ------------ -------------\n"); offset = mmDMA_QM_1_GLBL_STS0 - mmDMA_QM_0_GLBL_STS0; for (i = 0 ; i < DMA_MAX_NUM ; i++) { qm_glbl_sts0 = RREG32(mmDMA_QM_0_GLBL_STS0 + i * offset); dma_core_sts0 = RREG32(mmDMA_CH_0_STS0 + i * offset); is_eng_idle = IS_DMA_QM_IDLE(qm_glbl_sts0) && IS_DMA_IDLE(dma_core_sts0); is_idle &= is_eng_idle; if (mask && !is_eng_idle) set_bit(GOYA_ENGINE_ID_DMA_0 + i, mask); if (s) seq_printf(s, dma_fmt, i, is_eng_idle ? "Y" : "N", qm_glbl_sts0, dma_core_sts0); } if (s) seq_puts(s, "\nTPC is_idle QM_GLBL_STS0 CMDQ_GLBL_STS0 CFG_STATUS\n" "--- ------- ------------ -------------- ----------\n"); offset = mmTPC1_QM_GLBL_STS0 - mmTPC0_QM_GLBL_STS0; for (i = 0 ; i < TPC_MAX_NUM ; i++) { qm_glbl_sts0 = RREG32(mmTPC0_QM_GLBL_STS0 + i * offset); cmdq_glbl_sts0 = RREG32(mmTPC0_CMDQ_GLBL_STS0 + i * offset); tpc_cfg_sts = RREG32(mmTPC0_CFG_STATUS + i * offset); is_eng_idle = IS_TPC_QM_IDLE(qm_glbl_sts0) && IS_TPC_CMDQ_IDLE(cmdq_glbl_sts0) && IS_TPC_IDLE(tpc_cfg_sts); is_idle &= is_eng_idle; if (mask && !is_eng_idle) set_bit(GOYA_ENGINE_ID_TPC_0 + i, mask); if (s) seq_printf(s, fmt, i, is_eng_idle ? "Y" : "N", qm_glbl_sts0, cmdq_glbl_sts0, tpc_cfg_sts); } if (s) seq_puts(s, "\nMME is_idle QM_GLBL_STS0 CMDQ_GLBL_STS0 ARCH_STATUS\n" "--- ------- ------------ -------------- -----------\n"); qm_glbl_sts0 = RREG32(mmMME_QM_GLBL_STS0); cmdq_glbl_sts0 = RREG32(mmMME_CMDQ_GLBL_STS0); mme_arch_sts = RREG32(mmMME_ARCH_STATUS); is_eng_idle = IS_MME_QM_IDLE(qm_glbl_sts0) && IS_MME_CMDQ_IDLE(cmdq_glbl_sts0) && IS_MME_IDLE(mme_arch_sts); is_idle &= is_eng_idle; if (mask && !is_eng_idle) set_bit(GOYA_ENGINE_ID_MME_0, mask); if (s) { seq_printf(s, fmt, 0, is_eng_idle ? "Y" : "N", qm_glbl_sts0, cmdq_glbl_sts0, mme_arch_sts); seq_puts(s, "\n"); } return is_idle; } static void goya_hw_queues_lock(struct hl_device *hdev) __acquires(&goya->hw_queues_lock) { struct goya_device *goya = hdev->asic_specific; spin_lock(&goya->hw_queues_lock); } static void goya_hw_queues_unlock(struct hl_device *hdev) __releases(&goya->hw_queues_lock) { struct goya_device *goya = hdev->asic_specific; spin_unlock(&goya->hw_queues_lock); } static u32 goya_get_pci_id(struct hl_device *hdev) { return hdev->pdev->device; } static int goya_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size) { struct goya_device *goya = hdev->asic_specific; if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q)) return 0; return hl_fw_get_eeprom_data(hdev, data, max_size); } static int goya_ctx_init(struct hl_ctx *ctx) { if (ctx->asid != HL_KERNEL_ASID_ID) goya_mmu_prepare(ctx->hdev, ctx->asid); return 0; } u32 goya_get_queue_id_for_cq(struct hl_device *hdev, u32 cq_idx) { return cq_idx; } static u32 goya_get_signal_cb_size(struct hl_device *hdev) { return 0; } static u32 goya_get_wait_cb_size(struct hl_device *hdev) { return 0; } static u32 goya_gen_signal_cb(struct hl_device *hdev, void *data, u16 sob_id, u32 size, bool eb) { return 0; } static u32 goya_gen_wait_cb(struct hl_device *hdev, struct hl_gen_wait_properties *prop) { return 0; } static void goya_reset_sob(struct hl_device *hdev, void *data) { } static void goya_reset_sob_group(struct hl_device *hdev, u16 sob_group) { } static void goya_set_dma_mask_from_fw(struct hl_device *hdev) { if (RREG32(mmPSOC_GLOBAL_CONF_NON_RST_FLOPS_0) == HL_POWER9_HOST_MAGIC) { dev_dbg(hdev->dev, "Working in 64-bit DMA mode\n"); hdev->power9_64bit_dma_enable = 1; hdev->dma_mask = 64; } else { dev_dbg(hdev->dev, "Working in 48-bit DMA mode\n"); hdev->power9_64bit_dma_enable = 0; hdev->dma_mask = 48; } } u64 goya_get_device_time(struct hl_device *hdev) { u64 device_time = ((u64) RREG32(mmPSOC_TIMESTAMP_CNTCVU)) << 32; return device_time | RREG32(mmPSOC_TIMESTAMP_CNTCVL); } static void goya_collective_wait_init_cs(struct hl_cs *cs) { } static int goya_collective_wait_create_jobs(struct hl_device *hdev, struct hl_ctx *ctx, struct hl_cs *cs, u32 wait_queue_id, u32 collective_engine_id) { return -EINVAL; } static void