// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2005, Intec Automation Inc. * Copyright (C) 2014, Freescale Semiconductor, Inc. */ #include #include #include #include #include "core.h" /* flash_info mfr_flag. Used to clear sticky prorietary SR bits. */ #define USE_CLSR BIT(0) #define USE_CLPEF BIT(1) #define SPINOR_OP_CLSR 0x30 /* Clear status register 1 */ #define SPINOR_OP_CLPEF 0x82 /* Clear program/erase failure flags */ #define SPINOR_OP_CYPRESS_DIE_ERASE 0x61 /* Chip (die) erase */ #define SPINOR_OP_RD_ANY_REG 0x65 /* Read any register */ #define SPINOR_OP_WR_ANY_REG 0x71 /* Write any register */ #define SPINOR_REG_CYPRESS_VREG 0x00800000 #define SPINOR_REG_CYPRESS_STR1 0x0 #define SPINOR_REG_CYPRESS_STR1V \ (SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_STR1) #define SPINOR_REG_CYPRESS_CFR1 0x2 #define SPINOR_REG_CYPRESS_CFR1_QUAD_EN BIT(1) /* Quad Enable */ #define SPINOR_REG_CYPRESS_CFR2 0x3 #define SPINOR_REG_CYPRESS_CFR2V \ (SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_CFR2) #define SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK GENMASK(3, 0) #define SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24 0xb #define SPINOR_REG_CYPRESS_CFR2_ADRBYT BIT(7) #define SPINOR_REG_CYPRESS_CFR3 0x4 #define SPINOR_REG_CYPRESS_CFR3_PGSZ BIT(4) /* Page size. */ #define SPINOR_REG_CYPRESS_CFR5 0x6 #define SPINOR_REG_CYPRESS_CFR5_BIT6 BIT(6) #define SPINOR_REG_CYPRESS_CFR5_DDR BIT(1) #define SPINOR_REG_CYPRESS_CFR5_OPI BIT(0) #define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN \ (SPINOR_REG_CYPRESS_CFR5_BIT6 | SPINOR_REG_CYPRESS_CFR5_DDR | \ SPINOR_REG_CYPRESS_CFR5_OPI) #define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS SPINOR_REG_CYPRESS_CFR5_BIT6 #define SPINOR_OP_CYPRESS_RD_FAST 0xee #define SPINOR_REG_CYPRESS_ARCFN 0x00000006 /* Cypress SPI NOR flash operations. */ #define CYPRESS_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 0), \ SPI_MEM_OP_ADDR(naddr, addr, 0), \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_DATA_OUT(ndata, buf, 0)) #define CYPRESS_NOR_RD_ANY_REG_OP(naddr, addr, ndummy, buf) \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 0), \ SPI_MEM_OP_ADDR(naddr, addr, 0), \ SPI_MEM_OP_DUMMY(ndummy, 0), \ SPI_MEM_OP_DATA_IN(1, buf, 0)) #define SPANSION_OP(opcode) \ SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_NO_DATA) /** * struct spansion_nor_params - Spansion private parameters. * @clsr: Clear Status Register or Clear Program and Erase Failure Flag * opcode. */ struct spansion_nor_params { u8 clsr; }; /** * spansion_nor_clear_sr() - Clear the Status Register. * @nor: pointer to 'struct spi_nor'. */ static void spansion_nor_clear_sr(struct spi_nor *nor) { const struct spansion_nor_params *priv_params = nor->params->priv; int ret; if (nor->spimem) { struct spi_mem_op op = SPANSION_OP(priv_params->clsr); spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); ret = spi_mem_exec_op(nor->spimem, &op); } else { ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR, NULL, 0); } if (ret) dev_dbg(nor->dev, "error %d clearing SR\n", ret); } static int cypress_nor_sr_ready_and_clear_reg(struct spi_nor *nor, u64 addr) { struct spi_nor_flash_parameter *params = nor->params; struct spi_mem_op op = CYPRESS_NOR_RD_ANY_REG_OP(params->addr_mode_nbytes, addr, 0, nor->bouncebuf); int ret; if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) { op.dummy.nbytes = params->rdsr_dummy; op.data.nbytes = 2; } ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) { if (nor->bouncebuf[0] & SR_E_ERR) dev_err(nor->dev, "Erase Error occurred\n"); else dev_err(nor->dev, "Programming Error occurred\n"); spansion_nor_clear_sr(nor); ret = spi_nor_write_disable(nor); if (ret) return ret; return -EIO; } return !