/* * Simple MTD partitioning layer * * (C) 2000 Nicolas Pitre <nico@cam.org> * * This code is GPL * * 02-21-2002 Thomas Gleixner <gleixner@autronix.de> * added support for read_oob, write_oob */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/kmod.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <linux/mtd/compatmac.h> /* Our partition linked list */ static LIST_HEAD(mtd_partitions); /* Our partition node structure */ struct mtd_part { struct mtd_info mtd; struct mtd_info *master; u_int32_t offset; int index; struct list_head list; int registered; }; /* * Given a pointer to the MTD object in the mtd_part structure, we can retrieve * the pointer to that structure with this macro. */ #define PART(x) ((struct mtd_part *)(x)) /* * MTD methods which simply translate the effective address and pass through * to the _real_ device. */ static int part_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); int res; if (from >= mtd->size) len = 0; else if (from + len > mtd->size) len = mtd->size - from; res = part->master->read(part->master, from + part->offset, len, retlen, buf); if (unlikely(res)) { if (res == -EUCLEAN) mtd->ecc_stats.corrected++; if (res == -EBADMSG) mtd->ecc_stats.failed++; } return res; } static int part_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, void **virt, resource_size_t *phys) { struct mtd_part *part = PART(mtd); if (from >= mtd->size) len = 0; else if (from + len > mtd->size) len = mtd->size - from; return part->master->point (part->master, from + part->offset, len, retlen, virt, phys); } static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) { struct mtd_part *part = PART(mtd); part->master->unpoint(part->master, from + part->offset, len); } static int part_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct mtd_part *part = PART(mtd); int res; if (from >= mtd->size) return -EINVAL; if (ops->datbuf && from + ops->len > mtd->size) return -EINVAL; res = part->master->read_oob(part->master, from + part->offset, ops); if (unlikely(res)) { if (res == -EUCLEAN) mtd->ecc_stats.corrected++; if (res == -EBADMSG) mtd->ecc_stats.failed++; } return res; } static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); return part->master->read_user_prot_reg(part->master, from, len, retlen, buf); } static int part_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf, size_t len) { struct mtd_part *part = PART(mtd); return part->master->get_user_prot_info(part->master, buf, len); } static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); return part->master->read_fact_prot_reg(part->master, from, len, retlen, buf); } static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf, size_t len) { struct mtd_part *part = PART(mtd); return part->master->get_fact_prot_info(part->master, buf, len); } static int part_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct mtd_part *part = PART(mtd); if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; if (to >= mtd->size) len = 0; else if (to + len > mtd->size) len = mtd->size - to; return part->master->write(part->master, to + part->offset, len, retlen, buf); } static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct mtd_part *part = PART(mtd); if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; if (to >= mtd->size) len = 0; else if (to + len > mtd->size) len = mtd->size - to; return part->master->panic_write(part->master, to + part->offset, len, retlen, buf); } static int part_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { struct mtd_part *part = PART(mtd); if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; if (to >= mtd->size) return -EINVAL; if (ops->datbuf && to + ops->len > mtd->size) return -EINVAL; return part->master->write_oob(part->master, to + part->offset, ops); } static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); return part->master->write_user_prot_reg(part->master, from, len, retlen, buf); } static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) { struct mtd_part *part = PART(mtd); return part->master->lock_user_prot_reg(part->master, from, len); } static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen) { struct mtd_part *part = PART(mtd); if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; return part->master->writev(part->master, vecs, count, to + part->offset, retlen); } static int part_erase(struct mtd_info *mtd, struct erase_info *instr) { struct mtd_part *part = PART(mtd); int ret; if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; if (instr->addr >= mtd->size) return -EINVAL; instr->addr += part->offset; ret = part->master->erase(part->master, instr); if (ret) { if (instr->fail_addr != 0xffffffff) instr->fail_addr -= part->offset; instr->addr -= part->offset; } return ret; } void mtd_erase_callback(struct erase_info *instr) { if (instr->mtd->erase == part_erase) { struct mtd_part *part = PART(instr->mtd); if (instr->fail_addr != 0xffffffff) instr->fail_addr -= part->offset; instr->addr -= part->offset; } if (instr->callback) instr->callback(instr); } EXPORT_SYMBOL_GPL(mtd_erase_callback); static int part_lock(struct mtd_info *mtd, loff_t ofs, size_t len) { struct mtd_part *part = PART(mtd); if ((len + ofs) > mtd->size) return -EINVAL; return part->master->lock(part->master, ofs + part->offset, len); } static int part_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) { struct mtd_part *part = PART(mtd); if ((len + ofs) > mtd->size) return -EINVAL; return part->master->unlock(part->master, ofs + part->offset, len); } static void part_sync(struct mtd_info *mtd) { struct mtd_part *part = PART(mtd); part->master->sync(part->master); } static int part_suspend(struct mtd_info *mtd) { struct mtd_part *part = PART(mtd); return part->master->suspend(part->master); } static void part_resume(struct mtd_info *mtd) { struct mtd_part *part = PART(mtd); part->master->resume(part->master); } static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) { struct mtd_part *part = PART(mtd); if (ofs >= mtd->size) return -EINVAL; ofs += part->offset; return part->master->block_isbad(part->master, ofs); } static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct mtd_part *part = PART(mtd); int res; if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; if (ofs >= mtd->size) return -EINVAL; ofs += part->offset; res = part->master->block_markbad(part->master, ofs); if (!res) mtd->ecc_stats.badblocks++; return res; } /* * This function unregisters and destroy all slave MTD objects which are * attached to the given master MTD object. */ int del_mtd_partitions(struct mtd_info *master) { struct mtd_part *slave, *next; list_for_each_entry_safe(slave, next, &mtd_partitions, list) if (slave->master == master) { list_del(&slave->list); if (slave->registered) del_mtd_device(&slave->mtd); kfree(slave); } return 0; } EXPORT_SYMBOL(del_mtd_partitions); static struct mtd_part *add_one_partition(struct mtd_info *master, const struct mtd_partition *part, int partno, u_int32_t cur_offset) { struct mtd_part *slave; /* allocate the partition structure */ slave = kzalloc(sizeof(*slave), GFP_KERNEL); if (!slave) { printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", master->name); del_mtd_partitions(master); return NULL; } list_add(&slave->list, &mtd_partitions); /* set up the MTD object for this partition */ slave->mtd.type = master->type; slave->mtd.flags = master->flags & ~part->mask_flags; slave->mtd.size = part->size; slave->mtd.writesize = master->writesize; slave->mtd.oobsize = master->oobsize; slave->mtd.oobavail = master->oobavail; slave->mtd.subpage_sft = master->subpage_sft; slave->mtd.name = part->name; slave->mtd.owner = master->owner; slave->mtd.read = part_read; slave->mtd.write = part_write; if (master->panic_write) slave->mtd.panic_write = part_panic_write; if (master->point && master->unpoint) { slave->mtd.point = part_point; slave->mtd.unpoint = part_unpoint; } if (master->read_oob) slave->mtd.read_oob = part_read_oob; if (master->write_oob) slave->mtd.write_oob = part_write_oob; if (master->read_user_prot_reg) slave->mtd.read_user_prot_reg = part_read_user_prot_reg; if (master->read_fact_prot_reg) slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg; if (master->write_user_prot_reg) slave->mtd.write_user_prot_reg = part_write_user_prot_reg; if (master->lock_user_prot_reg) slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg; if (master->get_user_prot_info) slave->mtd.get_user_prot_info = part_get_user_prot_info; if (master->get_fact_prot_info) slave->mtd.get_fact_prot_info = part_get_fact_prot_info; if (master->sync) slave->mtd.sync = part_sync; if (!partno && master->suspend && master->resume) { slave->mtd.suspend = part_suspend; slave->mtd.resume = part_resume; } if (master->writev) slave->mtd.writev = part_writev; if (master->lock) slave->mtd.lock = part_lock; if (master->unlock) slave->mtd.unlock = part_unlock; if (master->block_isbad) slave->mtd.block_isbad = part_block_isbad; if (master->block_markbad) slave->mtd.block_markbad = part_block_markbad; slave->mtd.erase = part_erase; slave->master = master; slave->offset = part->offset; slave->index = partno; if (slave->offset == MTDPART_OFS_APPEND) slave->offset = cur_offset; if (slave->offset == MTDPART_OFS_NXTBLK) { slave->offset = cur_offset; if ((cur_offset % master->erasesize) != 0) { /* Round up to next erasesize */ slave->offset = ((cur_offset / master->erasesize) + 