/* * tg3.c: Broadcom Tigon3 ethernet driver. * * Copyright (C) 2001, 2002, 2003, 2004 David S. Miller (davem@redhat.com) * Copyright (C) 2001, 2002, 2003 Jeff Garzik (jgarzik@pobox.com) * Copyright (C) 2004 Sun Microsystems Inc. * Copyright (C) 2005-2013 Broadcom Corporation. * * Firmware is: * Derived from proprietary unpublished source code, * Copyright (C) 2000-2003 Broadcom Corporation. * * Permission is hereby granted for the distribution of this firmware * data in hexadecimal or equivalent format, provided this copyright * notice is accompanying it. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SPARC #include #include #endif #define BAR_0 0 #define BAR_2 2 #include "tg3.h" /* Functions & macros to verify TG3_FLAGS types */ static inline int _tg3_flag(enum TG3_FLAGS flag, unsigned long *bits) { return test_bit(flag, bits); } static inline void _tg3_flag_set(enum TG3_FLAGS flag, unsigned long *bits) { set_bit(flag, bits); } static inline void _tg3_flag_clear(enum TG3_FLAGS flag, unsigned long *bits) { clear_bit(flag, bits); } #define tg3_flag(tp, flag) \ _tg3_flag(TG3_FLAG_##flag, (tp)->tg3_flags) #define tg3_flag_set(tp, flag) \ _tg3_flag_set(TG3_FLAG_##flag, (tp)->tg3_flags) #define tg3_flag_clear(tp, flag) \ _tg3_flag_clear(TG3_FLAG_##flag, (tp)->tg3_flags) #define DRV_MODULE_NAME "tg3" #define TG3_MAJ_NUM 3 #define TG3_MIN_NUM 133 #define DRV_MODULE_VERSION \ __stringify(TG3_MAJ_NUM) "." __stringify(TG3_MIN_NUM) #define DRV_MODULE_RELDATE "Jul 29, 2013" #define RESET_KIND_SHUTDOWN 0 #define RESET_KIND_INIT 1 #define RESET_KIND_SUSPEND 2 #define TG3_DEF_RX_MODE 0 #define TG3_DEF_TX_MODE 0 #define TG3_DEF_MSG_ENABLE \ (NETIF_MSG_DRV | \ NETIF_MSG_PROBE | \ NETIF_MSG_LINK | \ NETIF_MSG_TIMER | \ NETIF_MSG_IFDOWN | \ NETIF_MSG_IFUP | \ NETIF_MSG_RX_ERR | \ NETIF_MSG_TX_ERR) #define TG3_GRC_LCLCTL_PWRSW_DELAY 100 /* length of time before we decide the hardware is borked, * and dev->tx_timeout() should be called to fix the problem */ #define TG3_TX_TIMEOUT (5 * HZ) /* hardware minimum and maximum for a single frame's data payload */ #define TG3_MIN_MTU 60 #define TG3_MAX_MTU(tp) \ (tg3_flag(tp, JUMBO_CAPABLE) ? 9000 : 1500) /* These numbers seem to be hard coded in the NIC firmware somehow. * You can't change the ring sizes, but you can change where you place * them in the NIC onboard memory. */ #define TG3_RX_STD_RING_SIZE(tp) \ (tg3_flag(tp, LRG_PROD_RING_CAP) ? \ TG3_RX_STD_MAX_SIZE_5717 : TG3_RX_STD_MAX_SIZE_5700) #define TG3_DEF_RX_RING_PENDING 200 #define TG3_RX_JMB_RING_SIZE(tp) \ (tg3_flag(tp, LRG_PROD_RING_CAP) ? \ TG3_RX_JMB_MAX_SIZE_5717 : TG3_RX_JMB_MAX_SIZE_5700) #define TG3_DEF_RX_JUMBO_RING_PENDING 100 /* Do not place this n-ring entries value into the tp struct itself, * we really want to expose these constants to GCC so that modulo et * al. operations are done with shifts and masks instead of with * hw multiply/modulo instructions. Another solution would be to * replace things like '% foo' with '& (foo - 1)'. */ #define TG3_TX_RING_SIZE 512 #define TG3_DEF_TX_RING_PENDING (TG3_TX_RING_SIZE - 1) #define TG3_RX_STD_RING_BYTES(tp) \ (sizeof(struct tg3_rx_buffer_desc) * TG3_RX_STD_RING_SIZE(tp)) #define TG3_RX_JMB_RING_BYTES(tp) \ (sizeof(struct tg3_ext_rx_buffer_desc) * TG3_RX_JMB_RING_SIZE(tp)) #define TG3_RX_RCB_RING_BYTES(tp) \ (sizeof(struct tg3_rx_buffer_desc) * (tp->rx_ret_ring_mask + 1)) #define TG3_TX_RING_BYTES (sizeof(struct tg3_tx_buffer_desc) * \ TG3_TX_RING_SIZE) #define NEXT_TX(N) (((N) + 1) & (TG3_TX_RING_SIZE - 1)) #define TG3_DMA_BYTE_ENAB 64 #define TG3_RX_STD_DMA_SZ 1536 #define TG3_RX_JMB_DMA_SZ 9046 #define TG3_RX_DMA_TO_MAP_SZ(x) ((x) + TG3_DMA_BYTE_ENAB) #define TG3_RX_STD_MAP_SZ TG3_RX_DMA_TO_MAP_SZ(TG3_RX_STD_DMA_SZ) #define TG3_RX_JMB_MAP_SZ TG3_RX_DMA_TO_MAP_SZ(TG3_RX_JMB_DMA_SZ) #define TG3_RX_STD_BUFF_RING_SIZE(tp) \ (sizeof(struct ring_info) * TG3_RX_STD_RING_SIZE(tp)) #define TG3_RX_JMB_BUFF_RING_SIZE(tp) \ (sizeof(struct ring_info) * TG3_RX_JMB_RING_SIZE(tp)) /* Due to a hardware bug, the 5701 can only DMA to memory addresses * that are at least dword aligned when used in PCIX mode. The driver * works around this bug by double copying the packet. This workaround * is built into the normal double copy length check for efficiency. * * However, the double copy is only necessary on those architectures * where unaligned memory accesses are inefficient. For those architectures * where unaligned memory accesses incur little penalty, we can reintegrate * the 5701 in the normal rx path. Doing so saves a device structure * dereference by hardcoding the double copy threshold in place. */ #define TG3_RX_COPY_THRESHOLD 256 #if NET_IP_ALIGN == 0 || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) #define TG3_RX_COPY_THRESH(tp) TG3_RX_COPY_THRESHOLD #else #define TG3_RX_COPY_THRESH(tp) ((tp)->rx_copy_thresh) #endif #if (NET_IP_ALIGN != 0) #define TG3_RX_OFFSET(tp) ((tp)->rx_offset) #else #define TG3_RX_OFFSET(tp) (NET_SKB_PAD) #endif /* minimum number of free TX descriptors required to wake up TX process */ #define TG3_TX_WAKEUP_THRESH(tnapi) ((tnapi)->tx_pending / 4) #define TG3_TX_BD_DMA_MAX_2K 2048 #define TG3_TX_BD_DMA_MAX_4K 4096 #define TG3_RAW_IP_ALIGN 2 #define TG3_FW_UPDATE_TIMEOUT_SEC 5 #define TG3_FW_UPDATE_FREQ_SEC (TG3_FW_UPDATE_TIMEOUT_SEC / 2) #define FIRMWARE_TG3 "tigon/tg3.bin" #define FIRMWARE_TG357766 "tigon/tg357766.bin" #define FIRMWARE_TG3TSO "tigon/tg3_tso.bin" #define FIRMWARE_TG3TSO5 "tigon/tg3_tso5.bin" static char version[] = DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")"; MODULE_AUTHOR("David S. Miller (davem@redhat.com) and Jeff Garzik (jgarzik@pobox.com)"); MODULE_DESCRIPTION("Broadcom Tigon3 ethernet driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_MODULE_VERSION); MODULE_FIRMWARE(FIRMWARE_TG3); MODULE_FIRMWARE(FIRMWARE_TG3TSO); MODULE_FIRMWARE(FIRMWARE_TG3TSO5); static int tg3_debug = -1; /* -1 == use TG3_DEF_MSG_ENABLE as value */ module_param(tg3_debug, int, 0); MODULE_PARM_DESC(tg3_debug, "Tigon3 bitmapped debugging message enable value"); #define TG3_DRV_DATA_FLAG_10_100_ONLY 0x0001 #define TG3_DRV_DATA_FLAG_5705_10_100 0x0002 static DEFINE_PCI_DEVICE_TABLE(tg3_pci_tbl) = { {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5700)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5701)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5702)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5703)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5704)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5702FE)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705_2)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705M)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705M_2)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5702X)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5703X)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5704S)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5702A3)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5703A3)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5782)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5788)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5789)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5901), .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY | TG3_DRV_DATA_FLAG_5705_10_100}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5901_2), .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY | TG3_DRV_DATA_FLAG_5705_10_100}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5704S_2)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705F), .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY | TG3_DRV_DATA_FLAG_5705_10_100}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5721)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5722)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5750)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5751)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5751M)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5751F), .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5752)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5752M)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5753)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5753M)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5753F), .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5754)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5754M)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5755)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5755M)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5756)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5786)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5787)}, {PCI_DEVICE_SUB(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5787M, PCI_VENDOR_ID_LENOVO, TG3PCI_SUBDEVICE_ID_LENOVO_5787M), .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5787M)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5787F), .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5714)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5714S)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5715)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5715S)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5780)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5780S)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5781)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5906)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5906M)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5784)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5764)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5723)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5761)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5761E)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5761S)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5761SE)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5785_G)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5785_F)}, {PCI_DEVICE_SUB(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57780, PCI_VENDOR_ID_AI, TG3PCI_SUBDEVICE_ID_ACER_57780_A), .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY}, {PCI_DEVICE_SUB(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57780, PCI_VENDOR_ID_AI, TG3PCI_SUBDEVICE_ID_ACER_57780_B), .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57780)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57760)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57790), .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57788)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5717)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5717_C)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5718)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57781)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57785)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57761)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57765)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57791), .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57795), .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5719)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5720)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57762)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57766)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5762)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5725)}, {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5727)}, {PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_9DXX)}, {PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_9MXX)}, {PCI_DEVICE(PCI_VENDOR_ID_ALTIMA, PCI_DEVICE_ID_ALTIMA_AC1000)}, {PCI_DEVICE(PCI_VENDOR_ID_ALTIMA, PCI_DEVICE_ID_ALTIMA_AC1001)}, {PCI_DEVICE(PCI_VENDOR_ID_ALTIMA, PCI_DEVICE_ID_ALTIMA_AC1003)}, {PCI_DEVICE(PCI_VENDOR_ID_ALTIMA, PCI_DEVICE_ID_ALTIMA_AC9100)}, {PCI_DEVICE(PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_TIGON3)}, {PCI_DEVICE(0x10cf, 0x11a2)}, /* Fujitsu 1000base-SX with BCM5703SKHB */ {} }; MODULE_DEVICE_TABLE(pci, tg3_pci_tbl); static const struct { const char string[ETH_GSTRING_LEN]; } ethtool_stats_keys[] = { { "rx_octets" }, { "rx_fragments" }, { "rx_ucast_packets" }, { "rx_mcast_packets" }, { "rx_bcast_packets" }, { "rx_fcs_errors" }, { "rx_align_errors" }, { "rx_xon_pause_rcvd" }, { "rx_xoff_pause_rcvd" }, { "rx_mac_ctrl_rcvd" }, { "rx_xoff_entered" }, { "rx_frame_too_long_errors" }, { "rx_jabbers" }, { "rx_undersize_packets" }, { "rx_in_length_errors" }, { "rx_out_length_errors" }, { "rx_64_or_less_octet_packets" }, { "rx_65_to_127_octet_packets" }, { "rx_128_to_255_octet_packets" }, { "rx_256_to_511_octet_packets" }, { "rx_512_to_1023_octet_packets" }, { "rx_1024_to_1522_octet_packets" }, { "rx_1523_to_2047_octet_packets" }, { "rx_2048_to_4095_octet_packets" }, { "rx_4096_to_8191_octet_packets" }, { "rx_8192_to_9022_octet_packets" }, { "tx_octets" }, { "tx_collisions" }, { "tx_xon_sent" }, { "tx_xoff_sent" }, { "tx_flow_control" }, { "tx_mac_errors" }, { "tx_single_collisions" }, { "tx_mult_collisions" }, { "tx_deferred" }, { "tx_excessive_collisions" }, { "tx_late_collisions" }, { "tx_collide_2times" }, { "tx_collide_3times" }, { "tx_collide_4times" }, { "tx_collide_5times" }, { "tx_collide_6times" }, { "tx_collide_7times" }, { "tx_collide_8times" }, { "tx_collide_9times" }, { "tx_collide_10times" }, { "tx_collide_11times" }, { "tx_collide_12times" }, { "tx_collide_13times" }, { "tx_collide_14times" }, { "tx_collide_15times" }, { "tx_ucast_packets" }, { "tx_mcast_packets" }, { "tx_bcast_packets" }, { "tx_carrier_sense_errors" }, { "tx_discards" }, { "tx_errors" }, { "dma_writeq_full" }, { "dma_write_prioq_full" }, { "rxbds_empty" }, { "rx_discards" }, { "rx_errors" }, { "rx_threshold_hit" }, { "dma_readq_full" }, { "dma_read_prioq_full" }, { "tx_comp_queue_full" }, { "ring_set_send_prod_index" }, { "ring_status_update" }, { "nic_irqs" }, { "nic_avoided_irqs" }, { "nic_tx_threshold_hit" }, { "mbuf_lwm_thresh_hit" }, }; #define TG3_NUM_STATS ARRAY_SIZE(ethtool_stats_keys) #define TG3_NVRAM_TEST 0 #define TG3_LINK_TEST 1 #define TG3_REGISTER_TEST 2 #define TG3_MEMORY_TEST 3 #define TG3_MAC_LOOPB_TEST 4 #define TG3_PHY_LOOPB_TEST 5 #define TG3_EXT_LOOPB_TEST 6 #define TG3_INTERRUPT_TEST 7 static const struct { const char string[ETH_GSTRING_LEN]; } ethtool_test_keys[] = { [TG3_NVRAM_TEST] = { "nvram test (online) " }, [TG3_LINK_TEST] = { "link test (online) " }, [TG3_REGISTER_TEST] = { "register test (offline)" }, [TG3_MEMORY_TEST] = { "memory test (offline)" }, [TG3_MAC_LOOPB_TEST] = { "mac loopback test (offline)" }, [TG3_PHY_LOOPB_TEST] = { "phy loopback test (offline)" }, [TG3_EXT_LOOPB_TEST] = { "ext loopback test (offline)" }, [TG3_INTERRUPT_TEST] = { "interrupt test (offline)" }, }; #define TG3_NUM_TEST ARRAY_SIZE(ethtool_test_keys) static void tg3_write32(struct tg3 *tp, u32 off, u32 val) { writel(val, tp->regs + off); } static u32 tg3_read32(struct tg3 *tp, u32 off) { return readl(tp->regs + off); } static void tg3_ape_write32(struct tg3 *tp, u32 off, u32 val) { writel(val, tp->aperegs + off); } static u32 tg3_ape_read32(struct tg3 *tp, u32 off) { return readl(tp->aperegs + off); } static void tg3_write_indirect_reg32(struct tg3 *tp, u32 off, u32 val) { unsigned long flags; spin_lock_irqsave(&tp->indirect_lock, flags); pci_write_config_dword(tp->pdev, TG3PCI_REG_BASE_ADDR, off); pci_write_config_dword(tp->pdev, TG3PCI_REG_DATA, val); spin_unlock_irqrestore(&tp->indirect_lock, flags); } static void tg3_write_flush_reg32(struct tg3 *tp, u32 