/* * Copyright(c) 2007 Atheros Corporation. All rights reserved. * * Derived from Intel e1000 driver * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include <linux/pci.h> #include <linux/delay.h> #include <linux/mii.h> #include <linux/crc32.h> #include "atl1e.h" /* * check_eeprom_exist * return 0 if eeprom exist */ int atl1e_check_eeprom_exist(struct atl1e_hw *hw) { u32 value; value = AT_READ_REG(hw, REG_SPI_FLASH_CTRL); if (value & SPI_FLASH_CTRL_EN_VPD) { value &= ~SPI_FLASH_CTRL_EN_VPD; AT_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value); } value = AT_READ_REGW(hw, REG_PCIE_CAP_LIST); return ((value & 0xFF00) == 0x6C00) ? 0 : 1; } void atl1e_hw_set_mac_addr(struct atl1e_hw *hw) { u32 value; /* * 00-0B-6A-F6-00-DC * 0: 6AF600DC 1: 000B * low dword */ value = (((u32)hw->mac_addr[2]) << 24) | (((u32)hw->mac_addr[3]) << 16) | (((u32)hw->mac_addr[4]) << 8) | (((u32)hw->mac_addr[5])) ; AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value); /* hight dword */ value = (((u32)hw->mac_addr[0]) << 8) | (((u32)hw->mac_addr[1])) ; AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value); } /* * atl1e_get_permanent_address * return 0 if get valid mac address, */ static int atl1e_get_permanent_address(struct atl1e_hw *hw) { u32 addr[2]; u32 i; u32 twsi_ctrl_data; u8 eth_addr[ETH_ALEN]; if (is_valid_ether_addr(hw->perm_mac_addr)) return 0; /* init */ addr[0] = addr[1] = 0; if (!atl1e_check_eeprom_exist(hw)) { /* eeprom exist */ twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL); twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART; AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data); for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) { msleep(10); twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL); if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0) break; } if (i >= AT_TWSI_EEPROM_TIMEOUT) return AT_ERR_TIMEOUT; } /* maybe MAC-address is from BIOS */ addr[0] = AT_READ_REG(hw, REG_MAC_STA_ADDR); addr[1] = AT_READ_REG(hw, REG_MAC_STA_ADDR + 4); *(u32 *) ð_addr[2] = swab32(addr[0]); *(u16 *) ð_addr[0] = swab16(*(u16 *)&addr[1]); if (is_valid_ether_addr(eth_addr)) { memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); return 0; } return AT_ERR_EEPROM; } bool atl1e_write_eeprom(struct atl1e_hw *hw, u32 offset, u32 value) { return true; } bool atl1e_read_eeprom(struct atl1e_hw *hw, u32 offset, u32 *p_value) { int i; u32 control; if (offset & 3) return false; /* address do not align */ AT_WRITE_REG(hw, REG_VPD_DATA, 0); control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT; AT_WRITE_REG(hw, REG_VPD_CAP, control); for (i = 0; i < 10; i++) { msleep(2); control = AT_READ_REG(hw, REG_VPD_CAP); if (control & VPD_CAP_VPD_FLAG) break; } if (control & VPD_CAP_VPD_FLAG) { *p_value = AT_READ_REG(hw, REG_VPD_DATA); return true; } return false; /* timeout */ } void atl1e_force_ps(struct atl1e_hw *hw) { AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET); } /* * Reads the adapter's MAC address from the EEPROM * * hw - Struct containing variables accessed by shared code */ int atl1e_read_mac_addr(struct atl1e_hw *hw) { int err = 0; err = atl1e_get_permanent_address(hw); if (err) return AT_ERR_EEPROM; memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr)); return 0; } /* * atl1e_hash_mc_addr * purpose * set hash value for a multicast address */ u32 atl1e_hash_mc_addr(struct atl1e_hw *hw, u8 *mc_addr) { u32 crc32; u32 value = 0; int i; crc32 = ether_crc_le(6, mc_addr); for (i = 0; i < 32; i++) value |= (((crc32 >> i) & 1) << (31 - i)); return value; } /* * Sets the bit in the multicast table corresponding to the hash value. * hw - Struct containing variables accessed by shared code * hash_value - Multicast address hash value */ void atl1e_hash_set(struct atl1e_hw *hw, u32 