/* * Toshiba TMIO NAND flash controller driver * * Slightly murky pre-git history of the driver: * * Copyright (c) Ian Molton 2004, 2005, 2008 * Original work, independent of sharps code. Included hardware ECC support. * Hard ECC did not work for writes in the early revisions. * Copyright (c) Dirk Opfer 2005. * Modifications developed from sharps code but * NOT containing any, ported onto Ians base. * Copyright (c) Chris Humbert 2005 * Copyright (c) Dmitry Baryshkov 2008 * Minor fixes * * Parts copyright Sebastian Carlier * * This file is licensed under * the terms of the GNU General Public License version 2. This program * is licensed "as is" without any warranty of any kind, whether express * or implied. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /*--------------------------------------------------------------------------*/ /* * NAND Flash Host Controller Configuration Register */ #define CCR_COMMAND 0x04 /* w Command */ #define CCR_BASE 0x10 /* l NAND Flash Control Reg Base Addr */ #define CCR_INTP 0x3d /* b Interrupt Pin */ #define CCR_INTE 0x48 /* b Interrupt Enable */ #define CCR_EC 0x4a /* b Event Control */ #define CCR_ICC 0x4c /* b Internal Clock Control */ #define CCR_ECCC 0x5b /* b ECC Control */ #define CCR_NFTC 0x60 /* b NAND Flash Transaction Control */ #define CCR_NFM 0x61 /* b NAND Flash Monitor */ #define CCR_NFPSC 0x62 /* b NAND Flash Power Supply Control */ #define CCR_NFDC 0x63 /* b NAND Flash Detect Control */ /* * NAND Flash Control Register */ #define FCR_DATA 0x00 /* bwl Data Register */ #define FCR_MODE 0x04 /* b Mode Register */ #define FCR_STATUS 0x05 /* b Status Register */ #define FCR_ISR 0x06 /* b Interrupt Status Register */ #define FCR_IMR 0x07 /* b Interrupt Mask Register */ /* FCR_MODE Register Command List */ #define FCR_MODE_DATA 0x94 /* Data Data_Mode */ #define FCR_MODE_COMMAND 0x95 /* Data Command_Mode */ #define FCR_MODE_ADDRESS 0x96 /* Data Address_Mode */ #define FCR_MODE_HWECC_CALC 0xB4 /* HW-ECC Data */ #define FCR_MODE_HWECC_RESULT 0xD4 /* HW-ECC Calc result Read_Mode */ #define FCR_MODE_HWECC_RESET 0xF4 /* HW-ECC Reset */ #define FCR_MODE_POWER_ON 0x0C /* Power Supply ON to SSFDC card */ #define FCR_MODE_POWER_OFF 0x08 /* Power Supply OFF to SSFDC card */ #define FCR_MODE_LED_OFF 0x00 /* LED OFF */ #define FCR_MODE_LED_ON 0x04 /* LED ON */ #define FCR_MODE_EJECT_ON 0x68 /* Ejection events active */ #define FCR_MODE_EJECT_OFF 0x08 /* Ejection events ignored */ #define FCR_MODE_LOCK 0x6C /* Lock_Mode. Eject Switch Invalid */ #define FCR_MODE_UNLOCK 0x0C /* UnLock_Mode. Eject Switch is valid */ #define FCR_MODE_CONTROLLER_ID 0x40 /* Controller ID Read */ #define FCR_MODE_STANDBY 0x00 /* SSFDC card Changes Standby State */ #define FCR_MODE_WE 0x80 #define FCR_MODE_ECC1 0x40 #define FCR_MODE_ECC0 0x20 #define FCR_MODE_CE 0x10 #define FCR_MODE_PCNT1 0x08 #define FCR_MODE_PCNT0 0x04 #define FCR_MODE_ALE 0x02 #define FCR_MODE_CLE 0x01 #define FCR_STATUS_BUSY 0x80 /*--------------------------------------------------------------------------*/ struct tmio_nand { struct mtd_info mtd; struct nand_chip chip; struct platform_device *dev; void __iomem *ccr; void __iomem *fcr; unsigned long fcr_base; unsigned int irq; /* for tmio_nand_read_byte */ u8 read; unsigned read_good:1; }; #define mtd_to_tmio(m) container_of(m, struct tmio_nand, mtd) /*--------------------------------------------------------------------------*/ static void