(nor->bouncebuf[0] & SR_WIP); } /** * cypress_nor_sr_ready_and_clear() - Query the Status Register of each die by * using Read Any Register command to see if the whole flash is ready for new * commands and clear it if there are any errors. * @nor: pointer to 'struct spi_nor'. * * Return: 1 if ready, 0 if not ready, -errno on errors. */ static int cypress_nor_sr_ready_and_clear(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; u64 addr; int ret; u8 i; for (i = 0; i < params->n_dice; i++) { addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_STR1; ret = cypress_nor_sr_ready_and_clear_reg(nor, addr); if (ret < 0) return ret; else if (ret == 0) return 0; } return 1; } static int cypress_nor_set_memlat(struct spi_nor *nor, u64 addr) { struct spi_mem_op op; u8 *buf = nor->bouncebuf; int ret; u8 addr_mode_nbytes = nor->params->addr_mode_nbytes; op = (struct spi_mem_op) CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, buf); ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; /* Use 24 dummy cycles for memory array reads. */ *buf &= ~SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK; *buf |= FIELD_PREP(SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK, SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24); op = (struct spi_mem_op) CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1, buf); ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); if (ret) return ret; nor->read_dummy = 24; return 0; } static int cypress_nor_set_octal_dtr_bits(struct spi_nor *nor, u64 addr) { struct spi_mem_op op; u8 *buf = nor->bouncebuf; /* Set the octal and DTR enable bits. */ buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN; op = (struct spi_mem_op) CYPRESS_NOR_WR_ANY_REG_OP(nor->params->addr_mode_nbytes, addr, 1, buf); return spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); } static int cypress_nor_octal_dtr_en(struct spi_nor *nor) { const struct spi_nor_flash_parameter *params = nor->params; u8 *buf = nor->bouncebuf; u64 addr; int i, ret; for (i = 0; i < params->n_dice; i++) { addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR2; ret = cypress_nor_set_memlat(nor, addr); if (ret) return ret; addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5; ret = cypress_nor_set_octal_dtr_bits(nor, addr); if (ret) return ret; } /* Read flash ID to make sure the switch was successful. */ ret = spi_nor_read_id(nor, nor->addr_nbytes, 3, buf, SNOR_PROTO_8_8_8_DTR); if (ret) { dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret); return ret; } if (memcmp(buf, nor->info->id->bytes, nor->info->id->len)) return -EINVAL; return 0; } static int cypress_nor_set_single_spi_bits(struct spi_nor *nor, u64 addr) { struct spi_mem_op op; u8 *buf = nor->bouncebuf; /* * The register is 1-byte wide, but 1-byte transactions are not allowed * in 8D-8D-8D mode. Since there is no register at the next location, * just initialize the value to 0 and let the transaction go on. */ buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS; buf[1] = 0; op = (struct spi_mem_op) CYPRESS_NOR_WR_ANY_REG_OP(nor->addr_nbytes, addr, 2, buf); return spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR); } static int cypress_nor_octal_dtr_dis(struct spi_nor *nor) { const struct spi_nor_flash_parameter *params = nor->params; u8 *buf = nor->bouncebuf; u64 addr; int i, ret; for (i = 0; i < params->n_dice; i++) { addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5; ret = cypress_nor_set_single_spi_bits(nor, addr); if (ret) return ret; } /* Read flash ID to make sure the switch was successful. */ ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1); if (ret) { dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret); return ret; } if (memcmp(buf, nor->info->id->bytes, nor->info->id->len)) return -EINVAL; return 0; } static int cypress_nor_quad_enable_volatile_reg(struct spi_nor *nor, u64 addr) { struct spi_mem_op op; u8 addr_mode_nbytes = nor->params->addr_mode_nbytes; u8 cfr1v_written; int ret; op = (struct spi_mem_op) CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, nor->bouncebuf); ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR1_QUAD_EN) return 0; /* Update the Quad Enable bit. */ nor->bouncebuf[0] |= SPINOR_REG_CYPRESS_CFR1_QUAD_EN; op = (struct spi_mem_op) CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1, nor->bouncebuf); ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); if (ret) return ret; cfr1v_written = nor->bouncebuf[0]; /* Read back and check it. */ op = (struct spi_mem_op) CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, nor->bouncebuf); ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; if (nor->bouncebuf[0] != cfr1v_written) { dev_err(nor->dev, "CFR1: Read back test failed\n"); return -EIO; } return 0; } /** * cypress_nor_quad_enable_volatile() - enable Quad I/O mode in volatile * register. * @nor: pointer to a 'struct spi_nor' * * It is recommended to update volatile registers in the field application due * to a risk of the non-volatile registers corruption by power interrupt. This * function sets Quad Enable bit in CFR1 volatile. If users set the Quad Enable * bit in the CFR1 non-volatile in advance (typically by a Flash programmer * before mounting Flash on PCB), the Quad Enable bit in the CFR1 volatile is * also set during Flash power-up. * * Return: 0 on success, -errno otherwise. */ static int cypress_nor_quad_enable_volatile(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; u64 addr; u8 i; int ret; for (i = 0; i < params->n_dice; i++) { addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR1; ret = cypress_nor_quad_enable_volatile_reg(nor, addr); if (ret) return ret; } return 0; } /** * cypress_nor_determine_addr_mode_by_sr1() - Determine current address mode * (3 or 4-byte) by querying status * register 1 (SR1). * @nor: pointer to a 'struct spi_nor' * @addr_mode: ponter to a buffer where we return the determined * address mode. * * This function tries to determine current address mode by comparing SR1 value * from RDSR1(no address), RDAR(3-byte address), and RDAR(4-byte address). * * Return: 0 on success, -errno otherwise. */ static int cypress_nor_determine_addr_mode_by_sr1(struct spi_nor *nor, u8 *addr_mode) { struct spi_mem_op op = CYPRESS_NOR_RD_ANY_REG_OP(3, SPINOR_REG_CYPRESS_STR1V, 0, nor->bouncebuf); bool is3byte, is4byte; int ret; ret = spi_nor_read_sr(nor, &nor->bouncebuf[1]); if (ret) return ret; ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; is3byte = (nor->bouncebuf[0] == nor->bouncebuf[1]); op = (struct spi_mem_op) CYPRESS_NOR_RD_ANY_REG_OP(4, SPINOR_REG_CYPRESS_STR1V, 0, nor->bouncebuf); ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; is4byte = (nor->bouncebuf[0] == nor->bouncebuf[1]); if (is3byte == is4byte) return -EIO; if (is3byte) *addr_mode = 3; else *addr_mode = 4; return 0; } /** * cypress_nor_set_addr_mode_nbytes() - Set the number of address bytes mode of * current address mode. * @nor: pointer to a 'struct spi_nor' * * Determine current address mode by reading SR1 with different methods, then * query CFR2V[7] to confirm. If determination is failed, force enter to 4-byte * address mode. * * Return: 0 on success, -errno otherwise. */ static int cypress_nor_set_addr_mode_nbytes(struct spi_nor *nor) { struct spi_mem_op op; u8 addr_mode; int ret; /* * Read SR1 by RDSR1 and RDAR(3- AND 4-byte addr). Use write enable * that sets bit-1 in SR1. */ ret = spi_nor_write_enable(nor); if (ret) return ret; ret = cypress_nor_determine_addr_mode_by_sr1(nor, &addr_mode); if (ret) { ret = spi_nor_set_4byte_addr_mode(nor, true); if (ret) return ret; return spi_nor_write_disable(nor); } ret = spi_nor_write_disable(nor); if (ret) return ret; /* * Query CFR2V and make sure no contradiction between determined address * mode and CFR2V[7]. */ op = (struct spi_mem_op) CYPRESS_NOR_RD_ANY_REG_OP(addr_mode, SPINOR_REG_CYPRESS_CFR2V, 0, nor->bouncebuf); ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR2_ADRBYT) { if (addr_mode != 4) return spi_nor_set_4byte_addr_mode(nor, true); } else { if (addr_mode != 3) return spi_nor_set_4byte_addr_mode(nor, true); } nor->params->addr_nbytes = addr_mode; nor->params->addr_mode_nbytes = addr_mode; return 0; } /** * cypress_nor_get_page_size() - Get flash page size configuration. * @nor: pointer to a 'struct spi_nor' * * The BFPT table advertises a 512B or 256B page size depending on part but the * page size is actually configurable (with the default being 256B). Read from * CFR3V[4] and set the correct size. * * Return: 0 on success, -errno otherwise. */ static int cypress_nor_get_page_size(struct spi_nor *nor) { struct spi_mem_op op = CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes, 0, 0, nor->bouncebuf); struct spi_nor_flash_parameter *params = nor->params; int ret; u8 i; /* * Use the minimum common page size configuration. Programming 256-byte * under 512-byte page size configuration is safe. */ params->page_size = 256; for (i = 0; i < params->n_dice; i++) { op.addr.val = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR3; ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; if (!(nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3_PGSZ)) return 0; } params->page_size = 512; return 0; } static void cypress_nor_ecc_init(struct spi_nor *nor) { /* * Programming is supported only in 16-byte ECC data unit granularity. * Byte-programming, bit-walking, or multiple program operations to the * same ECC data unit without an erase are not allowed. */ nor->params->writesize = 16; nor->flags |= SNOR_F_ECC; } static int s25fs256t_post_bfpt_fixup(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt) { struct spi_mem_op op; int ret; ret = cypress_nor_set_addr_mode_nbytes(nor); if (ret) return ret; /* Read Architecture Configuration Register (ARCFN) */ op = (struct spi_mem_op) CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes, SPINOR_REG_CYPRESS_ARCFN, 1, nor->bouncebuf); ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; /* ARCFN value must be 0 if uniform sector is selected */ if (nor->bouncebuf[0]) return -ENODEV; return 0; } static int s25fs256t_post_sfdp_fixup(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; /* * S25FS256T does not define the SCCR map, but we would like to use the * same code base for both single and multi chip package devices, thus * set the vreg_offset and n_dice to be able to do so. */ params->vreg_offset = devm_kmalloc(nor->dev, sizeof(u32), GFP_KERNEL); if (!params->vreg_offset) return -ENOMEM; params->vreg_offset[0] = SPINOR_REG_CYPRESS_VREG; params->n_dice = 1; /* PP_1_1_4_4B is supported but missing in 4BAIT. */ params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4; spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4], SPINOR_OP_PP_1_1_4_4B, SNOR_PROTO_1_1_4); return cypress_nor_get_page_size(nor); } static int s25fs256t_late_init(struct spi_nor *nor) { cypress_nor_ecc_init(nor); return 0; } static struct spi_nor_fixups s25fs256t_fixups = { .post_bfpt = s25fs256t_post_bfpt_fixup, .post_sfdp = s25fs256t_post_sfdp_fixup, .late_init = s25fs256t_late_init, }; static int s25hx_t_post_bfpt_fixup(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt) { int ret; ret = cypress_nor_set_addr_mode_nbytes(nor); if (ret) return ret; /* Replace Quad Enable with volatile version */ nor->params->quad_enable = cypress_nor_quad_enable_volatile; return 0; } static int s25hx_t_post_sfdp_fixup(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; struct spi_nor_erase_type *erase_type = params->erase_map.erase_type; unsigned int i; if (!params->n_dice || !params->vreg_offset) { dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n", __func__); return -EOPNOTSUPP; } /* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */ if (params->size == SZ_256M) params->n_dice = 2; /* * In some parts, 3byte erase opcodes are advertised by 4BAIT. * Convert them to 