/* linux/drivers/mtd/nand/s3c2410.c * * Copyright © 2004-2008 Simtec Electronics * http://armlinux.simtec.co.uk/ * Ben Dooks <ben@simtec.co.uk> * * Samsung S3C2410/S3C2440/S3C2412 NAND driver * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG #define DEBUG #endif #include <linux/module.h> #include <linux/types.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/ioport.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/clk.h> #include <linux/cpufreq.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/nand_ecc.h> #include <linux/mtd/partitions.h> #include <asm/io.h> #include <plat/regs-nand.h> #include <plat/nand.h> #ifdef CONFIG_MTD_NAND_S3C2410_HWECC static int hardware_ecc = 1; #else static int hardware_ecc = 0; #endif #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP static int clock_stop = 1; #else static const int clock_stop = 0; #endif /* new oob placement block for use with hardware ecc generation */ static struct nand_ecclayout nand_hw_eccoob = { .eccbytes = 3, .eccpos = {0, 1, 2}, .oobfree = {{8, 8}} }; /* controller and mtd information */ struct s3c2410_nand_info; /** * struct s3c2410_nand_mtd - driver MTD structure * @mtd: The MTD instance to pass to the MTD layer. * @chip: The NAND chip information. * @set: The platform information supplied for this set of NAND chips. * @info: Link back to the hardware information. * @scan_res: The result from calling nand_scan_ident(). */ struct s3c2410_nand_mtd { struct mtd_info mtd; struct nand_chip chip; struct s3c2410_nand_set *set; struct s3c2410_nand_info *info; int scan_res; }; enum s3c_cpu_type { TYPE_S3C2410, TYPE_S3C2412, TYPE_S3C2440, }; /* overview of the s3c2410 nand state */ /** * struct s3c2410_nand_info - NAND controller state. * @mtds: An array of MTD instances on this controoler. * @platform: The platform data for this board. * @device: The platform device we bound to. * @area: The IO area resource that came from request_mem_region(). * @clk: The clock resource for this controller. * @regs: The area mapped for the hardware registers described by @area. * @sel_reg: Pointer to the register controlling the NAND selection. * @sel_bit: The bit in @sel_reg to select the NAND chip. * @mtd_count: The number of MTDs created from this controller. * @save_sel: The contents of @sel_reg to be saved over suspend. * @clk_rate: The clock rate from @clk. * @cpu_type: The exact type of this controller. */ struct s3c2410_nand_info { /* mtd info */ struct nand_hw_control controller; struct s3c2410_nand_mtd *mtds; struct s3c2410_platform_nand *platform; /* device info */ struct device *device; struct resource *area; struct clk *clk; void __iomem *regs; void __iomem *sel_reg; int sel_bit; int mtd_count; unsigned long save_sel; unsigned long clk_rate; enum s3c_cpu_type cpu_type; #ifdef CONFIG_CPU_FREQ struct notifier_block freq_transition; #endif }; /* conversion functions */ static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd) { return container_of(mtd, struct s3c2410_nand_mtd, mtd); } static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd) { return s3c2410_nand_mtd_toours(mtd)->info; } static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev) { return platform_get_drvdata(dev); } static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev) { return dev->dev.platform_data; } static inline int allow_clk_stop(struct s3c2410_nand_info *info) { return clock_stop; } /* timing calculations */ #define NS_IN_KHZ 1000000 /** * s3c_nand_calc_rate - calculate timing data. * @wanted: The cycle time in nanoseconds. * @clk: The clock rate in kHz. * @max: The maximum divider value. * * Calculate the timing value from the given parameters. */ static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max) { int result; result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ); pr_debug("result %d from %ld, %d\n", result, clk, wanted); if (result > max) { printk("%d ns is too big for current clock rate %ld\n", wanted, clk); return -1; } if (result < 1) result = 1; return result; } #define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk)) /* controller setup */ /** * s3c2410_nand_setrate - setup controller timing information. * @info: The controller instance. * * Given the information supplied