/* * Copyright © 2005-2009 Samsung Electronics * Copyright © 2007 Nokia Corporation * * Kyungmin Park * * Credits: * Adrian Hunter : * auto-placement support, read-while load support, various fixes * * Vishak G , Rohit Hagargundgi * Flex-OneNAND support * Amul Kumar Saha * OTP support * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include /* * Multiblock erase if number of blocks to erase is 2 or more. * Maximum number of blocks for simultaneous erase is 64. */ #define MB_ERASE_MIN_BLK_COUNT 2 #define MB_ERASE_MAX_BLK_COUNT 64 /* Default Flex-OneNAND boundary and lock respectively */ static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 }; module_param_array(flex_bdry, int, NULL, 0400); MODULE_PARM_DESC(flex_bdry, "SLC Boundary information for Flex-OneNAND" "Syntax:flex_bdry=DIE_BDRY,LOCK,..." "DIE_BDRY: SLC boundary of the die" "LOCK: Locking information for SLC boundary" " : 0->Set boundary in unlocked status" " : 1->Set boundary in locked status"); /* Default OneNAND/Flex-OneNAND OTP options*/ static int otp; module_param(otp, int, 0400); MODULE_PARM_DESC(otp, "Corresponding behaviour of OneNAND in OTP" "Syntax : otp=LOCK_TYPE" "LOCK_TYPE : Keys issued, for specific OTP Lock type" " : 0 -> Default (No Blocks Locked)" " : 1 -> OTP Block lock" " : 2 -> 1st Block lock" " : 3 -> BOTH OTP Block and 1st Block lock"); /* * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page * For now, we expose only 64 out of 80 ecc bytes */ static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section > 7) return -ERANGE; oobregion->offset = (section * 16) + 6; oobregion->length = 10; return 0; } static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section > 7) return -ERANGE; oobregion->offset = (section * 16) + 2; oobregion->length = 4; return 0; } static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = { .ecc = flexonenand_ooblayout_ecc, .free = flexonenand_ooblayout_free, }; /* * onenand_oob_128 - oob info for OneNAND with 4KB page * * Based on specification: * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010 * */ static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section > 7) return -ERANGE; oobregion->offset = (section * 16) + 7; oobregion->length = 9; return 0; } static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section >= 8) return -ERANGE; /* * free bytes are using the spare area fields marked as * "Managed by internal ECC logic for Logical Sector Number area" */ oobregion->offset = (section * 16) + 2; oobregion->length = 3; return 0; } static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = { .ecc = onenand_ooblayout_128_ecc, .free = onenand_ooblayout_128_free, }; /** * onenand_oob_32_64 - oob info for large (2KB) page */ static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section > 3) return -ERANGE; oobregion->offset = (section * 16) + 8; oobregion->length = 5; return 0; } static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { int sections = (mtd->oobsize / 32) * 2; if (section >= sections) return -ERANGE; if (section & 1) { oobregion->offset = ((section - 1) * 16) + 14; oobregion->length = 2; } else { oobregion->offset = (section * 16) + 2; oobregion->length = 3; } return 0; } static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = { .ecc = onenand_ooblayout_32_64_ecc, .free = onenand_ooblayout_32_64_free, }; static const unsigned char ffchars[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */ }; /** * onenand_readw - [OneNAND Interface] Read OneNAND register * @param addr address to read * * Read OneNAND register */ static unsigned short onenand_readw(void __iomem *addr) { return readw(addr); } /** * onenand_writew - [OneNAND Interface] Write OneNAND register with value * @param value value to write * @param addr address to write * * Write OneNAND register with value */ static void onenand_writew(unsigned short value, void __iomem *addr) { writew(value, addr); } /** * onenand_block_address - [DEFAULT] Get block address * @param this onenand chip data structure * @param block the block * @return translated block address if DDP, otherwise same * * Setup Start Address 1 Register (F100h) */ static int onenand_block_address(struct onenand_chip *this, int block) { /* Device Flash Core select, NAND Flash Block Address */ if (block & this->density_mask) return ONENAND_DDP_CHIP1 | (block ^ this->density_mask); return block; } /** * onenand_bufferram_address - [DEFAULT] Get bufferram address * @param this onenand chip data structure * @param block the block * @return set DBS value if DDP, otherwise 0 * * Setup Start Address 2 Register (F101h) for DDP */ static int onenand_bufferram_address(struct onenand_chip *this, int block) { /* Device BufferRAM Select */ if (block & this->density_mask) return ONENAND_DDP_CHIP1; return ONENAND_DDP_CHIP0; } /** * onenand_page_address - [DEFAULT] Get page address * @param page the page address * @param sector the sector address * @return combined page and sector address * * Setup Start Address 8 Register (F107h) */ static int onenand_page_address(int page, int sector) { /* Flash Page Address, Flash Sector Address */ int fpa, fsa; fpa = page & ONENAND_FPA_MASK; fsa = sector & ONENAND_FSA_MASK; return ((fpa << ONENAND_FPA_SHIFT) | fsa); } /** * onenand_buffer_address - [DEFAULT] Get buffer address * @param dataram1 DataRAM index * @param sectors the sector address * @param count the number of sectors * @return the start buffer value * * Setup Start Buffer Register (F200h) */ static int onenand_buffer_address(int dataram1, int sectors, int count) { int bsa, bsc; /* BufferRAM Sector Address */ bsa = sectors & ONENAND_BSA_MASK; if (dataram1) bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */ else bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */ /* BufferRAM Sector Count */ bsc = count & ONENAND_BSC_MASK; return ((bsa << ONENAND_BSA_SHIFT) | bsc); } /** * flexonenand_block- For given address return block number * @param this - OneNAND device structure * @param addr - Address for which block number is needed */ static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr) { unsigned boundary, blk, die = 0; if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) { die = 1; addr -= this->diesize[0]; } boundary = this->boundary[die]; blk = addr >> (this->erase_shift - 1); if (blk > boundary) blk = (blk + boundary + 1) >> 1; blk += die ? this->density_mask : 0; return blk; } inline unsigned onenand_block(struct onenand_chip *this, loff_t addr) { if (!FLEXONENAND(this)) return addr >> this->erase_shift; return flexonenand_block(this, addr); } /** * flexonenand_addr - Return address of the block * @this: OneNAND device structure * @block: Block number on Flex-OneNAND * * Return address of the block */ static loff_t flexonenand_addr(struct onenand_chip *this, int block) { loff_t ofs = 0; int die = 0, boundary; if (ONENAND_IS_DDP(this) && block >= this->density_mask) { block -= this->density_mask; die = 1; ofs = this->diesize[0]; } boundary = this->boundary[die]; ofs += (loff_t)block << (this->erase_shift - 1); if (block > (boundary + 1)) ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1); return ofs; } loff_t onenand_addr(struct onenand_chip *this, int block) { if (!FLEXONENAND(this)) return (loff_t)block << this->erase_shift; return flexonenand_addr(this, block); } EXPORT_SYMBOL(onenand_addr); /** * onenand_get_density - [DEFAULT] Get OneNAND density * @param dev_id OneNAND device ID * * Get OneNAND density from device ID */ static inline int onenand_get_density(int dev_id) { int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT; return (density & ONENAND_DEVICE_DENSITY_MASK); } /** * flexonenand_region - [Flex-OneNAND] Return erase region of addr * @param mtd MTD device structure * @param addr address whose erase region needs to be identified */ int flexonenand_region(struct mtd_info *mtd, loff_t addr) { int i; for (i = 0; i < mtd->numeraseregions; i++) if (addr < mtd->eraseregions[i].offset) break; return i - 1; } EXPORT_SYMBOL(flexonenand_region); /** * onenand_command - [DEFAULT] Send command to OneNAND device * @param mtd MTD device structure * @param cmd the command to be sent * @param addr offset to read from or write to * @param len number of bytes to read or write * * Send command to OneNAND device. This function is used for middle/large page * devices (1KB/2KB Bytes per page) */ static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len) { struct onenand_chip *this = mtd->priv; int value, block, page; /* Address translation */ switch (cmd) { case ONENAND_CMD_UNLOCK: case ONENAND_CMD_LOCK: case ONENAND_CMD_LOCK_TIGHT: case ONENAND_CMD_UNLOCK_ALL: block = -1; page = -1; break; case FLEXONENAND_CMD_PI_ACCESS: /* addr contains die index */ block = addr * this->density_mask; page = -1; break; case ONENAND_CMD_ERASE: case ONENAND_CMD_MULTIBLOCK_ERASE: case ONENAND_CMD_ERASE_VERIFY: case ONENAND_CMD_BUFFERRAM: case ONENAND_CMD_OTP_ACCESS: block = onenand_block(this, addr); page = -1; break; case FLEXONENAND_CMD_READ_PI: cmd = ONENAND_CMD_READ; block = addr * this->density_mask; page = 0; break; default: block = onenand_block(this, addr); if (FLEXONENAND(this)) page = (int) (addr - onenand_addr(this, block))>>\ this->page_shift; else page = (int) (addr >> this->page_shift); if (ONENAND_IS_2PLANE(this)) { /* Make the even block number */ block &= ~1; /* Is it the odd plane? */ if (addr & this->writesize) block++; page >>= 1; } page &= this->page_mask; break; } /* NOTE: The setting order of the registers is very important! */ if (cmd == ONENAND_CMD_BUFFERRAM) { /* Select DataRAM for DDP */ value = onenand_bufferram_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) /* It is always BufferRAM0 */ ONENAND_SET_BUFFERRAM0(this); else /* Switch to the next data buffer */ ONENAND_SET_NEXT_BUFFERRAM(this); return 0; } if (block != -1) { /* Write 'DFS, FBA' of Flash */ value = onenand_block_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); /* Select DataRAM for DDP */ value = onenand_bufferram_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); } if (page != -1) { /* Now we use page size operation */ int sectors = 0, count = 0; int dataram; switch (cmd) { case FLEXONENAND_CMD_RECOVER_LSB: case ONENAND_CMD_READ: case ONENAND_CMD_READOOB: if (ONENAND_IS_4KB_PAGE(this)) /* It is always BufferRAM0 */ dataram = ONENAND_SET_BUFFERRAM0(this); else dataram = ONENAND_SET_NEXT_BUFFERRAM(this); break; default: if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG) cmd = ONENAND_CMD_2X_PROG; dataram = ONENAND_CURRENT_BUFFERRAM(this); break; } /* Write 'FPA, FSA' of Flash */ value = onenand_page_address(page, sectors); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8); /* Write 'BSA, BSC' of DataRAM */ value = onenand_buffer_address(dataram, sectors, count); this->write_word(value, this->base + ONENAND_REG_START_BUFFER); } /* Interrupt clear */ this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT); /* Write command */ this->write_word(cmd, this->base + ONENAND_REG_COMMAND); return 0; } /** * onenand_read_ecc - return ecc status * @param this onenand chip structure */ static inline int onenand_read_ecc(struct onenand_chip *this) { int ecc, i, result = 0; if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this)) return this->read_word(this->base + ONENAND_REG_ECC_STATUS); for (i = 0; i < 4; i++) { ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2); if (likely(!ecc)) continue; if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR) return ONENAND_ECC_2BIT_ALL; else result = ONENAND_ECC_1BIT_ALL; } return result; } /** * onenand_wait - [DEFAULT] wait until the command is done * @param mtd MTD device structure * @param state state to select the max. timeout value * * Wait for command done. This applies to all OneNAND command * Read can take up to 30us, erase up to 2ms and program up to 350us * according to general OneNAND specs */ static int onenand_wait(struct mtd_info *mtd, int state) { struct onenand_chip * this = mtd->priv; unsigned long timeout; unsigned int flags = ONENAND_INT_MASTER; unsigned int interrupt = 0; unsigned int ctrl; /* The 20 msec is enough */ timeout = jiffies + msecs_to_jiffies(20); while (time_before(jiffies, timeout)) { interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); if (interrupt & flags) break; if (state != FL_READING && state != FL_PREPARING_ERASE) cond_resched(); } /* To get correct interrupt status in timeout case */ interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); /* * In the Spec. it checks the controller status first * However if you get the correct information in case of * power off recovery (POR) test, it should read ECC status first */ if (interrupt & ONENAND_INT_READ) { int ecc = onenand_read_ecc(this); if (ecc) { if (ecc & ONENAND_ECC_2BIT_ALL) { printk(KERN_ERR "%s: ECC error = 0x%04x\n", __func__, ecc); mtd->ecc_stats.failed++; return -EBADMSG; } else if (ecc & ONENAND_ECC_1BIT_ALL) { printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n", __func__, ecc); mtd->ecc_stats.corrected++; } } } else if (state == FL_READING) { printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n", __func__, ctrl, interrupt); return -EIO; } if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) { printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n", __func__, ctrl, interrupt); return -EIO; } if (!