/* * linux/drivers/mtd/onenand/omap2.c * * OneNAND driver for OMAP2 / OMAP3 * * Copyright © 2005-2006 Nokia Corporation * * Author: Jarkko Lavinen and Juha Yrjölä * IRQ and DMA support written by Timo Teras * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; see the file COPYING. If not, write to the Free Software * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "omap2-onenand" #define ONENAND_IO_SIZE SZ_128K #define ONENAND_BUFRAM_SIZE (1024 * 5) struct omap2_onenand { struct platform_device *pdev; int gpmc_cs; unsigned long phys_base; int gpio_irq; struct mtd_info mtd; struct mtd_partition *parts; struct onenand_chip onenand; struct completion irq_done; struct completion dma_done; int dma_channel; int freq; int (*setup)(void __iomem *base, int *freq_ptr); struct regulator *regulator; }; static const char *part_probes[] = { "cmdlinepart", NULL, }; static void omap2_onenand_dma_cb(int lch, u16 ch_status, void *data) { struct omap2_onenand *c = data; complete(&c->dma_done); } static irqreturn_t omap2_onenand_interrupt(int irq, void *dev_id) { struct omap2_onenand *c = dev_id; complete(&c->irq_done); return IRQ_HANDLED; } static inline unsigned short read_reg(struct omap2_onenand *c, int reg) { return readw(c->onenand.base + reg); } static inline void write_reg(struct omap2_onenand *c, unsigned short value, int reg) { writew(value, c->onenand.base + reg); } static void wait_err(char *msg, int state, unsigned int ctrl, unsigned int intr) { printk(KERN_ERR "onenand_wait: %s! state %d ctrl 0x%04x intr 0x%04x\n", msg, state, ctrl, intr); } static void wait_warn(char *msg, int state, unsigned int ctrl, unsigned int intr) { printk(KERN_WARNING "onenand_wait: %s! state %d ctrl 0x%04x " "intr 0x%04x\n", msg, state, ctrl, intr); } static int omap2_onenand_wait(struct mtd_info *mtd, int state) { struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); struct onenand_chip *this = mtd->priv; unsigned int intr = 0; unsigned int ctrl, ctrl_mask; unsigned long timeout; u32 syscfg; if (state == FL_RESETING || state == FL_PREPARING_ERASE || state == FL_VERIFYING_ERASE) { int i = 21; unsigned int intr_flags = ONENAND_INT_MASTER; switch (state) { case FL_RESETING: intr_flags |= ONENAND_INT_RESET; break; case FL_PREPARING_ERASE: intr_flags |= ONENAND_INT_ERASE; break; case FL_VERIFYING_ERASE: i = 101; break; } while (--i) { udelay(1); intr = read_reg(c, ONENAND_REG_INTERRUPT); if (intr & ONENAND_INT_MASTER) break; } ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); if (ctrl & ONENAND_CTRL_ERROR) { wait_err("controller error", state, ctrl, intr); return -EIO; } if ((intr & intr_flags) == intr_flags) return 0; /* Continue in wait for interrupt branch */ } if (state != FL_READING) { int result; /* Turn interrupts on */ syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); if (!(syscfg & ONENAND_SYS_CFG1_IOBE)) { syscfg |= ONENAND_SYS_CFG1_IOBE; write_reg(c, syscfg, ONENAND_REG_SYS_CFG1); if (cpu_is_omap34xx()) /* Add a delay to let GPIO settle */ syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); } INIT_COMPLETION(c->irq_done); if (c->gpio_irq) { result = gpio_get_value(c->gpio_irq); if (result == -1) { ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); intr = read_reg(c, ONENAND_REG_INTERRUPT); wait_err("gpio error", state, ctrl, intr); return -EIO; } } else result = 0; if (result == 0) { int retry_cnt = 0; retry: result = wait_for_completion_timeout(&c->irq_done, msecs_to_jiffies(20)); if (result == 0) { /* Timeout after 20ms */ ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); if (ctrl & ONENAND_CTRL_ONGO && !this->ongoing) { /* * The operation seems to be still going * so give it some more time. */ retry_cnt += 1; if (retry_cnt < 3) goto retry; intr = read_reg(c, ONENAND_REG_INTERRUPT); wait_err("timeout", state, ctrl, intr); return -EIO; } intr = read_reg(c, ONENAND_REG_INTERRUPT); if ((intr & ONENAND_INT_MASTER) == 0) wait_warn("timeout", state, ctrl, intr); } } } else { int retry_cnt = 0; /* Turn interrupts off */ syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); syscfg &= ~ONENAND_SYS_CFG1_IOBE; write_reg(c, syscfg, ONENAND_REG_SYS_CFG1); timeout = jiffies + msecs_to_jiffies(20); while (1) { if (time_before(jiffies, timeout)) { intr = read_reg(c, ONENAND_REG_INTERRUPT); if (intr & ONENAND_INT_MASTER) break; } else { /* Timeout after 20ms */ ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); if (ctrl & ONENAND_CTRL_ONGO) { /* * The operation seems to be still going * so give it some more time. */ retry_cnt += 1; if (retry_cnt < 3) { timeout = jiffies + msecs_to_jiffies(20); continue; } } break; } } } intr = read_reg(c, ONENAND_REG_INTERRUPT); ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); if (intr & ONENAND_INT_READ) { int ecc = read_reg(c, ONENAND_REG_ECC_STATUS); if (ecc) { unsigned int addr1, addr8; addr1 = read_reg(c, ONENAND_REG_START_ADDRESS1); addr8 = read_reg(c, ONENAND_REG_START_ADDRESS8); if (ecc & ONENAND_ECC_2BIT_ALL) { printk(KERN_ERR "onenand_wait: ECC error = " "0x%04x, addr1 %#x, addr8 %#x\n", ecc, addr1, addr8); mtd->ecc_stats.failed++; return -EBADMSG; } else if (ecc & ONENAND_ECC_1BIT_ALL) { printk(KERN_NOTICE "onenand_wait: correctable " "ECC error = 0x%04x, addr1 %#x, " "addr8 %#x\n", ecc, addr1, addr8); mtd->ecc_stats.corrected++; } } } else if (state == FL_READING) { wait_err("timeout", state, ctrl, intr); return -EIO; } if (ctrl & ONENAND_CTRL_ERROR) { wait_err("controller error", state, ctrl, intr); if (ctrl & ONENAND_CTRL_LOCK) printk(KERN_ERR "onenand_wait: " "Device is write protected!!!\n"); return -EIO; } ctrl_mask = 0xFE9F; if (this->ongoing) ctrl_mask &= ~0x8000; if (ctrl & ctrl_mask) wait_warn("unexpected controller status", state, ctrl, intr); return 0; } static inline int omap2_onenand_bufferram_offset(struct mtd_info *mtd, int area) { struct onenand_chip *this = mtd->priv; if (ONENAND_CURRENT_BUFFERRAM(this)) { if (area == ONENAND_DATARAM) return this->writesize; if (area == ONENAND_SPARERAM) return mtd->oobsize; } return 0; } #if defined(CONFIG_ARCH_OMAP3) || defined(MULTI_OMAP2) static int omap3_onenand_read_bufferram(struct mtd_info *mtd, int area, unsigned char *buffer, int offset, size_t count) { struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); struct onenand_chip *this = mtd->priv; dma_addr_t dma_src, dma_dst; int bram_offset; unsigned long timeout; void *buf = (void *)buffer; size_t xtra; volatile unsigned *done; bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; if (bram_offset & 3 || (size_t)buf & 3 || count < 384) goto out_copy; /* panic_write() may be in an interrupt context */ if (in_interrupt() || oops_in_progress) goto out_copy; if (buf >= high_memory) { struct page *p1; if (((size_t)buf & PAGE_MASK) != ((size_t)(buf + count - 1) & PAGE_MASK)) goto out_copy; p1 = vmalloc_to_page(buf); if (!p1) goto out_copy; buf = page_address(p1) + ((size_t)buf & ~PAGE_MASK); } xtra = count & 3; if (xtra) { count -= xtra; memcpy(buf + count, this->base + bram_offset + count, xtra); } dma_src = c->phys_base + bram_offset; dma_dst = dma_map_single(&c->pdev->dev, buf, count, DMA_FROM_DEVICE); if (dma_mapping_error(&c->pdev->dev, dma_dst)) { dev_err(&c->pdev->dev, "Couldn't DMA map a %d byte buffer\n", count); goto out_copy; } omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S32, count >> 2, 1, 0, 0, 0); omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, dma_src, 0, 0); omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, dma_dst, 0, 0); INIT_COMPLETION(c->dma_done); omap_start_dma(c->dma_channel); timeout = jiffies + msecs_to_jiffies(20); done = &c->dma_done.done; while (time_before(jiffies, timeout)) if (*done) break; dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_FROM_DEVICE); if (!