by the platform, calculate and set * the necessary timing registers in the hardware to generate the * necessary timing cycles to the hardware. */ static int s3c2410_nand_setrate(struct s3c2410_nand_info *info) { struct s3c2410_platform_nand *plat = info->platform; int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4; int tacls, twrph0, twrph1; unsigned long clkrate = clk_get_rate(info->clk); unsigned long uninitialized_var(set), cfg, uninitialized_var(mask); unsigned long flags; /* calculate the timing information for the controller */ info->clk_rate = clkrate; clkrate /= 1000; /* turn clock into kHz for ease of use */ if (plat != NULL) { tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max); twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8); twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8); } else { /* default timings */ tacls = tacls_max; twrph0 = 8; twrph1 = 8; } if (tacls < 0 || twrph0 < 0 || twrph1 < 0) { dev_err(info->device, "cannot get suitable timings\n"); return -EINVAL; } dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n", tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate)); switch (info->cpu_type) { case TYPE_S3C2410: mask = (S3C2410_NFCONF_TACLS(3) | S3C2410_NFCONF_TWRPH0(7) | S3C2410_NFCONF_TWRPH1(7)); set = S3C2410_NFCONF_EN; set |= S3C2410_NFCONF_TACLS(tacls - 1); set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1); set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1); break; case TYPE_S3C2440: case TYPE_S3C2412: mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) | S3C2440_NFCONF_TWRPH0(7) | S3C2440_NFCONF_TWRPH1(7)); set = S3C2440_NFCONF_TACLS(tacls - 1); set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1); set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1); break; default: BUG(); } local_irq_save(flags); cfg = readl(info->regs + S3C2410_NFCONF); cfg &= ~mask; cfg |= set; writel(cfg, info->regs + S3C2410_NFCONF); local_irq_restore(flags); dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg); return 0; } /** * s3c2410_nand_inithw - basic hardware initialisation * @info: The hardware state. * * Do the basic initialisation of the hardware, using s3c2410_nand_setrate() * to setup the hardware access speeds and set the controller to be enabled. */ static int s3c2410_nand_inithw(struct s3c2410_nand_info *info) { int ret; ret = s3c2410_nand_setrate(info); if (ret < 0) return ret; switch (info->cpu_type) { case TYPE_S3C2410: default: break; case TYPE_S3C2440: case TYPE_S3C2412: /* enable the controller and de-assert nFCE */ writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT); } return 0; } /** * s3c2410_nand_select_chip - select the given nand chip * @mtd: The MTD instance for this chip. * @chip: The chip number. * * This is called by the MTD layer to either select a given chip for the * @mtd instance, or to indicate that the access has finished and the * chip can be de-selected. * * The routine ensures that the nFCE line is correctly setup, and any * platform specific selection code is called to route nFCE to the specific * chip. */ static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip) { struct s3c2410_nand_info *info; struct s3c2410_nand_mtd *nmtd; struct nand_chip *this = mtd->priv; unsigned long cur; nmtd = this->priv; info = nmtd->info; if (chip != -1 && allow_clk_stop(info)) clk_enable(info->clk); cur = readl(info->sel_reg); if (chip == -1) { cur |= info->sel_bit; } else { if (nmtd->set != NULL && chip > nmtd->set->nr_chips) { dev_err(info->device, "invalid chip %d\n", chip); return; } if (info->platform != NULL) { if (info->platform->select_chip != NULL) (info->platform->select_chip) (nmtd->set, chip); } cur &= ~info->sel_bit; } writel(cur, info->sel_reg); if (chip == -1 && allow_clk_stop(info)) clk_disable(info->clk); } /* s3c2410_nand_hwcontrol * * Issue command and address cycles to the chip */ static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); if (cmd == NAND_CMD_NONE) return; if (ctrl & NAND_CLE) writeb(cmd, info->regs + S3C2410_NFCMD); else writeb(cmd, info->regs + S3C2410_NFADDR); } /* command and control functions */ static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); if (cmd == NAND_CMD_NONE) return; if (ctrl & NAND_CLE) writeb(cmd, info->regs + S3C2440_NFCMD); else writeb(cmd, info->regs + S3C2440_NFADDR); } /* s3c2410_nand_devready() * * returns 0 if the nand is busy, 1 if it is ready */ static int s3c2410_nand_devready(struct mtd_info *mtd) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY; } static int s3c2440_nand_devready(struct mtd_info *mtd) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY; } static int s3c2412_nand_devready(struct mtd_info *mtd) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY; } /* ECC handling functions */ static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); unsigned int diff0, diff1, diff2; unsigned int bit, byte; pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc); diff0 = read_ecc[0] ^ calc_ecc[0]; diff1 = read_ecc[1] ^ calc_ecc[1]; diff2 = read_ecc[2] ^ calc_ecc[2]; pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n", __func__, read_ecc[0], read_ecc[1], read_ecc[2], calc_ecc[0], calc_ecc[1], calc_ecc[2], diff0, diff1, diff2); if (diff0 == 0 && diff1 == 0 && diff2 == 0) return 0; /* ECC is ok */ /* sometimes people do not think about using the ECC, so check * to see if we have an 0xff,0xff,0xff read ECC and then ignore * the error, on the assumption that this is an un-eccd page. */ if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff && info->platform->ignore_unset_ecc) return 0; /* Can we correct this ECC (ie, one row and column change). * Note, this is similar to the 256 error code on smartmedia */ if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 && ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 && ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) { /* calculate the bit position of the error */ bit = ((diff2 >> 3) & 1) | ((diff2 >> 4) & 2) | ((diff2 >> 5) & 4); /* calculate the byte position of the error */ byte = ((diff2 << 7) & 0x100) | ((diff1 << 0) & 0x80) | ((diff1 << 1) & 0x40) | ((diff1 << 2) & 0x20) | ((diff1 << 3) & 0x10) | ((diff0 >> 4) & 0x08) | ((diff0 >> 3) & 0x04) | ((diff0 >> 2) & 0x02) | ((diff0 >> 1) & 0x01); dev_dbg(info->device, "correcting error bit %d, byte %d\n", bit, byte); dat[byte] ^= (1 << bit); return 1; } /* if there is only one bit difference in the ECC, then * one of only a row or column parity has changed, which * means the error is most probably in the ECC itself */ diff0 |= (diff1 << 8); diff0 |= (diff2 << 16); if ((diff0 & ~(1<<fls(diff0))) == 0) return 1; return -1; } /* ECC functions * * These allow the s3c2410 and s3c2440 to use the controller's ECC * generator block to ECC the data as it passes through] */ static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); unsigned long ctrl; ctrl = readl(info->regs + S3C2410_NFCONF); ctrl |= S3C2410_NFCONF_INITECC; writel(ctrl, info->regs + S3C2410_NFCONF); } static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); unsigned long ctrl; ctrl = readl(info->regs + S3C2440_NFCONT); writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT); } static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); unsigned long ctrl; ctrl = readl(info->regs + S3C2440_NFCONT); writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT); } static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0); ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1); ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2); pr_debug("%s: returning ecc %02x%02x%02x\n", __func__, ecc_code[0], ecc_code[1], ecc_code[2]); return 0; } static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); unsigned long ecc = readl(info->regs + S3C2412_NFMECC0); ecc_code[0] = ecc; ecc_code[1] = ecc >> 8; ecc_code[2] = ecc >> 16; pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]); return 0; } static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); unsigned long ecc = readl(info->regs + S3C2440_NFMECC0); ecc_code[0] = ecc; ecc_code[1] = ecc >> 8; ecc_code[2] = ecc >> 16; pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff); return 0; } /* over-ride the standard functions for a little more speed. We can * use read/write block to move the data buffers to/from the controller */ static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) { struct nand_chip *this = mtd->priv; readsb(this->IO_ADDR_R, buf, len); } static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); readsl(info->regs + S3C2440_NFDATA, buf, len >> 2); /* cleanup if we've got less than a word to do */ if (len & 3) { buf += len & ~3; for (; len & 3; len--) *buf++ = readb(info->regs + S3C2440_NFDATA); } } static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) { struct nand_chip *this = mtd->priv; writesb(this->IO_ADDR_W, buf, len); } static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); writesl(info->regs + S3C2440_NFDATA, buf, len >> 2); /* cleanup any fractional write */ if (len & 3) { buf += len & ~3; for (; len & 3; len--, buf++) writeb(*buf, info->regs + S3C2440_NFDATA); } } /* cpufreq driver support */ #ifdef CONFIG_CPU_FREQ static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb, unsigned long val, void *data) { struct s3c2410_nand_info *info; unsigned long newclk; info = container_of(nb, struct s3c2410_nand_info, freq_transition); newclk = clk_get_rate(info->clk); if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) || (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) { s3c2410_nand_setrate(info); } return 0; } static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) { info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition; return cpufreq_register_notifier(&info->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); } static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) { cpufreq_unregister_notifier(&info->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); } #else static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) { return 0; } static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) { } #endif /* device management functions */ static int s3c24xx_nand_remove(struct platform_device *pdev) { struct s3c2410_nand_info *info = to_nand_info(pdev); platform_set_drvdata(pdev, NULL); if (info == NULL) return 0; s3c2410_nand_cpufreq_deregister(info); /* Release all our mtds and their partitions, then go through * freeing the resources used */ if (info->mtds != NULL) { struct s3c2410_nand_mtd *ptr = info->mtds; int mtdno; for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) { pr_debug("releasing mtd %d (%p)\n", mtdno, ptr); nand_release(&ptr->mtd); } kfree(info->mtds); } /* free the common resources */ if (info->clk != NULL && !IS_ERR(info->clk)) { if (!allow_clk_stop(info)) clk_disable(info->clk); clk_put(info->clk); } if (info->regs != NULL) { iounmap(info->regs); info->regs = NULL; } if (info->area != NULL) { release_resource(info->area); kfree(info->area); info->area = NULL; } kfree(info); return 0; } #ifdef CONFIG_MTD_PARTITIONS const char *part_probes[] = { "cmdlinepart", NULL }; static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info, struct s3c2410_nand_mtd *mtd, struct s3c2410_nand_set *set) { struct mtd_partition *part_info; int nr_part = 0; if (set == NULL) return add_mtd_device(&mtd->mtd); if (set->nr_partitions == 0) { mtd->mtd.name = set->name; nr_part = parse_mtd_partitions(&mtd->mtd, part_probes, &part_info, 0); } else { if (set->nr_partitions > 0 && set->partitions != NULL) { nr_part = set->nr_partitions; part_info = set->partitions; } } if (nr_part > 0 && part_info) return add_mtd_partitions(&mtd->mtd, part_info, nr_part); return add_mtd_device(&mtd->mtd); } #else static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info, struct s3c2410_nand_mtd *mtd, struct s3c2410_nand_set *set) { return add_mtd_device(&mtd->mtd); } #endif /** * s3c2410_nand_init_chip - initialise a single instance of an chip * @info: The base NAND controller the chip is on. * @nmtd: The new controller MTD instance to fill in. * @set: The information passed from the board specific platform data. * * Initialise the given @nmtd from the information in @info and @set. This * readies the structure for use with the MTD layer functions by ensuring * all pointers are setup and the necessary control routines selected. */ static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info, struct s3c2410_nand_mtd *nmtd, struct s3c2410_nand_set *set) { struct nand_chip *chip = &nmtd->chip; void __iomem *regs = info->regs; chip->write_buf = s3c2410_nand_write_buf; chip->read_buf = s3c2410_nand_read_buf; chip->select_chip = s3c2410_nand_select_chip; chip->chip_delay = 50; chip->priv = nmtd; chip->options = set->options; chip->controller = &info->controller; switch (info->cpu_type) { case TYPE_S3C2410: chip->IO_ADDR_W = regs + S3C2410_NFDATA; info->sel_reg = regs + S3C2410_NFCONF; info->sel_bit = S3C2410_NFCONF_nFCE; chip->cmd_ctrl = s3c2410_nand_hwcontrol; chip->dev_ready = s3c2410_nand_devready; break; case TYPE_S3C2440: chip->IO_ADDR_W = regs + S3C2440_NFDATA; info->sel_reg = regs + S3C2440_NFCONT; info->sel_bit = S3C2440_NFCONT_nFCE; chip->cmd_ctrl = s3c2440_nand_hwcontrol; chip->dev_ready = s3c2440_nand_devready; chip->read_buf = s3c2440_nand_read_buf; chip->write_buf = s3c2440_nand_write_buf; break; case TYPE_S3C2412: chip->IO_ADDR_W = regs + S3C2440_NFDATA; info->sel_reg = regs + S3C2440_NFCONT; info->sel_bit = S3C2412_NFCONT_nFCE0; chip->cmd_ctrl = s3c2440_nand_hwcontrol; chip->dev_ready = s3c2412_nand_devready; if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT) dev_info(info->device, "System booted from NAND\n"); break; } chip->IO_ADDR_R = chip->IO_ADDR_W; nmtd->info = info; nmtd->mtd.priv = chip; nmtd->mtd.owner = THIS_MODULE; nmtd->set = set; if (hardware_ecc) { chip->ecc.calculate = s3c2410_nand_calculate_ecc; chip->ecc.correct = s3c2410_nand_correct_data; chip->ecc.mode = NAND_ECC_HW; switch (info->cpu_type) { case TYPE_S3C2410: chip->ecc.hwctl = s3c2410_nand_enable_hwecc; chip->ecc.calculate = s3c2410_nand_calculate_ecc; break; case TYPE_S3C2412: chip->ecc.hwctl = s3c2412_nand_enable_hwecc; chip->ecc.calculate = s3c2412_nand_calculate_ecc; break; case TYPE_S3C2440: chip->ecc.hwctl = s3c2440_nand_enable_hwecc; chip->ecc.calculate = s3c2440_nand_calculate_ecc; break; } } else { chip->ecc.mode = NAND_ECC_SOFT; } if (set->ecc_layout != NULL) chip->ecc.layout = set->ecc_layout; if (set->disable_ecc) chip->ecc.mode = NAND_ECC_NONE; switch (chip->ecc.mode) { case NAND_ECC_NONE: dev_info(info->device, "NAND ECC disabled\n"); break; case NAND_ECC_SOFT: dev_info(info->device, "NAND soft ECC\n"); break; case NAND_ECC_HW: dev_info(info->device, "NAND hardware ECC\n"); break; default: dev_info(info->device, "NAND ECC UNKNOWN\n"); break; } /* If you use u-boot BBT creation code, specifying this flag will * let the kernel fish out the BBT from the NAND, and also skip the * full NAND scan that can take 1/2s or so. Little things... */ if (set->flash_bbt) chip->options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN; } /** * s3c2410_nand_update_chip - post probe update * @info: The controller instance. * @nmtd: The driver version of the MTD instance. * * This routine is called after the chip probe has successfully completed * and the relevant per-chip information updated. This call ensure that * we update the internal state accordingly. * * The internal state is currently limited to the ECC state information. */ static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info, struct s3c2410_nand_mtd *nmtd) { struct nand_chip *chip = &nmtd->chip; dev_dbg(info->device, "chip %p => page shift %d\n", chip, chip->page_shift); if (chip->ecc.mode != NAND_ECC_HW) return; /* change the behaviour depending on wether we are using * the large or small page nand device */ if (chip->page_shift > 10) { chip->ecc.size = 256; chip->ecc.bytes = 3; } else { chip->ecc.size = 512; chip->ecc.bytes = 3; chip->ecc.layout = &nand_hw_eccoob; } } /* s3c24xx_nand_probe * * called by device layer when it finds a device matching * one our driver can handled. This code checks to see if * it can allocate all necessary resources then calls the * nand layer to look for devices */ static int s3c24xx_nand_probe(struct platform_device *pdev) { struct s3c2410_platform_nand *plat = to_nand_plat(pdev); enum s3c_cpu_type cpu_type; struct s3c2410_nand_info *info; struct s3c2410_nand_mtd *nmtd; struct s3c2410_nand_set *sets; struct resource *res; int err = 0; int size; int nr_sets; int setno; cpu_type = platform_get_device_id(pdev)->driver_data; pr_debug("s3c2410_nand_probe(%p)\n", pdev); info = kmalloc(sizeof(*info), GFP_KERNEL); if (info == NULL) { dev_err(&pdev->dev, "no memory for flash info\n"); err = -ENOMEM; goto exit_error; } memset(info, 0, sizeof(*info)); platform_set_drvdata(pdev, info); spin_lock_init(&info->controller.lock); init_waitqueue_head(&info->controller.wq); /* get