goya_ctx_fini(struct hl_ctx *ctx) { } static int goya_get_hw_block_id(struct hl_device *hdev, u64 block_addr, u32 *block_size, u32 *block_id) { return -EPERM; } static int goya_block_mmap(struct hl_device *hdev, struct vm_area_struct *vma, u32 block_id, u32 block_size) { return -EPERM; } static void goya_enable_events_from_fw(struct hl_device *hdev) { WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR, GOYA_ASYNC_EVENT_ID_INTS_REGISTER); } static const struct hl_asic_funcs goya_funcs = { .early_init = goya_early_init, .early_fini = goya_early_fini, .late_init = goya_late_init, .late_fini = goya_late_fini, .sw_init = goya_sw_init, .sw_fini = goya_sw_fini, .hw_init = goya_hw_init, .hw_fini = goya_hw_fini, .halt_engines = goya_halt_engines, .suspend = goya_suspend, .resume = goya_resume, .cb_mmap = goya_cb_mmap, .ring_doorbell = goya_ring_doorbell, .pqe_write = goya_pqe_write, .asic_dma_alloc_coherent = goya_dma_alloc_coherent, .asic_dma_free_coherent = goya_dma_free_coherent, .scrub_device_mem = goya_scrub_device_mem, .get_int_queue_base = goya_get_int_queue_base, .test_queues = goya_test_queues, .asic_dma_pool_zalloc = goya_dma_pool_zalloc, .asic_dma_pool_free = goya_dma_pool_free, .cpu_accessible_dma_pool_alloc = goya_cpu_accessible_dma_pool_alloc, .cpu_accessible_dma_pool_free = goya_cpu_accessible_dma_pool_free, .hl_dma_unmap_sg = goya_dma_unmap_sg, .cs_parser = goya_cs_parser, .asic_dma_map_sg = goya_dma_map_sg, .get_dma_desc_list_size = goya_get_dma_desc_list_size, .add_end_of_cb_packets = goya_add_end_of_cb_packets, .update_eq_ci = goya_update_eq_ci, .context_switch = goya_context_switch, .restore_phase_topology = goya_restore_phase_topology, .debugfs_read32 = goya_debugfs_read32, .debugfs_write32 = goya_debugfs_write32, .debugfs_read64 = goya_debugfs_read64, .debugfs_write64 = goya_debugfs_write64, .add_device_attr = goya_add_device_attr, .handle_eqe = goya_handle_eqe, .set_pll_profile = goya_set_pll_profile, .get_events_stat = goya_get_events_stat, .read_pte = goya_read_pte, .write_pte = goya_write_pte, .mmu_invalidate_cache = goya_mmu_invalidate_cache, .mmu_invalidate_cache_range = goya_mmu_invalidate_cache_range, .send_heartbeat = goya_send_heartbeat, .set_clock_gating = goya_set_clock_gating, .disable_clock_gating = goya_disable_clock_gating, .debug_coresight = goya_debug_coresight, .is_device_idle = goya_is_device_idle, .soft_reset_late_init = goya_soft_reset_late_init, .hw_queues_lock = goya_hw_queues_lock, .hw_queues_unlock = goya_hw_queues_unlock, .get_pci_id = goya_get_pci_id, .get_eeprom_data = goya_get_eeprom_data, .send_cpu_message = goya_send_cpu_message, .pci_bars_map = goya_pci_bars_map, .init_iatu = goya_init_iatu, .rreg = hl_rreg, .wreg = hl_wreg, .halt_coresight = goya_halt_coresight, .ctx_init = goya_ctx_init, .ctx_fini = goya_ctx_fini, .get_clk_rate = goya_get_clk_rate, .get_queue_id_for_cq = goya_get_queue_id_for_cq, .read_device_fw_version = goya_read_device_fw_version, .load_firmware_to_device = goya_load_firmware_to_device, .load_boot_fit_to_device = goya_load_boot_fit_to_device, .get_signal_cb_size = goya_get_signal_cb_size, .get_wait_cb_size = goya_get_wait_cb_size, .gen_signal_cb = goya_gen_signal_cb, .gen_wait_cb = goya_gen_wait_cb, .reset_sob = goya_reset_sob, .reset_sob_group = goya_reset_sob_group, .set_dma_mask_from_fw = goya_set_dma_mask_from_fw, .get_device_time = goya_get_device_time, .collective_wait_init_cs = goya_collective_wait_init_cs, .collective_wait_create_jobs = goya_collective_wait_create_jobs, .scramble_addr = hl_mmu_scramble_addr, .descramble_addr = hl_mmu_descramble_addr, .ack_protection_bits_errors = goya_ack_protection_bits_errors, .get_hw_block_id = goya_get_hw_block_id, .hw_block_mmap = goya_block_mmap, .enable_events_from_fw = goya_enable_events_from_fw }; /* * goya_set_asic_funcs - set Goya function pointers * * @*hdev: pointer to hl_device structure * */ void goya_set_asic_funcs(struct hl_device *hdev) { hdev->asic_funcs = &goya_funcs; }