off, u32 val) { writel(val, tp->regs + off); readl(tp->regs + off); } static u32 tg3_read_indirect_reg32(struct tg3 *tp, u32 off) { unsigned long flags; u32 val; spin_lock_irqsave(&tp->indirect_lock, flags); pci_write_config_dword(tp->pdev, TG3PCI_REG_BASE_ADDR, off); pci_read_config_dword(tp->pdev, TG3PCI_REG_DATA, &val); spin_unlock_irqrestore(&tp->indirect_lock, flags); return val; } static void tg3_write_indirect_mbox(struct tg3 *tp, u32 off, u32 val) { unsigned long flags; if (off == (MAILBOX_RCVRET_CON_IDX_0 + TG3_64BIT_REG_LOW)) { pci_write_config_dword(tp->pdev, TG3PCI_RCV_RET_RING_CON_IDX + TG3_64BIT_REG_LOW, val); return; } if (off == TG3_RX_STD_PROD_IDX_REG) { pci_write_config_dword(tp->pdev, TG3PCI_STD_RING_PROD_IDX + TG3_64BIT_REG_LOW, val); return; } spin_lock_irqsave(&tp->indirect_lock, flags); pci_write_config_dword(tp->pdev, TG3PCI_REG_BASE_ADDR, off + 0x5600); pci_write_config_dword(tp->pdev, TG3PCI_REG_DATA, val); spin_unlock_irqrestore(&tp->indirect_lock, flags); /* In indirect mode when disabling interrupts, we also need * to clear the interrupt bit in the GRC local ctrl register. */ if ((off == (MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW)) && (val == 0x1)) { pci_write_config_dword(tp->pdev, TG3PCI_MISC_LOCAL_CTRL, tp->grc_local_ctrl|GRC_LCLCTRL_CLEARINT); } } static u32 tg3_read_indirect_mbox(struct tg3 *tp, u32 off) { unsigned long flags; u32 val; spin_lock_irqsave(&tp->indirect_lock, flags); pci_write_config_dword(tp->pdev, TG3PCI_REG_BASE_ADDR, off + 0x5600); pci_read_config_dword(tp->pdev, TG3PCI_REG_DATA, &val); spin_unlock_irqrestore(&tp->indirect_lock, flags); return val; } /* usec_wait specifies the wait time in usec when writing to certain registers * where it is unsafe to read back the register without some delay. * GRC_LOCAL_CTRL is one example if the GPIOs are toggled to switch power. * TG3PCI_CLOCK_CTRL is another example if the clock frequencies are changed. */ static void _tw32_flush(struct tg3 *tp, u32 off, u32 val, u32 usec_wait) { if (tg3_flag(tp, PCIX_TARGET_HWBUG) || tg3_flag(tp, ICH_WORKAROUND)) /* Non-posted methods */ tp->write32(tp, off, val); else { /* Posted method */ tg3_write32(tp, off, val); if (usec_wait) udelay(usec_wait); tp->read32(tp, off); } /* Wait again after the read for the posted method to guarantee that * the wait time is met. */ if (usec_wait) udelay(usec_wait); } static inline void tw32_mailbox_flush(struct tg3 *tp, u32 off, u32 val) { tp->write32_mbox(tp, off, val); if (tg3_flag(tp, FLUSH_POSTED_WRITES) || (!tg3_flag(tp, MBOX_WRITE_REORDER) && !tg3_flag(tp, ICH_WORKAROUND))) tp->read32_mbox(tp, off); } static void tg3_write32_tx_mbox(struct tg3 *tp, u32 off, u32 val) { void __iomem *mbox = tp->regs + off; writel(val, mbox); if (tg3_flag(tp, TXD_MBOX_HWBUG)) writel(val, mbox); if (tg3_flag(tp, MBOX_WRITE_REORDER) || tg3_flag(tp, FLUSH_POSTED_WRITES)) readl(mbox); } static u32 tg3_read32_mbox_5906(struct tg3 *tp, u32 off) { return readl(tp->regs + off + GRCMBOX_BASE); } static void tg3_write32_mbox_5906(struct tg3 *tp, u32 off, u32 val) { writel(val, tp->regs + off + GRCMBOX_BASE); } #define tw32_mailbox(reg, val) tp->write32_mbox(tp, reg, val) #define tw32_mailbox_f(reg, val) tw32_mailbox_flush(tp, (reg), (val)) #define tw32_rx_mbox(reg, val) tp->write32_rx_mbox(tp, reg, val) #define tw32_tx_mbox(reg, val) tp->write32_tx_mbox(tp, reg, val) #define tr32_mailbox(reg) tp->read32_mbox(tp, reg) #define tw32(reg, val) tp->write32(tp, reg, val) #define tw32_f(reg, val) _tw32_flush(tp, (reg), (val), 0) #define tw32_wait_f(reg, val, us) _tw32_flush(tp, (reg), (val), (us)) #define tr32(reg) tp->read32(tp, reg) static void tg3_write_mem(struct tg3 *tp, u32 off, u32 val) { unsigned long flags; if (tg3_asic_rev(tp) == ASIC_REV_5906 && (off >= NIC_SRAM_STATS_BLK) && (off < NIC_SRAM_TX_BUFFER_DESC)) return; spin_lock_irqsave(&tp->indirect_lock, flags); if (tg3_flag(tp, SRAM_USE_CONFIG)) { pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, off); pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_DATA, val); /* Always leave this as zero. */ pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, 0); } else { tw32_f(TG3PCI_MEM_WIN_BASE_ADDR, off); tw32_f(TG3PCI_MEM_WIN_DATA, val); /* Always leave this as zero. */ tw32_f(TG3PCI_MEM_WIN_BASE_ADDR, 0); } spin_unlock_irqrestore(&tp->indirect_lock, flags); } static void tg3_read_mem(struct tg3 *tp, u32 off, u32 *val) { unsigned long flags; if (tg3_asic_rev(tp) == ASIC_REV_5906 && (off >= NIC_SRAM_STATS_BLK) && (off < NIC_SRAM_TX_BUFFER_DESC)) { *val = 0; return; } spin_lock_irqsave(&tp->indirect_lock, flags); if (tg3_flag(tp, SRAM_USE_CONFIG)) { pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, off); pci_read_config_dword(tp->pdev, TG3PCI_MEM_WIN_DATA, val); /* Always leave this as zero. */ pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, 0); } else { tw32_f(TG3PCI_MEM_WIN_BASE_ADDR, off); *val = tr32(TG3PCI_MEM_WIN_DATA); /* Always leave this as zero. */ tw32_f(TG3PCI_MEM_WIN_BASE_ADDR, 0); } spin_unlock_irqrestore(&tp->indirect_lock, flags); } static void tg3_ape_lock_init(struct tg3 *tp) { int i; u32 regbase, bit; if (tg3_asic_rev(tp) == ASIC_REV_5761) regbase = TG3_APE_LOCK_GRANT; else regbase = TG3_APE_PER_LOCK_GRANT; /* Make sure the driver hasn't any stale locks. */ for (i = TG3_APE_LOCK_PHY0; i <= TG3_APE_LOCK_GPIO; i++) { switch (i) { case TG3_APE_LOCK_PHY0: case TG3_APE_LOCK_PHY1: case TG3_APE_LOCK_PHY2: case TG3_APE_LOCK_PHY3: bit = APE_LOCK_GRANT_DRIVER; break; default: if (!tp->pci_fn) bit = APE_LOCK_GRANT_DRIVER; else bit = 1 << tp->pci_fn; } tg3_ape_write32(tp, regbase + 4 * i, bit); } } static int tg3_ape_lock(struct tg3 *tp, int locknum) { int i, off; int ret = 0; u32 status, req, gnt, bit; if (!tg3_flag(tp, ENABLE_APE)) return 0; switch (locknum) { case TG3_APE_LOCK_GPIO: if (tg3_asic_rev(tp) == ASIC_REV_5761) return 0; case TG3_APE_LOCK_GRC: case TG3_APE_LOCK_MEM: if (!tp->pci_fn) bit = APE_LOCK_REQ_DRIVER; else bit = 1 << tp->pci_fn; break; case TG3_APE_LOCK_PHY0: case TG3_APE_LOCK_PHY1: case TG3_APE_LOCK_PHY2: case TG3_APE_LOCK_PHY3: bit = APE_LOCK_REQ_DRIVER; break; default: return -EINVAL; } if (tg3_asic_rev(tp) == ASIC_REV_5761) { req = TG3_APE_LOCK_REQ; gnt = TG3_APE_LOCK_GRANT; } else { req = TG3_APE_PER_LOCK_REQ; gnt = TG3_APE_PER_LOCK_GRANT; } off = 4 * locknum; tg3_ape_write32(tp, req + off, bit); /* Wait for up to 1 millisecond to acquire lock. */ for (i = 0; i < 100; i++) { status = tg3_ape_read32(tp, gnt + off); if (status == bit) break; if (pci_channel_offline(tp->pdev)) break; udelay(10); } if (status != bit) { /* Revoke the lock request. */ tg3_ape_write32(tp, gnt + off, bit); ret = -EBUSY; } return ret; } static void tg3_ape_unlock(struct tg3 *tp, int locknum) { u32 gnt, bit; if (!tg3_flag(tp, ENABLE_APE)) return; switch (locknum) { case TG3_APE_LOCK_GPIO: if (tg3_asic_rev(tp) == ASIC_REV_5761) return; case TG3_APE_LOCK_GRC: case TG3_APE_LOCK_MEM: if (!tp->pci_fn) bit = APE_LOCK_GRANT_DRIVER; else bit = 1 << tp->pci_fn; break; case TG3_APE_LOCK_PHY0: case TG3_APE_LOCK_PHY1: case TG3_APE_LOCK_PHY2: case TG3_APE_LOCK_PHY3: bit = APE_LOCK_GRANT_DRIVER; break; default: return; } if (tg3_asic_rev(tp) == ASIC_REV_5761) gnt = TG3_APE_LOCK_GRANT; else gnt = TG3_APE_PER_LOCK_GRANT; tg3_ape_write32(tp, gnt + 4 * locknum, bit); } static int tg3_ape_event_lock(struct tg3 *tp, u32 timeout_us) { u32 apedata; while (timeout_us) { if (tg3_ape_lock(tp, TG3_APE_LOCK_MEM)) return -EBUSY; apedata = tg3_ape_read32(tp, TG3_APE_EVENT_STATUS); if (!(apedata & APE_EVENT_STATUS_EVENT_PENDING)) break; tg3_ape_unlock(tp, TG3_APE_LOCK_MEM); udelay(10); timeout_us -= (timeout_us > 10) ? 10 : timeout_us; } return timeout_us ? 0 : -EBUSY; } static int tg3_ape_wait_for_event(struct tg3 *tp, u32 timeout_us) { u32 i, apedata; for (i = 0; i < timeout_us / 10; i++) { apedata = tg3_ape_read32(tp, TG3_APE_EVENT_STATUS); if (!(apedata & APE_EVENT_STATUS_EVENT_PENDING)) break; udelay(10); } return i == timeout_us / 10; } static int tg3_ape_scratchpad_read(struct tg3 *tp, u32 *data, u32 base_off, u32 len) { int err; u32 i, bufoff, msgoff, maxlen, apedata; if (!tg3_flag(tp, APE_HAS_NCSI)) return 0; apedata = tg3_ape_read32(tp, TG3_APE_SEG_SIG); if (apedata != APE_SEG_SIG_MAGIC) return -ENODEV; apedata = tg3_ape_read32(tp, TG3_APE_FW_STATUS); if (!(apedata & APE_FW_STATUS_READY)) return -EAGAIN; bufoff = tg3_ape_read32(tp, TG3_APE_SEG_MSG_BUF_OFF) + TG3_APE_SHMEM_BASE; msgoff = bufoff + 2 * sizeof(u32); maxlen = tg3_ape_read32(tp, TG3_APE_SEG_MSG_BUF_LEN); while (len) { u32 length; /* Cap xfer sizes to scratchpad limits. */ length = (len > maxlen) ? maxlen : len; len -= length; apedata = tg3_ape_read32(tp, TG3_APE_FW_STATUS); if (!(apedata & APE_FW_STATUS_READY)) return -EAGAIN; /* Wait for up to 1 msec for APE to service previous event. */ err = tg3_ape_event_lock(tp, 1000); if (err) return err; apedata = APE_EVENT_STATUS_DRIVER_EVNT | APE_EVENT_STATUS_SCRTCHPD_READ | APE_EVENT_STATUS_EVENT_PENDING; tg3_ape_write32(tp, TG3_APE_EVENT_STATUS, apedata); tg3_ape_write32(tp, bufoff, base_off); tg3_ape_write32(tp, bufoff + sizeof(u32), length); tg3_ape_unlock(tp, TG3_APE_LOCK_MEM); tg3_ape_write32(tp, TG3_APE_EVENT, APE_EVENT_1); base_off += length; if (tg3_ape_wait_for_event(tp, 30000)) return -EAGAIN; for (i = 0; length; i += 4, length -= 4) { u32 val = tg3_ape_read32(tp, msgoff + i); memcpy(data, &val, sizeof(u32)); data++; } } return 0; } static int tg3_ape_send_event(struct tg3 *tp, u32 event) { int err; u32 apedata; apedata = tg3_ape_read32(tp, TG3_APE_SEG_SIG); if (apedata != APE_SEG_SIG_MAGIC) return -EAGAIN; apedata = tg3_ape_read32(tp, TG3_APE_FW_STATUS); if (!(apedata & APE_FW_STATUS_READY)) return -EAGAIN; /* Wait for up to 1 millisecond for APE to service previous event. */ err = tg3_ape_event_lock(tp, 1000); if (err) return err; tg3_ape_write32(tp, TG3_APE_EVENT_STATUS, event | APE_EVENT_STATUS_EVENT_PENDING); tg3_ape_unlock(tp, TG3_APE_LOCK_MEM); tg3_ape_write32(tp, TG3_APE_EVENT, APE_EVENT_1); return 0; } static void tg3_ape_driver_state_change(struct tg3 *tp, int kind) { u32 event; u32 apedata; if (!tg3_flag(tp, ENABLE_APE)) return; switch (kind) { case RESET_KIND_INIT: tg3_ape_write32(tp, TG3_APE_HOST_SEG_SIG, APE_HOST_SEG_SIG_MAGIC); tg3_ape_write32(tp, TG3_APE_HOST_SEG_LEN, APE_HOST_SEG_LEN_MAGIC); apedata = tg3_ape_read32(tp, TG3_APE_HOST_INIT_COUNT); tg3_ape_write32(tp, TG3_APE_HOST_INIT_COUNT, ++apedata); tg3_ape_write32(tp, TG3_APE_HOST_DRIVER_ID, APE_HOST_DRIVER_ID_MAGIC(TG3_MAJ_NUM, TG3_MIN_NUM)); tg3_ape_write32(tp, TG3_APE_HOST_BEHAVIOR, APE_HOST_BEHAV_NO_PHYLOCK); tg3_ape_write32(tp, TG3_APE_HOST_DRVR_STATE, TG3_APE_HOST_DRVR_STATE_START); event = APE_EVENT_STATUS_STATE_START; break; case RESET_KIND_SHUTDOWN: /* With the interface we are currently using, * APE does not track driver state. Wiping * out the HOST SEGMENT SIGNATURE forces * the APE to assume OS absent status. */ tg3_ape_write32(tp, TG3_APE_HOST_SEG_SIG, 0x0); if (device_may_wakeup(&tp->pdev->dev) && tg3_flag(tp, WOL_ENABLE)) { tg3_ape_write32(tp, TG3_APE_HOST_WOL_SPEED, TG3_APE_HOST_WOL_SPEED_AUTO); apedata = TG3_APE_HOST_DRVR_STATE_WOL; } else apedata = TG3_APE_HOST_DRVR_STATE_UNLOAD; tg3_ape_write32(tp, TG3_APE_HOST_DRVR_STATE, apedata); event = APE_EVENT_STATUS_STATE_UNLOAD; break; default: return; } event |= APE_EVENT_STATUS_DRIVER_EVNT | APE_EVENT_STATUS_STATE_CHNGE; tg3_ape_send_event(tp, event); } static void tg3_disable_ints(struct tg3 *tp) { int i; tw32(TG3PCI_MISC_HOST_CTRL, (tp->misc_host_ctrl | MISC_HOST_CTRL_MASK_PCI_INT)); for (i = 0; i < tp->irq_max; i++) tw32_mailbox_f(tp->napi[i].int_mbox, 0x00000001); } static void tg3_enable_ints(struct tg3 *tp) { int i; tp->irq_sync = 0; wmb(); tw32(TG3PCI_MISC_HOST_CTRL, (tp->misc_host_ctrl & ~MISC_HOST_CTRL_MASK_PCI_INT)); tp->coal_now = tp->coalesce_mode | HOSTCC_MODE_ENABLE; for (i = 0; i < tp->irq_cnt; i++) { struct tg3_napi *tnapi = &tp->napi[i]; tw32_mailbox_f(tnapi->int_mbox, tnapi->last_tag << 24); if (tg3_flag(tp, 1SHOT_MSI)) tw32_mailbox_f(tnapi->int_mbox, tnapi->last_tag << 24); tp->coal_now |= tnapi->coal_now; } /* Force an initial interrupt */ if (!tg3_flag(tp, TAGGED_STATUS) && (tp->napi[0].hw_status->status & SD_STATUS_UPDATED)) tw32(GRC_LOCAL_CTRL, tp->grc_local_ctrl | GRC_LCLCTRL_SETINT); else tw32(HOSTCC_MODE, tp->coal_now); tp->coal_now &= ~(tp->napi[0].coal_now | tp->napi[1].coal_now); } static inline unsigned int tg3_has_work(struct tg3_napi *tnapi) { struct tg3 *tp = tnapi->tp; struct tg3_hw_status *sblk = tnapi->hw_status; unsigned int work_exists = 0; /* check for phy events */ if (!(tg3_flag(tp, USE_LINKCHG_REG) || tg3_flag(tp, POLL_SERDES))) { if (sblk->status & SD_STATUS_LINK_CHG) work_exists = 1; } /* check for TX work to do */ if (sblk->idx[0].tx_consumer != tnapi->tx_cons) work_exists = 1; /* check for RX work to do */ if (tnapi->rx_rcb_prod_idx && *(tnapi->rx_rcb_prod_idx) != tnapi->rx_rcb_ptr) work_exists = 1; return work_exists; } /* tg3_int_reenable * similar to tg3_enable_ints, but it accurately determines whether there * is new work pending and can return without flushing the PIO write * which reenables interrupts */ static void tg3_int_reenable(struct tg3_napi *tnapi) { struct tg3 *tp = tnapi->tp; tw32_mailbox(tnapi->int_mbox, tnapi->last_tag << 24); mmiowb(); /* When doing tagged status, this work check is unnecessary. * The last_tag we write above tells the chip which piece of * work we've completed. */ if (!tg3_flag(tp, TAGGED_STATUS) && tg3_has_work(tnapi)) tw32(HOSTCC_MODE, tp->coalesce_mode | HOSTCC_MODE_ENABLE | tnapi->coal_now); } static void tg3_switch_clocks(struct tg3 *tp) { u32 clock_ctrl; u32 orig_clock_ctrl; if (tg3_flag(tp, CPMU_PRESENT) || tg3_flag(tp, 5780_CLASS)) return; clock_ctrl = tr32(TG3PCI_CLOCK_CTRL); orig_clock_ctrl = clock_ctrl; clock_ctrl &= (CLOCK_CTRL_FORCE_CLKRUN | CLOCK_CTRL_CLKRUN_OENABLE | 0x1f); tp->pci_clock_ctrl = clock_ctrl; if (tg3_flag(tp, 5705_PLUS)) { if (orig_clock_ctrl & CLOCK_CTRL_625_CORE) { tw32_wait_f(TG3PCI_CLOCK_CTRL, clock_ctrl | CLOCK_CTRL_625_CORE, 40); } } else if ((orig_clock_ctrl & CLOCK_CTRL_44MHZ_CORE) != 0) { tw32_wait_f(TG3PCI_CLOCK_CTRL, clock_ctrl | (CLOCK_CTRL_44MHZ_CORE | CLOCK_CTRL_ALTCLK), 40); tw32_wait_f(TG3PCI_CLOCK_CTRL, clock_ctrl | (CLOCK_CTRL_ALTCLK), 40); } tw32_wait_f(TG3PCI_CLOCK_CTRL, clock_ctrl, 40); } #define PHY_BUSY_LOOPS 5000 static int __tg3_readphy(struct tg3 *tp, unsigned int phy_addr, int reg, u32 *val) { u32 frame_val; unsigned int loops; int ret; if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) { tw32_f(MAC_MI_MODE, (tp->mi_mode & ~MAC_MI_MODE_AUTO_POLL)); udelay(80); } tg3_ape_lock(tp, tp->phy_ape_lock); *val = 0x0; frame_val = ((phy_addr << MI_COM_PHY_ADDR_SHIFT) & MI_COM_PHY_ADDR_MASK); frame_val |= ((reg << MI_COM_REG_ADDR_SHIFT) & MI_COM_REG_ADDR_MASK); frame_val |= (MI_COM_CMD_READ | MI_COM_START); tw32_f(MAC_MI_COM, frame_val); loops = PHY_BUSY_LOOPS; while (loops != 0) { udelay(10); frame_val = tr32(MAC_MI_COM); if ((frame_val & MI_COM_BUSY) == 0) { udelay(5); frame_val = tr32(MAC_MI_COM); break; } loops -= 1; } ret = -EBUSY; if (loops != 0) { *val = frame_val & MI_COM_DATA_MASK; ret = 0; } if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) { tw32_f(MAC_MI_MODE, tp->mi_mode); udelay(80); } tg3_ape_unlock(tp, tp->phy_ape_lock); return ret; } static int tg3_readphy(struct tg3 *tp, int reg, u32 *val) { return __tg3_readphy(tp, tp->phy_addr, reg, val); } static int __tg3_writephy(struct tg3 *tp, unsigned int phy_addr, int reg, u32 val) { u32 frame_val; unsigned int loops; int ret; if ((tp->phy_flags & TG3_PHYFLG_IS_FET) && (reg == MII_CTRL1000 || reg == MII_TG3_AUX_CTRL)) return 0; if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) { tw32_f(MAC_MI_MODE, (tp->mi_mode & ~MAC_MI_MODE_AUTO_POLL)); udelay(80); } tg3_ape_lock(tp, tp->phy_ape_lock); frame_val = ((phy_addr << MI_COM_PHY_ADDR_SHIFT) & MI_COM_PHY_ADDR_MASK); frame_val |= ((reg << MI_COM_REG_ADDR_SHIFT) & MI_COM_REG_ADDR_MASK); frame_val |= (val & MI_COM_DATA_MASK); frame_val |= (MI_COM_CMD_WRITE | MI_COM_START); tw32_f(MAC_MI_COM, frame_val); loops = PHY_BUSY_LOOPS; while (loops != 0) { udelay(10); frame_val = tr32(MAC_MI_COM); if ((frame_val & MI_COM_BUSY) == 0) { udelay(5); frame_val = tr32(MAC_MI_COM); break; } loops -= 1; } ret = -EBUSY; if (loops != 0) ret = 0; if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) { tw32_f(MAC_MI_MODE, tp->mi_mode); udelay(80); } tg3_ape_unlock(tp, tp->phy_ape_lock); return ret; } static int tg3_writephy(struct tg3 *tp, int reg, u32 val) { return __tg3_writephy(tp, tp->phy_addr, reg, val); } static int tg3_phy_cl45_write(struct tg3 *tp, u32 devad, u32 addr, u32 val) { int err; err = tg3_writephy(tp, MII_TG3_MMD_CTRL, devad); if (err) goto done; err = tg3_writephy(tp, MII_TG3_MMD_ADDRESS, addr); if (err) goto done; err = tg3_writephy(tp, MII_TG3_MMD_CTRL, MII_TG3_MMD_CTRL_DATA_NOINC | devad); if (err) goto done; err = tg3_writephy(tp, MII_TG3_MMD_ADDRESS, val); done: return err; } static int tg3_phy_cl45_read(struct tg3 *tp, u32 devad, u32 addr, u32 *val) { int err; err = tg3_writephy(tp, MII_TG3_MMD_CTRL, devad); if (err) goto done; err = tg3_writephy(tp, MII_TG3_MMD_ADDRESS, addr); if (err) goto done; err = tg3_writephy(tp, MII_TG3_MMD_CTRL, MII_TG3_MMD_CTRL_DATA_NOINC | devad); if (err) goto done; err = tg3_readphy(tp, MII_TG3_MMD_ADDRESS, val); done: return err; } static int tg3_phydsp_read(struct tg3 *tp, u32 reg, u32 *val) { int err; err = tg3_writephy(tp, MII_TG3_DSP_ADDRESS, reg); if (!err) err = tg3_readphy(tp, MII_TG3_DSP_RW_PORT, val); return err; } static int tg3_phydsp_write(struct tg3 *tp, u32 reg, u32 val) { int err; err = tg3_writephy(tp, MII_TG3_DSP_ADDRESS, reg); if (!err) err = tg3_writephy(tp, MII_TG3_DSP_RW_PORT, val); return err; } static int tg3_phy_auxctl_read(struct tg3 *tp, int reg, u32 *val) { int err; err = tg3_writephy(tp, MII_TG3_AUX_CTRL, (reg << MII_TG3_AUXCTL_MISC_RDSEL_SHIFT) | MII_TG3_AUXCTL_SHDWSEL_MISC); if (!err) err = tg3_readphy(tp, MII_TG3_AUX_CTRL, val); return err; } static int tg3_phy_auxctl_write(struct tg3 *tp, int reg, u32 set) { if (reg == MII_TG3_AUXCTL_SHDWSEL_MISC) set |= MII_TG3_AUXCTL_MISC_WREN; return tg3_writephy(tp, MII_TG3_AUX_CTRL, set | reg); } static int tg3_phy_toggle_auxctl_smdsp(struct tg3 *tp, bool enable) { u32 val; int err; err = tg3_phy_auxctl_read(tp, MII_TG3_AUXCTL_SHDWSEL_AUXCTL, &val); if (err) return err; if (enable) val |= MII_TG3_AUXCTL_ACTL_SMDSP_ENA; else val &= ~MII_TG3_AUXCTL_ACTL_SMDSP_ENA; err = tg3_phy_auxctl_write((tp), MII_TG3_AUXCTL_SHDWSEL_AUXCTL, val | MII_TG3_AUXCTL_ACTL_TX_6DB); return err; } static int tg3_bmcr_reset(struct tg3 *tp) { u32 phy_control; int limit, err; /* OK, reset it, and poll the BMCR_RESET bit until it * clears or we time out. */ phy_control = BMCR_RESET; err = tg3_writephy(tp, MII_BMCR, phy_control); if (err != 0) return -EBUSY; limit = 5000; while (limit--) { err = tg3_readphy(tp, MII_BMCR, &phy_control); if (err != 0) return -EBUSY; if ((phy_control & BMCR_RESET) == 0) { udelay(40); break; } udelay(10); } if (limit < 0) return -EBUSY; return 0; } static int tg3_mdio_read(struct mii_bus *bp, int mii_id, int reg) { struct tg3 *tp = bp->priv; u32 val; spin_lock_bh(&tp->lock); if (tg3_readphy(tp, reg, &val)) val = -EIO; spin_unlock_bh(&tp->lock); return val; } static int tg3_mdio_write(struct mii_bus *bp, int mii_id, int reg, u16 val) { struct tg3 *tp = bp->priv; u32 ret = 0; spin_lock_bh(&tp->lock); if (tg3_writephy(tp, reg, val)) ret = -EIO; spin_unlock_bh(&tp->lock); return ret; } static int tg3_mdio_reset(struct mii_bus *bp) { return 0; } static void tg3_mdio_config_5785(struct tg3 *tp) { u32 val; struct phy_device *phydev; phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]; switch (phydev->drv->phy_id & phydev->drv->phy_id_mask) { case PHY_ID_BCM50610: case PHY_ID_BCM50610M: val = MAC_PHYCFG2_50610_LED_MODES; break; case PHY_ID_BCMAC131: val = MAC_PHYCFG2_AC131_LED_MODES; break; case PHY_ID_RTL8211C: val = MAC_PHYCFG2_RTL8211C_LED_MODES; break; case PHY_ID_RTL8201E: val = MAC_PHYCFG2_RTL8201E_LED_MODES; break; default: return; } if (phydev->interface != PHY_INTERFACE_MODE_RGMII) { tw32(MAC_PHYCFG2, val); val = tr32(MAC_PHYCFG1); val &= ~(MAC_PHYCFG1_RGMII_INT | MAC_PHYCFG1_RXCLK_TO_MASK | MAC_PHYCFG1_TXCLK_TO_MASK); val |= MAC_PHYCFG1_RXCLK_TIMEOUT | MAC_PHYCFG1_TXCLK_TIMEOUT; tw32(MAC_PHYCFG1, val); return; } if (!tg3_flag(tp, RGMII_INBAND_DISABLE)) val |= MAC_PHYCFG2_EMODE_MASK_MASK | MAC_PHYCFG2_FMODE_MASK_MASK | MAC_PHYCFG2_GMODE_MASK_MASK | MAC_PHYCFG2_ACT_MASK_MASK | MAC_PHYCFG2_QUAL_MASK_MASK | MAC_PHYCFG2_INBAND_ENABLE; tw32(MAC_PHYCFG2, val); val = tr32(MAC_PHYCFG1); val &= ~(MAC_PHYCFG1_RXCLK_TO_MASK | MAC_PHYCFG1_TXCLK_TO_MASK | MAC_PHYCFG1_RGMII_EXT_RX_DEC | MAC_PHYCFG1_RGMII_SND_STAT_EN); if (!tg3_flag(tp, RGMII_INBAND_DISABLE)) { if (tg3_flag(tp, RGMII_EXT_IBND_RX_EN)) val |= MAC_PHYCFG1_RGMII_EXT_RX_DEC; if (tg3_flag(tp, RGMII_EXT_IBND_TX_EN)) val |= MAC_PHYCFG1_RGMII_SND_STAT_EN; } val |= MAC_PHYCFG1_RXCLK_TIMEOUT | MAC_PHYCFG1_TXCLK_TIMEOUT | MAC_PHYCFG1_RGMII_INT | MAC_PHYCFG1_TXC_DRV; tw32(MAC_PHYCFG1, val); val = tr32(MAC_EXT_RGMII_MODE); val &= ~(MAC_RGMII_MODE_RX_INT_B | MAC_RGMII_MODE_RX_QUALITY | MAC_RGMII_MODE_RX_ACTIVITY | MAC_RGMII_MODE_RX_ENG_DET | MAC_RGMII_MODE_TX_ENABLE | MAC_RGMII_MODE_TX_LOWPWR | MAC_RGMII_MODE_TX_RESET); if (!tg3_flag(tp, RGMII_INBAND_DISABLE)) { if (tg3_flag(tp, RGMII_EXT_IBND_RX_EN)) val |= MAC_RGMII_MODE_RX_INT_B | MAC_RGMII_MODE_RX_QUALITY | MAC_RGMII_MODE_RX_ACTIVITY | MAC_RGMII_MODE_RX_ENG_DET; if (tg3_flag(tp, RGMII_EXT_IBND_TX_EN)) val |= MAC_RGMII_MODE_TX_ENABLE | MAC_RGMII_MODE_TX_LOWPWR | MAC_RGMII_MODE_TX_RESET; } tw32(MAC_EXT_RGMII_MODE, val); } static void tg3_mdio_start(struct tg3 *tp) { tp->mi_mode &= ~MAC_MI_MODE_AUTO_POLL; tw32_f(MAC_MI_MODE, tp->mi_mode); udelay(80); if (tg3_flag(tp, MDIOBUS_INITED) && tg3_asic_rev(tp) == ASIC_REV_5785) tg3_mdio_config_5785(tp); } static int tg3_mdio_init(struct tg3 *tp) { int i; u32 reg; struct phy_device *phydev; if (tg3_flag(tp, 5717_PLUS)) { u32 is_serdes; tp->phy_addr = tp->pci_fn + 1; if (tg3_chip_rev_id(tp) != CHIPREV_ID_5717_A0) is_serdes = tr32(SG_DIG_STATUS) & SG_DIG_IS_SERDES; else is_serdes = tr32(TG3_CPMU_PHY_STRAP) & TG3_CPMU_PHY_STRAP_IS_SERDES; if (is_serdes) tp->phy_addr += 7; } else tp->phy_addr = TG3_PHY_MII_ADDR; tg3_mdio_start(tp); if (!tg3_flag(tp, USE_PHYLIB) || tg3_flag(tp, MDIOBUS_INITED)) return 0; tp->mdio_bus = mdiobus_alloc(); if (tp->mdio_bus == NULL) return -ENOMEM; tp->mdio_bus->name = "tg3 mdio bus"; snprintf(tp->mdio_bus->id, MII_BUS_ID_SIZE, "%x", (tp->pdev->bus->number << 8) | tp->pdev->devfn); tp->mdio_bus->priv = tp; tp->mdio_bus->parent = &tp->pdev->dev; tp->mdio_bus->read = &tg3_mdio_read; tp->mdio_bus->write = &tg3_mdio_write; tp->mdio_bus->reset = &tg3_mdio_reset; tp->mdio_bus->phy_mask = ~(1 << TG3_PHY_MII_ADDR); tp->mdio_bus->irq = &tp->mdio_irq[0]; for (i = 0; i < PHY_MAX_ADDR; i++) tp->mdio_bus->irq[i] = PHY_POLL; /* The bus registration will look for all the PHYs on the mdio bus. * Unfortunately, it does not ensure the PHY is powered up before * accessing the PHY ID registers. A chip reset is the * quickest way to bring the device back to an operational state.. */ if (tg3_readphy(tp, MII_BMCR, ®) || (reg & BMCR_PDOWN)) tg3_bmcr_reset(tp); i = mdiobus_register(tp->mdio_bus); if (i) { dev_warn(&tp->pdev->dev, "mdiobus_reg failed (0x%x)\n", i); mdiobus_free(tp->mdio_bus); return i; } phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]; if (!phydev || !phydev->drv) { dev_warn(&tp->pdev->dev, "No PHY devices\n"); mdiobus_unregister(tp->mdio_bus); mdiobus_free(tp->mdio_bus); return -ENODEV; } switch (phydev->drv->phy_id & phydev->drv->phy_id_mask) { case PHY_ID_BCM57780: phydev->interface = PHY_INTERFACE_MODE_GMII; phydev->dev_flags |= PHY_BRCM_AUTO_PWRDWN_ENABLE; break; case PHY_ID_BCM50610: case PHY_ID_BCM50610M: phydev->dev_flags |= PHY_BRCM_CLEAR_RGMII_MODE | PHY_BRCM_RX_REFCLK_UNUSED | PHY_BRCM_DIS_TXCRXC_NOENRGY | PHY_BRCM_AUTO_PWRDWN_ENABLE; if (tg3_flag(tp, RGMII_INBAND_DISABLE)) phydev->dev_flags |= PHY_BRCM_STD_IBND_DISABLE; if (tg3_flag(tp, RGMII_EXT_IBND_RX_EN)) phydev->dev_flags |= PHY_BRCM_EXT_IBND_RX_ENABLE; if (tg3_flag(tp, RGMII_EXT_IBND_TX_EN)) phydev->dev_flags |= PHY_BRCM_EXT_IBND_TX_ENABLE; /* fallthru */ case PHY_ID_RTL8211C: phydev->interface = PHY_INTERFACE_MODE_RGMII; break; case PHY_ID_RTL8201E: case PHY_ID_BCMAC131: phydev->interface = PHY_INTERFACE_MODE_MII; phydev->dev_flags |= PHY_BRCM_AUTO_PWRDWN_ENABLE; tp->phy_flags |= TG3_PHYFLG_IS_FET; break; } tg3_flag_set(tp, MDIOBUS_INITED); if (tg3_asic_rev(tp) == ASIC_REV_5785) tg3_mdio_config_5785(tp); return 0; } static void tg3_mdio_fini(struct tg3 *tp) { if (tg3_flag(tp, MDIOBUS_INITED)) { tg3_flag_clear(tp, MDIOBUS_INITED); mdiobus_unregister(tp->mdio_bus); mdiobus_free(tp->mdio_bus); } } /* tp->lock is held. */ static inline void tg3_generate_fw_event(struct tg3 *tp) { u32 val; val = tr32(GRC_RX_CPU_EVENT); val |= GRC_RX_CPU_DRIVER_EVENT; tw32_f(GRC_RX_CPU_EVENT, val); tp->last_event_jiffies = jiffies; } #define TG3_FW_EVENT_TIMEOUT_USEC 2500 /* tp->lock is held. */ static void tg3_wait_for_event_ack(struct tg3 *tp) { int i; unsigned int delay_cnt; long time_remain; /* If enough time has passed, no wait is necessary. */ time_remain = (long)(tp->last_event_jiffies + 1 + usecs_to_jiffies(TG3_FW_EVENT_TIMEOUT_USEC)) - (long)jiffies; if (time_remain < 0) return; /* Check if we can shorten the wait time. */ delay_cnt = jiffies_to_usecs(time_remain); if (delay_cnt > TG3_FW_EVENT_TIMEOUT_USEC) delay_cnt = TG3_FW_EVENT_TIMEOUT_USEC; delay_cnt = (delay_cnt >> 3) + 1; for (i = 0; i < delay_cnt; i++) { if (!(tr32(GRC_RX_CPU_EVENT) & GRC_RX_CPU_DRIVER_EVENT)) break; if (pci_channel_offline(tp->pdev)) break; udelay(8); } } /* tp->lock is held. */ static void tg3_phy_gather_ump_data(struct tg3 *tp, u32 *data) { u32 reg, val; val = 0; if (!tg3_readphy(tp, MII_BMCR, ®)) val = reg << 16; if (!tg3_readphy(tp, MII_BMSR, ®)) val |= (reg & 0xffff); *data++ = val; val = 0; if (!tg3_readphy(tp, MII_ADVERTISE, ®)) val = reg << 16; if (!tg3_readphy(tp, MII_LPA, ®)) val |= (reg & 0xffff); *data++ = val; val = 0; if (!(tp->phy_flags & TG3_PHYFLG_MII_SERDES)) { if (!tg3_readphy(tp, MII_CTRL1000, ®)) val = reg << 16; if (!tg3_readphy(tp, MII_STAT1000, ®)) val |= (reg & 0xffff); } *data++ = val; if (!tg3_readphy(tp, MII_PHYADDR, ®)) val = reg << 16; else val = 0; *data++ = val; } /* tp->lock is held. */ static void tg3_ump_link_report(struct tg3 *tp) { u32 data[4]; if (!tg3_flag(tp, 5780_CLASS) || !tg3_flag(tp, ENABLE_ASF)) return; tg3_phy_gather_ump_data(tp, data); tg3_wait_for_event_ack(tp); tg3_write_mem(tp, NIC_SRAM_FW_CMD_MBOX, FWCMD_NICDRV_LINK_UPDATE); tg3_write_mem(tp, NIC_SRAM_FW_CMD_LEN_MBOX, 14); tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX + 0x0, data[0]); tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX + 0x4, data[1]); tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX + 0x8, data[2]); tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX + 0xc, data[3]); tg3_generate_fw_event(tp); } /* tp->lock is held. */ static void tg3_stop_fw(struct tg3 *tp) { if (tg3_flag(tp, ENABLE_ASF) && !tg3_flag(tp, ENABLE_APE)) { /* Wait for RX cpu to ACK the previous event. */ tg3_wait_for_event_ack(tp); tg3_write_mem(tp, NIC_SRAM_FW_CMD_MBOX, FWCMD_NICDRV_PAUSE_FW); tg3_generate_fw_event(tp); /* Wait for RX cpu to ACK this event. */ tg3_wait_for_event_ack(tp); } } /* tp->lock is held. */ static void tg3_write_sig_pre_reset(struct tg3 *tp, int kind) { tg3_write_mem(tp, NIC_SRAM_FIRMWARE_MBOX, NIC_SRAM_FIRMWARE_MBOX_MAGIC1); if (tg3_flag(tp, ASF_NEW_HANDSHAKE)) { switch (kind) { case RESET_KIND_INIT: tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX, DRV_STATE_START); break; case RESET_KIND_SHUTDOWN: tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX, DRV_STATE_UNLOAD); break; case RESET_KIND_SUSPEND: tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX, DRV_STATE_SUSPEND); break; default: break; } } } /* tp->lock is held. */ static void tg3_write_sig_post_reset(struct tg3 *tp, int kind) { if (tg3_flag(tp, ASF_NEW_HANDSHAKE)) { switch (kind) { case RESET_KIND_INIT: tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX, DRV_STATE_START_DONE); break; case RESET_KIND_SHUTDOWN: tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX, DRV_STATE_UNLOAD_DONE); break; default: break; } } } /* tp->lock is held. */ static void tg3_write_sig_legacy(struct tg3 *tp, int kind) { if (tg3_flag(tp, ENABLE_ASF)) { switch (kind) { case RESET_KIND_INIT: tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX, DRV_STATE_START); break; case RESET_KIND_SHUTDOWN: tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX, DRV_STATE_UNLOAD); break; case RESET_KIND_SUSPEND: tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX, DRV_STATE_SUSPEND); break; default: break; } } } static int tg3_poll_fw(struct tg3 *tp) { int i; u32 val; if (tg3_flag(tp, NO_FWARE_REPORTED)) return 0; if (tg3_flag(tp, IS_SSB_CORE)) { /* We don't use firmware. */ return 0; } if (tg3_asic_rev(tp) == ASIC_REV_5906) { /* Wait up to 20ms for init done. */ for (i = 0; i < 200; i++) { if (tr32(VCPU_STATUS) & VCPU_STATUS_INIT_DONE) return 0; if (pci_channel_offline(tp->pdev)) return -ENODEV; udelay(100); } return -ENODEV; } /* Wait for firmware initialization to complete. */ for (i = 0; i < 100000; i++) { tg3_read_mem(tp, NIC_SRAM_FIRMWARE_MBOX, &val); if (val == ~NIC_SRAM_FIRMWARE_MBOX_MAGIC1) break; if (pci_channel_offline(tp->pdev)) { if (!tg3_flag(tp, NO_FWARE_REPORTED)) { tg3_flag_set(tp, NO_FWARE_REPORTED); netdev_info(tp->dev, "No firmware running\n"); } break; } udelay(10); } /* Chip might not be fitted with firmware. Some Sun onboard * parts are configured like that. So don't signal the timeout * of the above loop as an error, but do report the lack of * running firmware once. */ if (i >= 100000 && !tg3_flag(tp, NO_FWARE_REPORTED)) { tg3_flag_set(tp, NO_FWARE_REPORTED); netdev_info(tp->dev, "No firmware running\n"); } if (tg3_chip_rev_id(tp) == CHIPREV_ID_57765_A0) { /* The 57765 A0 needs a little more * time to do some important work. */ mdelay(10); } return 0; } static void tg3_link_report(struct tg3 *tp) { if (!netif_carrier_ok(tp->dev)) { netif_info(tp, link, tp->dev, "Link is down\n"); tg3_ump_link_report(tp); } else if (netif_msg_link(tp)) { netdev_info(tp->dev, "Link is up at %d Mbps, %s duplex\n", (tp->link_config.active_speed == SPEED_1000 ? 1000 : (tp->link_config.active_speed == SPEED_100 ? 100 : 10)), (tp->link_config.active_duplex == DUPLEX_FULL ? "full" : "half")); netdev_info(tp->dev, "Flow control is %s for TX and %s for RX\n", (tp->link_config.active_flowctrl & FLOW_CTRL_TX) ? "on" : "off", (tp->link_config.active_flowctrl & FLOW_CTRL_RX) ? "on" : "off"); if (tp->phy_flags & TG3_PHYFLG_EEE_CAP) netdev_info(tp->dev, "EEE is %s\n", tp->setlpicnt ? "enabled" : "disabled"); tg3_ump_link_report(tp); } tp->link_up = netif_carrier_ok(tp->dev); } static u32 tg3_decode_flowctrl_1000T(u32 adv) { u32 flowctrl = 0; if (adv & ADVERTISE_PAUSE_CAP) { flowctrl |= FLOW_CTRL_RX; if (!