(interrupt & ONENAND_INT_MASTER)) { printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n", __func__, ctrl, interrupt); return -EIO; } /* If there's controller error, it's a real error */ if (ctrl & ONENAND_CTRL_ERROR) { printk(KERN_ERR "%s: controller error = 0x%04x\n", __func__, ctrl); if (ctrl & ONENAND_CTRL_LOCK) printk(KERN_ERR "%s: it's locked error.\n", __func__); return -EIO; } return 0; } /* * onenand_interrupt - [DEFAULT] onenand interrupt handler * @param irq onenand interrupt number * @param dev_id interrupt data * * complete the work */ static irqreturn_t onenand_interrupt(int irq, void *data) { struct onenand_chip *this = data; /* To handle shared interrupt */ if (!this->complete.done) complete(&this->complete); return IRQ_HANDLED; } /* * onenand_interrupt_wait - [DEFAULT] wait until the command is done * @param mtd MTD device structure * @param state state to select the max. timeout value * * Wait for command done. */ static int onenand_interrupt_wait(struct mtd_info *mtd, int state) { struct onenand_chip *this = mtd->priv; wait_for_completion(&this->complete); return onenand_wait(mtd, state); } /* * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait * @param mtd MTD device structure * @param state state to select the max. timeout value * * Try interrupt based wait (It is used one-time) */ static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state) { struct onenand_chip *this = mtd->priv; unsigned long remain, timeout; /* We use interrupt wait first */ this->wait = onenand_interrupt_wait; timeout = msecs_to_jiffies(100); remain = wait_for_completion_timeout(&this->complete, timeout); if (!remain) { printk(KERN_INFO "OneNAND: There's no interrupt. " "We use the normal wait\n"); /* Release the irq */ free_irq(this->irq, this); this->wait = onenand_wait; } return onenand_wait(mtd, state); } /* * onenand_setup_wait - [OneNAND Interface] setup onenand wait method * @param mtd MTD device structure * * There's two method to wait onenand work * 1. polling - read interrupt status register * 2. interrupt - use the kernel interrupt method */ static void onenand_setup_wait(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; int syscfg; init_completion(&this->complete); if (this->irq <= 0) { this->wait = onenand_wait; return; } if (request_irq(this->irq, &onenand_interrupt, IRQF_SHARED, "onenand", this)) { /* If we can't get irq, use the normal wait */ this->wait = onenand_wait; return; } /* Enable interrupt */ syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); syscfg |= ONENAND_SYS_CFG1_IOBE; this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); this->wait = onenand_try_interrupt_wait; } /** * onenand_bufferram_offset - [DEFAULT] BufferRAM offset * @param mtd MTD data structure * @param area BufferRAM area * @return offset given area * * Return BufferRAM offset given area */ static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area) { struct onenand_chip *this = mtd->priv; if (ONENAND_CURRENT_BUFFERRAM(this)) { /* Note: the 'this->writesize' is a real page size */ if (area == ONENAND_DATARAM) return this->writesize; if (area == ONENAND_SPARERAM) return mtd->oobsize; } return 0; } /** * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area * @param mtd MTD data structure * @param area BufferRAM area * @param buffer the databuffer to put/get data * @param offset offset to read from or write to * @param count number of bytes to read/write * * Read the BufferRAM area */ static int onenand_read_bufferram(struct mtd_info *mtd, int area, unsigned char *buffer, int offset, size_t count) { struct onenand_chip *this = mtd->priv; void __iomem *bufferram; bufferram = this->base + area; bufferram += onenand_bufferram_offset(mtd, area); if (ONENAND_CHECK_BYTE_ACCESS(count)) { unsigned short word; /* Align with word(16-bit) size */ count--; /* Read word and save byte */ word = this->read_word(bufferram + offset + count); buffer[count] = (word & 0xff); } memcpy(buffer, bufferram + offset, count); return 0; } /** * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode * @param mtd MTD data structure * @param area BufferRAM area * @param buffer the databuffer to put/get data * @param offset offset to read from or write to * @param count number of bytes to read/write * * Read the BufferRAM area with Sync. Burst Mode */ static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area, unsigned char *buffer, int offset, size_t count) { struct onenand_chip *this = mtd->priv; void __iomem *bufferram; bufferram = this->base + area; bufferram += onenand_bufferram_offset(mtd, area); this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ); if (ONENAND_CHECK_BYTE_ACCESS(count)) { unsigned short word; /* Align with word(16-bit) size */ count--; /* Read word and save byte */ word = this->read_word(bufferram + offset + count); buffer[count] = (word & 0xff); } memcpy(buffer, bufferram + offset, count); this->mmcontrol(mtd, 0); return 0; } /** * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area * @param mtd MTD data structure * @param area BufferRAM area * @param buffer the databuffer to put/get data * @param offset offset to read from or write to * @param count number of bytes to read/write * * Write the BufferRAM area */ static int onenand_write_bufferram(struct mtd_info *mtd, int area, const unsigned char *buffer, int offset, size_t count) { struct onenand_chip *this = mtd->priv; void __iomem *bufferram; bufferram = this->base + area; bufferram += onenand_bufferram_offset(mtd, area); if (ONENAND_CHECK_BYTE_ACCESS(count)) { unsigned short word; int byte_offset; /* Align with word(16-bit) size */ count--; /* Calculate byte access offset */ byte_offset = offset + count; /* Read word and save byte */ word = this->read_word(bufferram + byte_offset); word = (word & ~0xff) | buffer[count]; this->write_word(word, bufferram + byte_offset); } memcpy(bufferram + offset, buffer, count); return 0; } /** * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode * @param mtd MTD data structure * @param addr address to check * @return blockpage address * * Get blockpage address at 2x program mode */ static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr) { struct onenand_chip *this = mtd->priv; int blockpage, block, page; /* Calculate the even block number */ block = (int) (addr >> this->erase_shift) & ~1; /* Is it the odd plane? */ if (addr & this->writesize) block++; page = (int) (addr >> (this->page_shift + 1)) & this->page_mask; blockpage = (block << 7) | page; return blockpage; } /** * onenand_check_bufferram - [GENERIC] Check BufferRAM information * @param mtd MTD data structure * @param addr address to check * @return 1 if there are valid data, otherwise 0 * * Check bufferram if there is data we required */ static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr) { struct onenand_chip *this = mtd->priv; int blockpage, found = 0; unsigned int i; if (ONENAND_IS_2PLANE(this)) blockpage = onenand_get_2x_blockpage(mtd, addr); else blockpage = (int) (addr >> this->page_shift); /* Is there valid data? */ i = ONENAND_CURRENT_BUFFERRAM(this); if (this->bufferram[i].blockpage == blockpage) found = 1; else { /* Check another BufferRAM */ i = ONENAND_NEXT_BUFFERRAM(this); if (this->bufferram[i].blockpage == blockpage) { ONENAND_SET_NEXT_BUFFERRAM(this); found = 1; } } if (found && ONENAND_IS_DDP(this)) { /* Select DataRAM for DDP */ int block = onenand_block(this, addr); int value = onenand_bufferram_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); } return found; } /** * onenand_update_bufferram - [GENERIC] Update BufferRAM information * @param mtd MTD data structure * @param addr address to update * @param valid valid flag * * Update BufferRAM information */ static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr, int valid) { struct onenand_chip *this = mtd->priv; int blockpage; unsigned int i; if (ONENAND_IS_2PLANE(this)) blockpage = onenand_get_2x_blockpage(mtd, addr); else blockpage = (int) (addr >> this->page_shift); /* Invalidate another BufferRAM */ i = ONENAND_NEXT_BUFFERRAM(this); if (this->bufferram[i].blockpage == blockpage) this->bufferram[i].blockpage = -1; /* Update BufferRAM */ i = ONENAND_CURRENT_BUFFERRAM(this); if (valid) this->bufferram[i].blockpage = blockpage; else this->bufferram[i].blockpage = -1; } /** * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information * @param mtd MTD data structure * @param addr start address to invalidate * @param len length to invalidate * * Invalidate BufferRAM information */ static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr, unsigned int len) { struct onenand_chip *this = mtd->priv; int i; loff_t end_addr = addr + len; /* Invalidate BufferRAM */ for (i = 0; i < MAX_BUFFERRAM; i++) { loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift; if (buf_addr >= addr && buf_addr < end_addr) this->bufferram[i].blockpage = -1; } } /** * onenand_get_device - [GENERIC] Get chip for selected access * @param mtd MTD device structure * @param new_state the state which is requested * * Get the device and lock it for exclusive access */ static int onenand_get_device(struct mtd_info *mtd, int new_state) { struct onenand_chip *this = mtd->priv; DECLARE_WAITQUEUE(wait, current); /* * Grab the lock and see if the device is available */ while (1) { spin_lock(&this->chip_lock); if (this->state == FL_READY) { this->state = new_state; spin_unlock(&this->chip_lock); if (new_state != FL_PM_SUSPENDED && this->enable) this->enable(mtd); break; } if (new_state == FL_PM_SUSPENDED) { spin_unlock(&this->chip_lock); return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN; } set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&this->wq, &wait); spin_unlock(&this->chip_lock); schedule(); remove_wait_queue(&this->wq, &wait); } return 0; } /** * onenand_release_device - [GENERIC] release chip * @param mtd MTD device structure * * Deselect, release chip lock and wake up anyone waiting on the device */ static void onenand_release_device(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; if (this->state != FL_PM_SUSPENDED && this->disable) this->disable(mtd); /* Release the chip */ spin_lock(&this->chip_lock); this->state = FL_READY; wake_up(&this->wq); spin_unlock(&this->chip_lock); } /** * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer * @param mtd MTD device structure * @param buf destination address * @param column oob offset to read from * @param thislen oob length to read */ static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column, int thislen) { struct onenand_chip *this = mtd->priv; int ret; this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0, mtd->oobsize); ret = mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf, column, thislen); if (ret) return ret; return 0; } /** * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data * @param mtd MTD device structure * @param addr address to recover * @param status return value from onenand_wait / onenand_bbt_wait * * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has * lower page address and MSB page has higher page address in paired pages. * If power off occurs during MSB page program, the paired LSB page data can * become corrupt. LSB page recovery read is a way to read LSB page though page * data are corrupted. When uncorrectable error occurs as a result of LSB page * read after power up, issue LSB page recovery read. */ static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status) { struct onenand_chip *this = mtd->priv; int i; /* Recovery is only for Flex-OneNAND */ if (!FLEXONENAND(this)) return status; /* check if we failed due to uncorrectable error */ if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR) return status; /* check if address lies in MLC region */ i = flexonenand_region(mtd, addr); if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift)) return status; /* We are attempting to reread, so decrement stats.failed * which was incremented by onenand_wait due to read failure */ printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n", __func__); mtd->ecc_stats.failed--; /* Issue the LSB page recovery command */ this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize); return this->wait(mtd, FL_READING); } /** * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band * @param mtd MTD device structure * @param from offset to read from * @param ops: oob operation description structure * * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram. * So, read-while-load is not present. */ static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct onenand_chip *this = mtd->priv; struct mtd_ecc_stats stats; size_t len = ops->len; size_t ooblen = ops->ooblen; u_char *buf = ops->datbuf; u_char *oobbuf = ops->oobbuf; int read = 0, column, thislen; int oobread = 0, oobcolumn, thisooblen, oobsize; int ret = 0; int writesize = this->writesize; pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, (int)len); oobsize = mtd_oobavail(mtd, ops); oobcolumn = from & (mtd->oobsize - 1); /* Do not allow reads past end of device */ if (from + len > mtd->size) { printk(KERN_ERR "%s: Attempt read beyond end of device\n", __func__); ops->retlen = 0; ops->oobretlen = 0; return -EINVAL; } stats = mtd->ecc_stats; while (read < len) { cond_resched(); thislen = min_t(int, writesize, len - read); column = from & (writesize - 1); if (column + thislen > writesize) thislen = writesize - column; if (!onenand_check_bufferram(mtd, from)) { this->command(mtd, ONENAND_CMD_READ, from, writesize); ret = this->wait(mtd, FL_READING); if (unlikely(ret)) ret = onenand_recover_lsb(mtd, from, ret); onenand_update_bufferram(mtd, from, !ret); if (mtd_is_eccerr(ret)) ret = 0; if (ret) break; } this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen); if (oobbuf) { thisooblen = oobsize - oobcolumn; thisooblen = min_t(int, thisooblen, ooblen - oobread); if (ops->mode == MTD_OPS_AUTO_OOB) onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen); else this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen); oobread += thisooblen; oobbuf += thisooblen; oobcolumn = 0; } read += thislen; if (read == len) break; from += thislen; buf += thislen; } /* * Return success, if no ECC failures, else -EBADMSG * fs driver will take care of that, because * retlen == desired len and result == -EBADMSG */ ops->retlen = read; ops->oobretlen = oobread; if (ret) return ret; if (mtd->ecc_stats.failed - stats.failed) return -EBADMSG; /* return max bitflips per ecc step; ONENANDs correct 1 bit only */ return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0; } /** * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band * @param mtd MTD device structure * @param from offset to read from * @param ops: oob operation description structure * * OneNAND read main and/or out-of-band data */ static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct onenand_chip *this = mtd->priv; struct mtd_ecc_stats stats; size_t len = ops->len; size_t ooblen = ops->ooblen; u_char *buf = ops->datbuf; u_char *oobbuf = ops->oobbuf; int read = 0, column, thislen; int oobread = 0, oobcolumn, thisooblen, oobsize; int ret = 0, boundary = 0; int writesize = this->writesize; pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, (int)len); oobsize = mtd_oobavail(mtd, ops); oobcolumn = from & (mtd->oobsize - 1); /* Do not allow reads past end of device */ if ((from + len) > mtd->size) { printk(KERN_ERR "%s: Attempt read beyond end of device\n", __func__); ops->retlen = 0; ops->oobretlen = 0; return -EINVAL; } stats = mtd->ecc_stats; /* Read-while-load method */ /* Do first load to bufferRAM */ if (read < len) { if (!onenand_check_bufferram(mtd, from)) { this->command(mtd, ONENAND_CMD_READ, from, writesize); ret = this->wait(mtd, FL_READING); onenand_update_bufferram(mtd, from, !ret); if (mtd_is_eccerr(ret)) ret = 0; } } thislen = min_t(int, writesize, len - read); column = from & (writesize - 1); if (column + thislen > writesize) thislen = writesize - column; while (!ret) { /* If there is more to load then start next load */ from += thislen; if (read + thislen < len) { this->command(mtd, ONENAND_CMD_READ, from, writesize); /* * Chip boundary handling in DDP * Now we issued chip 1 read and pointed chip 1 * bufferram so we have to point chip 0 bufferram. */ if (ONENAND_IS_DDP(this) && unlikely(from == (this->chipsize >> 1))) { this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2); boundary = 1; } else boundary = 0; ONENAND_SET_PREV_BUFFERRAM(this); } /* While load is going, read from last bufferRAM */ this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen); /* Read oob area if needed */ if (oobbuf) { thisooblen = oobsize - oobcolumn; thisooblen = min_t(int, thisooblen, ooblen - oobread); if (ops->mode == MTD_OPS_AUTO_OOB) onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen); else this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen); oobread += thisooblen; oobbuf += thisooblen; oobcolumn = 0; } /* See if we are done */ read += thislen; if (read == len) break; /* Set up for next read from bufferRAM */ if (unlikely(boundary)) this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2); ONENAND_SET_NEXT_BUFFERRAM(this); buf += thislen; thislen = min_t(int, writesize, len - read); column = 0; cond_resched(); /* Now wait for load */ ret = this->wait(mtd, FL_READING); onenand_update_bufferram(mtd, from, !ret); if (mtd_is_eccerr(ret)) ret = 0; } /* * Return success, if no ECC failures, else -EBADMSG * fs driver will take care of that, because * retlen == desired len and result == -EBADMSG */ ops->retlen = read; ops->oobretlen = oobread; if (ret) return ret; if (mtd->ecc_stats.failed - stats.failed) return -EBADMSG; /* return max bitflips per ecc step; ONENANDs correct 1 bit only */ return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0; } /** * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band * @param mtd MTD device structure * @param from offset to read from * @param ops: oob operation description structure * * OneNAND read out-of-band data from the spare area */ static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct onenand_chip *this = mtd->priv; struct mtd_ecc_stats stats; int read = 0, thislen, column, oobsize; size_t len = ops->ooblen; unsigned int mode = ops->mode; u_char *buf = ops->oobbuf; int ret = 0, readcmd; from += ops->ooboffs; pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, (int)len); /* Initialize return length value */ ops->oobretlen = 0; if (mode == MTD_OPS_AUTO_OOB) oobsize = mtd->oobavail; else oobsize = mtd->oobsize; column = from & (mtd->oobsize - 1); if (unlikely(column >= oobsize)) { printk(KERN_ERR "%s: Attempted to start read outside oob\n", __func__); return -EINVAL; } stats = mtd->ecc_stats; readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; while (read < len) { cond_resched(); thislen = oobsize - column; thislen = min_t(int, thislen, len); this->command(mtd, readcmd, from, mtd->oobsize); onenand_update_bufferram(mtd, from, 0); ret = this->wait(mtd, FL_READING); if (unlikely(ret)) ret = onenand_recover_lsb(mtd, from, ret); if (ret && !mtd_is_eccerr(ret)) { printk(KERN_ERR "%s: read failed = 0x%x\n", __func__, ret); break; } if (mode == MTD_OPS_AUTO_OOB) onenand_transfer_auto_oob(mtd, buf, column, thislen); else this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen); read += thislen; if (read == len) break; buf += thislen; /* Read more? */ if (read < len) { /* Page size */ from += mtd->writesize; column = 0; } } ops->oobretlen = read; if (ret) return ret; if (mtd->ecc_stats.failed - stats.failed) return -EBADMSG; return 0; } /** * onenand_read_oob - [MTD Interface] Read main and/or out-of-band * @param mtd: MTD device structure * @param from: offset to read from * @param ops: oob operation description structure * Read main and/or out-of-band */ static int onenand_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct onenand_chip *this = mtd->priv; int ret; switch (ops->mode) { case MTD_OPS_PLACE_OOB: case MTD_OPS_AUTO_OOB: break; case MTD_OPS_RAW: /* Not implemented yet */ default: return -EINVAL; } onenand_get_device(mtd, FL_READING); if (ops->datbuf) ret = ONENAND_IS_4KB_PAGE(this) ? onenand_mlc_read_ops_nolock(mtd, from, ops) : onenand_read_ops_nolock(mtd, from, ops); else ret = onenand_read_oob_nolock(mtd, from, ops); onenand_release_device(mtd); return ret; } /** * onenand_bbt_wait - [DEFAULT] wait until the command is done * @param mtd MTD device structure * @param state state to select the max. timeout value * * Wait for command done. */ static int onenand_bbt_wait(struct mtd_info *mtd, int state) { struct onenand_chip *this = mtd->priv; unsigned long timeout; unsigned int interrupt, ctrl, ecc, addr1, addr8; /* The 20 msec is enough */ timeout = jiffies + msecs_to_jiffies(20); while (time_before(jiffies, timeout)) { interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); if (interrupt & ONENAND_INT_MASTER) break; } /* To get correct interrupt status in timeout case */ interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1); addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8); if (interrupt & ONENAND_INT_READ) { ecc = onenand_read_ecc(this); if (ecc & ONENAND_ECC_2BIT_ALL) { printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x " "intr 0x%04x addr1 %#x addr8 %#x\n", __func__, ecc, ctrl, interrupt, addr1, addr8); return ONENAND_BBT_READ_ECC_ERROR; } } else { printk(KERN_ERR "%s: read timeout! ctrl 0x%04x " "intr 0x%04x addr1 %#x addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8); return ONENAND_BBT_READ_FATAL_ERROR; } /* Initial bad block case: 0x2400 or 0x0400 */ if (ctrl & ONENAND_CTRL_ERROR) { printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x " "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8); return ONENAND_BBT_READ_ERROR; } return 0; } /** * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan * @param mtd MTD device structure * @param from offset to read from * @param ops oob operation description structure * * OneNAND read out-of-band data from the spare area for bbt scan */ int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct onenand_chip *this = mtd->priv; int read = 0, thislen, column; int ret = 0, readcmd; size_t len = ops->ooblen; u_char *buf = ops->oobbuf; pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from, len); /* Initialize return value */ ops->oobretlen = 0; /* Do not allow reads past end of device */ if (unlikely((from + len) > mtd->size)) { printk(KERN_ERR "%s: Attempt read beyond end of device\n", __func__); return ONENAND_BBT_READ_FATAL_ERROR; } /* Grab the lock and see if the device is available */ onenand_get_device(mtd, FL_READING); column = from & (mtd->oobsize - 1); readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; while (read < len) { cond_resched(); thislen = mtd->oobsize - column; thislen = min_t(int, thislen, len); this->command(mtd, readcmd, from, mtd->oobsize); onenand_update_bufferram(mtd, from, 0); ret = this->bbt_wait(mtd, FL_READING); if (unlikely(ret)) ret = onenand_recover_lsb(mtd, from, ret); if (ret) break; this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen); read += thislen; if (read == len) break; buf += thislen; /* Read more? */ if (read < len) { /* Update Page size */ from += this->writesize; column = 0; } } /* Deselect and wake up anyone waiting on the device */ onenand_release_device(mtd); ops->oobretlen = read; return ret; } #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE /** * onenand_verify_oob - [GENERIC] verify the oob contents after a write * @param mtd MTD device structure * @param buf the databuffer to verify * @param to offset to read from */ static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to) { struct onenand_chip *this = mtd->priv; u_char *oob_buf = this->oob_buf; int status, i, readcmd; readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; this->command(mtd, readcmd, to, mtd->oobsize); onenand_update_bufferram(mtd, to, 0); status = this->wait(mtd, FL_READING); if (status) return status; this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize); for (i = 0; i < mtd->oobsize; i++) if (buf[i] != 0xFF && buf[i] != oob_buf[i]) return -EBADMSG; return 0; } /** * onenand_verify - [GENERIC] verify the chip contents after a write * @param mtd MTD device structure * @param buf the databuffer to verify * @param addr offset to read from * @param len number of bytes to read and compare */ static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len) { struct onenand_chip *this = mtd->priv; int ret = 0; int thislen, column; column = addr & (this->writesize - 1); while (len != 0) { thislen = min_t(int, this->writesize - column, len); this->command(mtd, ONENAND_CMD_READ, addr, this->writesize); onenand_update_bufferram(mtd, addr, 0); ret = this->wait(mtd, FL_READING); if (ret) return ret; onenand_update_bufferram(mtd, addr, 1); this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize); if (memcmp(buf, this->verify_buf + column, thislen)) return -EBADMSG; len -= thislen; buf += thislen; addr += thislen; column = 0; } return 0; } #else #define onenand_verify(...) (0) #define onenand_verify_oob(...) (0) #endif #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0) static void onenand_panic_wait(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; unsigned int interrupt; int i; for (i = 0; i < 2000; i++) { interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); if (interrupt & ONENAND_INT_MASTER) break; udelay(10); } } /** * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context * @param mtd MTD device structure * @param to offset to write to * @param len number of bytes to write * @param retlen pointer to variable to store the number of written bytes * @param buf the data to write * * Write with ECC */ static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct onenand_chip *this = mtd->priv; int column, subpage; int written = 0; if (this->state == FL_PM_SUSPENDED) return -EBUSY; /* Wait for any existing operation to clear */ onenand_panic_wait(mtd); pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, (int)len); /* Reject writes, which are not page aligned */ if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { printk(KERN_ERR "%s: Attempt to write not page aligned data\n", __func__); return -EINVAL; } column = to & (mtd->writesize - 1); /* Loop until all data write */ while (written < len) { int thislen = min_t(int, mtd->writesize - column, len - written); u_char *wbuf = (u_char *) buf; this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen); /* Partial page write */ subpage = thislen < mtd->writesize; if (subpage) { memset(this->page_buf, 0xff, mtd->writesize); memcpy(this->page_buf + column, buf, thislen); wbuf = this->page_buf; } this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize); this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize); this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize); onenand_panic_wait(mtd); /* In partial page write we don't update bufferram */ onenand_update_bufferram(mtd, to, !subpage); if (ONENAND_IS_2PLANE(this)) { ONENAND_SET_BUFFERRAM1(this); onenand_update_bufferram(mtd, to + this->writesize, !subpage); } written += thislen; if (written == len) break; column = 0; to += thislen; buf += thislen; } *retlen = written; return 0; } /** * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer * @param mtd MTD device structure * @param oob_buf oob buffer * @param buf source address * @param column oob offset to write to * @param thislen oob length to write */ static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf, const u_char *buf, int column, int thislen) { return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen); } /** * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band * @param mtd MTD device structure * @param to offset to write to * @param ops oob operation description structure * * Write main and/or oob with ECC */ static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { struct onenand_chip *this = mtd->priv; int written = 0, column, thislen = 0, subpage = 0; int prev = 0, prevlen = 0, prev_subpage = 0, first = 1; int oobwritten = 0, oobcolumn, thisooblen, oobsize; size_t len = ops->len; size_t ooblen = ops->ooblen; const u_char *buf = ops->datbuf; const u_char *oob = ops->oobbuf; u_char *oobbuf; int ret = 0, cmd; pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, (int)len); /* Initialize retlen, in case of early exit */ ops->retlen = 0; ops->oobretlen = 0; /* Reject writes, which are not page aligned */ if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { printk(KERN_ERR "%s: Attempt to write not page aligned data\n", __func__); return -EINVAL; } /* Check zero length */ if (!len) return 0; oobsize = mtd_oobavail(mtd, ops); oobcolumn = to & (mtd->oobsize - 1); column = to & (mtd->writesize - 1); /* Loop until all data write */ while (1) { if (written < len) { u_char *wbuf = (u_char *) buf; thislen = min_t(int, mtd->writesize - column, len - written); thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten); cond_resched(); this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen); /* Partial page write */ subpage = thislen < mtd->writesize; if (subpage) { memset(this->page_buf, 0xff, mtd->writesize); memcpy(this->page_buf + column, buf, thislen); wbuf = this->page_buf; } this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize); if (oob) { oobbuf = this->oob_buf; /* We send data to spare ram with oobsize * to prevent byte access */ memset(oobbuf, 0xff, mtd->oobsize); if (ops->mode == MTD_OPS_AUTO_OOB) onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen); else memcpy(oobbuf + oobcolumn, oob, thisooblen); oobwritten += thisooblen; oob += thisooblen; oobcolumn = 0; } else oobbuf = (u_char *) ffchars; this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); } else ONENAND_SET_NEXT_BUFFERRAM(this); /* * 2 PLANE, MLC, and Flex-OneNAND do not support * write-while-program feature. */ if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) { ONENAND_SET_PREV_BUFFERRAM(this); ret = this->wait(mtd, FL_WRITING); /* In partial page write we don't update bufferram */ onenand_update_bufferram(mtd, prev, !ret && !prev_subpage); if (ret) { written -= prevlen; printk(KERN_ERR "%s: write failed %d\n", __func__, ret); break; } if (written == len) { /* Only check verify write turn on */ ret = onenand_verify(mtd, buf - len, to - len, len); if (ret) printk(KERN_ERR "%s: verify failed %d\n", __func__, ret); break; } ONENAND_SET_NEXT_BUFFERRAM(this); } this->ongoing = 0; cmd = ONENAND_CMD_PROG; /* Exclude 1st OTP and OTP blocks for cache program feature */ if (ONENAND_IS_CACHE_PROGRAM(this) && likely(onenand_block(this, to) != 0) && ONENAND_IS_4KB_PAGE(this) && ((written + thislen) < len)) { cmd = ONENAND_CMD_2X_CACHE_PROG; this->ongoing = 1; } this->command(mtd, cmd, to, mtd->writesize); /* * 2 PLANE, MLC, and Flex-OneNAND wait here */ if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) { ret = this->wait(mtd, FL_WRITING); /* In partial page write we don't update bufferram */ onenand_update_bufferram(mtd, to, !ret && !subpage); if (ret) { printk(KERN_ERR "%s: write failed %d\n", __func__, ret); break; } /* Only check verify write turn on */ ret = onenand_verify(mtd, buf, to, thislen); if (ret) { printk(KERN_ERR "%s: verify failed %d\n", __func__, ret); break; } written += thislen; if (written == len) break; } else written += thislen; column = 0; prev_subpage = subpage; prev = to; prevlen = thislen; to += thislen; buf += thislen; first = 0; } /* In error case, clear all bufferrams */ if (written != len) onenand_invalidate_bufferram(mtd, 0, -1); ops->retlen = written; ops->oobretlen = oobwritten; return ret; } /** * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band * @param mtd MTD device structure * @param to offset to write to * @param len number of bytes to write * @param retlen pointer to variable to store the number of written bytes * @param buf the data to write * @param mode operation mode * * OneNAND write out-of-band */ static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { struct onenand_chip *this = mtd->priv; int column, ret = 0, oobsize; int written = 0, oobcmd; u_char *oobbuf; size_t len = ops->ooblen; const u_char *buf = ops->oobbuf; unsigned int mode = ops->mode; to += ops->ooboffs; pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, (int)len); /* Initialize retlen, in case of early exit */ ops->oobretlen = 0; if (mode == MTD_OPS_AUTO_OOB) oobsize = mtd->oobavail; else oobsize = mtd->oobsize; column = to & (mtd->oobsize - 1); if (unlikely(column >= oobsize)) { printk(KERN_ERR "%s: Attempted to start write outside oob\n", __func__); return -EINVAL; } /* For compatibility with NAND: Do not allow write past end of page */ if (unlikely(column + len > oobsize)) { printk(KERN_ERR "%s: Attempt to write past end of page\n", __func__); return -EINVAL; } oobbuf = this->oob_buf; oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB; /* Loop until all data write */ while (written < len) { int thislen = min_t(int, oobsize, len - written); cond_resched(); this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize); /* We send data to spare ram with oobsize * to prevent byte access */ memset(oobbuf, 0xff, mtd->oobsize); if (mode == MTD_OPS_AUTO_OOB) onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen); else memcpy(oobbuf + column, buf, thislen); this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); if (ONENAND_IS_4KB_PAGE(this)) { /* Set main area of DataRAM to 0xff*/ memset(this->page_buf, 0xff, mtd->writesize); this->write_bufferram(mtd, ONENAND_DATARAM, this->page_buf, 0, mtd->writesize); } this->command(mtd, oobcmd, to, mtd->oobsize); onenand_update_bufferram(mtd, to, 0); if (ONENAND_IS_2PLANE(this)) { ONENAND_SET_BUFFERRAM1(this); onenand_update_bufferram(mtd, to + this->writesize, 0); } ret = this->wait(mtd, FL_WRITING); if (ret) { printk(KERN_ERR "%s: write failed %d\n", __func__, ret); break; } ret = onenand_verify_oob(mtd, oobbuf, to); if (ret) { printk(KERN_ERR "%s: verify failed %d\n", __func__, ret); break; } written += thislen; if (written == len) break; to += mtd->writesize; buf += thislen; column = 0; } ops->oobretlen = written; return ret; } /** * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band * @param mtd: MTD device structure * @param to: offset to write * @param ops: oob operation description structure */ static int onenand_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { int ret; switch (ops->mode) { case MTD_OPS_PLACE_OOB: case MTD_OPS_AUTO_OOB: break; case MTD_OPS_RAW: /* Not implemented yet */ default: return -EINVAL; } onenand_get_device(mtd, FL_WRITING); if (ops->datbuf) ret = onenand_write_ops_nolock(mtd, to, ops); else ret = onenand_write_oob_nolock(mtd, to, ops); onenand_release_device(mtd); return ret; } /** * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad * @param mtd MTD device structure * @param ofs offset from device start * @param allowbbt 1, if its allowed to access the bbt area * * Check, if the block is bad. Either by reading the bad block table or * calling of the scan function. */ static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt) { struct onenand_chip *this = mtd->priv; struct bbm_info *bbm = this->bbm; /* Return info from the table */ return bbm->isbad_bbt(mtd, ofs, allowbbt); } static int onenand_multiblock_erase_verify(struct mtd_info *mtd, struct erase_info *instr) { struct onenand_chip *this = mtd->priv; loff_t addr = instr->addr; int len = instr->len; unsigned int block_size = (1 << this->erase_shift); int ret = 0; while (len) { this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size); ret = this->wait(mtd, FL_VERIFYING_ERASE); if (ret) { printk(KERN_ERR "%s: Failed verify, block %d\n", __func__, onenand_block(this, addr)); instr->state = MTD_ERASE_FAILED; instr->fail_addr = addr; return -1; } len -= block_size; addr += block_size; } return 0; } /** * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase * @param mtd MTD device structure * @param instr erase instruction * @param region erase region * * Erase one or more blocks up to 64 block at a time */ static int onenand_multiblock_erase(struct mtd_info *mtd, struct erase_info *instr, unsigned int block_size) { struct onenand_chip *this = mtd->priv; loff_t addr = instr->addr; int len = instr->len; int eb_count = 0; int ret = 0; int bdry_block = 0; instr->state = MTD_ERASING; if (ONENAND_IS_DDP(this)) { loff_t bdry_addr = this->chipsize >> 1; if (addr < bdry_addr && (addr + len) > bdry_addr) bdry_block = bdry_addr >> this->erase_shift; } /* Pre-check bbs */ while (len) { /* Check if we have a bad block, we do not erase bad blocks */ if (onenand_block_isbad_nolock(mtd, addr, 0)) { printk(KERN_WARNING "%s: attempt to erase a bad block " "at addr 0x%012llx\n", __func__, (unsigned long long) addr); instr->state = MTD_ERASE_FAILED; return -EIO; } len -= block_size; addr += block_size; } len = instr->len; addr = instr->addr; /* loop over 64 eb batches */ while (len) { struct erase_info verify_instr = *instr; int max_eb_count = MB_ERASE_MAX_BLK_COUNT; verify_instr.addr = addr; verify_instr.len = 0; /* do not cross chip boundary */ if (bdry_block) { int this_block = (addr >> this->erase_shift); if (this_block < bdry_block) { max_eb_count = min(max_eb_count, (bdry_block - this_block)); } } eb_count = 0; while (len > block_size && eb_count < (max_eb_count - 1)) { this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE, addr, block_size); onenand_invalidate_bufferram(mtd, addr, block_size); ret = this->wait(mtd, FL_PREPARING_ERASE); if (ret) { printk(KERN_ERR "%s: Failed multiblock erase, " "block %d\n", __func__, onenand_block(this, addr)); instr->state = MTD_ERASE_FAILED; instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; return -EIO; } len -= block_size; addr += block_size; eb_count++; } /* last block of 64-eb series */ cond_resched(); this->command(mtd, ONENAND_CMD_ERASE, addr, block_size); onenand_invalidate_bufferram(mtd, addr, block_size); ret = this->wait(mtd, FL_ERASING); /* Check if it is write protected */ if (ret) { printk(KERN_ERR "%s: Failed erase, block %d\n", __func__, onenand_block(this, addr)); instr->state = MTD_ERASE_FAILED; instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; return -EIO; } len -= block_size; addr += block_size; eb_count++; /* verify */ verify_instr.len = eb_count * block_size; if (onenand_multiblock_erase_verify(mtd, &verify_instr)) { instr->state = verify_instr.state; instr->fail_addr = verify_instr.fail_addr; return -EIO; } } return 0; } /** * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase * @param mtd MTD device structure * @param instr erase instruction * @param region erase region * @param block_size erase block size * * Erase one or more blocks one block at a time */ static int onenand_block_by_block_erase(struct mtd_info *mtd, struct erase_info *instr, struct mtd_erase_region_info *region, unsigned int block_size) { struct onenand_chip *this = mtd->priv; loff_t addr = instr->addr; int len = instr->len; loff_t region_end = 0; int ret = 0; if (region) { /* region is set for Flex-OneNAND */ region_end = region->offset + region->erasesize * region->numblocks; } instr->state = MTD_ERASING; /* Loop through the blocks */ while (len) { cond_resched(); /* Check if we have a bad block, we do not erase bad blocks */ if (onenand_block_isbad_nolock(mtd, addr, 0)) { printk(KERN_WARNING "%s: attempt to erase a bad block " "at addr 0x%012llx\n", __func__, (unsigned long long) addr); instr->state = MTD_ERASE_FAILED; return -EIO; } this->command(mtd, ONENAND_CMD_ERASE, addr, block_size); onenand_invalidate_bufferram(mtd, addr, block_size); ret = this->wait(mtd, FL_ERASING); /* Check, if it is write protected */ if (ret) { printk(KERN_ERR "%s: Failed erase, block %d\n", __func__, onenand_block(this, addr)); instr->state = MTD_ERASE_FAILED; instr->fail_addr = addr; return -EIO; } len -= block_size; addr += block_size; if (region && addr == region_end) { if (!len) break; region++; block_size = region->erasesize; region_end = region->offset + region->erasesize * region->numblocks; if (len & (block_size - 1)) { /* FIXME: This should be handled at MTD partitioning level. */ printk(KERN_ERR "%s: Unaligned address\n", __func__); return -EIO; } } } return 0; } /** * onenand_erase - [MTD Interface] erase block(s) * @param mtd MTD device structure * @param instr erase instruction * * Erase one or more blocks */ static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr) { struct onenand_chip *this = mtd->priv; unsigned int block_size; loff_t addr = instr->addr; loff_t len = instr->len; int ret = 0; struct mtd_erase_region_info *region = NULL; loff_t region_offset = 0; pr_debug("%s: start=0x%012llx, len=%llu\n", __func__, (unsigned long long)instr->addr, (unsigned long long)instr->len); if (FLEXONENAND(this)) { /* Find the eraseregion of this address */ int i = flexonenand_region(mtd, addr); region = &mtd->eraseregions[i]; block_size = region->erasesize; /* Start address within region must align on block boundary. * Erase region's start offset is always block start address. */ region_offset = region->offset; } else block_size = 1 << this->erase_shift; /* Start address must align on block boundary */ if (unlikely((addr - region_offset) & (block_size - 1))) { printk(KERN_ERR "%s: Unaligned address\n", __func__); return -EINVAL; } /* Length must align on block boundary */ if (unlikely(len & (block_size - 1))) { printk(KERN_ERR "%s: Length not block aligned\n", __func__); return -EINVAL; } /* Grab the lock and see if the device is available */ onenand_get_device(mtd, FL_ERASING); if (ONENAND_IS_4KB_PAGE(this) || region || instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) { /* region is set for Flex-OneNAND (no mb erase) */ ret = onenand_block_by_block_erase(mtd, instr, region, block_size); } else { ret = onenand_multiblock_erase(mtd, instr, block_size); } /* Deselect and wake up anyone waiting on the device */ onenand_release_device(mtd); /* Do call back function */ if (!ret) { instr->state = MTD_ERASE_DONE; mtd_erase_callback(instr); } return ret; } /** * onenand_sync - [MTD Interface] sync * @param mtd MTD device structure * * Sync is actually a wait for chip ready function */ static void onenand_sync(struct mtd_info *mtd) { pr_debug("%s: called\n", __func__); /* Grab the lock and see if the device is available */ onenand_get_device(mtd, FL_SYNCING); /* Release it and go back */ onenand_release_device(mtd); } /** * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad * @param mtd MTD device structure * @param ofs offset relative to mtd start * * Check whether the block is bad */ static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs) { int ret; onenand_get_device(mtd, FL_READING); ret = onenand_block_isbad_nolock(mtd, ofs, 0); onenand_release_device(mtd); return ret; } /** * onenand_default_block_markbad - [DEFAULT] mark a block bad * @param mtd MTD device structure * @param ofs offset from device start * * This is the default implementation, which can be overridden by * a hardware specific driver. */ static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct onenand_chip *this = mtd->priv; struct bbm_info *bbm = this->bbm; u_char buf[2] = {0, 0}; struct mtd_oob_ops ops = { .mode = MTD_OPS_PLACE_OOB, .ooblen = 2, .oobbuf = buf, .ooboffs = 0, }; int block; /* Get block number */ block = onenand_block(this, ofs); if (bbm->bbt) bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); /* We write two bytes, so we don't have to mess with 16-bit access */ ofs += mtd->oobsize + (bbm->badblockpos & ~0x01); /* FIXME : What to do when marking SLC block in partition * with MLC erasesize? For now, it is not advisable to * create partitions containing both SLC and MLC regions. */ return onenand_write_oob_nolock(mtd, ofs, &ops); } /** * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad * @param mtd MTD device structure * @param ofs offset relative to mtd start * * Mark the block as bad */ static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct onenand_chip *this = mtd->priv; int ret; ret = onenand_block_isbad(mtd, ofs); if (ret) { /* If it was bad already, return success and do nothing */ if (ret > 0) return 0; return ret; } onenand_get_device(mtd, FL_WRITING); ret = this->block_markbad(mtd, ofs); onenand_release_device(mtd); return ret; } /** * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s) * @param mtd MTD device structure * @param ofs offset relative to mtd start * @param len number of bytes to lock or unlock * @param cmd lock or unlock command * * Lock or unlock one or more blocks */ static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd) { struct onenand_chip *this = mtd->priv; int start, end, block, value, status; int wp_status_mask; start = onenand_block(this, ofs); end = onenand_block(this, ofs + len) - 1; if (cmd == ONENAND_CMD_LOCK) wp_status_mask = ONENAND_WP_LS; else wp_status_mask = ONENAND_WP_US; /* Continuous lock scheme */ if (this->options & ONENAND_HAS_CONT_LOCK) { /* Set start block address */ this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS); /* Set end block address */ this->write_word(end, this->base + ONENAND_REG_END_BLOCK_ADDRESS); /* Write lock command */ this->command(mtd, cmd, 0, 0); /* There's no return value */ this->wait(mtd, FL_LOCKING); /* Sanity check */ while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) & ONENAND_CTRL_ONGO) continue; /* Check lock status */ status = this->read_word(this->base + ONENAND_REG_WP_STATUS); if (!(status & wp_status_mask)) printk(KERN_ERR "%s: wp status = 0x%x\n", __func__, status); return 0; } /* Block lock scheme */ for (block = start; block < end + 1; block++) { /* Set block address */ value = onenand_block_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); /* Select DataRAM for DDP */ value = onenand_bufferram_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); /* Set start block address */ this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS); /* Write lock command */ this->command(mtd, cmd, 0, 0); /* There's no return value */ this->wait(mtd, FL_LOCKING); /* Sanity check */ while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) & ONENAND_CTRL_ONGO) continue; /* Check lock status */ status = this->read_word(this->base + ONENAND_REG_WP_STATUS); if (!