4byte erase opcodes. */ for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { switch (erase_type[i].opcode) { case SPINOR_OP_SE: erase_type[i].opcode = SPINOR_OP_SE_4B; break; case SPINOR_OP_BE_4K: erase_type[i].opcode = SPINOR_OP_BE_4K_4B; break; default: break; } } return cypress_nor_get_page_size(nor); } static int s25hx_t_late_init(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; /* Fast Read 4B requires mode cycles */ params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8; params->ready = cypress_nor_sr_ready_and_clear; cypress_nor_ecc_init(nor); params->die_erase_opcode = SPINOR_OP_CYPRESS_DIE_ERASE; return 0; } static struct spi_nor_fixups s25hx_t_fixups = { .post_bfpt = s25hx_t_post_bfpt_fixup, .post_sfdp = s25hx_t_post_sfdp_fixup, .late_init = s25hx_t_late_init, }; /** * cypress_nor_set_octal_dtr() - Enable or disable octal DTR on Cypress flashes. * @nor: pointer to a 'struct spi_nor' * @enable: whether to enable or disable Octal DTR * * This also sets the memory access latency cycles to 24 to allow the flash to * run at up to 200MHz. * * Return: 0 on success, -errno otherwise. */ static int cypress_nor_set_octal_dtr(struct spi_nor *nor, bool enable) { return enable ? cypress_nor_octal_dtr_en(nor) : cypress_nor_octal_dtr_dis(nor); } static int s28hx_t_post_sfdp_fixup(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; if (!params->n_dice || !params->vreg_offset) { dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n", __func__); return -EOPNOTSUPP; } /* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */ if (params->size == SZ_256M) params->n_dice = 2; /* * On older versions of the flash the xSPI Profile 1.0 table has the * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE. */ if (params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0) params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode = SPINOR_OP_CYPRESS_RD_FAST; /* This flash is also missing the 4-byte Page Program opcode bit. */ spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP], SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); /* * Since xSPI Page Program opcode is backward compatible with * Legacy SPI, use Legacy SPI opcode there as well. */ spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR], SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR); /* * The xSPI Profile 1.0 table advertises the number of additional * address bytes needed for Read Status Register command as 0 but the * actual value for that is 4. */ params->rdsr_addr_nbytes = 4; return cypress_nor_get_page_size(nor); } static int s28hx_t_post_bfpt_fixup(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt) { return cypress_nor_set_addr_mode_nbytes(nor); } static int s28hx_t_late_init(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; params->set_octal_dtr = cypress_nor_set_octal_dtr; params->ready = cypress_nor_sr_ready_and_clear; cypress_nor_ecc_init(nor); return 0; } static const struct spi_nor_fixups s28hx_t_fixups = { .post_sfdp = s28hx_t_post_sfdp_fixup, .post_bfpt = s28hx_t_post_bfpt_fixup, .late_init = s28hx_t_late_init, }; static int s25fs_s_nor_post_bfpt_fixups(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt) { /* * The S25FS-S chip family reports 512-byte pages in BFPT but * in reality the write buffer still wraps at the safe default * of 256 bytes. Overwrite the page size advertised by BFPT * to get the writes working. */ nor->params->page_size = 256; return 0; } static const struct spi_nor_fixups s25fs_s_nor_fixups = { .post_bfpt = s25fs_s_nor_post_bfpt_fixups, }; static const struct flash_info spansion_nor_parts[] = { { .id = SNOR_ID(0x01, 0x02, 0x12), .name = "s25sl004a", .size = SZ_512K, }, { .id = SNOR_ID(0x01, 0x02, 0x13), .name = "s25sl008a", .size = SZ_1M, }, { .id = SNOR_ID(0x01, 0x02, 0x14), .name = "s25sl016a", .size = SZ_2M, }, { .id = SNOR_ID(0x01, 0x02, 0x15, 0x4d, 0x00), .name = "s25sl032p", .size = SZ_4M, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, }, { .id = SNOR_ID(0x01, 0x02, 0x15), .name = "s25sl032a", .size = SZ_4M, }, { .id = SNOR_ID(0x01, 0x02, 0x16, 0x4d, 0x00), .name = "s25sl064p", .size = SZ_8M, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, }, { .id = SNOR_ID(0x01, 0x02, 0x16), .name = "s25sl064a", .size = SZ_8M, }, { .id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x00, 0x80), .name = "s25fl256s0", .size = SZ_32M, .sector_size = SZ_256K, .no_sfdp_flags = SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, }, { .id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x00, 0x81), .name = "s25fs256s0", .size = SZ_32M, .sector_size = SZ_256K, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, }, { .id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x01, 0x80), .name = "s25fl256s1", .size = SZ_32M, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, }, { .id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x01, 0x81), .name = "s25fs256s1", .size = SZ_32M, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, }, { .id = SNOR_ID(0x01, 0x02, 0x20, 0x4d, 0x00, 0x80), .name = "s25fl512s", .size = SZ_64M, .sector_size = SZ_256K, .flags = SPI_NOR_HAS_LOCK, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, }, { .id = SNOR_ID(0x01, 0x02, 0x20, 0x4d, 0x00, 0x81), .name = "s25fs512s", .size = SZ_64M, .sector_size = SZ_256K, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, .fixups = &s25fs_s_nor_fixups, }, { .id = SNOR_ID(0x01, 0x20, 0x18, 0x03, 0x00), .name = "s25sl12800", .size = SZ_16M, .sector_size = SZ_256K, }, { .id = SNOR_ID(0x01, 0x20, 0x18, 0x03, 0x01), .name = "s25sl12801", .size = SZ_16M, }, { .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x00, 0x80), .name = "s25fl128s0", .size = SZ_16M, .sector_size = SZ_256K, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, }, { .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x00), .name = "s25fl129p0", .size = SZ_16M, .sector_size = SZ_256K, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, }, { .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x01, 0x80), .name = "s25fl128s1", .size = SZ_16M, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, }, { .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x01, 0x81), .name = "s25fs128s1", .size = SZ_16M, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, .fixups = &s25fs_s_nor_fixups, }, { .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x01), .name = "s25fl129p1", .size = SZ_16M, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, }, { .id = SNOR_ID(0x01, 0x40, 0x13), .name = "s25fl204k", .size = SZ_512K, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ, }, { .id = SNOR_ID(0x01, 0x40, 0x14), .name = "s25fl208k", .size = SZ_1M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ, }, { .id = SNOR_ID(0x01, 0x40, 0x15), .name = "s25fl116k", .size = SZ_2M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, }, { .id = SNOR_ID(0x01, 0x40, 0x16), .name = "s25fl132k", .size = SZ_4M, .no_sfdp_flags = SECT_4K, }, { .id = SNOR_ID(0x01, 0x40, 0x17), .name = "s25fl164k", .size = SZ_8M, .no_sfdp_flags = SECT_4K, }, { .id = SNOR_ID(0x01, 0x60, 0x17), .name = "s25fl064l", .size = SZ_8M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .fixup_flags = SPI_NOR_4B_OPCODES, }, { .id = SNOR_ID(0x01, 0x60, 0x18), .name = "s25fl128l", .size = SZ_16M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .fixup_flags = SPI_NOR_4B_OPCODES, }, { .id = SNOR_ID(0x01, 0x60, 0x19), .name = "s25fl256l", .size = SZ_32M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .fixup_flags = SPI_NOR_4B_OPCODES, }, { .id = SNOR_ID(0x04, 0x2c, 0xc2, 0x7f, 0x7f, 0x7f), .name = "cy15x104q", .size = SZ_512K, .sector_size = SZ_512K, .flags = SPI_NOR_NO_ERASE, }, { .id = SNOR_ID(0x34, 0x2a, 0x1a, 0x0f, 0x03, 0x90), .name = "s25hl512t", .mfr_flags = USE_CLPEF, .fixups = &s25hx_t_fixups }, { .id = SNOR_ID(0x34, 0x2a, 0x1b, 0x0f, 0x03, 0x90), .name = "s25hl01gt", .mfr_flags = USE_CLPEF, .fixups = &s25hx_t_fixups }, { .id = SNOR_ID(0x34, 0x2a, 0x1c, 0x0f, 0x00, 0x90), .name = "s25hl02gt", .mfr_flags = USE_CLPEF, .fixups = &s25hx_t_fixups }, { .id = SNOR_ID(0x34, 0x2b, 0x19, 0x0f, 0x08, 0x90), .name = "s25fs256t", .mfr_flags = USE_CLPEF, .fixups = &s25fs256t_fixups }, { .id = SNOR_ID(0x34, 0x2b, 0x1a, 0x0f, 0x03, 0x90), .name = "s25hs512t", .mfr_flags = USE_CLPEF, .fixups = &s25hx_t_fixups }, { .id = SNOR_ID(0x34, 0x2b, 0x1b, 0x0f, 0x03, 0x90), .name = "s25hs01gt", .mfr_flags = USE_CLPEF, .fixups = &s25hx_t_fixups }, { .id = SNOR_ID(0x34, 0x2b, 0x1c, 0x0f, 0x00, 0x90), .name = "s25hs02gt", .mfr_flags = USE_CLPEF, .fixups = &s25hx_t_fixups }, { .id = SNOR_ID(0x34, 0x5a, 0x1a), .name = "s28hl512t", .mfr_flags = USE_CLPEF, .fixups = &s28hx_t_fixups, }, { .id = SNOR_ID(0x34, 0x5a, 0x1b), .name = "s28hl01gt", .mfr_flags = USE_CLPEF, .fixups = &s28hx_t_fixups, }, { .id = SNOR_ID(0x34, 0x5b, 0x19), .mfr_flags = USE_CLPEF, .fixups = &s28hx_t_fixups, }, { .id = SNOR_ID(0x34, 0x5b, 0x1a), .name = "s28hs512t", .mfr_flags = USE_CLPEF, .fixups = &s28hx_t_fixups, }, { .id = SNOR_ID(0x34, 0x5b, 0x1b), .name = "s28hs01gt", .mfr_flags = USE_CLPEF, .fixups = &s28hx_t_fixups, }, { .id = SNOR_ID(0x34, 0x5b, 0x1c), .name = "s28hs02gt", .mfr_flags = USE_CLPEF, .fixups = &s28hx_t_fixups, }, { .id = SNOR_ID(0xef, 0x40, 0x13), .name = "s25fl004k", .size = SZ_512K, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, }, { .id = SNOR_ID(0xef, 0x40, 0x14), .name = "s25fl008k", .size = SZ_1M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, }, { .id = SNOR_ID(0xef, 0x40, 0x15), .name = "s25fl016k", .size = SZ_2M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, }, { .id = SNOR_ID(0xef, 0x40, 0x17), .name = "s25fl064k", .size = SZ_8M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, } }; /** * spansion_nor_sr_ready_and_clear() - Query the Status Register to see if the * flash is ready for new commands and clear it if there are any errors. * @nor: pointer to 'struct spi_nor'. * * Return: 1 if ready, 0 if not ready, -errno on errors. */ static int spansion_nor_sr_ready_and_clear(struct spi_nor *nor) { int ret; ret = spi_nor_read_sr(nor, nor->bouncebuf); if (ret) return ret; if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) { if (nor->bouncebuf[0] & SR_E_ERR) dev_err(nor->dev, "Erase Error occurred\n"); else dev_err(nor->dev, "Programming Error occurred\n"); spansion_nor_clear_sr(nor); /* * WEL bit remains set to one when an erase or page program * error occurs. Issue a Write Disable command to protect * against inadvertent writes that can possibly corrupt the * contents of the memory. */ ret = spi_nor_write_disable(nor); if (ret) return ret; return -EIO; } return !(nor->bouncebuf[0] & SR_WIP); } static int spansion_nor_late_init(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; struct spansion_nor_params *priv_params; u8 mfr_flags = nor->info->mfr_flags; if (params->size > SZ_16M) { nor->flags |= SNOR_F_4B_OPCODES; /* No small sector erase for 4-byte command set */ nor->erase_opcode = SPINOR_OP_SE; nor->mtd.erasesize = nor->info->sector_size ?: SPI_NOR_DEFAULT_SECTOR_SIZE; } if (mfr_flags & (USE_CLSR | USE_CLPEF)) { priv_params = devm_kmalloc(nor->dev, sizeof(*priv_params), GFP_KERNEL); if (!priv_params) return -ENOMEM; if (mfr_flags & USE_CLSR) priv_params->clsr = SPINOR_OP_CLSR; else if (mfr_flags & USE_CLPEF) priv_params->clsr = SPINOR_OP_CLPEF; params->priv = priv_params; params->ready = spansion_nor_sr_ready_and_clear; } return 0; } static const struct spi_nor_fixups spansion_nor_fixups = { .late_init = spansion_nor_late_init, }; const struct spi_nor_manufacturer spi_nor_spansion = { .name = "spansion", .parts = spansion_nor_parts, .nparts = ARRAY_SIZE(spansion_nor_parts), .fixups = &spansion_nor_fixups, };