hash_value) { u32 hash_bit, hash_reg; u32 mta; /* * The HASH Table is a register array of 2 32-bit registers. * It is treated like an array of 64 bits. We want to set * bit BitArray[hash_value]. So we figure out what register * the bit is in, read it, OR in the new bit, then write * back the new value. The register is determined by the * upper 7 bits of the hash value and the bit within that * register are determined by the lower 5 bits of the value. */ hash_reg = (hash_value >> 31) & 0x1; hash_bit = (hash_value >> 26) & 0x1F; mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg); mta |= (1 << hash_bit); AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta); } /* * Reads the value from a PHY register * hw - Struct containing variables accessed by shared code * reg_addr - address of the PHY register to read */ int atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data) { u32 val; int i; val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT | MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; AT_WRITE_REG(hw, REG_MDIO_CTRL, val); wmb(); for (i = 0; i < MDIO_WAIT_TIMES; i++) { udelay(2); val = AT_READ_REG(hw, REG_MDIO_CTRL); if (!(val & (MDIO_START | MDIO_BUSY))) break; wmb(); } if (!(val & (MDIO_START | MDIO_BUSY))) { *phy_data = (u16)val; return 0; } return AT_ERR_PHY; } /* * Writes a value to a PHY register * hw - Struct containing variables accessed by shared code * reg_addr - address of the PHY register to write * data - data to write to the PHY */ int atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data) { int i; u32 val; val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT | (reg_addr&MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT | MDIO_SUP_PREAMBLE | MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; AT_WRITE_REG(hw, REG_MDIO_CTRL, val); wmb(); for (i = 0; i < MDIO_WAIT_TIMES; i++) { udelay(2); val = AT_READ_REG(hw, REG_MDIO_CTRL); if (!(val & (MDIO_START | MDIO_BUSY))) break; wmb(); } if (!(val & (MDIO_START | MDIO_BUSY))) return 0; return AT_ERR_PHY; } /* * atl1e_init_pcie - init PCIE module */ static void atl1e_init_pcie(struct atl1e_hw *hw) { u32 value; /* comment 2lines below to save more power when sususpend value = LTSSM_TEST_MODE_DEF; AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value); */ /* pcie flow control mode change */ value = AT_READ_REG(hw, 0x1008); value |= 0x8000; AT_WRITE_REG(hw, 0x1008, value); } /* * Configures PHY autoneg and flow control advertisement settings * * hw - Struct containing variables accessed by shared code */ static int atl1e_phy_setup_autoneg_adv(struct atl1e_hw *hw) { s32 ret_val; u16 mii_autoneg_adv_reg; u16 mii_1000t_ctrl_reg; if (0 != hw->mii_autoneg_adv_reg) return 0; /* Read the MII Auto-Neg Advertisement Register (Address 4/9). */ mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK; mii_1000t_ctrl_reg = MII_AT001_CR_1000T_DEFAULT_CAP_MASK; /* * Need to parse autoneg_advertised and set up * the appropriate PHY registers. First we will parse for * autoneg_advertised software override. Since we can advertise * a plethora of combinations, we need to check each bit * individually. */ /* * First we clear all the 10/100 mb speed bits in the Auto-Neg * Advertisement Register (Address 4) and the 1000 mb speed bits in * the 1000Base-T control Register (Address 9). */ mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK; mii_1000t_ctrl_reg &= ~MII_AT001_CR_1000T_SPEED_MASK; /* * Need to parse MediaType and setup the * appropriate PHY registers. */ switch (hw->media_type) { case MEDIA_TYPE_AUTO_SENSOR: mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS | MII_AR_10T_FD_CAPS | MII_AR_100TX_HD_CAPS | MII_AR_100TX_FD_CAPS); hw->autoneg_advertised = ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | ADVERTISE_100_FULL; if (hw->nic_type == athr_l1e) { mii_1000t_ctrl_reg |= MII_AT001_CR_1000T_FD_CAPS; hw->autoneg_advertised |= ADVERTISE_1000_FULL; } break; case MEDIA_TYPE_100M_FULL: mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS; hw->autoneg_advertised = ADVERTISE_100_FULL; break; case MEDIA_TYPE_100M_HALF: mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS; hw->autoneg_advertised = ADVERTISE_100_HALF; break; case MEDIA_TYPE_10M_FULL: mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS; hw->autoneg_advertised = ADVERTISE_10_FULL; break; default: mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS; hw->autoneg_advertised = ADVERTISE_10_HALF; break; } /* flow control fixed to enable all */ mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE); hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg; hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg; ret_val = atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg); if (ret_val) return ret_val; if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) { ret_val = atl1e_write_phy_reg(hw, MII_AT001_CR, mii_1000t_ctrl_reg); if (ret_val) return ret_val; } return 0; } /* * Resets the PHY and make all config validate * * hw - Struct containing variables accessed by shared code * * Sets bit 15 and 12 of the MII control regiser (for F001 bug) */ int atl1e_phy_commit(struct atl1e_hw *hw) { struct atl1e_adapter *adapter = hw->adapter; int ret_val; u16 phy_data; phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG; ret_val = atl1e_write_phy_reg(hw, MII_BMCR, phy_data); if (ret_val) { u32 val; int i; /************************************** * pcie serdes link may be down ! **************************************/ for (i = 0; i < 25; i++) { msleep(1); val = AT_READ_REG(hw, REG_MDIO_CTRL); if (!(val & (MDIO_START | MDIO_BUSY))) break; } if (0 != (val & (MDIO_START | MDIO_BUSY))) { netdev_err(adapter->netdev, "pcie linkdown at least for 25ms\n"); return ret_val; } netdev_err(adapter->netdev, "pcie linkup after %d ms\n", i); } return 0; } int atl1e_phy_init(struct atl1e_hw *hw) { struct atl1e_adapter *adapter = hw->adapter; s32 ret_val; u16 phy_val; if (hw->phy_configured) { if (hw->re_autoneg) { hw->re_autoneg = false; return atl1e_restart_autoneg(hw); } return 0; } /* RESET GPHY Core */ AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT); msleep(2); AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT | GPHY_CTRL_EXT_RESET); msleep(2); /* patches */ /* p1. eable hibernation mode */ ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0xB); if (ret_val) return ret_val; ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0xBC00); if (ret_val) return ret_val; /* p2. set Class A/B for all modes */ ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0); if (ret_val) return ret_val; phy_val = 0x02ef; /* remove Class AB */ /* phy_val = hw->emi_ca ? 0x02ef : 0x02df; */ ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, phy_val); if (ret_val) return ret_val; /* p3. 10B ??? */ ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x12); if (ret_val) return ret_val; ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x4C04); if (ret_val) return ret_val; /* p4. 1000T power */ ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x4); if (ret_val) return ret_val; ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x8BBB); if (ret_val) return ret_val; ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x5); if (ret_val) return ret_val; ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x2C46); if (ret_val) return ret_val; msleep(1); /*Enable PHY LinkChange Interrupt */ ret_val = atl1e_write_phy_reg(hw, MII_INT_CTRL, 0xC00); if (ret_val) { netdev_err(adapter->netdev, "Error enable PHY linkChange Interrupt\n"); return ret_val; } /* setup AutoNeg parameters */ ret_val = atl1e_phy_setup_autoneg_adv(hw); if (ret_val) { netdev_err(adapter->netdev, "Error Setting up Auto-Negotiation\n"); return ret_val; } /* SW.Reset & En-Auto-Neg to restart Auto-Neg*/ netdev_dbg(adapter->netdev, "Restarting Auto-Negotiation\n"); ret_val = atl1e_phy_commit(hw); if (ret_val) { netdev_err(adapter->netdev, "Error resetting the phy\n"); return ret_val; } hw->phy_configured = true; return 0; } /* * Reset the transmit and receive units; mask and clear all interrupts. * hw - Struct containing variables accessed by shared code * return : 0 or idle status (if error) */ int atl1e_reset_hw(struct atl1e_hw *hw) { struct atl1e_adapter *adapter = hw->adapter; struct pci_dev *pdev = adapter->pdev; u32 idle_status_data = 0; u16 pci_cfg_cmd_word = 0; int timeout = 0; /* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */ pci_read_config_word(pdev, PCI_REG_COMMAND, &pci_cfg_cmd_word); if ((pci_cfg_cmd_word & (CMD_IO_SPACE | CMD_MEMORY_SPACE | CMD_BUS_MASTER)) != (CMD_IO_SPACE | CMD_MEMORY_SPACE | CMD_BUS_MASTER)) { pci_cfg_cmd_word |= (CMD_IO_SPACE | CMD_MEMORY_SPACE | CMD_BUS_MASTER); pci_write_config_word(pdev, PCI_REG_COMMAND, pci_cfg_cmd_word); } /* * Issue Soft Reset to the MAC. This will reset the chip's * transmit, receive, DMA. It will not effect * the current PCI configuration. The global reset bit is self- * clearing, and should clear within a microsecond. */ AT_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_LED_MODE | MASTER_CTRL_SOFT_RST); wmb(); msleep(1); /* Wait at least 10ms for All module to be Idle */ for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) { idle_status_data = AT_READ_REG(hw, REG_IDLE_STATUS); if (idle_status_data == 0) break; msleep(1); cpu_relax(); } if (timeout >= AT_HW_MAX_IDLE_DELAY) { netdev_err(adapter->netdev, "MAC state machine can't be idle since disabled for 10ms second\n"); return AT_ERR_TIMEOUT; } return 0; } /* * Performs basic configuration of the adapter. * * hw - Struct containing variables accessed by shared code * Assumes that the controller has previously been reset and is in a * post-reset uninitialized state. Initializes multicast table, * and Calls routines to setup link * Leaves the transmit and receive units disabled and uninitialized. */ int atl1e_init_hw(struct atl1e_hw *hw) { s32 ret_val = 0; atl1e_init_pcie(hw); /* Zero out the Multicast HASH table */ /* clear the old settings from the multicast hash table */ AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0); AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0); ret_val = atl1e_phy_init(hw); return ret_val; } /* * Detects the current speed and duplex settings of the hardware. * * hw - Struct containing variables accessed by shared code * speed - Speed of the connection * duplex - Duplex setting of the connection */ int atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex) { int err; u16 phy_data; /* Read PHY Specific Status Register (17) */ err = atl1e_read_phy_reg(hw, MII_AT001_PSSR, &phy_data); if (err) return err; if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED)) return AT_ERR_PHY_RES; switch (phy_data & MII_AT001_PSSR_SPEED) { case MII_AT001_PSSR_1000MBS: *speed = SPEED_1000; break; case MII_AT001_PSSR_100MBS: *speed = SPEED_100; break; case MII_AT001_PSSR_10MBS: *speed = SPEED_10; break; default: return AT_ERR_PHY_SPEED; break; } if (phy_data & MII_AT001_PSSR_DPLX) *duplex = FULL_DUPLEX; else *duplex = HALF_DUPLEX; return 0; } int atl1e_restart_autoneg(struct atl1e_hw *hw) { int err = 0; err = atl1e_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg); if (err) return err; if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) { err = atl1e_write_phy_reg(hw, MII_AT001_CR, hw->mii_1000t_ctrl_reg); if (err) return err; } err = atl1e_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); return err; }