*done) { dev_err(&c->pdev->dev, "timeout waiting for DMA\n"); goto out_copy; } return 0; out_copy: memcpy(buf, this->base + bram_offset, count); return 0; } static int omap3_onenand_write_bufferram(struct mtd_info *mtd, int area, const unsigned char *buffer, int offset, size_t count) { struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); struct onenand_chip *this = mtd->priv; dma_addr_t dma_src, dma_dst; int bram_offset; unsigned long timeout; void *buf = (void *)buffer; volatile unsigned *done; bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; if (bram_offset & 3 || (size_t)buf & 3 || count < 384) goto out_copy; /* panic_write() may be in an interrupt context */ if (in_interrupt() || oops_in_progress) goto out_copy; if (buf >= high_memory) { struct page *p1; if (((size_t)buf & PAGE_MASK) != ((size_t)(buf + count - 1) & PAGE_MASK)) goto out_copy; p1 = vmalloc_to_page(buf); if (!p1) goto out_copy; buf = page_address(p1) + ((size_t)buf & ~PAGE_MASK); } dma_src = dma_map_single(&c->pdev->dev, buf, count, DMA_TO_DEVICE); dma_dst = c->phys_base + bram_offset; if (dma_mapping_error(&c->pdev->dev, dma_src)) { dev_err(&c->pdev->dev, "Couldn't DMA map a %d byte buffer\n", count); return -1; } omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S32, count >> 2, 1, 0, 0, 0); omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, dma_src, 0, 0); omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, dma_dst, 0, 0); INIT_COMPLETION(c->dma_done); omap_start_dma(c->dma_channel); timeout = jiffies + msecs_to_jiffies(20); done = &c->dma_done.done; while (time_before(jiffies, timeout)) if (*done) break; dma_unmap_single(&c->pdev->dev, dma_src, count, DMA_TO_DEVICE); if (!*done) { dev_err(&c->pdev->dev, "timeout waiting for DMA\n"); goto out_copy; } return 0; out_copy: memcpy(this->base + bram_offset, buf, count); return 0; } #else int omap3_onenand_read_bufferram(struct mtd_info *mtd, int area, unsigned char *buffer, int offset, size_t count); int omap3_onenand_write_bufferram(struct mtd_info *mtd, int area, const unsigned char *buffer, int offset, size_t count); #endif #if defined(CONFIG_ARCH_OMAP2) || defined(MULTI_OMAP2) static int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area, unsigned char *buffer, int offset, size_t count) { struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); struct onenand_chip *this = mtd->priv; dma_addr_t dma_src, dma_dst; int bram_offset; bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; /* DMA is not used. Revisit PM requirements before enabling it. */ if (1 || (c->dma_channel < 0) || ((void *) buffer >= (void *) high_memory) || (bram_offset & 3) || (((unsigned int) buffer) & 3) || (count < 1024) || (count & 3)) { memcpy(buffer, (__force void *)(this->base + bram_offset), count); return 0; } dma_src = c->phys_base + bram_offset; dma_dst = dma_map_single(&c->pdev->dev, buffer, count, DMA_FROM_DEVICE); if (dma_mapping_error(&c->pdev->dev, dma_dst)) { dev_err(&c->pdev->dev, "Couldn't DMA map a %d byte buffer\n", count); return -1; } omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S32, count / 4, 1, 0, 0, 0); omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, dma_src, 0, 0); omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, dma_dst, 0, 0); INIT_COMPLETION(c->dma_done); omap_start_dma(c->dma_channel); wait_for_completion(&c->dma_done); dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_FROM_DEVICE); return 0; } static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area, const unsigned char *buffer, int offset, size_t count) { struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); struct onenand_chip *this = mtd->priv; dma_addr_t dma_src, dma_dst; int bram_offset; bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; /* DMA is not used. Revisit PM requirements before enabling it. */ if (1 || (c->dma_channel < 0) || ((void *) buffer >= (void *) high_memory) || (bram_offset & 3) || (((unsigned int) buffer) & 3) || (count < 1024) || (count & 3)) { memcpy((__force void *)(this->base + bram_offset), buffer, count); return 0; } dma_src = dma_map_single(&c->pdev->dev, (void *) buffer, count, DMA_TO_DEVICE); dma_dst = c->phys_base + bram_offset; if (dma_mapping_error(&c->pdev->dev, dma_src)) { dev_err(&c->pdev->dev, "Couldn't DMA map a %d byte buffer\n", count); return -1; } omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S16, count / 2, 1, 0, 0, 0); omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, dma_src, 0, 0); omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, dma_dst, 0, 0); INIT_COMPLETION(c->dma_done); omap_start_dma(c->dma_channel); wait_for_completion(&c->dma_done); dma_unmap_single(&c->pdev->dev, dma_src, count, DMA_TO_DEVICE); return 0; } #else int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area, unsigned char *buffer, int offset, size_t count); int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area, const unsigned char *buffer, int offset, size_t count); #endif static struct platform_driver omap2_onenand_driver; static int __adjust_timing(struct device *dev, void *data) { int ret = 0; struct omap2_onenand *c; c = dev_get_drvdata(dev); BUG_ON(c->setup == NULL); /* DMA is not in use so this is all that is needed */ /* Revisit for OMAP3! */ ret = c->setup(c->onenand.base, &c->freq); return ret; } int omap2_onenand_rephase(void) { return driver_for_each_device(&omap2_onenand_driver.driver, NULL, NULL, __adjust_timing); } static void omap2_onenand_shutdown(struct platform_device *pdev) { struct omap2_onenand *c = dev_get_drvdata(&pdev->dev); /* With certain content in the buffer RAM, the OMAP boot ROM code * can recognize the flash chip incorrectly. Zero it out before * soft reset. */ memset((__force void *)c->onenand.base, 0, ONENAND_BUFRAM_SIZE); } static int omap2_onenand_enable(struct mtd_info *mtd) { int ret; struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); ret = regulator_enable(c->regulator); if (ret != 0) dev_err(&c->pdev->dev, "can't enable regulator\n"); return ret; } static int omap2_onenand_disable(struct mtd_info *mtd) { int ret; struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); ret = regulator_disable(c->regulator); if (ret != 0) dev_err(&c->pdev->dev, "can't disable regulator\n"); return ret; } static int __devinit omap2_onenand_probe(struct platform_device *pdev) { struct omap_onenand_platform_data *pdata; struct omap2_onenand *c; struct onenand_chip *this; int r; pdata = pdev->dev.platform_data; if (pdata == NULL) { dev_err(&pdev->dev, "platform data missing\n"); return -ENODEV; } c = kzalloc(sizeof(struct omap2_onenand), GFP_KERNEL); if (!c) return -ENOMEM; init_completion(&c->irq_done); init_completion(&c->dma_done); c->gpmc_cs = pdata->cs; c->gpio_irq = pdata->gpio_irq; c->dma_channel = pdata->dma_channel; if (c->dma_channel < 0) { /* if -1, don't use DMA */ c->gpio_irq = 0; } r = gpmc_cs_request(c->gpmc_cs, ONENAND_IO_SIZE, &c->phys_base); if (r < 0) { dev_err(&pdev->dev, "Cannot request GPMC CS\n"); goto err_kfree; } if (request_mem_region(c->phys_base, ONENAND_IO_SIZE, pdev->dev.driver->name) == NULL) { dev_err(&pdev->dev, "Cannot reserve memory region at 0x%08lx, " "size: 0x%x\n", c->phys_base, ONENAND_IO_SIZE); r = -EBUSY; goto err_free_cs; } c->onenand.base = ioremap(c->phys_base, ONENAND_IO_SIZE); if (c->onenand.base == NULL) { r = -ENOMEM; goto err_release_mem_region; } if (pdata->onenand_setup != NULL) { r = pdata->onenand_setup(c->onenand.base, &c->freq); if (r < 0) { dev_err(&pdev->dev, "Onenand platform setup failed: " "%d\n", r); goto err_iounmap; } c->setup = pdata->onenand_setup; } if (c->gpio_irq) { if ((r = gpio_request(c->gpio_irq, "OneNAND irq")) < 0) { dev_err(&pdev->dev, "Failed to request GPIO%d for " "OneNAND\n", c->gpio_irq); goto err_iounmap; } gpio_direction_input(c->gpio_irq); if ((r = request_irq(gpio_to_irq(c->gpio_irq), omap2_onenand_interrupt, IRQF_TRIGGER_RISING, pdev->dev.driver->name, c)) < 0) goto err_release_gpio; } if (c->dma_channel >= 0) { r = omap_request_dma(0, pdev->dev.driver->name, omap2_onenand_dma_cb, (void *) c, &c->dma_channel); if (r == 0) { omap_set_dma_write_mode(c->dma_channel, OMAP_DMA_WRITE_NON_POSTED); omap_set_dma_src_data_pack(c->dma_channel, 1); omap_set_dma_src_burst_mode(c->dma_channel, OMAP_DMA_DATA_BURST_8); omap_set_dma_dest_data_pack(c->dma_channel, 1); omap_set_dma_dest_burst_mode(c->dma_channel, OMAP_DMA_DATA_BURST_8); } else { dev_info(&pdev->dev, "failed to allocate DMA for OneNAND, " "using PIO instead\n"); c->dma_channel = -1; } } dev_info(&pdev->dev, "initializing on CS%d, phys base 0x%08lx, virtual " "base %p, freq %d MHz\n", c->gpmc_cs, c->phys_base, c->onenand.base, c->freq); c->pdev = pdev; c->mtd.name = dev_name(&pdev->dev); c->mtd.priv = &c->onenand; c->mtd.owner = THIS_MODULE; c->mtd.dev.parent = &pdev->dev; this = &c->onenand; if (c->dma_channel >= 0) { this->wait = omap2_onenand_wait; if (cpu_is_omap34xx()) { this->read_bufferram = omap3_onenand_read_bufferram; this->write_bufferram = omap3_onenand_write_bufferram; } else { this->read_bufferram = omap2_onenand_read_bufferram; this->write_bufferram = omap2_onenand_write_bufferram; } } if (pdata->regulator_can_sleep) { c->regulator = regulator_get(&pdev->dev, "vonenand"); if (IS_ERR(c->regulator)) { dev_err(&pdev->dev, "Failed to get regulator\n"); r = PTR_ERR(c->regulator); goto err_release_dma; } c->onenand.enable = omap2_onenand_enable; c->onenand.disable = omap2_onenand_disable; } if (pdata->skip_initial_unlocking) this->options |= ONENAND_SKIP_INITIAL_UNLOCKING; if ((r = onenand_scan(&c->mtd, 1)) < 0) goto err_release_regulator; r = parse_mtd_partitions(&c->mtd, part_probes, &c->parts, 0); if (r > 0) r = mtd_device_register(&c->mtd, c->parts, r); else if (pdata->parts != NULL) r = mtd_device_register(&c->mtd, pdata->parts, pdata->nr_parts); else r = mtd_device_register(&c->mtd, NULL, 0); if (r) goto err_release_onenand; platform_set_drvdata(pdev, c); return 0; err_release_onenand: onenand_release(&c->mtd); err_release_regulator: regulator_put(c->regulator); err_release_dma: if (c->dma_channel != -1) omap_free_dma(c->dma_channel); if (c->gpio_irq) free_irq(gpio_to_irq(c->gpio_irq), c); err_release_gpio: if (c->gpio_irq) gpio_free(c->gpio_irq); err_iounmap: iounmap(c->onenand.base); err_release_mem_region: release_mem_region(c->phys_base, ONENAND_IO_SIZE); err_free_cs: gpmc_cs_free(c->gpmc_cs); err_kfree: kfree(c->parts); kfree(c); return r; } static int __devexit omap2_onenand_remove(struct platform_device *pdev) { struct omap2_onenand *c = dev_get_drvdata(&pdev->dev); onenand_release(&c->mtd); regulator_put(c->regulator); if (c->dma_channel != -1) omap_free_dma(c->dma_channel); omap2_onenand_shutdown(pdev); platform_set_drvdata(pdev, NULL); if (c->gpio_irq) { free_irq(gpio_to_irq(c->gpio_irq), c); gpio_free(c->gpio_irq); } iounmap(c->onenand.base); release_mem_region(c->phys_base, ONENAND_IO_SIZE); gpmc_cs_free(c->gpmc_cs); kfree(c->parts); kfree(c); return 0; } static struct platform_driver omap2_onenand_driver = { .probe = omap2_onenand_probe, .remove = __devexit_p(omap2_onenand_remove), .shutdown = omap2_onenand_shutdown, .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, }, }; static int __init omap2_onenand_init(void) { printk(KERN_INFO "OneNAND driver initializing\n"); return platform_driver_register(&omap2_onenand_driver); } static void __exit omap2_onenand_exit(void) { platform_driver_unregister(&omap2_onenand_driver); } module_init(omap2_onenand_init); module_exit(omap2_onenand_exit); MODULE_ALIAS("platform:" DRIVER_NAME); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Jarkko Lavinen "); MODULE_DESCRIPTION("Glue layer for OneNAND flash on OMAP2 / OMAP3");