tmio_nand_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct tmio_nand *tmio = mtd_to_tmio(mtd); struct nand_chip *chip = mtd->priv; if (ctrl & NAND_CTRL_CHANGE) { u8 mode; if (ctrl & NAND_NCE) { mode = FCR_MODE_DATA; if (ctrl & NAND_CLE) mode |= FCR_MODE_CLE; else mode &= ~FCR_MODE_CLE; if (ctrl & NAND_ALE) mode |= FCR_MODE_ALE; else mode &= ~FCR_MODE_ALE; } else { mode = FCR_MODE_STANDBY; } tmio_iowrite8(mode, tmio->fcr + FCR_MODE); tmio->read_good = 0; } if (cmd != NAND_CMD_NONE) tmio_iowrite8(cmd, chip->IO_ADDR_W); } static int tmio_nand_dev_ready(struct mtd_info *mtd) { struct tmio_nand *tmio = mtd_to_tmio(mtd); return !(tmio_ioread8(tmio->fcr + FCR_STATUS) & FCR_STATUS_BUSY); } static irqreturn_t tmio_irq(int irq, void *__tmio) { struct tmio_nand *tmio = __tmio; struct nand_chip *nand_chip = &tmio->chip; /* disable RDYREQ interrupt */ tmio_iowrite8(0x00, tmio->fcr + FCR_IMR); if (unlikely(!waitqueue_active(&nand_chip->controller->wq))) dev_warn(&tmio->dev->dev, "spurious interrupt\n"); wake_up(&nand_chip->controller->wq); return IRQ_HANDLED; } /* *The TMIO core has a RDYREQ interrupt on the posedge of #SMRB. *This interrupt is normally disabled, but for long operations like *erase and write, we enable it to wake us up. The irq handler *disables the interrupt. */ static int tmio_nand_wait(struct mtd_info *mtd, struct nand_chip *nand_chip) { struct tmio_nand *tmio = mtd_to_tmio(mtd); long timeout; /* enable RDYREQ interrupt */ tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR); tmio_iowrite8(0x81, tmio->fcr + FCR_IMR); timeout = wait_event_timeout(nand_chip->controller->wq, tmio_nand_dev_ready(mtd), msecs_to_jiffies(nand_chip->state == FL_ERASING ? 400 : 20)); if (unlikely(!tmio_nand_dev_ready(mtd))) { tmio_iowrite8(0x00, tmio->fcr + FCR_IMR); dev_warn(&tmio->dev->dev, "still busy with %s after %d ms\n", nand_chip->state == FL_ERASING ? "erase" : "program", nand_chip->state == FL_ERASING ? 400 : 20); } else if (unlikely(!timeout)) { tmio_iowrite8(0x00, tmio->fcr + FCR_IMR); dev_warn(&tmio->dev->dev, "timeout waiting for interrupt\n"); } nand_chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); return nand_chip->read_byte(mtd); } /* *The TMIO controller combines two 8-bit data bytes into one 16-bit *word. This function separates them so nand_base.c works as expected, *especially its NAND_CMD_READID routines. * *To prevent stale data from being read, tmio_nand_hwcontrol() clears *tmio->read_good. */ static u_char tmio_nand_read_byte(struct mtd_info *mtd) { struct tmio_nand *tmio = mtd_to_tmio(mtd); unsigned int data; if (tmio->read_good--) return tmio->read; data = tmio_ioread16(tmio->fcr + FCR_DATA); tmio->read = data >> 8; return data; } /* *The TMIO controller converts an 8-bit NAND interface to a 16-bit *bus interface, so all data reads and writes must be 16-bit wide. *Thus, we implement 16-bit versions of the read, write, and verify *buffer functions. */ static void tmio_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) { struct tmio_nand *tmio = mtd_to_tmio(mtd); tmio_iowrite16_rep(tmio->fcr + FCR_DATA, buf, len >> 1); } static void tmio_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) { struct tmio_nand *tmio = mtd_to_tmio(mtd); tmio_ioread16_rep(tmio->fcr + FCR_DATA, buf, len >> 1); } static int tmio_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) { struct tmio_nand *tmio = mtd_to_tmio(mtd); u16 *p = (u16 *) buf; for (len >>= 1; len; len--) if (*(p++) != tmio_ioread16(tmio->fcr + FCR_DATA)) return -EFAULT; return 0; } static void tmio_nand_enable_hwecc(struct mtd_info *mtd, int mode) { struct tmio_nand *tmio = mtd_to_tmio(mtd); tmio_iowrite8(FCR_MODE_HWECC_RESET, tmio->fcr + FCR_MODE); tmio_ioread8(tmio->fcr + FCR_DATA); /* dummy read */ tmio_iowrite8(FCR_MODE_HWECC_CALC, tmio->fcr + FCR_MODE); } static int tmio_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { struct tmio_nand *tmio = mtd_to_tmio(mtd); unsigned int ecc; tmio_iowrite8(FCR_MODE_HWECC_RESULT, tmio->fcr + FCR_MODE); ecc = tmio_ioread16(tmio->fcr + FCR_DATA); ecc_code[1] = ecc; /* 000-255 LP7-0 */ ecc_code[0] = ecc >> 8; /* 000-255 LP15-8 */ ecc = tmio_ioread16(tmio->fcr + FCR_DATA); ecc_code[2] = ecc; /* 000-255 CP5-0,11b */ ecc_code[4] = ecc >> 8; /* 256-511 LP7-0 */ ecc = tmio_ioread16(tmio->fcr + FCR_DATA); ecc_code[3] = ecc; /* 256-511 LP15-8 */ ecc_code[5] = ecc >> 8; /* 256-511 CP5-0,11b */ tmio_iowrite8(FCR_MODE_DATA, tmio->fcr + FCR_MODE); return 0; } static int tmio_nand_correct_data(struct mtd_info *mtd, unsigned char *buf, unsigned char *read_ecc, unsigned char *calc_ecc) { int r0, r1; /* assume ecc.size = 512 and ecc.bytes = 6 */ r0 = __nand_correct_data(buf, read_ecc, calc_ecc, 256); if (r0 < 0) return r0; r1 = __nand_correct_data(buf + 256, read_ecc + 3, calc_ecc + 3, 256); if (r1 < 0) return r1; return r0 + r1; } static int tmio_hw_init(struct platform_device *dev, struct tmio_nand *tmio) { const struct mfd_cell *cell = mfd_get_cell(dev); int ret; if (cell->enable) { ret = cell->enable(dev); if (ret) return ret; } /* (4Ch) CLKRUN Enable 1st spcrunc */ tmio_iowrite8(0x81, tmio->ccr + CCR_ICC); /* (10h)BaseAddress 0x1000 spba.spba2 */ tmio_iowrite16(tmio->fcr_base, tmio->ccr + CCR_BASE); tmio_iowrite16(tmio->fcr_base >> 16, tmio->ccr + CCR_BASE + 2); /* (04h)Command Register I/O spcmd */ tmio_iowrite8(0x02, tmio->ccr + CCR_COMMAND); /* (62h) Power Supply Control ssmpwc */ /* HardPowerOFF - SuspendOFF - PowerSupplyWait_4MS */ tmio_iowrite8(0x02, tmio->ccr + CCR_NFPSC); /* (63h) Detect Control ssmdtc */ tmio_iowrite8(0x02, tmio->ccr + CCR_NFDC); /* Interrupt status register clear sintst */ tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR); /* After power supply, Media are reset smode */ tmio_iowrite8(FCR_MODE_POWER_ON, tmio->fcr + FCR_MODE); tmio_iowrite8(FCR_MODE_COMMAND, tmio->fcr + FCR_MODE); tmio_iowrite8(NAND_CMD_RESET, tmio->fcr + FCR_DATA); /* Standby Mode smode */ tmio_iowrite8(FCR_MODE_STANDBY, tmio->fcr + FCR_MODE); mdelay(5); return 0; } static void tmio_hw_stop(struct platform_device *dev, struct tmio_nand *tmio) { const struct mfd_cell *cell = mfd_get_cell(dev); tmio_iowrite8(FCR_MODE_POWER_OFF, tmio->fcr + FCR_MODE); if (cell->disable) cell->disable(dev); } static int tmio_probe(struct platform_device *dev) { struct tmio_nand_data *data = dev->dev.platform_data; struct resource *fcr = platform_get_resource(dev, IORESOURCE_MEM, 0); struct resource *ccr = platform_get_resource(dev, IORESOURCE_MEM, 1); int irq = platform_get_irq(dev, 0); struct tmio_nand *tmio; struct mtd_info *mtd; struct nand_chip *nand_chip; struct mtd_partition *parts; int nbparts = 0; int retval; if (data == NULL) dev_warn(&dev->dev, "NULL platform data!