the clock source and enable it */ info->clk = clk_get(&pdev->dev, "nand"); if (IS_ERR(info->clk)) { dev_err(&pdev->dev, "failed to get clock\n"); err = -ENOENT; goto exit_error; } clk_enable(info->clk); /* allocate and map the resource */ /* currently we assume we have the one resource */ res = pdev->resource; size = res->end - res->start + 1; info->area = request_mem_region(res->start, size, pdev->name); if (info->area == NULL) { dev_err(&pdev->dev, "cannot reserve register region\n"); err = -ENOENT; goto exit_error; } info->device = &pdev->dev; info->platform = plat; info->regs = ioremap(res->start, size); info->cpu_type = cpu_type; if (info->regs == NULL) { dev_err(&pdev->dev, "cannot reserve register region\n"); err = -EIO; goto exit_error; } dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs); /* initialise the hardware */ err = s3c2410_nand_inithw(info); if (err != 0) goto exit_error; sets = (plat != NULL) ? plat->sets : NULL; nr_sets = (plat != NULL) ? plat->nr_sets : 1; info->mtd_count = nr_sets; /* allocate our information */ size = nr_sets * sizeof(*info->mtds); info->mtds = kmalloc(size, GFP_KERNEL); if (info->mtds == NULL) { dev_err(&pdev->dev, "failed to allocate mtd storage\n"); err = -ENOMEM; goto exit_error; } memset(info->mtds, 0, size); /* initialise all possible chips */ nmtd = info->mtds; for (setno = 0; setno < nr_sets; setno++, nmtd++) { pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info); s3c2410_nand_init_chip(info, nmtd, sets); nmtd->scan_res = nand_scan_ident(&nmtd->mtd, (sets) ? sets->nr_chips : 1); if (nmtd->scan_res == 0) { s3c2410_nand_update_chip(info, nmtd); nand_scan_tail(&nmtd->mtd); s3c2410_nand_add_partition(info, nmtd, sets); } if (sets != NULL) sets++; } err = s3c2410_nand_cpufreq_register(info); if (err < 0) { dev_err(&pdev->dev, "failed to init cpufreq support\n"); goto exit_error; } if (allow_clk_stop(info)) { dev_info(&pdev->dev, "clock idle support enabled\n"); clk_disable(info->clk); } pr_debug("initialised ok\n"); return 0; exit_error: s3c24xx_nand_remove(pdev); if (err == 0) err = -EINVAL; return err; } /* PM Support */ #ifdef CONFIG_PM static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm) { struct s3c2410_nand_info *info = platform_get_drvdata(dev); if (info) { info->save_sel = readl(info->sel_reg); /* For the moment, we must ensure nFCE is high during * the time we are suspended. This really should be * handled by suspending the MTDs we are using, but * that is currently not the case. */ writel(info->save_sel | info->sel_bit, info->sel_reg); if (!allow_clk_stop(info)) clk_disable(info->clk); } return 0; } static int s3c24xx_nand_resume(struct platform_device *dev) { struct s3c2410_nand_info *info = platform_get_drvdata(dev); unsigned long sel; if (info) { clk_enable(info->clk); s3c2410_nand_inithw(info); /* Restore the state of the nFCE line. */ sel = readl(info->sel_reg); sel &= ~info->sel_bit; sel |= info->save_sel & info->sel_bit; writel(sel, info->sel_reg); if (allow_clk_stop(info)) clk_disable(info->clk); } return 0; } #else #define s3c24xx_nand_suspend NULL #define s3c24xx_nand_resume NULL #endif /* driver device registration */ static struct platform_device_id s3c24xx_driver_ids[] = { { .name = "s3c2410-nand", .driver_data = TYPE_S3C2410, }, { .name = "s3c2440-nand", .driver_data = TYPE_S3C2440, }, { .name = "s3c2412-nand", .driver_data = TYPE_S3C2412, }, { .name = "s3c6400-nand", .driver_data = TYPE_S3C2412, /* compatible with 2412 */ }, { } }; MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids); static struct platform_driver s3c24xx_nand_driver = { .probe = s3c24xx_nand_probe, .remove = s3c24xx_nand_remove, .suspend = s3c24xx_nand_suspend, .resume = s3c24xx_nand_resume, .id_table = s3c24xx_driver_ids, .driver = { .name = "s3c24xx-nand", .owner = THIS_MODULE, }, }; static int __init s3c2410_nand_init(void) { printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n"); return platform_driver_register(&s3c24xx_nand_driver); } static void __exit s3c2410_nand_exit(void) { platform_driver_unregister(&s3c24xx_nand_driver); } module_init(s3c2410_nand_init); module_exit(s3c2410_nand_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); MODULE_DESCRIPTION("S3C24XX MTD NAND driver");