1) * master->erasesize; printk(KERN_NOTICE "Moving partition %d: " "0x%08x -> 0x%08x\n", partno, cur_offset, slave->offset); } } if (slave->mtd.size == MTDPART_SIZ_FULL) slave->mtd.size = master->size - slave->offset; printk(KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset, slave->offset + slave->mtd.size, slave->mtd.name); /* let's do some sanity checks */ if (slave->offset >= master->size) { /* let's register it anyway to preserve ordering */ slave->offset = 0; slave->mtd.size = 0; printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", part->name); goto out_register; } if (slave->offset + slave->mtd.size > master->size) { slave->mtd.size = master->size - slave->offset; printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n", part->name, master->name, slave->mtd.size); } if (master->numeraseregions > 1) { /* Deal with variable erase size stuff */ int i, max = master->numeraseregions; u32 end = slave->offset + slave->mtd.size; struct mtd_erase_region_info *regions = master->eraseregions; /* Find the first erase regions which is part of this * partition. */ for (i = 0; i < max && regions[i].offset <= slave->offset; i++) ; /* The loop searched for the region _behind_ the first one */ i--; /* Pick biggest erasesize */ for (; i < max && regions[i].offset < end; i++) { if (slave->mtd.erasesize < regions[i].erasesize) { slave->mtd.erasesize = regions[i].erasesize; } } BUG_ON(slave->mtd.erasesize == 0); } else { /* Single erase size */ slave->mtd.erasesize = master->erasesize; } if ((slave->mtd.flags & MTD_WRITEABLE) && (slave->offset % slave->mtd.erasesize)) { /* Doesn't start on a boundary of major erase size */ /* FIXME: Let it be writable if it is on a boundary of * _minor_ erase size though */ slave->mtd.flags &= ~MTD_WRITEABLE; printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", part->name); } if ((slave->mtd.flags & MTD_WRITEABLE) && (slave->mtd.size % slave->mtd.erasesize)) { slave->mtd.flags &= ~MTD_WRITEABLE; printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", part->name); } slave->mtd.ecclayout = master->ecclayout; if (master->block_isbad) { uint32_t offs = 0; while (offs < slave->mtd.size) { if (master->block_isbad(master, offs + slave->offset)) slave->mtd.ecc_stats.badblocks++; offs += slave->mtd.erasesize; } } out_register: if (part->mtdp) { /* store the object pointer (caller may or may not register it*/ *part->mtdp = &slave->mtd; slave->registered = 0; } else { /* register our partition */ add_mtd_device(&slave->mtd); slave->registered = 1; } return slave; } /* * This function, given a master MTD object and a partition table, creates * and registers slave MTD objects which are bound to the master according to * the partition definitions. * (Q: should we register the master MTD object as well?) */ int add_mtd_partitions(struct mtd_info *master, const struct mtd_partition *parts, int nbparts) { struct mtd_part *slave; u_int32_t cur_offset = 0; int i; printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); for (i = 0; i < nbparts; i++) { slave = add_one_partition(master, parts + i, i, cur_offset); if (!slave) return -ENOMEM; cur_offset = slave->offset + slave->mtd.size; } return 0; } EXPORT_SYMBOL(add_mtd_partitions); static DEFINE_SPINLOCK(part_parser_lock); static LIST_HEAD(part_parsers); static struct mtd_part_parser *get_partition_parser(const char *name) { struct mtd_part_parser *p, *ret = NULL; spin_lock(&part_parser_lock); list_for_each_entry(p, &part_parsers, list) if (!strcmp(p->name, name) && try_module_get(p->owner)) { ret = p; break; } spin_unlock(&part_parser_lock); return ret; } int register_mtd_parser(struct mtd_part_parser *p) { spin_lock(&part_parser_lock); list_add(&p->list, &part_parsers); spin_unlock(&part_parser_lock); return 0; } EXPORT_SYMBOL_GPL(register_mtd_parser); int deregister_mtd_parser(struct mtd_part_parser *p) { spin_lock(&part_parser_lock); list_del(&p->list); spin_unlock(&part_parser_lock); return 0; } EXPORT_SYMBOL_GPL(deregister_mtd_parser); int parse_mtd_partitions(struct mtd_info *master, const char **types, struct mtd_partition **pparts, unsigned long origin) { struct mtd_part_parser *parser; int ret = 0; for ( ; ret <= 0 && *types; types++) { parser = get_partition_parser(*types); if (!parser && !request_module("%s", *types)) parser = get_partition_parser(*types); if (!parser) { printk(KERN_NOTICE "%s partition parsing not available\n", *types); continue; } ret = (*parser->parse_fn)(master, pparts, origin); if (ret > 0) { printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", ret, parser->name, master->name); } put_partition_parser(parser); } return ret; } EXPORT_SYMBOL_GPL(parse_mtd_partitions);