\n"); tmio = kzalloc(sizeof *tmio, GFP_KERNEL); if (!tmio) { retval = -ENOMEM; goto err_kzalloc; } tmio->dev = dev; platform_set_drvdata(dev, tmio); mtd = &tmio->mtd; nand_chip = &tmio->chip; mtd->priv = nand_chip; mtd->name = "tmio-nand"; tmio->ccr = ioremap(ccr->start, resource_size(ccr)); if (!tmio->ccr) { retval = -EIO; goto err_iomap_ccr; } tmio->fcr_base = fcr->start & 0xfffff; tmio->fcr = ioremap(fcr->start, resource_size(fcr)); if (!tmio->fcr) { retval = -EIO; goto err_iomap_fcr; } retval = tmio_hw_init(dev, tmio); if (retval) goto err_hwinit; /* Set address of NAND IO lines */ nand_chip->IO_ADDR_R = tmio->fcr; nand_chip->IO_ADDR_W = tmio->fcr; /* Set address of hardware control function */ nand_chip->cmd_ctrl = tmio_nand_hwcontrol; nand_chip->dev_ready = tmio_nand_dev_ready; nand_chip->read_byte = tmio_nand_read_byte; nand_chip->write_buf = tmio_nand_write_buf; nand_chip->read_buf = tmio_nand_read_buf; nand_chip->verify_buf = tmio_nand_verify_buf; /* set eccmode using hardware ECC */ nand_chip->ecc.mode = NAND_ECC_HW; nand_chip->ecc.size = 512; nand_chip->ecc.bytes = 6; nand_chip->ecc.hwctl = tmio_nand_enable_hwecc; nand_chip->ecc.calculate = tmio_nand_calculate_ecc; nand_chip->ecc.correct = tmio_nand_correct_data; if (data) nand_chip->badblock_pattern = data->badblock_pattern; /* 15 us command delay time */ nand_chip->chip_delay = 15; retval = request_irq(irq, &tmio_irq, IRQF_DISABLED, dev_name(&dev->dev), tmio); if (retval) { dev_err(&dev->dev, "request_irq error %d\n", retval); goto err_irq; } tmio->irq = irq; nand_chip->waitfunc = tmio_nand_wait; /* Scan to find existence of the device */ if (nand_scan(mtd, 1)) { retval = -ENODEV; goto err_scan; } /* Register the partitions */ nbparts = parse_mtd_partitions(mtd, NULL, &parts, 0); if (nbparts <= 0 && data) { parts = data->partition; nbparts = data->num_partitions; } retval = mtd_device_register(mtd, parts, nbparts); if (!retval) return retval; nand_release(mtd); err_scan: if (tmio->irq) free_irq(tmio->irq, tmio); err_irq: tmio_hw_stop(dev, tmio); err_hwinit: iounmap(tmio->fcr); err_iomap_fcr: iounmap(tmio->ccr); err_iomap_ccr: kfree(tmio); err_kzalloc: return retval; } static int tmio_remove(struct platform_device *dev) { struct tmio_nand *tmio = platform_get_drvdata(dev); nand_release(&tmio->mtd); if (tmio->irq) free_irq(tmio->irq, tmio); tmio_hw_stop(dev, tmio); iounmap(tmio->fcr); iounmap(tmio->ccr); kfree(tmio); return 0; } #ifdef CONFIG_PM static int tmio_suspend(struct platform_device *dev, pm_message_t state) { const struct mfd_cell *cell = mfd_get_cell(dev); if (cell->suspend) cell->suspend(dev); tmio_hw_stop(dev, platform_get_drvdata(dev)); return 0; } static int tmio_resume(struct platform_device *dev) { const struct mfd_cell *cell = mfd_get_cell(dev); /* FIXME - is this required or merely another attack of the broken * SHARP platform? Looks suspicious. */ tmio_hw_init(dev, platform_get_drvdata(dev)); if (cell->resume) cell->resume(dev); return 0; } #else #define tmio_suspend NULL #define tmio_resume NULL #endif static struct platform_driver tmio_driver = { .driver.name = "tmio-nand", .driver.owner = THIS_MODULE, .probe = tmio_probe, .remove = tmio_remove, .suspend = tmio_suspend, .resume = tmio_resume, }; static int __init tmio_init(void) { return platform_driver_register(&tmio_driver); } static void __exit tmio_exit(void) { platform_driver_unregister(&tmio_driver); } module_init(tmio_init); module_exit(tmio_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Ian Molton, Dirk Opfer, Chris Humbert, Dmitry Baryshkov"); MODULE_DESCRIPTION("NAND flash driver on Toshiba Mobile IO controller"); MODULE_ALIAS("platform:tmio-nand");