(status & wp_status_mask)) printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n", __func__, block, status); } return 0; } /** * onenand_lock - [MTD Interface] Lock block(s) * @param mtd MTD device structure * @param ofs offset relative to mtd start * @param len number of bytes to unlock * * Lock one or more blocks */ static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { int ret; onenand_get_device(mtd, FL_LOCKING); ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK); onenand_release_device(mtd); return ret; } /** * onenand_unlock - [MTD Interface] Unlock block(s) * @param mtd MTD device structure * @param ofs offset relative to mtd start * @param len number of bytes to unlock * * Unlock one or more blocks */ static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { int ret; onenand_get_device(mtd, FL_LOCKING); ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); onenand_release_device(mtd); return ret; } /** * onenand_check_lock_status - [OneNAND Interface] Check lock status * @param this onenand chip data structure * * Check lock status */ static int onenand_check_lock_status(struct onenand_chip *this) { unsigned int value, block, status; unsigned int end; end = this->chipsize >> this->erase_shift; for (block = 0; block < end; block++) { /* Set block address */ value = onenand_block_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); /* Select DataRAM for DDP */ value = onenand_bufferram_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); /* Set start block address */ this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS); /* Check lock status */ status = this->read_word(this->base + ONENAND_REG_WP_STATUS); if (!(status & ONENAND_WP_US)) { printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n", __func__, block, status); return 0; } } return 1; } /** * onenand_unlock_all - [OneNAND Interface] unlock all blocks * @param mtd MTD device structure * * Unlock all blocks */ static void onenand_unlock_all(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; loff_t ofs = 0; loff_t len = mtd->size; if (this->options & ONENAND_HAS_UNLOCK_ALL) { /* Set start block address */ this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS); /* Write unlock command */ this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0); /* There's no return value */ this->wait(mtd, FL_LOCKING); /* Sanity check */ while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) & ONENAND_CTRL_ONGO) continue; /* Don't check lock status */ if (this->options & ONENAND_SKIP_UNLOCK_CHECK) return; /* Check lock status */ if (onenand_check_lock_status(this)) return; /* Workaround for all block unlock in DDP */ if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) { /* All blocks on another chip */ ofs = this->chipsize >> 1; len = this->chipsize >> 1; } } onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); } #ifdef CONFIG_MTD_ONENAND_OTP /** * onenand_otp_command - Send OTP specific command to OneNAND device * @param mtd MTD device structure * @param cmd the command to be sent * @param addr offset to read from or write to * @param len number of bytes to read or write */ static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len) { struct onenand_chip *this = mtd->priv; int value, block, page; /* Address translation */ switch (cmd) { case ONENAND_CMD_OTP_ACCESS: block = (int) (addr >> this->erase_shift); page = -1; break; default: block = (int) (addr >> this->erase_shift); page = (int) (addr >> this->page_shift); if (ONENAND_IS_2PLANE(this)) { /* Make the even block number */ block &= ~1; /* Is it the odd plane? */ if (addr & this->writesize) block++; page >>= 1; } page &= this->page_mask; break; } if (block != -1) { /* Write 'DFS, FBA' of Flash */ value = onenand_block_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); } if (page != -1) { /* Now we use page size operation */ int sectors = 4, count = 4; int dataram; switch (cmd) { default: if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG) cmd = ONENAND_CMD_2X_PROG; dataram = ONENAND_CURRENT_BUFFERRAM(this); break; } /* Write 'FPA, FSA' of Flash */ value = onenand_page_address(page, sectors); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8); /* Write 'BSA, BSC' of DataRAM */ value = onenand_buffer_address(dataram, sectors, count); this->write_word(value, this->base + ONENAND_REG_START_BUFFER); } /* Interrupt clear */ this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT); /* Write command */ this->write_word(cmd, this->base + ONENAND_REG_COMMAND); return 0; } /** * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP * @param mtd MTD device structure * @param to offset to write to * @param len number of bytes to write * @param retlen pointer to variable to store the number of written bytes * @param buf the data to write * * OneNAND write out-of-band only for OTP */ static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { struct onenand_chip *this = mtd->priv; int column, ret = 0, oobsize; int written = 0; u_char *oobbuf; size_t len = ops->ooblen; const u_char *buf = ops->oobbuf; int block, value, status; to += ops->ooboffs; /* Initialize retlen, in case of early exit */ ops->oobretlen = 0; oobsize = mtd->oobsize; column = to & (mtd->oobsize - 1); oobbuf = this->oob_buf; /* Loop until all data write */ while (written < len) { int thislen = min_t(int, oobsize, len - written); cond_resched(); block = (int) (to >> this->erase_shift); /* * Write 'DFS, FBA' of Flash * Add: F100h DQ=DFS, FBA */ value = onenand_block_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); /* * Select DataRAM for DDP * Add: F101h DQ=DBS */ value = onenand_bufferram_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); ONENAND_SET_NEXT_BUFFERRAM(this); /* * Enter OTP access mode */ this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); this->wait(mtd, FL_OTPING); /* We send data to spare ram with oobsize * to prevent byte access */ memcpy(oobbuf + column, buf, thislen); /* * Write Data into DataRAM * Add: 8th Word * in sector0/spare/page0 * DQ=XXFCh */ this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize); onenand_update_bufferram(mtd, to, 0); if (ONENAND_IS_2PLANE(this)) { ONENAND_SET_BUFFERRAM1(this); onenand_update_bufferram(mtd, to + this->writesize, 0); } ret = this->wait(mtd, FL_WRITING); if (ret) { printk(KERN_ERR "%s: write failed %d\n", __func__, ret); break; } /* Exit OTP access mode */ this->command(mtd, ONENAND_CMD_RESET, 0, 0); this->wait(mtd, FL_RESETING); status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); status &= 0x60; if (status == 0x60) { printk(KERN_DEBUG "\nBLOCK\tSTATUS\n"); printk(KERN_DEBUG "1st Block\tLOCKED\n"); printk(KERN_DEBUG "OTP Block\tLOCKED\n"); } else if (status == 0x20) { printk(KERN_DEBUG "\nBLOCK\tSTATUS\n"); printk(KERN_DEBUG "1st Block\tLOCKED\n"); printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n"); } else if (status == 0x40) { printk(KERN_DEBUG "\nBLOCK\tSTATUS\n"); printk(KERN_DEBUG "1st Block\tUN-LOCKED\n"); printk(KERN_DEBUG "OTP Block\tLOCKED\n"); } else { printk(KERN_DEBUG "Reboot to check\n"); } written += thislen; if (written == len) break; to += mtd->writesize; buf += thislen; column = 0; } ops->oobretlen = written; return ret; } /* Internal OTP operation */ typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len, size_t *retlen, u_char *buf); /** * do_otp_read - [DEFAULT] Read OTP block area * @param mtd MTD device structure * @param from The offset to read * @param len number of bytes to read * @param retlen pointer to variable to store the number of readbytes * @param buf the databuffer to put/get data * * Read OTP block area. */ static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct onenand_chip *this = mtd->priv; struct mtd_oob_ops ops = { .len = len, .ooblen = 0, .datbuf = buf, .oobbuf = NULL, }; int ret; /* Enter OTP access mode */ this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); this->wait(mtd, FL_OTPING); ret = ONENAND_IS_4KB_PAGE(this) ? onenand_mlc_read_ops_nolock(mtd, from, &ops) : onenand_read_ops_nolock(mtd, from, &ops); /* Exit OTP access mode */ this->command(mtd, ONENAND_CMD_RESET, 0, 0); this->wait(mtd, FL_RESETING); return ret; } /** * do_otp_write - [DEFAULT] Write OTP block area * @param mtd MTD device structure * @param to The offset to write * @param len number of bytes to write * @param retlen pointer to variable to store the number of write bytes * @param buf the databuffer to put/get data * * Write OTP block area. */ static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, u_char *buf) { struct onenand_chip *this = mtd->priv; unsigned char *pbuf = buf; int ret; struct mtd_oob_ops ops; /* Force buffer page aligned */ if (len < mtd->writesize) { memcpy(this->page_buf, buf, len); memset(this->page_buf + len, 0xff, mtd->writesize - len); pbuf = this->page_buf; len = mtd->writesize; } /* Enter OTP access mode */ this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); this->wait(mtd, FL_OTPING); ops.len = len; ops.ooblen = 0; ops.datbuf = pbuf; ops.oobbuf = NULL; ret = onenand_write_ops_nolock(mtd, to, &ops); *retlen = ops.retlen; /* Exit OTP access mode */ this->command(mtd, ONENAND_CMD_RESET, 0, 0); this->wait(mtd, FL_RESETING); return ret; } /** * do_otp_lock - [DEFAULT] Lock OTP block area * @param mtd MTD device structure * @param from The offset to lock * @param len number of bytes to lock * @param retlen pointer to variable to store the number of lock bytes * @param buf the databuffer to put/get data * * Lock OTP block area. */ static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct onenand_chip *this = mtd->priv; struct mtd_oob_ops ops; int ret; if (FLEXONENAND(this)) { /* Enter OTP access mode */ this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); this->wait(mtd, FL_OTPING); /* * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of * main area of page 49. */ ops.len = mtd->writesize; ops.ooblen = 0; ops.datbuf = buf; ops.oobbuf = NULL; ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops); *retlen = ops.retlen; /* Exit OTP access mode */ this->command(mtd, ONENAND_CMD_RESET, 0, 0); this->wait(mtd, FL_RESETING); } else { ops.mode = MTD_OPS_PLACE_OOB; ops.ooblen = len; ops.oobbuf = buf; ops.ooboffs = 0; ret = onenand_otp_write_oob_nolock(mtd, from, &ops); *retlen = ops.oobretlen; } return ret; } /** * onenand_otp_walk - [DEFAULT] Handle OTP operation * @param mtd MTD device structure * @param from The offset to read/write * @param len number of bytes to read/write * @param retlen pointer to variable to store the number of read bytes * @param buf the databuffer to put/get data * @param action do given action * @param mode specify user and factory * * Handle OTP operation. */ static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf, otp_op_t action, int mode) { struct onenand_chip *this = mtd->priv; int otp_pages; int density; int ret = 0; *retlen = 0; density = onenand_get_density(this->device_id); if (density < ONENAND_DEVICE_DENSITY_512Mb) otp_pages = 20; else otp_pages = 50; if (mode == MTD_OTP_FACTORY) { from += mtd->writesize * otp_pages; otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages; } /* Check User/Factory boundary */ if (mode == MTD_OTP_USER) { if (mtd->writesize * otp_pages < from + len) return 0; } else { if (mtd->writesize * otp_pages < len) return 0; } onenand_get_device(mtd, FL_OTPING); while (len > 0 && otp_pages > 0) { if (!action) { /* OTP Info functions */ struct otp_info *otpinfo; len -= sizeof(struct otp_info); if (len <= 0) { ret = -ENOSPC; break; } otpinfo = (struct otp_info *) buf; otpinfo->start = from; otpinfo->length = mtd->writesize; otpinfo->locked = 0; from += mtd->writesize; buf += sizeof(struct otp_info); *retlen += sizeof(struct otp_info); } else { size_t tmp_retlen; ret = action(mtd, from, len, &tmp_retlen, buf); if (ret) break; buf += tmp_retlen; len -= tmp_retlen; *retlen += tmp_retlen; } otp_pages--; } onenand_release_device(mtd); return ret; } /** * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info * @param mtd MTD device structure * @param len number of bytes to read * @param retlen pointer to variable to store the number of read bytes * @param buf the databuffer to put/get data * * Read factory OTP info. */ static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, struct otp_info *buf) { return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY); } /** * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area * @param mtd MTD device structure * @param from The offset to read * @param len number of bytes to read * @param retlen pointer to variable to store the number of read bytes * @param buf the databuffer to put/get data * * Read factory OTP area. */ static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY); } /** * onenand_get_user_prot_info - [MTD Interface] Read user OTP info * @param mtd MTD device structure * @param retlen pointer to variable to store the number of read bytes * @param len number of bytes to read * @param buf the databuffer to put/get data * * Read user OTP info. */ static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, struct otp_info *buf) { return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL, MTD_OTP_USER); } /** * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area * @param mtd MTD device structure * @param from The offset to read * @param len number of bytes to read * @param retlen pointer to variable to store the number of read bytes * @param buf the databuffer to put/get data * * Read user OTP area. */ static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER); } /** * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area * @param mtd MTD device structure * @param from The offset to write * @param len number of bytes to write * @param retlen pointer to variable to store the number of write bytes * @param buf the databuffer to put/get data * * Write user OTP area. */ static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER); } /** * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area * @param mtd MTD device structure * @param from The offset to lock * @param len number of bytes to unlock * * Write lock mark on spare area in page 0 in OTP block */ static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) { struct onenand_chip *this = mtd->priv; u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf; size_t retlen; int ret; unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET; memset(buf, 0xff, FLEXONENAND(this) ? this->writesize : mtd->oobsize); /* * Write lock mark to 8th word of sector0 of page0 of the spare0. * We write 16 bytes spare area instead of 2 bytes. * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of * main area of page 49. */ from = 0; len = FLEXONENAND(this) ? mtd->writesize : 16; /* * Note: OTP lock operation * OTP block : 0xXXFC XX 1111 1100 * 1st block : 0xXXF3 (If chip support) XX 1111 0011 * Both : 0xXXF0 (If chip support) XX 1111 0000 */ if (FLEXONENAND(this)) otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET; /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */ if (otp == 1) buf[otp_lock_offset] = 0xFC; else if (otp == 2) buf[otp_lock_offset] = 0xF3; else if (otp == 3) buf[otp_lock_offset] = 0xF0; else if (otp != 0) printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n"); ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER); return ret ? : retlen; } #endif /* CONFIG_MTD_ONENAND_OTP */ /** * onenand_check_features - Check and set OneNAND features * @param mtd MTD data structure * * Check and set OneNAND features * - lock scheme * - two plane */ static void onenand_check_features(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; unsigned int density, process, numbufs; /* Lock scheme depends on density and process */ density = onenand_get_density(this->device_id); process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT; numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8; /* Lock scheme */ switch (density) { case ONENAND_DEVICE_DENSITY_4Gb: if (ONENAND_IS_DDP(this)) this->options |= ONENAND_HAS_2PLANE; else if (numbufs == 1) { this->options |= ONENAND_HAS_4KB_PAGE; this->options |= ONENAND_HAS_CACHE_PROGRAM; /* * There are two different 4KiB pagesize chips * and no way to detect it by H/W config values. * * To detect the correct NOP for each chips, * It should check the version ID as workaround. * * Now it has as following * KFM4G16Q4M has NOP 4 with version ID 0x0131 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e */ if ((this->version_id & 0xf) == 0xe) this->options |= ONENAND_HAS_NOP_1; } case ONENAND_DEVICE_DENSITY_2Gb: /* 2Gb DDP does not have 2 plane */ if (!ONENAND_IS_DDP(this)) this->options |= ONENAND_HAS_2PLANE; this->options |= ONENAND_HAS_UNLOCK_ALL; case ONENAND_DEVICE_DENSITY_1Gb: /* A-Die has all block unlock */ if (process) this->options |= ONENAND_HAS_UNLOCK_ALL; break; default: /* Some OneNAND has continuous lock scheme */ if (!process) this->options |= ONENAND_HAS_CONT_LOCK; break; } /* The MLC has 4KiB pagesize. */ if (ONENAND_IS_MLC(this)) this->options |= ONENAND_HAS_4KB_PAGE; if (ONENAND_IS_4KB_PAGE(this)) this->options &= ~ONENAND_HAS_2PLANE; if (FLEXONENAND(this)) { this->options &= ~ONENAND_HAS_CONT_LOCK; this->options |= ONENAND_HAS_UNLOCK_ALL; } if (this->options & ONENAND_HAS_CONT_LOCK) printk(KERN_DEBUG "Lock scheme is Continuous Lock\n"); if (this->options & ONENAND_HAS_UNLOCK_ALL) printk(KERN_DEBUG "Chip support all block unlock\n"); if (this->options & ONENAND_HAS_2PLANE) printk(KERN_DEBUG "Chip has 2 plane\n"); if (this->options & ONENAND_HAS_4KB_PAGE) printk(KERN_DEBUG "Chip has 4KiB pagesize\n"); if (this->options & ONENAND_HAS_CACHE_PROGRAM) printk(KERN_DEBUG "Chip has cache program feature\n"); } /** * onenand_print_device_info - Print device & version ID * @param device device ID * @param version version ID * * Print device & version ID */ static void onenand_print_device_info(int device, int version) { int vcc, demuxed, ddp, density, flexonenand; vcc = device & ONENAND_DEVICE_VCC_MASK; demuxed = device & ONENAND_DEVICE_IS_DEMUX; ddp = device & ONENAND_DEVICE_IS_DDP; density = onenand_get_density(device); flexonenand = device & DEVICE_IS_FLEXONENAND; printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n", demuxed ? "" : "Muxed ", flexonenand ? "Flex-" : "", ddp ? "(DDP)" : "", (16 << density), vcc ? "2.65/3.3" : "1.8", device); printk(KERN_INFO "OneNAND version = 0x%04x\n", version); } static const struct onenand_manufacturers onenand_manuf_ids[] = { {ONENAND_MFR_SAMSUNG, "Samsung"}, {ONENAND_MFR_NUMONYX, "Numonyx"}, }; /** * onenand_check_maf - Check manufacturer ID * @param manuf manufacturer ID * * Check manufacturer ID */ static int onenand_check_maf(int manuf) { int size = ARRAY_SIZE(onenand_manuf_ids); char *name; int i; for (i = 0; i < size; i++) if (manuf == onenand_manuf_ids[i].id) break; if (i < size) name = onenand_manuf_ids[i].name; else name = "Unknown"; printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf); return (i == size); } /** * flexonenand_get_boundary - Reads the SLC boundary * @param onenand_info - onenand info structure **/ static int flexonenand_get_boundary(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; unsigned die, bdry; int syscfg, locked; /* Disable ECC */ syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1); for (die = 0; die < this->dies; die++) { this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); this->wait(mtd, FL_SYNCING); this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); this->wait(mtd, FL_READING); bdry = this->read_word(this->base + ONENAND_DATARAM); if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3) locked = 0; else locked = 1; this->boundary[die] = bdry & FLEXONENAND_PI_MASK; this->command(mtd, ONENAND_CMD_RESET, 0, 0); this->wait(mtd, FL_RESETING); printk(KERN_INFO "Die %d boundary: %d%s\n", die, this->boundary[die], locked ? "(Locked)" : "(Unlocked)"); } /* Enable ECC */ this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); return 0; } /** * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info * boundary[], diesize[], mtd->size, mtd->erasesize * @param mtd - MTD device structure */ static void flexonenand_get_size(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; int die, i, eraseshift, density; int blksperdie, maxbdry; loff_t ofs; density = onenand_get_density(this->device_id); blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift); blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; maxbdry = blksperdie - 1; eraseshift = this->erase_shift - 1; mtd->numeraseregions = this->dies << 1; /* This fills up the device boundary */ flexonenand_get_boundary(mtd); die = ofs = 0; i = -1; for (; die < this->dies; die++) { if (!die || this->boundary[die-1] != maxbdry) { i++; mtd->eraseregions[i].offset = ofs; mtd->eraseregions[i].erasesize = 1 << eraseshift; mtd->eraseregions[i].numblocks = this->boundary[die] + 1; ofs += mtd->eraseregions[i].numblocks << eraseshift; eraseshift++; } else { mtd->numeraseregions -= 1; mtd->eraseregions[i].numblocks += this->boundary[die] + 1; ofs += (this->boundary[die] + 1) << (eraseshift - 1); } if (this->boundary[die] != maxbdry) { i++; mtd->eraseregions[i].offset = ofs; mtd->eraseregions[i].erasesize = 1 << eraseshift; mtd->eraseregions[i].numblocks = maxbdry ^ this->boundary[die]; ofs += mtd->eraseregions[i].numblocks << eraseshift; eraseshift--; } else mtd->numeraseregions -= 1; } /* Expose MLC erase size except when all blocks are SLC */ mtd->erasesize = 1 << this->erase_shift; if (mtd->numeraseregions == 1) mtd->erasesize >>= 1; printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions); for (i = 0; i < mtd->numeraseregions; i++) printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x," " numblocks: %04u]\n", (unsigned int) mtd->eraseregions[i].offset, mtd->eraseregions[i].erasesize, mtd->eraseregions[i].numblocks); for (die = 0, mtd->size = 0; die < this->dies; die++) { this->diesize[die] = (loff_t)blksperdie << this->erase_shift; this->diesize[die] -= (loff_t)(this->boundary[die] + 1) << (this->erase_shift - 1); mtd->size += this->diesize[die]; } } /** * flexonenand_check_blocks_erased - Check if blocks are erased * @param mtd_info - mtd info structure * @param start - first erase block to check * @param end - last erase block to check * * Converting an unerased block from MLC to SLC * causes byte values to change. Since both data and its ECC * have changed, reads on the block give uncorrectable error. * This might lead to the block being detected as bad. * * Avoid this by ensuring that the block to be converted is * erased. */ static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end) { struct onenand_chip *this = mtd->priv; int i, ret; int block; struct mtd_oob_ops ops = { .mode = MTD_OPS_PLACE_OOB, .ooboffs = 0, .ooblen = mtd->oobsize, .datbuf = NULL, .oobbuf = this->oob_buf, }; loff_t addr; printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end); for (block = start; block <= end; block++) { addr = flexonenand_addr(this, block); if (onenand_block_isbad_nolock(mtd, addr, 0)) continue; /* * Since main area write results in ECC write to spare, * it is sufficient to check only ECC bytes for change. */ ret = onenand_read_oob_nolock(mtd, addr, &ops); if (ret) return ret; for (i = 0; i < mtd->oobsize; i++) if (this->oob_buf[i] != 0xff) break; if (i != mtd->oobsize) { printk(KERN_WARNING "%s: Block %d not erased.