(adv & ADVERTISE_PAUSE_ASYM)) flowctrl |= FLOW_CTRL_TX; } else if (adv & ADVERTISE_PAUSE_ASYM) flowctrl |= FLOW_CTRL_TX; return flowctrl; } static u16 tg3_advert_flowctrl_1000X(u8 flow_ctrl) { u16 miireg; if ((flow_ctrl & FLOW_CTRL_TX) && (flow_ctrl & FLOW_CTRL_RX)) miireg = ADVERTISE_1000XPAUSE; else if (flow_ctrl & FLOW_CTRL_TX) miireg = ADVERTISE_1000XPSE_ASYM; else if (flow_ctrl & FLOW_CTRL_RX) miireg = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM; else miireg = 0; return miireg; } static u32 tg3_decode_flowctrl_1000X(u32 adv) { u32 flowctrl = 0; if (adv & ADVERTISE_1000XPAUSE) { flowctrl |= FLOW_CTRL_RX; if (!(adv & ADVERTISE_1000XPSE_ASYM)) flowctrl |= FLOW_CTRL_TX; } else if (adv & ADVERTISE_1000XPSE_ASYM) flowctrl |= FLOW_CTRL_TX; return flowctrl; } static u8 tg3_resolve_flowctrl_1000X(u16 lcladv, u16 rmtadv) { u8 cap = 0; if (lcladv & rmtadv & ADVERTISE_1000XPAUSE) { cap = FLOW_CTRL_TX | FLOW_CTRL_RX; } else if (lcladv & rmtadv & ADVERTISE_1000XPSE_ASYM) { if (lcladv & ADVERTISE_1000XPAUSE) cap = FLOW_CTRL_RX; if (rmtadv & ADVERTISE_1000XPAUSE) cap = FLOW_CTRL_TX; } return cap; } static void tg3_setup_flow_control(struct tg3 *tp, u32 lcladv, u32 rmtadv) { u8 autoneg; u8 flowctrl = 0; u32 old_rx_mode = tp->rx_mode; u32 old_tx_mode = tp->tx_mode; if (tg3_flag(tp, USE_PHYLIB)) autoneg = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]->autoneg; else autoneg = tp->link_config.autoneg; if (autoneg == AUTONEG_ENABLE && tg3_flag(tp, PAUSE_AUTONEG)) { if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES) flowctrl = tg3_resolve_flowctrl_1000X(lcladv, rmtadv); else flowctrl = mii_resolve_flowctrl_fdx(lcladv, rmtadv); } else flowctrl = tp->link_config.flowctrl; tp->link_config.active_flowctrl = flowctrl; if (flowctrl & FLOW_CTRL_RX) tp->rx_mode |= RX_MODE_FLOW_CTRL_ENABLE; else tp->rx_mode &= ~RX_MODE_FLOW_CTRL_ENABLE; if (old_rx_mode != tp->rx_mode) tw32_f(MAC_RX_MODE, tp->rx_mode); if (flowctrl & FLOW_CTRL_TX) tp->tx_mode |= TX_MODE_FLOW_CTRL_ENABLE; else tp->tx_mode &= ~TX_MODE_FLOW_CTRL_ENABLE; if (old_tx_mode != tp->tx_mode) tw32_f(MAC_TX_MODE, tp->tx_mode); } static void tg3_adjust_link(struct net_device *dev) { u8 oldflowctrl, linkmesg = 0; u32 mac_mode, lcl_adv, rmt_adv; struct tg3 *tp = netdev_priv(dev); struct phy_device *phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]; spin_lock_bh(&tp->lock); mac_mode = tp->mac_mode & ~(MAC_MODE_PORT_MODE_MASK | MAC_MODE_HALF_DUPLEX); oldflowctrl = tp->link_config.active_flowctrl; if (phydev->link) { lcl_adv = 0; rmt_adv = 0; if (phydev->speed == SPEED_100 || phydev->speed == SPEED_10) mac_mode |= MAC_MODE_PORT_MODE_MII; else if (phydev->speed == SPEED_1000 || tg3_asic_rev(tp) != ASIC_REV_5785) mac_mode |= MAC_MODE_PORT_MODE_GMII; else mac_mode |= MAC_MODE_PORT_MODE_MII; if (phydev->duplex == DUPLEX_HALF) mac_mode |= MAC_MODE_HALF_DUPLEX; else { lcl_adv = mii_advertise_flowctrl( tp->link_config.flowctrl); if (phydev->pause) rmt_adv = LPA_PAUSE_CAP; if (phydev->asym_pause) rmt_adv |= LPA_PAUSE_ASYM; } tg3_setup_flow_control(tp, lcl_adv, rmt_adv); } else mac_mode |= MAC_MODE_PORT_MODE_GMII; if (mac_mode != tp->mac_mode) { tp->mac_mode = mac_mode; tw32_f(MAC_MODE, tp->mac_mode); udelay(40); } if (tg3_asic_rev(tp) == ASIC_REV_5785) { if (phydev->speed == SPEED_10) tw32(MAC_MI_STAT, MAC_MI_STAT_10MBPS_MODE | MAC_MI_STAT_LNKSTAT_ATTN_ENAB); else tw32(MAC_MI_STAT, MAC_MI_STAT_LNKSTAT_ATTN_ENAB); } if (phydev->speed == SPEED_1000 && phydev->duplex == DUPLEX_HALF) tw32(MAC_TX_LENGTHS, ((2 << TX_LENGTHS_IPG_CRS_SHIFT) | (6 << TX_LENGTHS_IPG_SHIFT) | (0xff << TX_LENGTHS_SLOT_TIME_SHIFT))); else tw32(MAC_TX_LENGTHS, ((2 << TX_LENGTHS_IPG_CRS_SHIFT) | (6 << TX_LENGTHS_IPG_SHIFT) | (32 << TX_LENGTHS_SLOT_TIME_SHIFT))); if (phydev->link != tp->old_link || phydev->speed != tp->link_config.active_speed || phydev->duplex != tp->link_config.active_duplex || oldflowctrl != tp->link_config.active_flowctrl) linkmesg = 1; tp->old_link = phydev->link; tp->link_config.active_speed = phydev->speed; tp->link_config.active_duplex = phydev->duplex; spin_unlock_bh(&tp->lock); if (linkmesg) tg3_link_report(tp); } static int tg3_phy_init(struct tg3 *tp) { struct phy_device *phydev; if (tp->phy_flags & TG3_PHYFLG_IS_CONNECTED) return 0; /* Bring the PHY back to a known state. */ tg3_bmcr_reset(tp); phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]; /* Attach the MAC to the PHY. */ phydev = phy_connect(tp->dev, dev_name(&phydev->dev), tg3_adjust_link, phydev->interface); if (IS_ERR(phydev)) { dev_err(&tp->pdev->dev, "Could not attach to PHY\n"); return PTR_ERR(phydev); } /* Mask with MAC supported features. */ switch (phydev->interface) { case PHY_INTERFACE_MODE_GMII: case PHY_INTERFACE_MODE_RGMII: if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) { phydev->supported &= (PHY_GBIT_FEATURES | SUPPORTED_Pause | SUPPORTED_Asym_Pause); break; } /* fallthru */ case PHY_INTERFACE_MODE_MII: phydev->supported &= (PHY_BASIC_FEATURES | SUPPORTED_Pause | SUPPORTED_Asym_Pause); break; default: phy_disconnect(tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]); return -EINVAL; } tp->phy_flags |= TG3_PHYFLG_IS_CONNECTED; phydev->advertising = phydev->supported; return 0; } static void tg3_phy_start(struct tg3 *tp) { struct phy_device *phydev; if (!(tp->phy_flags & TG3_PHYFLG_IS_CONNECTED)) return; phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]; if (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER) { tp->phy_flags &= ~TG3_PHYFLG_IS_LOW_POWER; phydev->speed = tp->link_config.speed; phydev->duplex = tp->link_config.duplex; phydev->autoneg = tp->link_config.autoneg; phydev->advertising = tp->link_config.advertising; } phy_start(phydev); phy_start_aneg(phydev); } static void tg3_phy_stop(struct tg3 *tp) { if (!(tp->phy_flags & TG3_PHYFLG_IS_CONNECTED)) return; phy_stop(tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]); } static void tg3_phy_fini(struct tg3 *tp) { if (tp->phy_flags & TG3_PHYFLG_IS_CONNECTED) { phy_disconnect(tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]); tp->phy_flags &= ~TG3_PHYFLG_IS_CONNECTED; } } static int tg3_phy_set_extloopbk(struct tg3 *tp) { int err; u32 val; if (tp->phy_flags & TG3_PHYFLG_IS_FET) return 0; if ((tp->phy_id & TG3_PHY_ID_MASK) == TG3_PHY_ID_BCM5401) { /* Cannot do read-modify-write on 5401 */ err = tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_AUXCTL, MII_TG3_AUXCTL_ACTL_EXTLOOPBK | 0x4c20); goto done; } err = tg3_phy_auxctl_read(tp, MII_TG3_AUXCTL_SHDWSEL_AUXCTL, &val); if (err) return err; val |= MII_TG3_AUXCTL_ACTL_EXTLOOPBK; err = tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_AUXCTL, val); done: return err; } static void tg3_phy_fet_toggle_apd(struct tg3 *tp, bool enable) { u32 phytest; if (!tg3_readphy(tp, MII_TG3_FET_TEST, &phytest)) { u32 phy; tg3_writephy(tp, MII_TG3_FET_TEST, phytest | MII_TG3_FET_SHADOW_EN); if (!tg3_readphy(tp, MII_TG3_FET_SHDW_AUXSTAT2, &phy)) { if (enable) phy |= MII_TG3_FET_SHDW_AUXSTAT2_APD; else phy &= ~MII_TG3_FET_SHDW_AUXSTAT2_APD; tg3_writephy(tp, MII_TG3_FET_SHDW_AUXSTAT2, phy); } tg3_writephy(tp, MII_TG3_FET_TEST, phytest); } } static void tg3_phy_toggle_apd(struct tg3 *tp, bool enable) { u32 reg; if (!tg3_flag(tp, 5705_PLUS) || (tg3_flag(tp, 5717_PLUS) && (tp->phy_flags & TG3_PHYFLG_MII_SERDES))) return; if (tp->phy_flags & TG3_PHYFLG_IS_FET) { tg3_phy_fet_toggle_apd(tp, enable); return; } reg = MII_TG3_MISC_SHDW_WREN | MII_TG3_MISC_SHDW_SCR5_SEL | MII_TG3_MISC_SHDW_SCR5_LPED | MII_TG3_MISC_SHDW_SCR5_DLPTLM | MII_TG3_MISC_SHDW_SCR5_SDTL | MII_TG3_MISC_SHDW_SCR5_C125OE; if (tg3_asic_rev(tp) != ASIC_REV_5784 || !enable) reg |= MII_TG3_MISC_SHDW_SCR5_DLLAPD; tg3_writephy(tp, MII_TG3_MISC_SHDW, reg); reg = MII_TG3_MISC_SHDW_WREN | MII_TG3_MISC_SHDW_APD_SEL | MII_TG3_MISC_SHDW_APD_WKTM_84MS; if (enable) reg |= MII_TG3_MISC_SHDW_APD_ENABLE; tg3_writephy(tp, MII_TG3_MISC_SHDW, reg); } static void tg3_phy_toggle_automdix(struct tg3 *tp, bool enable) { u32 phy; if (!tg3_flag(tp, 5705_PLUS) || (tp->phy_flags & TG3_PHYFLG_ANY_SERDES)) return; if (tp->phy_flags & TG3_PHYFLG_IS_FET) { u32 ephy; if (!tg3_readphy(tp, MII_TG3_FET_TEST, &ephy)) { u32 reg = MII_TG3_FET_SHDW_MISCCTRL; tg3_writephy(tp, MII_TG3_FET_TEST, ephy | MII_TG3_FET_SHADOW_EN); if (!tg3_readphy(tp, reg, &phy)) { if (enable) phy |= MII_TG3_FET_SHDW_MISCCTRL_MDIX; else phy &= ~MII_TG3_FET_SHDW_MISCCTRL_MDIX; tg3_writephy(tp, reg, phy); } tg3_writephy(tp, MII_TG3_FET_TEST, ephy); } } else { int ret; ret = tg3_phy_auxctl_read(tp, MII_TG3_AUXCTL_SHDWSEL_MISC, &phy); if (!ret) { if (enable) phy |= MII_TG3_AUXCTL_MISC_FORCE_AMDIX; else phy &= ~MII_TG3_AUXCTL_MISC_FORCE_AMDIX; tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_MISC, phy); } } } static void tg3_phy_set_wirespeed(struct tg3 *tp) { int ret; u32 val; if (tp->phy_flags & TG3_PHYFLG_NO_ETH_WIRE_SPEED) return; ret = tg3_phy_auxctl_read(tp, MII_TG3_AUXCTL_SHDWSEL_MISC, &val); if (!ret) tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_MISC, val | MII_TG3_AUXCTL_MISC_WIRESPD_EN); } static void tg3_phy_apply_otp(struct tg3 *tp) { u32 otp, phy; if (!tp->phy_otp) return; otp = tp->phy_otp; if (tg3_phy_toggle_auxctl_smdsp(tp, true)) return; phy = ((otp & TG3_OTP_AGCTGT_MASK) >> TG3_OTP_AGCTGT_SHIFT); phy |= MII_TG3_DSP_TAP1_AGCTGT_DFLT; tg3_phydsp_write(tp, MII_TG3_DSP_TAP1, phy); phy = ((otp & TG3_OTP_HPFFLTR_MASK) >> TG3_OTP_HPFFLTR_SHIFT) | ((otp & TG3_OTP_HPFOVER_MASK) >> TG3_OTP_HPFOVER_SHIFT); tg3_phydsp_write(tp, MII_TG3_DSP_AADJ1CH0, phy); phy = ((otp & TG3_OTP_LPFDIS_MASK) >> TG3_OTP_LPFDIS_SHIFT); phy |= MII_TG3_DSP_AADJ1CH3_ADCCKADJ; tg3_phydsp_write(tp, MII_TG3_DSP_AADJ1CH3, phy); phy = ((otp & TG3_OTP_VDAC_MASK) >> TG3_OTP_VDAC_SHIFT); tg3_phydsp_write(tp, MII_TG3_DSP_EXP75, phy); phy = ((otp & TG3_OTP_10BTAMP_MASK) >> TG3_OTP_10BTAMP_SHIFT); tg3_phydsp_write(tp, MII_TG3_DSP_EXP96, phy); phy = ((otp & TG3_OTP_ROFF_MASK) >> TG3_OTP_ROFF_SHIFT) | ((otp & TG3_OTP_RCOFF_MASK) >> TG3_OTP_RCOFF_SHIFT); tg3_phydsp_write(tp, MII_TG3_DSP_EXP97, phy); tg3_phy_toggle_auxctl_smdsp(tp, false); } static void tg3_eee_pull_config(struct tg3 *tp, struct ethtool_eee *eee) { u32 val; struct ethtool_eee *dest = &tp->eee; if (!(tp->phy_flags & TG3_PHYFLG_EEE_CAP)) return; if (eee) dest = eee; if (tg3_phy_cl45_read(tp, MDIO_MMD_AN, TG3_CL45_D7_EEERES_STAT, &val)) return; /* Pull eee_active */ if (val == TG3_CL45_D7_EEERES_STAT_LP_1000T || val == TG3_CL45_D7_EEERES_STAT_LP_100TX) { dest->eee_active = 1; } else dest->eee_active = 0; /* Pull lp advertised settings */ if (tg3_phy_cl45_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_LPABLE, &val)) return; dest->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val); /* Pull advertised and eee_enabled settings */ if (tg3_phy_cl45_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, &val)) return; dest->eee_enabled = !!val; dest->advertised = mmd_eee_adv_to_ethtool_adv_t(val); /* Pull tx_lpi_enabled */ val = tr32(TG3_CPMU_EEE_MODE); dest->tx_lpi_enabled = !!(val & TG3_CPMU_EEEMD_LPI_IN_TX); /* Pull lpi timer value */ dest->tx_lpi_timer = tr32(TG3_CPMU_EEE_DBTMR1) & 0xffff; } static void tg3_phy_eee_adjust(struct tg3 *tp, bool current_link_up) { u32 val; if (!(tp->phy_flags & TG3_PHYFLG_EEE_CAP)) return; tp->setlpicnt = 0; if (tp->link_config.autoneg == AUTONEG_ENABLE && current_link_up && tp->link_config.active_duplex == DUPLEX_FULL && (tp->link_config.active_speed == SPEED_100 || tp->link_config.active_speed == SPEED_1000)) { u32 eeectl; if (tp->link_config.active_speed == SPEED_1000) eeectl = TG3_CPMU_EEE_CTRL_EXIT_16_5_US; else eeectl = TG3_CPMU_EEE_CTRL_EXIT_36_US; tw32(TG3_CPMU_EEE_CTRL, eeectl); tg3_eee_pull_config(tp, NULL); if (tp->eee.eee_active) tp->setlpicnt = 2; } if (!tp->setlpicnt) { if (current_link_up && !tg3_phy_toggle_auxctl_smdsp(tp, true)) { tg3_phydsp_write(tp, MII_TG3_DSP_TAP26, 0x0000); tg3_phy_toggle_auxctl_smdsp(tp, false); } val = tr32(TG3_CPMU_EEE_MODE); tw32(TG3_CPMU_EEE_MODE, val & ~TG3_CPMU_EEEMD_LPI_ENABLE); } } static void tg3_phy_eee_enable(struct tg3 *tp) { u32 val; if (tp->link_config.active_speed == SPEED_1000 && (tg3_asic_rev(tp) == ASIC_REV_5717 || tg3_asic_rev(tp) == ASIC_REV_5719 || tg3_flag(tp, 57765_CLASS)) && !tg3_phy_toggle_auxctl_smdsp(tp, true)) { val = MII_TG3_DSP_TAP26_ALNOKO | MII_TG3_DSP_TAP26_RMRXSTO; tg3_phydsp_write(tp, MII_TG3_DSP_TAP26, val); tg3_phy_toggle_auxctl_smdsp(tp, false); } val = tr32(TG3_CPMU_EEE_MODE); tw32(TG3_CPMU_EEE_MODE, val | TG3_CPMU_EEEMD_LPI_ENABLE); } static int tg3_wait_macro_done(struct tg3 *tp) { int limit = 100; while (limit--) { u32 tmp32; if (!tg3_readphy(tp, MII_TG3_DSP_CONTROL, &tmp32)) { if ((tmp32 & 0x1000) == 0) break; } } if (limit < 0) return -EBUSY; return 0; } static int tg3_phy_write_and_check_testpat(struct tg3 *tp, int *resetp) { static const u32 test_pat[4][6] = { { 0x00005555, 0x00000005, 0x00002aaa, 0x0000000a, 0x00003456, 0x00000003 }, { 0x00002aaa, 0x0000000a, 0x00003333, 0x00000003, 0x0000789a, 0x00000005 }, { 0x00005a5a, 0x00000005, 0x00002a6a, 0x0000000a, 0x00001bcd, 0x00000003 }, { 0x00002a5a, 0x0000000a, 0x000033c3, 0x00000003, 0x00002ef1, 0x00000005 } }; int chan; for (chan = 0; chan < 4; chan++) { int i; tg3_writephy(tp, MII_TG3_DSP_ADDRESS, (chan * 0x2000) | 0x0200); tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0002); for (i = 0; i < 6; i++) tg3_writephy(tp, MII_TG3_DSP_RW_PORT, test_pat[chan][i]); tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0202); if (tg3_wait_macro_done(tp)) { *resetp = 1; return -EBUSY; } tg3_writephy(tp, MII_TG3_DSP_ADDRESS, (chan * 0x2000) | 0x0200); tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0082); if (tg3_wait_macro_done(tp)) { *resetp = 1; return -EBUSY; } tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0802); if (tg3_wait_macro_done(tp)) { *resetp = 1; return -EBUSY; } for (i = 0; i < 6; i += 2) { u32 low, high; if (tg3_readphy(tp, MII_TG3_DSP_RW_PORT, &low) || tg3_readphy(tp, MII_TG3_DSP_RW_PORT, &high) || tg3_wait_macro_done(tp)) { *resetp = 1; return -EBUSY; } low &= 0x7fff; high &= 0x000f; if (low != test_pat[chan][i] || high != test_pat[chan][i+1]) { tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x000b); tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x4001); tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x4005); return -EBUSY; } } } return 0; } static int tg3_phy_reset_chanpat(struct tg3 *tp) { int chan; for (chan = 0; chan < 4; chan++) { int i; tg3_writephy(tp, MII_TG3_DSP_ADDRESS, (chan * 0x2000) | 0x0200); tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0002); for (i = 0; i < 6; i++) tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x000); tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0202); if (tg3_wait_macro_done(tp)) return -EBUSY; } return 0; } static int tg3_phy_reset_5703_4_5(struct tg3 *tp) { u32 reg32, phy9_orig; int retries, do_phy_reset, err; retries = 10; do_phy_reset = 1; do { if (do_phy_reset) { err = tg3_bmcr_reset(tp); if (err) return err; do_phy_reset = 0; } /* Disable transmitter and interrupt. */ if (tg3_readphy(tp, MII_TG3_EXT_CTRL, ®32)) continue; reg32 |= 0x3000; tg3_writephy(tp, MII_TG3_EXT_CTRL, reg32); /* Set full-duplex, 1000 mbps. */ tg3_writephy(tp, MII_BMCR, BMCR_FULLDPLX | BMCR_SPEED1000); /* Set to master mode. */ if (tg3_readphy(tp, MII_CTRL1000, &phy9_orig)) continue; tg3_writephy(tp, MII_CTRL1000, CTL1000_AS_MASTER | CTL1000_ENABLE_MASTER); err = tg3_phy_toggle_auxctl_smdsp(tp, true); if (err) return err; /* Block the PHY control access. */ tg3_phydsp_write(tp, 0x8005, 0x0800); err = tg3_phy_write_and_check_testpat(tp, &do_phy_reset); if (!err) break; } while (--retries); err = tg3_phy_reset_chanpat(tp); if (err) return err; tg3_phydsp_write(tp, 0x8005, 