\n", __func__, block); return 1; } } return 0; } /** * flexonenand_set_boundary - Writes the SLC boundary * @param mtd - mtd info structure */ static int flexonenand_set_boundary(struct mtd_info *mtd, int die, int boundary, int lock) { struct onenand_chip *this = mtd->priv; int ret, density, blksperdie, old, new, thisboundary; loff_t addr; /* Change only once for SDP Flex-OneNAND */ if (die && (!ONENAND_IS_DDP(this))) return 0; /* boundary value of -1 indicates no required change */ if (boundary < 0 || boundary == this->boundary[die]) return 0; density = onenand_get_density(this->device_id); blksperdie = ((16 << density) << 20) >> this->erase_shift; blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; if (boundary >= blksperdie) { printk(KERN_ERR "%s: Invalid boundary value. " "Boundary not changed.\n", __func__); return -EINVAL; } /* Check if converting blocks are erased */ old = this->boundary[die] + (die * this->density_mask); new = boundary + (die * this->density_mask); ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new)); if (ret) { printk(KERN_ERR "%s: Please erase blocks " "before boundary change\n", __func__); return ret; } this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); this->wait(mtd, FL_SYNCING); /* Check is boundary is locked */ this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); this->wait(mtd, FL_READING); thisboundary = this->read_word(this->base + ONENAND_DATARAM); if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) { printk(KERN_ERR "%s: boundary locked\n", __func__); ret = 1; goto out; } printk(KERN_INFO "Changing die %d boundary: %d%s\n", die, boundary, lock ? "(Locked)" : "(Unlocked)"); addr = die ? this->diesize[0] : 0; boundary &= FLEXONENAND_PI_MASK; boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT); this->command(mtd, ONENAND_CMD_ERASE, addr, 0); ret = this->wait(mtd, FL_ERASING); if (ret) { printk(KERN_ERR "%s: Failed PI erase for Die %d\n", __func__, die); goto out; } this->write_word(boundary, this->base + ONENAND_DATARAM); this->command(mtd, ONENAND_CMD_PROG, addr, 0); ret = this->wait(mtd, FL_WRITING); if (ret) { printk(KERN_ERR "%s: Failed PI write for Die %d\n", __func__, die); goto out; } this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0); ret = this->wait(mtd, FL_WRITING); out: this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND); this->wait(mtd, FL_RESETING); if (!ret) /* Recalculate device size on boundary change*/ flexonenand_get_size(mtd); return ret; } /** * onenand_chip_probe - [OneNAND Interface] The generic chip probe * @param mtd MTD device structure * * OneNAND detection method: * Compare the values from command with ones from register */ static int onenand_chip_probe(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; int bram_maf_id, bram_dev_id, maf_id, dev_id; int syscfg; /* Save system configuration 1 */ syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); /* Clear Sync. Burst Read mode to read BootRAM */ this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1); /* Send the command for reading device ID from BootRAM */ this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM); /* Read manufacturer and device IDs from BootRAM */ bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0); bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2); /* Reset OneNAND to read default register values */ this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM); /* Wait reset */ this->wait(mtd, FL_RESETING); /* Restore system configuration 1 */ this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); /* Check manufacturer ID */ if (onenand_check_maf(bram_maf_id)) return -ENXIO; /* Read manufacturer and device IDs from Register */ maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID); dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); /* Check OneNAND device */ if (maf_id != bram_maf_id || dev_id != bram_dev_id) return -ENXIO; return 0; } /** * onenand_probe - [OneNAND Interface] Probe the OneNAND device * @param mtd MTD device structure */ static int onenand_probe(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; int dev_id, ver_id; int density; int ret; ret = this->chip_probe(mtd); if (ret) return ret; /* Device and version IDs from Register */ dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID); this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY); /* Flash device information */ onenand_print_device_info(dev_id, ver_id); this->device_id = dev_id; this->version_id = ver_id; /* Check OneNAND features */ onenand_check_features(mtd); density = onenand_get_density(dev_id); if (FLEXONENAND(this)) { this->dies = ONENAND_IS_DDP(this) ? 2 : 1; /* Maximum possible erase regions */ mtd->numeraseregions = this->dies << 1; mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info) * (this->dies << 1), GFP_KERNEL); if (!mtd->eraseregions) return -ENOMEM; } /* * For Flex-OneNAND, chipsize represents maximum possible device size. * mtd->size represents the actual device size. */ this->chipsize = (16 << density) << 20; /* OneNAND page size & block size */ /* The data buffer size is equal to page size */ mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE); /* We use the full BufferRAM */ if (ONENAND_IS_4KB_PAGE(this)) mtd->writesize <<= 1; mtd->oobsize = mtd->writesize >> 5; /* Pages per a block are always 64 in OneNAND */ mtd->erasesize = mtd->writesize << 6; /* * Flex-OneNAND SLC area has 64 pages per block. * Flex-OneNAND MLC area has 128 pages per block. * Expose MLC erase size to find erase_shift and page_mask. */ if (FLEXONENAND(this)) mtd->erasesize <<= 1; this->erase_shift = ffs(mtd->erasesize) - 1; this->page_shift = ffs(mtd->writesize) - 1; this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1; /* Set density mask. it is used for DDP */ if (ONENAND_IS_DDP(this)) this->density_mask = this->chipsize >> (this->erase_shift + 1); /* It's real page size */ this->writesize = mtd->writesize; /* REVISIT: Multichip handling */ if (FLEXONENAND(this)) flexonenand_get_size(mtd); else mtd->size = this->chipsize; /* * We emulate the 4KiB page and 256KiB erase block size * But oobsize is still 64 bytes. * It is only valid if you turn on 2X program support, * Otherwise it will be ignored by compiler. */ if (ONENAND_IS_2PLANE(this)) { mtd->writesize <<= 1; mtd->erasesize <<= 1; } return 0; } /** * onenand_suspend - [MTD Interface] Suspend the OneNAND flash * @param mtd MTD device structure */ static int onenand_suspend(struct mtd_info *mtd) { return onenand_get_device(mtd, FL_PM_SUSPENDED); } /** * onenand_resume - [MTD Interface] Resume the OneNAND flash * @param mtd MTD device structure */ static void onenand_resume(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; if (this->state == FL_PM_SUSPENDED) onenand_release_device(mtd); else printk(KERN_ERR "%s: resume() called for the chip which is not " "in suspended state\n", __func__); } /** * onenand_scan - [OneNAND Interface] Scan for the OneNAND device * @param mtd MTD device structure * @param maxchips Number of chips to scan for * * This fills out all the not initialized function pointers * with the defaults. * The flash ID is read and the mtd/chip structures are * filled with the appropriate values. */ int onenand_scan(struct mtd_info *mtd, int maxchips) { int i, ret; struct onenand_chip *this = mtd->priv; if (!this->read_word) this->read_word = onenand_readw; if (!this->write_word) this->write_word = onenand_writew; if (!this->command) this->command = onenand_command; if (!this->wait) onenand_setup_wait(mtd); if (!this->bbt_wait) this->bbt_wait = onenand_bbt_wait; if (!this->unlock_all) this->unlock_all = onenand_unlock_all; if (!this->chip_probe) this->chip_probe = onenand_chip_probe; if (!this->read_bufferram) this->read_bufferram = onenand_read_bufferram; if (!this->write_bufferram) this->write_bufferram = onenand_write_bufferram; if (!this->block_markbad) this->block_markbad = onenand_default_block_markbad; if (!this->scan_bbt) this->scan_bbt = onenand_default_bbt; if (onenand_probe(mtd)) return -ENXIO; /* Set Sync. Burst Read after probing */ if (this->mmcontrol) { printk(KERN_INFO "OneNAND Sync. Burst Read support\n"); this->read_bufferram = onenand_sync_read_bufferram; } /* Allocate buffers, if necessary */ if (!this->page_buf) { this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL); if (!this->page_buf) return -ENOMEM; #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL); if (!this->verify_buf) { kfree(this->page_buf); return -ENOMEM; } #endif this->options |= ONENAND_PAGEBUF_ALLOC; } if (!this->oob_buf) { this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL); if (!this->oob_buf) { if (this->options & ONENAND_PAGEBUF_ALLOC) { this->options &= ~ONENAND_PAGEBUF_ALLOC; kfree(this->page_buf); } return -ENOMEM; } this->options |= ONENAND_OOBBUF_ALLOC; } this->state = FL_READY; init_waitqueue_head(&this->wq); spin_lock_init(&this->chip_lock); /* * Allow subpage writes up to oobsize. */ switch (mtd->oobsize) { case 128: if (FLEXONENAND(this)) { mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops); mtd->subpage_sft = 0; } else { mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops); mtd->subpage_sft = 2; } if (ONENAND_IS_NOP_1(this)) mtd->subpage_sft = 0; break; case 64: mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops); mtd->subpage_sft = 2; break; case 32: mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops); mtd->subpage_sft = 1; break; default: printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n", __func__, mtd->oobsize); mtd->subpage_sft = 0; /* To prevent kernel oops */ mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops); break; } this->subpagesize = mtd->writesize >> mtd->subpage_sft; /* * The number of bytes available for a client to place data into * the out of band area */ ret = mtd_ooblayout_count_freebytes(mtd); if (ret < 0) ret = 0; mtd->oobavail = ret; mtd->ecc_strength = 1; /* Fill in remaining MTD driver data */ mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH; mtd->flags = MTD_CAP_NANDFLASH; mtd->_erase = onenand_erase; mtd->_point = NULL; mtd->_unpoint = NULL; mtd->_read_oob = onenand_read_oob; mtd->_write_oob = onenand_write_oob; mtd->_panic_write = onenand_panic_write; #ifdef CONFIG_MTD_ONENAND_OTP mtd->_get_fact_prot_info = onenand_get_fact_prot_info; mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg; mtd->_get_user_prot_info = onenand_get_user_prot_info; mtd->_read_user_prot_reg = onenand_read_user_prot_reg; mtd->_write_user_prot_reg = onenand_write_user_prot_reg; mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg; #endif mtd->_sync = onenand_sync; mtd->_lock = onenand_lock; mtd->_unlock = onenand_unlock; mtd->_suspend = onenand_suspend; mtd->_resume = onenand_resume; mtd->_block_isbad = onenand_block_isbad; mtd->_block_markbad = onenand_block_markbad; mtd->owner = THIS_MODULE; mtd->writebufsize = mtd->writesize; /* Unlock whole block */ if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING)) this->unlock_all(mtd); ret = this->scan_bbt(mtd); if ((!FLEXONENAND(this)) || ret) return ret; /* Change Flex-OneNAND boundaries if required */ for (i = 0; i < MAX_DIES; i++) flexonenand_set_boundary(mtd, i, flex_bdry[2 * i], flex_bdry[(2 * i) + 1]); return 0; } /** * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device * @param mtd MTD device structure */ void onenand_release(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; /* Deregister partitions */ mtd_device_unregister(mtd); /* Free bad block table memory, if allocated */ if (this->bbm) { struct bbm_info *bbm = this->bbm; kfree(bbm->bbt); kfree(this->bbm); } /* Buffers allocated by onenand_scan */ if (this->options & ONENAND_PAGEBUF_ALLOC) { kfree(this->page_buf); #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE kfree(this->verify_buf); #endif } if (this->options & ONENAND_OOBBUF_ALLOC) kfree(this->oob_buf); kfree(mtd->eraseregions); } EXPORT_SYMBOL_GPL(onenand_scan); EXPORT_SYMBOL_GPL(onenand_release); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Kyungmin Park "); MODULE_DESCRIPTION("Generic OneNAND flash driver code");