0x0000); tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x8200); tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0000); tg3_phy_toggle_auxctl_smdsp(tp, false); tg3_writephy(tp, MII_CTRL1000, phy9_orig); if (!tg3_readphy(tp, MII_TG3_EXT_CTRL, ®32)) { reg32 &= ~0x3000; tg3_writephy(tp, MII_TG3_EXT_CTRL, reg32); } else if (!err) err = -EBUSY; return err; } static void tg3_carrier_off(struct tg3 *tp) { netif_carrier_off(tp->dev); tp->link_up = false; } static void tg3_warn_mgmt_link_flap(struct tg3 *tp) { if (tg3_flag(tp, ENABLE_ASF)) netdev_warn(tp->dev, "Management side-band traffic will be interrupted during phy settings change\n"); } /* This will reset the tigon3 PHY if there is no valid * link unless the FORCE argument is non-zero. */ static int tg3_phy_reset(struct tg3 *tp) { u32 val, cpmuctrl; int err; if (tg3_asic_rev(tp) == ASIC_REV_5906) { val = tr32(GRC_MISC_CFG); tw32_f(GRC_MISC_CFG, val & ~GRC_MISC_CFG_EPHY_IDDQ); udelay(40); } err = tg3_readphy(tp, MII_BMSR, &val); err |= tg3_readphy(tp, MII_BMSR, &val); if (err != 0) return -EBUSY; if (netif_running(tp->dev) && tp->link_up) { netif_carrier_off(tp->dev); tg3_link_report(tp); } if (tg3_asic_rev(tp) == ASIC_REV_5703 || tg3_asic_rev(tp) == ASIC_REV_5704 || tg3_asic_rev(tp) == ASIC_REV_5705) { err = tg3_phy_reset_5703_4_5(tp); if (err) return err; goto out; } cpmuctrl = 0; if (tg3_asic_rev(tp) == ASIC_REV_5784 && tg3_chip_rev(tp) != CHIPREV_5784_AX) { cpmuctrl = tr32(TG3_CPMU_CTRL); if (cpmuctrl & CPMU_CTRL_GPHY_10MB_RXONLY) tw32(TG3_CPMU_CTRL, cpmuctrl & ~CPMU_CTRL_GPHY_10MB_RXONLY); } err = tg3_bmcr_reset(tp); if (err) return err; if (cpmuctrl & CPMU_CTRL_GPHY_10MB_RXONLY) { val = MII_TG3_DSP_EXP8_AEDW | MII_TG3_DSP_EXP8_REJ2MHz; tg3_phydsp_write(tp, MII_TG3_DSP_EXP8, val); tw32(TG3_CPMU_CTRL, cpmuctrl); } if (tg3_chip_rev(tp) == CHIPREV_5784_AX || tg3_chip_rev(tp) == CHIPREV_5761_AX) { val = tr32(TG3_CPMU_LSPD_1000MB_CLK); if ((val & CPMU_LSPD_1000MB_MACCLK_MASK) == CPMU_LSPD_1000MB_MACCLK_12_5) { val &= ~CPMU_LSPD_1000MB_MACCLK_MASK; udelay(40); tw32_f(TG3_CPMU_LSPD_1000MB_CLK, val); } } if (tg3_flag(tp, 5717_PLUS) && (tp->phy_flags & TG3_PHYFLG_MII_SERDES)) return 0; tg3_phy_apply_otp(tp); if (tp->phy_flags & TG3_PHYFLG_ENABLE_APD) tg3_phy_toggle_apd(tp, true); else tg3_phy_toggle_apd(tp, false); out: if ((tp->phy_flags & TG3_PHYFLG_ADC_BUG) && !tg3_phy_toggle_auxctl_smdsp(tp, true)) { tg3_phydsp_write(tp, 0x201f, 0x2aaa); tg3_phydsp_write(tp, 0x000a, 0x0323); tg3_phy_toggle_auxctl_smdsp(tp, false); } if (tp->phy_flags & TG3_PHYFLG_5704_A0_BUG) { tg3_writephy(tp, MII_TG3_MISC_SHDW, 0x8d68); tg3_writephy(tp, MII_TG3_MISC_SHDW, 0x8d68); } if (tp->phy_flags & TG3_PHYFLG_BER_BUG) { if (!tg3_phy_toggle_auxctl_smdsp(tp, true)) { tg3_phydsp_write(tp, 0x000a, 0x310b); tg3_phydsp_write(tp, 0x201f, 0x9506); tg3_phydsp_write(tp, 0x401f, 0x14e2); tg3_phy_toggle_auxctl_smdsp(tp, false); } } else if (tp->phy_flags & TG3_PHYFLG_JITTER_BUG) { if (!tg3_phy_toggle_auxctl_smdsp(tp, true)) { tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x000a); if (tp->phy_flags & TG3_PHYFLG_ADJUST_TRIM) { tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x110b); tg3_writephy(tp, MII_TG3_TEST1, MII_TG3_TEST1_TRIM_EN | 0x4); } else tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x010b); tg3_phy_toggle_auxctl_smdsp(tp, false); } } /* Set Extended packet length bit (bit 14) on all chips that */ /* support jumbo frames */ if ((tp->phy_id & TG3_PHY_ID_MASK) == TG3_PHY_ID_BCM5401) { /* Cannot do read-modify-write on 5401 */ tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_AUXCTL, 0x4c20); } else if (tg3_flag(tp, JUMBO_CAPABLE)) { /* Set bit 14 with read-modify-write to preserve other bits */ err = tg3_phy_auxctl_read(tp, MII_TG3_AUXCTL_SHDWSEL_AUXCTL, &val); if (!err) tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_AUXCTL, val | MII_TG3_AUXCTL_ACTL_EXTPKTLEN); } /* Set phy register 0x10 bit 0 to high fifo elasticity to support * jumbo frames transmission. */ if (tg3_flag(tp, JUMBO_CAPABLE)) { if (!tg3_readphy(tp, MII_TG3_EXT_CTRL, &val)) tg3_writephy(tp, MII_TG3_EXT_CTRL, val | MII_TG3_EXT_CTRL_FIFO_ELASTIC); } if (tg3_asic_rev(tp) == ASIC_REV_5906) { /* adjust output voltage */ tg3_writephy(tp, MII_TG3_FET_PTEST, 0x12); } if (tg3_chip_rev_id(tp) == CHIPREV_ID_5762_A0) tg3_phydsp_write(tp, 0xffb, 0x4000); tg3_phy_toggle_automdix(tp, true); tg3_phy_set_wirespeed(tp); return 0; } #define TG3_GPIO_MSG_DRVR_PRES 0x00000001 #define TG3_GPIO_MSG_NEED_VAUX 0x00000002 #define TG3_GPIO_MSG_MASK (TG3_GPIO_MSG_DRVR_PRES | \ TG3_GPIO_MSG_NEED_VAUX) #define TG3_GPIO_MSG_ALL_DRVR_PRES_MASK \ ((TG3_GPIO_MSG_DRVR_PRES << 0) | \ (TG3_GPIO_MSG_DRVR_PRES << 4) | \ (TG3_GPIO_MSG_DRVR_PRES << 8) | \ (TG3_GPIO_MSG_DRVR_PRES << 12)) #define TG3_GPIO_MSG_ALL_NEED_VAUX_MASK \ ((TG3_GPIO_MSG_NEED_VAUX << 0) | \ (TG3_GPIO_MSG_NEED_VAUX << 4) | \ (TG3_GPIO_MSG_NEED_VAUX << 8) | \ (TG3_GPIO_MSG_NEED_VAUX << 12)) static inline u32 tg3_set_function_status(struct tg3 *tp, u32 newstat) { u32 status, shift; if (tg3_asic_rev(tp) == ASIC_REV_5717 || tg3_asic_rev(tp) == ASIC_REV_5719) status = tg3_ape_read32(tp, TG3_APE_GPIO_MSG); else status = tr32(TG3_CPMU_DRV_STATUS); shift = TG3_APE_GPIO_MSG_SHIFT + 4 * tp->pci_fn; status &= ~(TG3_GPIO_MSG_MASK << shift); status |= (newstat << shift); if (tg3_asic_rev(tp) == ASIC_REV_5717 || tg3_asic_rev(tp) == ASIC_REV_5719) tg3_ape_write32(tp, TG3_APE_GPIO_MSG, status); else tw32(TG3_CPMU_DRV_STATUS, status); return status >> TG3_APE_GPIO_MSG_SHIFT; } static inline int tg3_pwrsrc_switch_to_vmain(struct tg3 *tp) { if (!tg3_flag(tp, IS_NIC)) return 0; if (tg3_asic_rev(tp) == ASIC_REV_5717 || tg3_asic_rev(tp) == ASIC_REV_5719 || tg3_asic_rev(tp) == ASIC_REV_5720) { if (tg3_ape_lock(tp, TG3_APE_LOCK_GPIO)) return -EIO; tg3_set_function_status(tp, TG3_GPIO_MSG_DRVR_PRES); tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl, TG3_GRC_LCLCTL_PWRSW_DELAY); tg3_ape_unlock(tp, TG3_APE_LOCK_GPIO); } else { tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl, TG3_GRC_LCLCTL_PWRSW_DELAY); } return 0; } static void tg3_pwrsrc_die_with_vmain(struct tg3 *tp) { u32 grc_local_ctrl; if (!tg3_flag(tp, IS_NIC) || tg3_asic_rev(tp) == ASIC_REV_5700 || tg3_asic_rev(tp) == ASIC_REV_5701) return; grc_local_ctrl = tp->grc_local_ctrl | GRC_LCLCTRL_GPIO_OE1; tw32_wait_f(GRC_LOCAL_CTRL, grc_local_ctrl | GRC_LCLCTRL_GPIO_OUTPUT1, TG3_GRC_LCLCTL_PWRSW_DELAY); tw32_wait_f(GRC_LOCAL_CTRL, grc_local_ctrl, TG3_GRC_LCLCTL_PWRSW_DELAY); tw32_wait_f(GRC_LOCAL_CTRL, grc_local_ctrl | GRC_LCLCTRL_GPIO_OUTPUT1, TG3_GRC_LCLCTL_PWRSW_DELAY); } static void tg3_pwrsrc_switch_to_vaux(struct tg3 *tp) { if (!tg3_flag(tp, IS_NIC)) return; if (tg3_asic_rev(tp) == ASIC_REV_5700 || tg3_asic_rev(tp) == ASIC_REV_5701) { tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl | (GRC_LCLCTRL_GPIO_OE0 | GRC_LCLCTRL_GPIO_OE1 | GRC_LCLCTRL_GPIO_OE2 | GRC_LCLCTRL_GPIO_OUTPUT0 | GRC_LCLCTRL_GPIO_OUTPUT1), TG3_GRC_LCLCTL_PWRSW_DELAY); } else if (tp->pdev->device == PCI_DEVICE_ID_TIGON3_5761 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5761S) { /* The 5761 non-e device swaps GPIO 0 and GPIO 2. */ u32 grc_local_ctrl = GRC_LCLCTRL_GPIO_OE0 | GRC_LCLCTRL_GPIO_OE1 | GRC_LCLCTRL_GPIO_OE2 | GRC_LCLCTRL_GPIO_OUTPUT0 | GRC_LCLCTRL_GPIO_OUTPUT1 | tp->grc_local_ctrl; tw32_wait_f(GRC_LOCAL_CTRL, grc_local_ctrl, TG3_GRC_LCLCTL_PWRSW_DELAY); grc_local_ctrl |= GRC_LCLCTRL_GPIO_OUTPUT2; tw32_wait_f(GRC_LOCAL_CTRL, grc_local_ctrl, TG3_GRC_LCLCTL_PWRSW_DELAY); grc_local_ctrl &= ~GRC_LCLCTRL_GPIO_OUTPUT0; tw32_wait_f(GRC_LOCAL_CTRL, grc_local_ctrl, TG3_GRC_LCLCTL_PWRSW_DELAY); } else { u32 no_gpio2; u32 grc_local_ctrl = 0; /* Workaround to prevent overdrawing Amps. */ if (tg3_asic_rev(tp) == ASIC_REV_5714) { grc_local_ctrl |= GRC_LCLCTRL_GPIO_OE3; tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl | grc_local_ctrl, TG3_GRC_LCLCTL_PWRSW_DELAY); } /* On 5753 and variants, GPIO2 cannot be used. */ no_gpio2 = tp->nic_sram_data_cfg & NIC_SRAM_DATA_CFG_NO_GPIO2; grc_local_ctrl |= GRC_LCLCTRL_GPIO_OE0 | GRC_LCLCTRL_GPIO_OE1 | GRC_LCLCTRL_GPIO_OE2 | GRC_LCLCTRL_GPIO_OUTPUT1 | GRC_LCLCTRL_GPIO_OUTPUT2; if (no_gpio2) { grc_local_ctrl &= ~(GRC_LCLCTRL_GPIO_OE2 | GRC_LCLCTRL_GPIO_OUTPUT2); } tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl | grc_local_ctrl, TG3_GRC_LCLCTL_PWRSW_DELAY); grc_local_ctrl |= GRC_LCLCTRL_GPIO_OUTPUT0; tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl | grc_local_ctrl, TG3_GRC_LCLCTL_PWRSW_DELAY); if (!no_gpio2) { grc_local_ctrl &= ~GRC_LCLCTRL_GPIO_OUTPUT2; tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl | grc_local_ctrl, TG3_GRC_LCLCTL_PWRSW_DELAY); } } } static void tg3_frob_aux_power_5717(struct tg3 *tp, bool wol_enable) { u32 msg = 0; /* Serialize power state transitions */ if (tg3_ape_lock(tp, TG3_APE_LOCK_GPIO)) return; if (tg3_flag(tp, ENABLE_ASF) || tg3_flag(tp, ENABLE_APE) || wol_enable) msg = TG3_GPIO_MSG_NEED_VAUX; msg = tg3_set_function_status(tp, msg); if (msg & TG3_GPIO_MSG_ALL_DRVR_PRES_MASK) goto done; if (msg & TG3_GPIO_MSG_ALL_NEED_VAUX_MASK) tg3_pwrsrc_switch_to_vaux(tp); else tg3_pwrsrc_die_with_vmain(tp); done: tg3_ape_unlock(tp, TG3_APE_LOCK_GPIO); } static void tg3_frob_aux_power(struct tg3 *tp, bool include_wol) { bool need_vaux = false; /* The GPIOs do something completely different on 57765. */ if (!tg3_flag(tp, IS_NIC) || tg3_flag(tp, 57765_CLASS)) return; if (tg3_asic_rev(tp) == ASIC_REV_5717 || tg3_asic_rev(tp) == ASIC_REV_5719 || tg3_asic_rev(tp) == ASIC_REV_5720) { tg3_frob_aux_power_5717(tp, include_wol ? tg3_flag(tp, WOL_ENABLE) != 0 : 0); return; } if (tp->pdev_peer && tp->pdev_peer != tp->pdev) { struct net_device *dev_peer; dev_peer = pci_get_drvdata(tp->pdev_peer); /* remove_one() may have been run on the peer. */ if (dev_peer) { struct tg3 *tp_peer = netdev_priv(dev_peer); if (tg3_flag(tp_peer, INIT_COMPLETE)) return; if ((include_wol && tg3_flag(tp_peer, WOL_ENABLE)) || tg3_flag(tp_peer, ENABLE_ASF)) need_vaux = true; } } if ((include_wol && tg3_flag(tp, WOL_ENABLE)) || tg3_flag(tp, ENABLE_ASF)) need_vaux = true; if (need_vaux) tg3_pwrsrc_switch_to_vaux(tp); else tg3_pwrsrc_die_with_vmain(tp); } static int tg3_5700_link_polarity(struct tg3 *tp, u32 speed) { if (tp->led_ctrl == LED_CTRL_MODE_PHY_2) return 1; else if ((tp->phy_id & TG3_PHY_ID_MASK) == TG3_PHY_ID_BCM5411) { if (speed != SPEED_10) return 1; } else if (speed == SPEED_10) return 1; return 0; } static bool tg3_phy_power_bug(struct tg3 *tp) { switch (tg3_asic_rev(tp)) { case ASIC_REV_5700: case ASIC_REV_5704: return true; case ASIC_REV_5780: if (tp->phy_flags & TG3_PHYFLG_MII_SERDES) return true; return false; case ASIC_REV_5717: if (!tp->pci_fn) return true; return false; case ASIC_REV_5719: case ASIC_REV_5720: if ((tp->phy_flags & TG3_PHYFLG_PHY_SERDES) && !tp->pci_fn) return true; return false; } return false; } static void tg3_power_down_phy(struct tg3 *tp, bool do_low_power) { u32 val; if (tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN) return; if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) { if (tg3_asic_rev(tp) == ASIC_REV_5704) { u32 sg_dig_ctrl = tr32(SG_DIG_CTRL); u32 serdes_cfg = tr32(MAC_SERDES_CFG); sg_dig_ctrl |= SG_DIG_USING_HW_AUTONEG | SG_DIG_SOFT_RESET; tw32(SG_DIG_CTRL, sg_dig_ctrl); tw32(MAC_SERDES_CFG, serdes_cfg | (1 << 15)); } return; } if (tg3_asic_rev(tp) == ASIC_REV_5906) { tg3_bmcr_reset(tp); val = tr32(GRC_MISC_CFG); tw32_f(GRC_MISC_CFG, val | GRC_MISC_CFG_EPHY_IDDQ); udelay(40); return; } else if (tp->phy_flags & TG3_PHYFLG_IS_FET) { u32 phytest; if (!tg3_readphy(tp, MII_TG3_FET_TEST, &phytest)) { u32 phy; tg3_writephy(tp, MII_ADVERTISE, 0); tg3_writephy(tp, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART); tg3_writephy(tp, MII_TG3_FET_TEST, phytest | MII_TG3_FET_SHADOW_EN); if (!tg3_readphy(tp, MII_TG3_FET_SHDW_AUXMODE4, &phy)) { phy |= MII_TG3_FET_SHDW_AUXMODE4_SBPD; tg3_writephy(tp, MII_TG3_FET_SHDW_AUXMODE4, phy); } tg3_writephy(tp, MII_TG3_FET_TEST, phytest); } return; } else if (do_low_power) { tg3_writephy(tp, MII_TG3_EXT_CTRL, MII_TG3_EXT_CTRL_FORCE_LED_OFF); val = MII_TG3_AUXCTL_PCTL_100TX_LPWR | MII_TG3_AUXCTL_PCTL_SPR_ISOLATE | MII_TG3_AUXCTL_PCTL_VREG_11V; tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_PWRCTL, val); } /* The PHY should not be powered down on some chips because * of bugs. */ if (tg3_phy_power_bug(tp)) return; if (tg3_chip_rev(tp) == CHIPREV_5784_AX || tg3_chip_rev(tp) == CHIPREV_5761_AX) { val = tr32(TG3_CPMU_LSPD_1000MB_CLK); val &= ~CPMU_LSPD_1000MB_MACCLK_MASK; val |= CPMU_LSPD_1000MB_MACCLK_12_5; tw32_f(TG3_CPMU_LSPD_1000MB_CLK, val); } tg3_writephy(tp, MII_BMCR, BMCR_PDOWN); } /* tp->lock is held. */ static int tg3_nvram_lock(struct tg3 *tp) { if (tg3_flag(tp, NVRAM)) { int i; if (tp->nvram_lock_cnt == 0) { tw32(NVRAM_SWARB, SWARB_REQ_SET1); for (i = 0; i < 8000; i++) { if (tr32(NVRAM_SWARB) & SWARB_GNT1) break; udelay(20); } if (i == 8000) { tw32(NVRAM_SWARB, SWARB_REQ_CLR1); return -ENODEV; } } tp->nvram_lock_cnt++; } return 0; } /* tp->lock is held. */ static void tg3_nvram_unlock(struct tg3 *tp) { if (tg3_flag(tp, NVRAM)) { if (tp->nvram_lock_cnt > 0) tp->nvram_lock_cnt--; if (tp->nvram_lock_cnt == 0) tw32_f(NVRAM_SWARB, SWARB_REQ_CLR1); } } /* tp->lock is held. */ static void tg3_enable_nvram_access(struct tg3 *tp) { if (tg3_flag(tp, 5750_PLUS) && !tg3_flag(tp, PROTECTED_NVRAM)) { u32 nvaccess = tr32(NVRAM_ACCESS); tw32(NVRAM_ACCESS, nvaccess | ACCESS_ENABLE); } } /* tp->lock is held. */ static void tg3_disable_nvram_access(struct tg3 *tp) { if (tg3_flag(tp, 5750_PLUS) && !tg3_flag(tp, PROTECTED_NVRAM)) { u32 nvaccess = tr32(NVRAM_ACCESS); tw32(NVRAM_ACCESS, nvaccess & ~ACCESS_ENABLE); } } static int tg3_nvram_read_using_eeprom(struct tg3 *tp, u32 offset, u32 *val) { u32 tmp; int i; if (offset > EEPROM_ADDR_ADDR_MASK || (offset % 4) != 0) return -EINVAL; tmp = tr32(GRC_EEPROM_ADDR) & ~(EEPROM_ADDR_ADDR_MASK | EEPROM_ADDR_DEVID_MASK | EEPROM_ADDR_READ); tw32(GRC_EEPROM_ADDR, tmp | (0 << EEPROM_ADDR_DEVID_SHIFT) | ((offset << EEPROM_ADDR_ADDR_SHIFT) & EEPROM_ADDR_ADDR_MASK) | EEPROM_ADDR_READ | EEPROM_ADDR_START); for (i = 0; i < 1000; i++) { tmp = tr32(GRC_EEPROM_ADDR); if (tmp & EEPROM_ADDR_COMPLETE) break; msleep(1); } if (!(tmp & EEPROM_ADDR_COMPLETE)) return -EBUSY; tmp = tr32(GRC_EEPROM_DATA); /* * The data will always be opposite the native endian * format. Perform a blind byteswap to compensate. */ *val = swab32(tmp); return 0; } #define NVRAM_CMD_TIMEOUT 10000 static int tg3_nvram_exec_cmd(struct tg3 *tp, u32 nvram_cmd) { int i; tw32(NVRAM_CMD, nvram_cmd); for (i = 0; i < NVRAM_CMD_TIMEOUT; i++) { udelay(10); if (tr32(NVRAM_CMD) & NVRAM_CMD_DONE) { udelay(10); break; } } if (i == NVRAM_CMD_TIMEOUT) return -EBUSY; return 0; } static u32 tg3_nvram_phys_addr(struct tg3 *tp, u32 addr) { if (tg3_flag(tp, NVRAM) && tg3_flag(tp, NVRAM_BUFFERED) && tg3_flag(tp, FLASH) && !tg3_flag(tp, NO_NVRAM_ADDR_TRANS) && (tp->nvram_jedecnum == JEDEC_ATMEL)) addr = ((addr / tp->nvram_pagesize) << ATMEL_AT45DB0X1B_PAGE_POS) + (addr % tp->nvram_pagesize); return addr; } static u32 tg3_nvram_logical_addr(struct tg3 *tp, u32 addr) { if (tg3_flag(tp, NVRAM) && tg3_flag(tp, NVRAM_BUFFERED) && tg3_flag(tp, FLASH) && !tg3_flag(tp, NO_NVRAM_ADDR_TRANS) && (tp->nvram_jedecnum == JEDEC_ATMEL)) addr = ((addr >> ATMEL_AT45DB0X1B_PAGE_POS) * tp->nvram_pagesize) + (addr & ((1 << ATMEL_AT45DB0X1B_PAGE_POS) - 1)); return addr; } /* NOTE: Data read in from NVRAM is byteswapped according to * the byteswapping settings for all other register accesses. * tg3 devices are BE devices, so on a BE machine, the data * returned will be exactly as it is seen in NVRAM. On a LE * machine, the 32-bit value will be byteswapped. */ static int tg3_nvram_read(struct tg3 *tp, u32 offset, u32 *val) { int ret; if (!tg3_flag(tp, NVRAM)) return tg3_nvram_read_using_eeprom(tp, offset, val); offset = tg3_nvram_phys_addr(tp, offset); if (offset > NVRAM_ADDR_MSK) return -EINVAL; ret = tg3_nvram_lock(tp); if (ret) return ret; tg3_enable_nvram_access(tp); tw32(NVRAM_ADDR, offset); ret = tg3_nvram_exec_cmd(tp, NVRAM_CMD_RD | NVRAM_CMD_GO | NVRAM_CMD_FIRST | NVRAM_CMD_LAST | NVRAM_CMD_DONE); if (ret == 0) *val = tr32(NVRAM_RDDATA); tg3_disable_nvram_access(tp); tg3_nvram_unlock(tp); return ret; } /* Ensures NVRAM data is in bytestream format. */ static int tg3_nvram_read_be32(struct tg3 *tp, u32 offset, __be32 *val) { u32 v; int res = tg3_nvram_read(tp, offset, &v); if (!res) *val = cpu_to_be32(v); return res; } static int tg3_nvram_write_block_using_eeprom(struct tg3 *tp, u32 offset, u32 len, u8 *buf) { int i, j, rc = 0; u32 val; for (i = 0; i < len; i += 4) { u32 addr; __be32 data; addr = offset + i; memcpy(&data, buf + i, 4); /* * The SEEPROM interface expects the data to always be opposite * the native endian format. We accomplish this by reversing * all the operations that would have been performed on the * data from a call to tg3_nvram_read_be32(). */ tw32(GRC_EEPROM_DATA, swab32(be32_to_cpu(data))); val = tr32(GRC_EEPROM_ADDR); tw32(GRC_EEPROM_ADDR, val | EEPROM_ADDR_COMPLETE); val &= ~(EEPROM_ADDR_ADDR_MASK | EEPROM_ADDR_DEVID_MASK | EEPROM_ADDR_READ); tw32(GRC_EEPROM_ADDR, val | (0 << EEPROM_ADDR_DEVID_SHIFT) | (addr & EEPROM_ADDR_ADDR_MASK) | EEPROM_ADDR_START | EEPROM_ADDR_WRITE); for (j = 0; j < 1000; j++) { val = tr32(GRC_EEPROM_ADDR); if (val & EEPROM_ADDR_COMPLETE) break; msleep(1); } if (!(val & EEPROM_ADDR_COMPLETE)) { rc = -EBUSY; break; } } return rc; } /* offset and length are dword aligned */ static int tg3_nvram_write_block_unbuffered(struct tg3 *tp, u32 offset, u32 len, u8 *buf) { int ret = 0; u32 pagesize = tp->nvram_pagesize; u32 pagemask = pagesize - 1; u32 nvram_cmd; u8 *tmp; tmp = kmalloc(pagesize, GFP_KERNEL); if (tmp == NULL) return -ENOMEM; while (len) { int j; u32 phy_addr, page_off, size; phy_addr = offset & ~pagemask; for (j = 0; j < pagesize; j += 4) { ret = tg3_nvram_read_be32(tp, phy_addr + j, (__be32 *) (tmp + j)); if (ret) break; } if (ret) break; page_off = offset & pagemask; size = pagesize; if (len < size) size = len; len -= size; memcpy(tmp + page_off, buf, size); offset = offset + (pagesize - page_off); tg3_enable_nvram_access(tp); /* * Before we can erase the flash page, we need * to issue a special "write enable" command. */ nvram_cmd = NVRAM_CMD_WREN | NVRAM_CMD_GO | NVRAM_CMD_DONE; if (tg3_nvram_exec_cmd(tp, nvram_cmd)) break; /* Erase the target page */ tw32(NVRAM_ADDR, phy_addr); nvram_cmd = NVRAM_CMD_GO | NVRAM_CMD_DONE | NVRAM_CMD_WR | NVRAM_CMD_FIRST | NVRAM_CMD_LAST | NVRAM_CMD_ERASE; if (tg3_nvram_exec_cmd(tp, nvram_cmd)) break; /* Issue another write enable to start the write. */ nvram_cmd = NVRAM_CMD_WREN | NVRAM_CMD_GO | NVRAM_CMD_DONE; if (tg3_nvram_exec_cmd(tp, nvram_cmd)) break; for (j = 0; j < pagesize; j += 4) { __be32 data; data = *((__be32 *) (tmp + j)); tw32(NVRAM_WRDATA, be32_to_cpu(data)); tw32(NVRAM_ADDR, phy_addr + j); nvram_cmd = NVRAM_CMD_GO | NVRAM_CMD_DONE | NVRAM_CMD_WR; if (j == 0) nvram_cmd |= NVRAM_CMD_FIRST; else if (j == (pagesize - 4)) nvram_cmd |= NVRAM_CMD_LAST; ret = tg3_nvram_exec_cmd(tp, nvram_cmd); if (ret) break; } if (ret) break; } nvram_cmd = NVRAM_CMD_WRDI | NVRAM_CMD_GO | NVRAM_CMD_DONE; tg3_nvram_exec_cmd(tp, nvram_cmd); kfree(tmp); return ret; } /* offset and length are dword aligned */ static int tg3_nvram_write_block_buffered(struct tg3 *tp, u32 offset, u32 len, u8 *buf) { int i, ret = 0; for (i = 0; i < len; i += 4, offset += 4) { u32 page_off, phy_addr, nvram_cmd; __be32 data; memcpy(&data, buf + i, 4); tw32(NVRAM_WRDATA, be32_to_cpu(data)); page_off = offset % tp->nvram_pagesize; phy_addr = tg3_nvram_phys_addr(tp, offset); nvram_cmd = NVRAM_CMD_GO | NVRAM_CMD_DONE | NVRAM_CMD_WR; if (page_off == 0 || i == 0) nvram_cmd |= NVRAM_CMD_FIRST; if (page_off == (tp->nvram_pagesize - 4)) nvram_cmd |= NVRAM_CMD_LAST; if (i == (len - 4)) nvram_cmd |= NVRAM_CMD_LAST; if ((nvram_cmd & NVRAM_CMD_FIRST) || !tg3_flag(tp, FLASH) || !tg3_flag(tp, 57765_PLUS)) tw32(NVRAM_ADDR, phy_addr); if (tg3_asic_rev(tp) != ASIC_REV_5752 && !tg3_flag(tp, 5755_PLUS) && (tp->nvram_jedecnum == JEDEC_ST) && (nvram_cmd & NVRAM_CMD_FIRST)) { u32 cmd; cmd = NVRAM_CMD_WREN | NVRAM_CMD_GO | NVRAM_CMD_DONE; ret = tg3_nvram_exec_cmd(tp, cmd); if (ret) break; } if (!tg3_flag(tp, FLASH)) { /* We always do complete word writes to eeprom. */ nvram_cmd |= (NVRAM_CMD_FIRST | NVRAM_CMD_LAST); } ret = tg3_nvram_exec_cmd(tp, nvram_cmd); if (ret) break; } return ret; } /* offset and length are dword aligned */ static int tg3_nvram_write_block(struct tg3 *tp, u32 offset, u32 len, u8 *buf) { int ret; if (tg3_flag(tp, EEPROM_WRITE_PROT)) { tw32_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl & ~GRC_LCLCTRL_GPIO_OUTPUT1); udelay(40); } if (!tg3_flag(tp, NVRAM)) { ret = tg3_nvram_write_block_using_eeprom(tp, offset, len, buf); } else { u32 grc_mode; ret = tg3_nvram_lock(tp); if (ret) return ret; tg3_enable_nvram_access(tp); if (tg3_flag(tp, 5750_PLUS) && !tg3_flag(tp, PROTECTED_NVRAM)) tw32(NVRAM_WRITE1, 0x406); grc_mode = tr32(GRC_MODE); tw32(GRC_MODE, grc_mode | GRC_MODE_NVRAM_WR_ENABLE); if (tg3_flag(tp, NVRAM_BUFFERED) || !tg3_flag(tp, FLASH)) { ret = tg3_nvram_write_block_buffered(tp, offset, len, buf); } else { ret = tg3_nvram_write_block_unbuffered(tp, offset, len, buf); } grc_mode = tr32(GRC_MODE); tw32(GRC_MODE, grc_mode & ~GRC_MODE_NVRAM_WR_ENABLE); tg3_disable_nvram_access(tp); tg3_nvram_unlock(tp); } if (tg3_flag(tp, EEPROM_WRITE_PROT)) { tw32_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl); udelay(40); } return ret; } #define RX_CPU_SCRATCH_BASE 0x30000 #define RX_CPU_SCRATCH_SIZE 0x04000 #define TX_CPU_SCRATCH_BASE 0x34000 #define TX_CPU_SCRATCH_SIZE 0x04000 /* tp->lock is held. */ static int tg3_pause_cpu(struct tg3 *tp, u32 cpu_base) { int i; const int iters = 10000; for (i = 0; i < iters; i++) { tw32(cpu_base + CPU_STATE, 0xffffffff); tw32(cpu_base + CPU_MODE, CPU_MODE_HALT); if (tr32(cpu_base + CPU_MODE) & CPU_MODE_HALT) break; if (pci_channel_offline(tp->pdev)) return -EBUSY; } return (i == iters) ? -EBUSY : 0; } /* tp->lock is held. */ static int tg3_rxcpu_pause(struct tg3 *tp) { int rc = tg3_pause_cpu(tp, RX_CPU_BASE); tw32(RX_CPU_BASE + CPU_STATE, 0xffffffff); tw32_f(RX_CPU_BASE + CPU_MODE, CPU_MODE_HALT); udelay(10); return rc; } /* tp->lock is held. */ static int tg3_txcpu_pause(struct tg3 *tp) { return tg3_pause_cpu(tp, TX_CPU_BASE); } /* tp->lock is held. */ static void tg3_resume_cpu(struct tg3 *tp, u32 cpu_base) { tw32(cpu_base + CPU_STATE, 0xffffffff); tw32_f(cpu_base + CPU_MODE, 0x00000000); } /* tp->lock is held. */ static void tg3_rxcpu_resume(struct tg3 *tp) { tg3_resume_cpu(tp, RX_CPU_BASE); } /* tp->lock is held. */ static int tg3_halt_cpu(struct tg3 *tp, u32 cpu_base) { int rc; BUG_ON(cpu_base == TX_CPU_BASE && tg3_flag(tp, 5705_PLUS)); if (tg3_asic_rev(tp) == ASIC_REV_5906) { u32 val = tr32(GRC_VCPU_EXT_CTRL); tw32(GRC_VCPU_EXT_CTRL, val | GRC_VCPU_EXT_CTRL_HALT_CPU); return 0; } if (cpu_base == RX_CPU_BASE) { rc = tg3_rxcpu_pause(tp); } else { /* * There is only an Rx CPU for the 5750 derivative in the * BCM4785. */ if (tg3_flag(tp, IS_SSB_CORE)) return 0; rc = tg3_txcpu_pause(tp); } if (rc) { netdev_err(tp->dev, "%s timed out, %s CPU\n", __func__, cpu_base == RX_CPU_BASE ? "RX" : "TX"); return -ENODEV; } /* Clear firmware's nvram arbitration. */ if (tg3_flag(tp, NVRAM)) tw32(NVRAM_SWARB, SWARB_REQ_CLR0); return 0; } static int tg3_fw_data_len(struct tg3 *tp, const struct tg3_firmware_hdr *fw_hdr) { int fw_len; /* Non fragmented firmware have one firmware header followed by a * contiguous chunk of data to be written. The length field in that * header is not the length of data to be written but the complete * length of the bss. The data length is determined based on * tp->fw->size minus headers. * * Fragmented firmware have a main header followed by multiple * fragments. Each fragment is identical to non fragmented firmware * with a firmware header followed by a contiguous chunk of data. In * the main header, the length field is unused and set to 0xffffffff. * In each fragment header the length is the entire size of that * fragment i.e. fragment data + header length. Data length is * therefore length field in the header minus TG3_FW_HDR_LEN. */ if (tp->fw_len == 0xffffffff) fw_len = be32_to_cpu(fw_hdr->len); else fw_len = tp->fw->size; return (fw_len - TG3_FW_HDR_LEN) / sizeof(u32); } /* tp->lock is held. */ static int tg3_load_firmware_cpu(struct tg3 *tp, u32 cpu_base, u32 cpu_scratch_base, int cpu_scratch_size, const struct tg3_firmware_hdr *fw_hdr) { int err, i; void (*write_op)(struct tg3 *, u32, u32); int total_len = tp->fw->size; if (cpu_base == TX_CPU_BASE && tg3_flag(tp, 5705_PLUS)) { netdev_err(tp->dev, "%s: Trying to load TX cpu firmware which is 5705\n", __func__); return -EINVAL; } if (tg3_flag(tp, 5705_PLUS) && tg3_asic_rev(tp) != ASIC_REV_57766) write_op = tg3_write_mem; else write_op = tg3_write_indirect_reg32; if (tg3_asic_rev(tp) != ASIC_REV_57766) { /* It is possible that bootcode is still loading at this point. * Get the nvram lock first before halting the cpu. */ int lock_err = tg3_nvram_lock(tp); err = tg3_halt_cpu(tp, cpu_base); if (!lock_err) tg3_nvram_unlock(tp); if (err) goto out; for (i = 0; i < cpu_scratch_size; i += sizeof(u32)) write_op(tp, cpu_scratch_base + i, 0); tw32(cpu_base + CPU_STATE, 0xffffffff); tw32(cpu_base + CPU_MODE, tr32(cpu_base + CPU_MODE) | CPU_MODE_HALT); } else { /* Subtract additional main header for fragmented firmware and * advance to the first fragment */ total_len -= TG3_FW_HDR_LEN; fw_hdr++; } do { u32 *fw_data = (u32 *)(fw_hdr + 1); for (i = 0; i < tg3_fw_data_len(tp, fw_hdr); i++) write_op(tp, cpu_scratch_base + (be32_to_cpu(fw_hdr->base_addr) & 0xffff) + (i * sizeof(u32)), be32_to_cpu(fw_data[i])); total_len -= be32_to_cpu(fw_hdr->len); /* Advance to next fragment */ fw_hdr = (struct tg3_firmware_hdr *) ((void *)fw_hdr + be32_to_cpu(fw_hdr->len)); } while (total_len > 0); err = 0; out: return err; } /* tp->lock is held. */ static int tg3_pause_cpu_and_set_pc(struct tg3 *tp, u32 cpu_base, u32 pc) { int i; const int iters = 5; tw32(cpu_base + CPU_STATE, 0xffffffff); tw32_f(cpu_base + CPU_PC, pc); for (i = 0; i < iters; i++) { if (tr32(cpu_base + CPU_PC) == pc) break; tw32(cpu_base + CPU_STATE, 0xffffffff); tw32(cpu_base + CPU_MODE, CPU_MODE_HALT); tw32_f(cpu_base + CPU_PC, pc); udelay(1000); } return (i == iters) ? -EBUSY : 0; } /* tp->lock is held. */ static int tg3_load_5701_a0_firmware_fix(struct tg3 *tp) { const struct tg3_firmware_hdr *fw_hdr; int err; fw_hdr = (struct tg3_firmware_hdr *)tp->fw->data; /* Firmware blob starts with version numbers, followed by start address and length. We are setting complete length. length = end_address_of_bss - start_address_of_text. Remainder is the blob to be loaded contiguously from start address. */ err = tg3_load_firmware_cpu(tp, RX_CPU_BASE, RX_CPU_SCRATCH_BASE, RX_CPU_SCRATCH_SIZE, fw_hdr); if (err) return err; err = tg3_load_firmware_cpu(tp, TX_CPU_BASE, TX_CPU_SCRATCH_BASE, TX_CPU_SCRATCH_SIZE, fw_hdr); if (err) return err; /* Now startup only the RX cpu. */ err = tg3_pause_cpu_and_set_pc(tp, RX_CPU_BASE, be32_to_cpu(fw_hdr->base_addr)); if (err) { netdev_err(tp->dev, "%s fails to set RX CPU PC, is %08x " "should be %08x\n", __func__, tr32(RX_CPU_BASE + CPU_PC), be32_to_cpu(fw_hdr->base_addr)); return -ENODEV; } tg3_rxcpu_resume(tp); return 0; } static int tg3_validate_rxcpu_state(struct tg3 *tp) { const int iters = 1000; int i; u32 val; /* Wait for boot code to complete initialization and enter service * loop. It is then safe to download service patches */ for (i = 0; i < iters; i++) { if (tr32(RX_CPU_HWBKPT) == TG3_SBROM_IN_SERVICE_LOOP) break; udelay(10); } if (i == iters) { netdev_err(tp->dev, "Boot code not ready for service patches\n"); return -EBUSY; } val = tg3_read_indirect_reg32(tp, TG3_57766_FW_HANDSHAKE); if (val & 0xff) { netdev_warn(tp->dev, "Other patches exist. Not downloading EEE patch\n"); return -EEXIST; } return 0; } /* tp->lock is held. */ static void tg3_load_57766_firmware(struct tg3 *tp) { struct tg3_firmware_hdr *fw_hdr; if (!tg3_flag(tp, NO_NVRAM)) return; if (tg3_validate_rxcpu_state(tp)) return; if (!tp->fw) return; /* This firmware blob has a different format than older firmware * releases as given below. The main difference is we have fragmented * data to be written to non-contiguous locations. * * In the beginning we have a firmware header identical to other * firmware which consists of version, base addr and length. The length * here is unused and set to 0xffffffff. * * This is followed by a series of firmware fragments which are * individually identical to previous firmware. i.e. they have the * firmware header and followed by data for that fragment. The version * field of the individual fragment header is unused. */ fw_hdr = (struct tg3_firmware_hdr *)tp->fw->data; if (be32_to_cpu(fw_hdr->base_addr) != TG3_57766_FW_BASE_ADDR) return; if (tg3_rxcpu_pause(tp)) return; /* tg3_load_firmware_cpu() will always succeed for the 57766 */ tg3_load_firmware_cpu(tp, 0, TG3_57766_FW_BASE_ADDR, 0, fw_hdr); tg3_rxcpu_resume(tp); } /* tp->lock is held. */ static int tg3_load_tso_firmware(struct tg3 *tp) { const struct tg3_firmware_hdr *fw_hdr; unsigned long cpu_base, cpu_scratch_base, cpu_scratch_size; int err; if (!tg3_flag(tp, FW_TSO)) return 0; fw_hdr = (struct tg3_firmware_hdr *)tp->fw->data; /* Firmware blob starts with version numbers, followed by start address and length. We are setting complete length. length = end_address_of_bss - start_address_of_text. Remainder is the blob to be loaded contiguously from start address. */ cpu_scratch_size = tp->fw_len; if (tg3_asic_rev(tp) == ASIC_REV_5705) { cpu_base = RX_CPU_BASE; cpu_scratch_base = NIC_SRAM_MBUF_POOL_BASE5705; } else { cpu_base = TX_CPU_BASE; cpu_scratch_base = TX_CPU_SCRATCH_BASE; cpu_scratch_size = TX_CPU_SCRATCH_SIZE; } err = tg3_load_firmware_cpu(tp, cpu_base, cpu_scratch_base, cpu_scratch_size, fw_hdr); if (err) return err; /* Now startup the cpu. */ err = tg3_pause_cpu_and_set_pc(tp, cpu_base, be32_to_cpu(fw_hdr->base_addr)); if (err) { netdev_err(tp->dev, "%s fails to set CPU PC, is %08x should be %08x\n", __func__, tr32(cpu_base + CPU_PC), be32_to_cpu(fw_hdr->base_addr)); return -ENODEV; } tg3_resume_cpu(tp, cpu_base); return 0; } /* tp->lock is held. */ static void __tg3_set_mac_addr(struct tg3 *tp, bool skip_mac_1) { u32 addr_high, addr_low; int i; addr_high = ((tp->dev->dev_addr[0] << 8) | tp->dev->dev_addr[1]); addr_low = ((tp->dev->dev_addr[2] << 24) | (tp->dev->dev_addr[3] << 16) | (tp->dev->dev_addr[4] << 8) | (tp->dev->dev_addr[5] << 0)); for (i = 0; i < 4; i++) { if (i == 1 && skip_mac_1) continue; tw32(MAC_ADDR_0_HIGH + (i * 8), addr_high); tw32(MAC_ADDR_0_LOW + (i * 8), addr_low); } if (tg3_asic_rev(tp) == ASIC_REV_5703 || tg3_asic_rev(tp) == ASIC_REV_5704) { for (i = 0; i < 12; i++) { tw32(MAC_EXTADDR_0_HIGH + (i * 8), addr_high); tw32(MAC_EXTADDR_0_LOW + (i * 8), addr_low); } } addr_high = (tp->dev->dev_addr[0] + tp->dev->dev_addr[1] + tp->dev->dev_addr[2] + tp->dev->dev_addr[3] + tp->dev->dev_addr[4] + tp->dev->dev_addr[5]) & TX_BACKOFF_SEED_MASK; tw32(MAC_TX_BACKOFF_SEED, addr_high); } static void tg3_enable_register_access(struct tg3 *tp) { /* * Make sure register accesses (indirect or otherwise) will function * correctly. */ pci_write_config_dword(tp->pdev, TG3PCI_MISC_HOST_CTRL, tp->misc_host_ctrl); } static int tg3_power_up(struct tg3 *tp) { int err; tg3_enable_register_access(tp); err = pci_set_power_state(tp->pdev, PCI_D0); if (!err) { /* Switch out of Vaux if it is a NIC */ tg3_pwrsrc_switch_to_vmain(tp); } else { netdev_err(tp->dev, "Transition to D0 failed\n"); } return err; } static int tg3_setup_phy(struct tg3 *, bool); static int tg3_power_down_prepare(struct tg3 *tp) { u32 misc_host_ctrl; bool device_should_wake, do_low_power; tg3_enable_register_access(tp); /* Restore the CLKREQ setting. */ if (tg3_flag(tp, CLKREQ_BUG)) pcie_capability_set_word(tp->pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_CLKREQ_EN); misc_host_ctrl = tr32(TG3PCI_MISC_HOST_CTRL); tw32(TG3PCI_MISC_HOST_CTRL, misc_host_ctrl | MISC_HOST_CTRL_MASK_PCI_INT); device_should_wake = device_may_wakeup(&tp->pdev->dev) && tg3_flag(tp, WOL_ENABLE); if (tg3_flag(tp, USE_PHYLIB)) { do_low_power = false; if ((tp->phy_flags & TG3_PHYFLG_IS_CONNECTED) && !(tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER)) { struct phy_device *phydev; u32 phyid, advertising; phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]; tp->phy_flags |= TG3_PHYFLG_IS_LOW_POWER; tp->link_config.speed = phydev->speed; tp->link_config.duplex = phydev->duplex; tp->link_config.autoneg = phydev->autoneg; tp->link_config.advertising = phydev->advertising; advertising = ADVERTISED_TP | ADVERTISED_Pause | ADVERTISED_Autoneg | ADVERTISED_10baseT_Half; if (tg3_flag(tp, ENABLE_ASF) || device_should_wake) { if (tg3_flag(tp, WOL_SPEED_100MB)) advertising |= ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | ADVERTISED_10baseT_Full; else advertising |= ADVERTISED_10baseT_Full; } phydev->advertising = advertising; phy_start_aneg(phydev); phyid = phydev->drv->phy_id & phydev->drv->phy_id_mask; if (phyid != PHY_ID_BCMAC131) { phyid &= PHY_BCM_OUI_MASK; if (phyid == PHY_BCM_OUI_1 || phyid == PHY_BCM_OUI_2 || phyid == PHY_BCM_OUI_3) do_low_power = true; } } } else { do_low_power = true; if (!(tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER)) tp->phy_flags |= TG3_PHYFLG_IS_LOW_POWER; if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES)) tg3_setup_phy(tp, false); } if (tg3_asic_rev(tp) == ASIC_REV_5906) { u32 val; val = tr32(GRC_VCPU_EXT_CTRL); tw32(GRC_VCPU_EXT_CTRL, val | GRC_VCPU_EXT_CTRL_DISABLE_WOL); } else if (!tg3_flag(tp, ENABLE_ASF)) { int i; u32 val; for (i = 0; i < 200; i++) { tg3_read_mem(tp, NIC_SRAM_FW_ASF_STATUS_MBOX, &val); if (val == ~NIC_SRAM_FIRMWARE_MBOX_MAGIC1) break; msleep(1); } } if (tg3_flag(tp, WOL_CAP)) tg3_write_mem(tp, NIC_SRAM_WOL_MBOX, WOL_SIGNATURE | WOL_DRV_STATE_SHUTDOWN | WOL_DRV_WOL | WOL_SET_MAGIC_PKT); if (device_should_wake) { u32 mac_mode; if (!(tp->phy_flags & TG3_PHYFLG_PHY_SERDES)) { if (do_low_power && !(tp->phy_flags & TG3_PHYFLG_IS_FET)) { tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_PWRCTL, MII_TG3_AUXCTL_PCTL_WOL_EN | MII_TG3_AUXCTL_PCTL_100TX_LPWR | MII_TG3_AUXCTL_PCTL_CL_AB_TXDAC); udelay(40); } if (tp->phy_flags & TG3_PHYFLG_MII_SERDES) mac_mode = MAC_MODE_PORT_MODE_GMII; else if (tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN) { if (tp->link_config.active_speed == SPEED_1000) mac_mode = MAC_MODE_PORT_MODE_GMII; else mac_mode = MAC_MODE_PORT_MODE_MII; } else mac_mode = MAC_MODE_PORT_MODE_MII; mac_mode |= tp->mac_mode & MAC_MODE_LINK_POLARITY; if (tg3_asic_rev(tp) == ASIC_REV_5700) { u32 speed = tg3_flag(tp, WOL_SPEED_100MB) ? SPEED_100 : SPEED_10; if (tg3_5700_link_polarity(tp, speed)) mac_mode |= MAC_MODE_LINK_POLARITY; else mac_mode &= ~MAC_MODE_LINK_POLARITY; } } else { mac_mode = MAC_MODE_PORT_MODE_TBI; } if (!tg3_flag(tp, 5750_PLUS)) tw32(MAC_LED_CTRL, tp->led_ctrl); mac_mode |= MAC_MODE_MAGIC_PKT_ENABLE; if ((tg3_flag(tp, 5705_PLUS) && !tg3_flag(tp, 5780_CLASS)) && (tg3_flag(tp, ENABLE_ASF) || tg3_flag(tp, ENABLE_APE))) mac_mode |= MAC_MODE_KEEP_FRAME_IN_WOL; if (tg3_flag(tp, ENABLE_APE)) mac_mode |= MAC_MODE_APE_TX_EN | MAC_MODE_APE_RX_EN | MAC_MODE_TDE_ENABLE; tw32_f(MAC_MODE, mac_mode); udelay(100); tw32_f(MAC_RX_MODE, RX_MODE_ENABLE); udelay(10); } if (!tg3_flag(tp, WOL_SPEED_100MB) && (tg3_asic_rev(tp) == ASIC_REV_5700 || tg3_asic_rev(tp) == ASIC_REV_5701)) { u32 base_val; base_val = tp->pci_clock_ctrl; base_val |= (CLOCK_CTRL_RXCLK_DISABLE | CLOCK_CTRL_TXCLK_DISABLE); tw32_wait_f(TG3PCI_CLOCK_CTRL, base_val | CLOCK_CTRL_ALTCLK | CLOCK_CTRL_PWRDOWN_PLL133, 40); } else if (tg3_flag(tp, 5780_CLASS) || tg3_flag(tp, CPMU_PRESENT) || tg3_asic_rev(tp) == ASIC_REV_5906) { /* do nothing */ } else if (!(tg3_flag(tp, 5750_PLUS) && tg3_flag(tp, ENABLE_ASF))) { u32 newbits1, newbits2; if (tg3_asic_rev(tp) == ASIC_REV_5700 || tg3_asic_rev(tp) == ASIC_REV_5701) { newbits1 = (CLOCK_CTRL_RXCLK_DISABLE | CLOCK_CTRL_TXCLK_DISABLE | CLOCK_CTRL_ALTCLK); newbits2 = newbits1 | CLOCK_CTRL_44MHZ_CORE; } else if (tg3_flag(tp, 5705_PLUS)) { newbits1 = CLOCK_CTRL_625_CORE; newbits2 = newbits1 | CLOCK_CTRL_ALTCLK; } else { newbits1 = CLOCK_CTRL_ALTCLK; newbits2 = newbits1 | CLOCK_CTRL_44MHZ_CORE; } tw32_wait_f(TG3PCI_CLOCK_CTRL, tp->pci_clock_ctrl | newbits1, 40); tw32_wait_f(TG3PCI_CLOCK_CTRL, tp->pci_clock_ctrl | newbits2, 40); if (!tg3_flag(tp, 5705_PLUS)) { u32 newbits3; if (tg3_asic_rev(tp) == ASIC_REV_5700 || tg3_asic_rev(tp) == ASIC_REV_5701) { newbits3 = (CLOCK_CTRL_RXCLK_DISABLE | CLOCK_CTRL_TXCLK_DISABLE | CLOCK_CTRL_44MHZ_CORE); } else { newbits3 = CLOCK_CTRL_44MHZ_CORE; } tw32_wait_f(TG3PCI_CLOCK_CTRL, tp->pci_clock_ctrl | newbits3, 40); } } if (!(device_should_wake) && !tg3_flag(tp, ENABLE_ASF)) tg3_power_down_phy(tp, do_low_power); tg3_frob_aux_power(tp, true); /* Workaround for unstable PLL clock */ if ((!tg3_flag(tp, IS_SSB_CORE)) && ((tg3_chip_rev(tp) == CHIPREV_5750_AX) || (tg3_chip_rev(tp) == CHIPREV_5750_BX))) { u32 val = tr32(0x7d00); val &= ~((1 << 16) | (1 << 4) | (1 << 2) | (1 << 1) | 1); tw32(0x7d00, val); if (!tg3_flag(tp, ENABLE_ASF)) { int err; err = tg3_nvram_lock(tp); tg3_halt_cpu(tp, RX_CPU_BASE); if (!err) tg3_nvram_unlock(tp); } } tg3_write_sig_post_reset(tp, RESET_KIND_SHUTDOWN); tg3_ape_driver_state_change(tp, RESET_KIND_SHUTDOWN); return 0; } static void tg3_power_down(struct tg3 *tp) { pci_wake_from_d3(tp->pdev, tg3_flag(tp, WOL_ENABLE)); pci_set_power_state(tp->pdev, PCI_D3hot); } static void tg3_aux_stat_to_speed_duplex(struct tg3 *tp, u32 val, u16 *speed, u8 *duplex) { switch (val & MII_TG3_AUX_STAT_SPDMASK) { case MII_TG3_AUX_STAT_10HALF: *speed = SPEED_10; *duplex = DUPLEX_HALF; break; case MII_TG3_AUX_STAT_10FULL: *speed = SPEED_10; *duplex = DUPLEX_FULL; break; case MII_TG3_AUX_STAT_100HALF: *speed = SPEED_100; *duplex = DUPLEX_HALF; break; case MII_TG3_AUX_STAT_100FULL: *speed = SPEED_100; *duplex = DUPLEX_FULL; break; case MII_TG3_AUX_STAT_1000HALF: *speed = SPEED_1000; *duplex = DUPLEX_HALF; break; case MII_TG3_AUX_STAT_1000FULL: *speed = SPEED_1000; *duplex = DUPLEX_FULL; break; default: if (tp->phy_flags & TG3_PHYFLG_IS_FET) { *speed = (val & MII_TG3_AUX_STAT_100) ? SPEED_100 : SPEED_10; *duplex = (val & MII_TG3_AUX_STAT_FULL) ? DUPLEX_FULL : DUPLEX_HALF; break; } *speed = SPEED_UNKNOWN; *duplex = DUPLEX_UNKNOWN; break; } } static int tg3_phy_autoneg_cfg(struct tg3 *tp, u32 advertise, u32 flowctrl) { int err = 0; u32 val, new_adv; new_adv = ADVERTISE_CSMA; new_adv |= ethtool_adv_to_mii_adv_t(advertise) & ADVERTISE_ALL; new_adv |= mii_advertise_flowctrl(flowctrl); err = tg3_writephy(tp, MII_ADVERTISE, new_adv); if (err) goto done; if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) { new_adv = ethtool_adv_to_mii_ctrl1000_t(advertise); if (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0 || tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B0) new_adv |= CTL1000_AS_MASTER | CTL1000_ENABLE_MASTER; err = tg3_writephy(tp, MII_CTRL1000, new_adv); if (err) goto done; } if (!(tp->phy_flags & TG3_PHYFLG_EEE_CAP)) goto done; tw32(TG3_CPMU_EEE_MODE, tr32(TG3_CPMU_EEE_MODE) & ~TG3_CPMU_EEEMD_LPI_ENABLE); err = tg3_phy_toggle_auxctl_smdsp(tp, true); if (!err) { u32 err2; val = 0; /* Advertise 100-BaseTX EEE ability */ if (advertise & ADVERTISED_100baseT_Full) val |= MDIO_AN_EEE_ADV_100TX; /* Advertise 1000-BaseT EEE ability */ if (advertise & ADVERTISED_1000baseT_Full) val |= MDIO_AN_EEE_ADV_1000T; if (!tp->eee.eee_enabled) { val = 0; tp->eee.advertised = 0; } else { tp->eee.advertised = advertise & (ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full); } err = tg3_phy_cl45_write(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, val); if (err) val = 0; switch (tg3_asic_rev(tp)) { case ASIC_REV_5717: case ASIC_REV_57765: case ASIC_REV_57766: case ASIC_REV_5719: /* If we advertised any eee advertisements above... */ if (val) val = MII_TG3_DSP_TAP26_ALNOKO | MII_TG3_DSP_TAP26_RMRXSTO | MII_TG3_DSP_TAP26_OPCSINPT; tg3_phydsp_write(tp, MII_TG3_DSP_TAP26, val); /* Fall through */ case ASIC_REV_5720: case ASIC_REV_5762: if (!tg3_phydsp_read(tp, MII_TG3_DSP_CH34TP2, &val)) tg3_phydsp_write(tp, MII_TG3_DSP_CH34TP2, val | MII_TG3_DSP_CH34TP2_HIBW01); } err2 = tg3_phy_toggle_auxctl_smdsp(tp, false); if (!err) err = err2; } done: return err; } static void tg3_phy_copper_begin(struct tg3 *tp) { if (tp->link_config.autoneg == AUTONEG_ENABLE || (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER)) { u32 adv, fc; if ((tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER) && !(tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN)) { adv = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full; if (tg3_flag(tp, WOL_SPEED_100MB)) adv |= ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full; if (tp->phy_flags & TG3_PHYFLG_1G_ON_VAUX_OK) adv |= ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full; fc = FLOW_CTRL_TX | FLOW_CTRL_RX; } else { adv = tp->link_config.advertising; if (tp->phy_flags & TG3_PHYFLG_10_100_ONLY) adv &= ~(ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full); fc = tp->link_config.flowctrl; } tg3_phy_autoneg_cfg(tp, adv, fc); if ((tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER) && (tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN)) { /* Normally during power down we want to autonegotiate * the lowest possible speed for WOL. However, to avoid * link flap, we leave it untouched. */ return; } tg3_writephy(tp, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART); } else { int i; u32 bmcr, orig_bmcr; tp->link_config.active_speed = tp->link_config.speed; tp->link_config.active_duplex = tp->link_config.duplex; if (tg3_asic_rev(tp) == ASIC_REV_5714) { /* With autoneg disabled, 5715 only links up when the * advertisement register has the configured speed * enabled. */ tg3_writephy(tp, MII_ADVERTISE, ADVERTISE_ALL); } bmcr = 0; switch (tp->link_config.speed) { default: case SPEED_10: break; case SPEED_100: bmcr |= BMCR_SPEED100; break; case SPEED_1000: bmcr |= BMCR_SPEED1000; break; } if (tp->link_config.duplex == DUPLEX_FULL) bmcr |= BMCR_FULLDPLX; if (!tg3_readphy(tp, MII_BMCR, &orig_bmcr) && (bmcr != orig_bmcr)) { tg3_writephy(tp, MII_BMCR, BMCR_LOOPBACK); for (i = 0; i < 1500; i++) { u32 tmp; udelay(10); if (tg3_readphy(tp, MII_BMSR, &tmp) || tg3_readphy(tp, MII_BMSR, &tmp)) continue; if (!(tmp & BMSR_LSTATUS)) { udelay(40); break; } } tg3_writephy(tp, MII_BMCR, bmcr); udelay(40); } } } static int tg3_phy_pull_config(struct tg3 *tp) { int err; u32 val; err = tg3_readphy(tp, MII_BMCR, &val); if (err) goto done; if (!(val & BMCR_ANENABLE)) { tp->link_config.autoneg = AUTONEG_DISABLE; tp->link_config.advertising = 0; tg3_flag_clear(tp, PAUSE_AUTONEG); err = -EIO; switch (val & (BMCR_SPEED1000 | BMCR_SPEED100)) { case 0: if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES) goto done; tp->link_config.speed = SPEED_10; break; case BMCR_SPEED100: if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES) goto done; tp->link_config.speed = SPEED_100; break; case BMCR_SPEED1000: if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) { tp->link_config.speed = SPEED_1000; break; } /* Fall through */ default: goto done; } if (val & BMCR_FULLDPLX) tp->link_config.duplex = DUPLEX_FULL; else tp->link_config.duplex = DUPLEX_HALF; tp->link_config.flowctrl = FLOW_CTRL_RX | FLOW_CTRL_TX; err = 0; goto done; } tp->link_config.autoneg = AUTONEG_ENABLE; tp->link_config.advertising = ADVERTISED_Autoneg; tg3_flag_set(tp, PAUSE_AUTONEG); if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES)) { u32 adv; err = tg3_readphy(tp, MII_ADVERTISE, &val); if (err) goto done; adv = mii_adv_to_ethtool_adv_t(val & ADVERTISE_ALL); tp->link_config.advertising |= adv | ADVERTISED_TP; tp->link_config.flowctrl = tg3_decode_flowctrl_1000T(val); } else { tp->link_config.advertising |= ADVERTISED_FIBRE; } if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) { u32 adv; if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES)) { err = tg3_readphy(tp, MII_CTRL1000, &val); if (err) goto done; adv = mii_ctrl1000_to_ethtool_adv_t(val); } else { err = tg3_readphy(tp, MII_ADVERTISE, &val); if (err) goto done; adv = tg3_decode_flowctrl_1000X(val); tp->link_config.flowctrl = adv; val &= (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL); adv = mii_adv_to_ethtool_adv_x(val); } tp->link_config.advertising |= adv; } done: return err; } static int tg3_init_5401phy_dsp(struct tg3 *tp) { int err; /* Turn off tap power management. */ /* Set Extended packet length bit */ err = tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_AUXCTL, 0x4c20); err |= tg3_phydsp_write(tp, 0x0012, 0x1804); err |= tg3_phydsp_write(tp, 0x0013, 0x1204); err |= tg3_phydsp_write(tp, 0x8006, 0x0132); err |= tg3_phydsp_write(tp, 0x8006, 0x0232); err |= tg3_phydsp_write(tp, 0x201f, 0x0a20); udelay(40); return err; } static bool tg3_phy_eee_config_ok(struct tg3 *tp) { struct ethtool_eee eee; if (!(tp->phy_flags & TG3_PHYFLG_EEE_CAP)) return true; tg3_eee_pull_config(tp, &eee); if (tp->eee.eee_enabled) { if (tp->eee.advertised != eee.advertised || tp->eee.tx_lpi_timer != eee.tx_lpi_timer || tp->eee.tx_lpi_enabled != eee.tx_lpi_enabled) return false; } else { /* EEE is disabled but we're advertising */ if (eee.advertised) return false; } return true; } static bool tg3_phy_copper_an_config_ok(struct tg3 *tp, u32 *lcladv) { u32 advmsk, tgtadv, advertising; advertising = tp->link_config.advertising; tgtadv = ethtool_adv_to_mii_adv_t(advertising) & ADVERTISE_ALL; advmsk = ADVERTISE_ALL; if (tp->link_config.active_duplex == DUPLEX_FULL) { tgtadv |= mii_advertise_flowctrl(tp->link_config.flowctrl); advmsk |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; } if (tg3_readphy(tp, MII_ADVERTISE, lcladv)) return false; if ((*lcladv & advmsk) != tgtadv) return false; if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) { u32 tg3_ctrl; tgtadv = ethtool_adv_to_mii_ctrl1000_t(advertising); if (tg3_readphy(tp, MII_CTRL1000, &tg3_ctrl)) return false; if (tgtadv && (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0 || tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B0)) { tgtadv |= CTL1000_AS_MASTER | CTL1000_ENABLE_MASTER; tg3_ctrl &= (ADVERTISE_1000HALF | ADVERTISE_1000FULL | CTL1000_AS_MASTER | CTL1000_ENABLE_MASTER); } else { tg3_ctrl &= (ADVERTISE_1000HALF | ADVERTISE_1000FULL); } if (tg3_ctrl != tgtadv) return false; } return true; } static bool tg3_phy_copper_fetch_rmtadv(struct tg3 *tp, u32 *rmtadv) { u32 lpeth = 0; if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) { u32 val; if (tg3_readphy(tp, MII_STAT1000, &val)) return false; lpeth = mii_stat1000_to_ethtool_lpa_t(val); } if (tg3_readphy(tp, MII_LPA, rmtadv)) return false; lpeth |= mii_lpa_to_ethtool_lpa_t(*rmtadv); tp->link_config.rmt_adv = lpeth; return true; } static bool tg3_test_and_report_link_chg(struct tg3 *tp, bool curr_link_up) { if (curr_link_up != tp->link_up) { if (curr_link_up) { netif_carrier_on(tp->dev); } else { netif_carrier_off(tp->dev); if (tp->phy_flags & TG3_PHYFLG_MII_SERDES) tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT; } tg3_link_report(tp); return true; } return false; } static void tg3_clear_mac_status(struct tg3 *tp) { tw32(MAC_EVENT, 0); tw32_f(MAC_STATUS, MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED | MAC_STATUS_MI_COMPLETION | MAC_STATUS_LNKSTATE_CHANGED); udelay(40); } static void tg3_setup_eee(struct tg3 *tp) { u32 val; val = TG3_CPMU_EEE_LNKIDL_PCIE_NL0 | TG3_CPMU_EEE_LNKIDL_UART_IDL; if (tg3_chip_rev_id(tp) == CHIPREV_ID_57765_A0) val |= TG3_CPMU_EEE_LNKIDL_APE_TX_MT; tw32_f(TG3_CPMU_EEE_LNKIDL_CTRL, val); tw32_f(TG3_CPMU_EEE_CTRL, TG3_CPMU_EEE_CTRL_EXIT_20_1_US); val = TG3_CPMU_EEEMD_ERLY_L1_XIT_DET | (tp->eee.tx_lpi_enabled ? TG3_CPMU_EEEMD_LPI_IN_TX : 0) | TG3_CPMU_EEEMD_LPI_IN_RX | TG3_CPMU_EEEMD_EEE_ENABLE; if (tg3_asic_rev(tp) != ASIC_REV_5717) val |= TG3_CPMU_EEEMD_SND_IDX_DET_EN; if (tg3_flag(tp, ENABLE_APE)) val |= TG3_CPMU_EEEMD_APE_TX_DET_EN; tw32_f(TG3_CPMU_EEE_MODE, tp->eee.eee_enabled ? val : 0); tw32_f(TG3_CPMU_EEE_DBTMR1, TG3_CPMU_DBTMR1_PCIEXIT_2047US | (tp->eee.tx_lpi_timer & 0xffff)); tw32_f(TG3_CPMU_EEE_DBTMR2, TG3_CPMU_DBTMR2_APE_TX_2047US | TG3_CPMU_DBTMR2_TXIDXEQ_2047US); } static int tg3_setup_copper_phy(struct tg3 *tp, bool force_reset) { bool current_link_up; u32 bmsr, val; u32 lcl_adv, rmt_adv; u16 current_speed; u8 current_duplex; int i, err; tg3_clear_mac_status(tp); if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) { tw32_f(MAC_MI_MODE, (tp->mi_mode & ~MAC_MI_MODE_AUTO_POLL)); udelay(80); } tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_PWRCTL, 0); /* Some third-party PHYs need to be reset on link going * down. */ if ((tg3_asic_rev(tp) == ASIC_REV_5703 || tg3_asic_rev(tp) == ASIC_REV_5704 || tg3_asic_rev(tp) == ASIC_REV_5705) && tp->link_up) { tg3_readphy(tp, MII_BMSR, &bmsr); if (!tg3_readphy(tp, MII_BMSR, &bmsr) && !(bmsr & BMSR_LSTATUS)) force_reset = true; } if (force_reset) tg3_phy_reset(tp); if ((tp->phy_id & TG3_PHY_ID_MASK) == TG3_PHY_ID_BCM5401) { tg3_readphy(tp, MII_BMSR, &bmsr); if (tg3_readphy(tp, MII_BMSR, &bmsr) || !tg3_flag(tp, INIT_COMPLETE)) bmsr = 0; if (!(bmsr & BMSR_LSTATUS)) { err = tg3_init_5401phy_dsp(tp); if (err) return err; tg3_readphy(tp, MII_BMSR, &bmsr); for (i = 0; i < 1000; i++) { udelay(10); if (!tg3_readphy(tp, MII_BMSR, &bmsr) && (bmsr & BMSR_LSTATUS)) { udelay(40); break; } } if ((tp->phy_id & TG3_PHY_ID_REV_MASK) == TG3_PHY_REV_BCM5401_B0 && !(bmsr & BMSR_LSTATUS) && tp->link_config.active_speed == SPEED_1000) { err = tg3_phy_reset(tp); if (!err) err = tg3_init_5401phy_dsp(tp); if (err) return err; } } } else if (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0 || tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B0) { /* 5701 {A0,B0} CRC bug workaround */ tg3_writephy(tp, 0x15, 0x0a75); tg3_writephy(tp, MII_TG3_MISC_SHDW, 0x8c68); tg3_writephy(tp, MII_TG3_MISC_SHDW, 0x8d68); tg3_writephy(tp, MII_TG3_MISC_SHDW, 0x8c68); } /* Clear pending interrupts... */ tg3_readphy(tp, MII_TG3_ISTAT, &val); tg3_readphy(tp, MII_TG3_ISTAT, &val); if (tp->phy_flags & TG3_PHYFLG_USE_MI_INTERRUPT) tg3_writephy(tp, MII_TG3_IMASK, ~MII_TG3_INT_LINKCHG); else if (!(tp->phy_flags & TG3_PHYFLG_IS_FET)) tg3_writephy(tp, MII_TG3_IMASK, ~0); if (tg3_asic_rev(tp) == ASIC_REV_5700 || tg3_asic_rev(tp) == ASIC_REV_5701) { if (tp->led_ctrl == LED_CTRL_MODE_PHY_1) tg3_writephy(tp, MII_TG3_EXT_CTRL, MII_TG3_EXT_CTRL_LNK3_LED_MODE); else tg3_writephy(tp, MII_TG3_EXT_CTRL, 0); } current_link_up = false; current_speed = SPEED_UNKNOWN; current_duplex = DUPLEX_UNKNOWN; tp->phy_flags &= ~TG3_PHYFLG_MDIX_STATE; tp->link_config.rmt_adv = 0; if (tp->phy_flags & TG3_PHYFLG_CAPACITIVE_COUPLING) { err = tg3_phy_auxctl_read(tp, MII_TG3_AUXCTL_SHDWSEL_MISCTEST, &val); if (!err && !(val & (1 << 10))) { tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_MISCTEST, val | (1 << 10)); goto relink; } } bmsr = 0; for (i = 0; i < 100; i++) { tg3_readphy(tp, MII_BMSR, &bmsr); if (!tg3_readphy(tp, MII_BMSR, &bmsr) && (bmsr & BMSR_LSTATUS)) break; udelay(40); } if (bmsr & BMSR_LSTATUS) { u32 aux_stat, bmcr; tg3_readphy(tp, MII_TG3_AUX_STAT, &aux_stat); for (i = 0; i < 2000; i++) { udelay(10); if (!tg3_readphy(tp, MII_TG3_AUX_STAT, &aux_stat) && aux_stat) break; } tg3_aux_stat_to_speed_duplex(tp, aux_stat, ¤t_speed, ¤t_duplex); bmcr = 0; for (i = 0; i < 200; i++) { tg3_readphy(tp, MII_BMCR, &bmcr); if (tg3_readphy(tp, MII_BMCR, &bmcr)) continue; if (bmcr && bmcr != 0x7fff) break; udelay(10); } lcl_adv = 0; rmt_adv = 0; tp->link_config.active_speed = current_speed; tp->link_config.active_duplex = current_duplex; if (tp->link_config.autoneg == AUTONEG_ENABLE) { bool eee_config_ok = tg3_phy_eee_config_ok(tp); if ((bmcr & BMCR_ANENABLE) && eee_config_ok && tg3_phy_copper_an_config_ok(tp, &lcl_adv) && tg3_phy_copper_fetch_rmtadv(tp, &rmt_adv)) current_link_up = true; /* EEE settings changes take effect only after a phy * reset. If we have skipped a reset due to Link Flap * Avoidance being enabled, do it now. */ if (!eee_config_ok && (tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN) && !force_reset) { tg3_setup_eee(tp); tg3_phy_reset(tp); } } else { if (!(bmcr & BMCR_ANENABLE) && tp->link_config.speed == current_speed && tp->link_config.duplex == current_duplex) { current_link_up = true; } } if (current_link_up && tp->link_config.active_duplex == DUPLEX_FULL) { u32 reg, bit; if (tp->phy_flags & TG3_PHYFLG_IS_FET) { reg = MII_TG3_FET_GEN_STAT; bit = MII_TG3_FET_GEN_STAT_MDIXSTAT; } else { reg = MII_TG3_EXT_STAT; bit = MII_TG3_EXT_STAT_MDIX; } if (!tg3_readphy(tp, reg, &val) && (val & bit)) tp->phy_flags |= TG3_PHYFLG_MDIX_STATE; tg3_setup_flow_control(tp, lcl_adv, rmt_adv); } } relink: if (!current_link_up || (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER)) { tg3_phy_copper_begin(tp); if (tg3_flag(tp, ROBOSWITCH)) { current_link_up = true; /* FIXME: when BCM5325 switch is used use 100 MBit/s */ current_speed = SPEED_1000; current_duplex = DUPLEX_FULL; tp->link_config.active_speed = current_speed; tp->link_config.active_duplex = current_duplex; } tg3_readphy(tp, MII_BMSR, &bmsr); if ((!tg3_readphy(tp, MII_BMSR, &bmsr) && (bmsr & BMSR_LSTATUS)) || (tp->mac_mode & MAC_MODE_PORT_INT_LPBACK)) current_link_up = true; } tp->mac_mode &= ~MAC_MODE_PORT_MODE_MASK; if (current_link_up) { if (tp->link_config.active_speed == SPEED_100 || tp->link_config.active_speed == SPEED_10) tp->mac_mode |= MAC_MODE_PORT_MODE_MII; else tp->mac_mode |= MAC_MODE_PORT_MODE_GMII; } else if (tp->phy_flags & TG3_PHYFLG_IS_FET) tp->mac_mode |= MAC_MODE_PORT_MODE_MII; else tp->mac_mode |= MAC_MODE_PORT_MODE_GMII; /* In order for the 5750 core in BCM4785 chip to work properly * in RGMII mode, the Led Control Register must be set up. */ if (tg3_flag(tp, RGMII_MODE)) { u32 led_ctrl = tr32(MAC_LED_CTRL); led_ctrl &= ~(LED_CTRL_1000MBPS_ON | LED_CTRL_100MBPS_ON); if (tp->link_config.active_speed == SPEED_10) led_ctrl |= LED_CTRL_LNKLED_OVERRIDE; else if (tp->link_config.active_speed == SPEED_100) led_ctrl |= (LED_CTRL_LNKLED_OVERRIDE | LED_CTRL_100MBPS_ON); else if (tp->link_config.active_speed == SPEED_1000) led_ctrl |= (LED_CTRL_LNKLED_OVERRIDE | LED_CTRL_1000MBPS_ON); tw32(MAC_LED_CTRL, led_ctrl); udelay(40); } tp->mac_mode &= ~MAC_MODE_HALF_DUPLEX; if (tp->link_config.active_duplex == DUPLEX_HALF) tp->mac_mode |= MAC_MODE_HALF_DUPLEX; if (tg3_asic_rev(tp) == ASIC_REV_5700) { if (current_link_up && tg3_5700_link_polarity(tp, tp->link_config.active_speed)) tp->mac_mode |= MAC_MODE_LINK_POLARITY; else tp->mac_mode &= ~MAC_MODE_LINK_POLARITY; } /* ??? Without this setting Netgear GA302T PHY does not * ??? send/receive packets... */ if ((tp->phy_id & TG3_PHY_ID_MASK) == TG3_PHY_ID_BCM5411 && tg3_chip_rev_id(tp) == CHIPREV_ID_5700_ALTIMA) { tp->mi_mode |= MAC_MI_MODE_AUTO_POLL; tw32_f(MAC_MI_MODE, tp->mi_mode); udelay(80); } tw32_f(MAC_MODE, tp->mac_mode); udelay(40); tg3_phy_eee_adjust(tp, current_link_up); if (tg3_flag(tp, USE_LINKCHG_REG)) { /* Polled via timer. */ tw32_f(MAC_EVENT, 0); } else { tw32_f(MAC_EVENT, MAC_EVENT_LNKSTATE_CHANGED); } udelay(40); if (tg3_asic_rev(tp) == ASIC_REV_5700 && current_link_up && tp->link_config.active_speed == SPEED_1000 && (tg3_flag(tp, PCIX_MODE) || tg3_flag(tp, PCI_HIGH_SPEED))) { udelay(120); tw32_f(MAC_STATUS, (MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED)); udelay(40); tg3_write_mem(tp, NIC_SRAM_FIRMWARE_MBOX, NIC_SRAM_FIRMWARE_MBOX_MAGIC2); } /* Prevent send BD corruption. */ if (tg3_flag(tp, CLKREQ_BUG)) { if (tp->link_config.active_speed == SPEED_100 || tp->link_config.active_speed == SPEED_10) pcie_capability_clear_word(tp->pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_CLKREQ_EN); else pcie_capability_set_word(tp->pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_CLKREQ_EN); } tg3_test_and_report_link_chg(tp, current_link_up); return 0; } struct tg3_fiber_aneginfo { int state; #define ANEG_STATE_UNKNOWN 0 #define ANEG_STATE_AN_ENABLE 1 #define ANEG_STATE_RESTART_INIT 2 #define ANEG_STATE_RESTART 3 #define ANEG_STATE_DISABLE_LINK_OK 4 #define ANEG_STATE_ABILITY_DETECT_INIT 5 #define ANEG_STATE_ABILITY_DETECT 6 #define ANEG_STATE_ACK_DETECT_INIT 7 #define ANEG_STATE_ACK_DETECT 8 #define ANEG_STATE_COMPLETE_ACK_INIT 9 #define ANEG_STATE_COMPLETE_ACK 10 #define ANEG_STATE_IDLE_DETECT_INIT 11 #define ANEG_STATE_IDLE_DETECT 12 #define ANEG_STATE_LINK_OK 13 #define ANEG_STATE_NEXT_PAGE_WAIT_INIT 14 #define ANEG_STATE_NEXT_PAGE_WAIT 15 u32 flags; #define MR_AN_ENABLE 0x00000001 #define MR_RESTART_AN 0x00000002 #define MR_AN_COMPLETE 0x00000004 #define MR_PAGE_RX 0x00000008 #define MR_NP_LOADED 0x00000010 #define MR_TOGGLE_TX 0x00000020 #define MR_LP_ADV_FULL_DUPLEX 0x00000040 #define MR_LP_ADV_HALF_DUPLEX 0x00000080 #define MR_LP_ADV_SYM_PAUSE 0x00000100 #define MR_LP_ADV_ASYM_PAUSE 0x00000200 #define MR_LP_ADV_REMOTE_FAULT1 0x00000400 #define MR_LP_ADV_REMOTE_FAULT2 0x00000800 #define MR_LP_ADV_NEXT_PAGE 0x00001000 #define MR_TOGGLE_RX 0x00002000 #define MR_NP_RX 0x00004000 #define MR_LINK_OK 0x80000000 unsigned long link_time, cur_time; u32 ability_match_cfg; int ability_match_count; char ability_match, idle_match, ack_match; u32 txconfig, rxconfig; #define ANEG_CFG_NP 0x00000080 #define ANEG_CFG_ACK 0x00000040 #define ANEG_CFG_RF2 0x00000020 #define ANEG_CFG_RF1 0x00000010 #define ANEG_CFG_PS2 0x00000001 #define ANEG_CFG_PS1 0x00008000 #define ANEG_CFG_HD 0x00004000 #define ANEG_CFG_FD 0x00002000 #define ANEG_CFG_INVAL 0x00001f06 }; #define ANEG_OK 0 #define ANEG_DONE 1 #define ANEG_TIMER_ENAB 2 #define ANEG_FAILED -1 #define ANEG_STATE_SETTLE_TIME 10000 static int tg3_fiber_aneg_smachine(struct tg3 *tp, struct tg3_fiber_aneginfo *ap) { u16 flowctrl; unsigned long delta; u32 rx_cfg_reg; int ret; if (ap->state == ANEG_STATE_UNKNOWN) { ap->rxconfig = 0; ap->link_time = 0; ap->cur_time = 0; ap->ability_match_cfg = 0; ap->ability_match_count = 0; ap->ability_match = 0; ap->idle_match = 0; ap->ack_match = 0; } ap->cur_time++; if (tr32(MAC_STATUS) & MAC_STATUS_RCVD_CFG) { rx_cfg_reg = tr32(MAC_RX_AUTO_NEG); if (rx_cfg_reg != ap->ability_match_cfg) { ap->ability_match_cfg = rx_cfg_reg; ap->ability_match = 0; ap->ability_match_count = 0; } else { if (++ap->ability_match_count > 1) { ap->ability_match = 1; ap->ability_match_cfg = rx_cfg_reg; } } if (rx_cfg_reg & ANEG_CFG_ACK) ap->ack_match = 1; else ap->ack_match = 0; ap->idle_match = 0; } else { ap->idle_match = 1; ap->ability_match_cfg = 0; ap->ability_match_count = 0; ap->ability_match = 0; ap->ack_match = 0; rx_cfg_reg = 0; } ap->rxconfig = rx_cfg_reg; ret = ANEG_OK; switch (ap->state) { case ANEG_STATE_UNKNOWN: if (ap->flags & (MR_AN_ENABLE | MR_RESTART_AN)) ap->state = ANEG_STATE_AN_ENABLE; /* fallthru */ case ANEG_STATE_AN_ENABLE: ap->flags &= ~(MR_AN_COMPLETE | MR_PAGE_RX); if (ap->flags & MR_AN_ENABLE) { ap->link_time = 0; ap->cur_time = 0; ap->ability_match_cfg = 0; ap->ability_match_count = 0; ap->ability_match = 0; ap->idle_match = 0; ap->ack_match = 0; ap->state = ANEG_STATE_RESTART_INIT; } else { ap->state = ANEG_STATE_DISABLE_LINK_OK; } break; case ANEG_STATE_RESTART_INIT: ap->link_time = ap->cur_time; ap->flags &= ~(MR_NP_LOADED); ap->txconfig = 0; tw32(MAC_TX_AUTO_NEG, 0); tp->mac_mode |= MAC_MODE_SEND_CONFIGS; tw32_f(MAC_MODE, tp->mac_mode); udelay(40); ret = ANEG_TIMER_ENAB; ap->state = ANEG_STATE_RESTART; /* fallthru */ case ANEG_STATE_RESTART: delta = ap->cur_time - ap->link_time; if (delta > ANEG_STATE_SETTLE_TIME) ap->state = ANEG_STATE_ABILITY_DETECT_INIT; else ret = ANEG_TIMER_ENAB; break; case ANEG_STATE_DISABLE_LINK_OK: ret = ANEG_DONE; break; case ANEG_STATE_ABILITY_DETECT_INIT: ap->flags &= ~(MR_TOGGLE_TX); ap->txconfig = ANEG_CFG_FD; flowctrl = tg3_advert_flowctrl_1000X(tp->link_config.flowctrl); if (flowctrl & ADVERTISE_1000XPAUSE) ap->txconfig |= ANEG_CFG_PS1; if (flowctrl & ADVERTISE_1000XPSE_ASYM) ap->txconfig |= ANEG_CFG_PS2; tw32(MAC_TX_AUTO_NEG, ap->txconfig); tp->mac_mode |= MAC_MODE_SEND_CONFIGS; tw32_f(MAC_MODE, tp->mac_mode); udelay(40); ap->state = ANEG_STATE_ABILITY_DETECT; break; case ANEG_STATE_ABILITY_DETECT: if (ap->ability_match != 0 && ap->rxconfig != 0) ap->state = ANEG_STATE_ACK_DETECT_INIT; break; case ANEG_STATE_ACK_DETECT_INIT: ap->txconfig |= ANEG_CFG_ACK; tw32(MAC_TX_AUTO_NEG, ap->txconfig); tp->mac_mode |= MAC_MODE_SEND_CONFIGS; tw32_f(MAC_MODE, tp->mac_mode); udelay(40); ap->state = ANEG_STATE_ACK_DETECT; /* fallthru */ case ANEG_STATE_ACK_DETECT: if (ap->ack_match != 0) { if ((ap->rxconfig & ~ANEG_CFG_ACK) == (ap->ability_match_cfg & ~ANEG_CFG_ACK)) { ap->state = ANEG_STATE_COMPLETE_ACK_INIT; } else { ap->state = ANEG_STATE_AN_ENABLE; } } else if (ap->ability_match != 0 && ap->rxconfig == 0) { ap->state = ANEG_STATE_AN_ENABLE; } break; case ANEG_STATE_COMPLETE_ACK_INIT: if (ap->rxconfig & ANEG_CFG_INVAL) { ret = ANEG_FAILED; break; } ap->flags &= ~(MR_LP_ADV_FULL_DUPLEX | MR_LP_ADV_HALF_DUPLEX | MR_LP_ADV_SYM_PAUSE | MR_LP_ADV_ASYM_PAUSE | MR_LP_ADV_REMOTE_FAULT1 | MR_LP_ADV_REMOTE_FAULT2 | MR_LP_ADV_NEXT_PAGE | MR_TOGGLE_RX | MR_NP_RX); if (ap->rxconfig & ANEG_CFG_FD) ap->flags |= MR_LP_ADV_FULL_DUPLEX; if (ap->rxconfig & ANEG_CFG_HD) ap->flags |= MR_LP_ADV_HALF_DUPLEX; if (ap->rxconfig & ANEG_CFG_PS1) ap->flags |= MR_LP_ADV_SYM_PAUSE; if (ap->rxconfig & ANEG_CFG_PS2) ap->flags |= MR_LP_ADV_ASYM_PAUSE; if (ap->rxconfig & ANEG_CFG_RF1) ap->flags |= MR_LP_ADV_REMOTE_FAULT1; if (ap->rxconfig & ANEG_CFG_RF2) ap->flags |= MR_LP_ADV_REMOTE_FAULT2; if (ap->rxconfig & ANEG_CFG_NP) ap->flags |= MR_LP_ADV_NEXT_PAGE; ap->link_time = ap->cur_time; ap->flags ^= (MR_TOGGLE_TX); if (ap->rxconfig & 0x0008) ap->flags |= MR_TOGGLE_RX; if (ap->rxconfig & ANEG_CFG_NP) ap->flags |= MR_NP_RX; ap->flags |= MR_PAGE_RX; ap->state = ANEG_STATE_COMPLETE_ACK; ret = ANEG_TIMER_ENAB; break; case ANEG_STATE_COMPLETE_ACK: if (ap->ability_match != 0 && ap->rxconfig == 0) { ap->state = ANEG_STATE_AN_ENABLE; break; } delta = ap->cur_time - ap->link_time; if (delta > ANEG_STATE_SETTLE_TIME) { if (!(ap->flags & (MR_LP_ADV_NEXT_PAGE))) { ap->state = ANEG_STATE_IDLE_DETECT_INIT; } else { if ((ap->txconfig & ANEG_CFG_NP) == 0 && !(ap->flags & MR_NP_RX)) { ap->state = ANEG_STATE_IDLE_DETECT_INIT; } else { ret = ANEG_FAILED; } } } break; case ANEG_STATE_IDLE_DETECT_INIT: ap->link_time = ap->cur_time; tp->mac_mode &= ~MAC_MODE_SEND_CONFIGS; tw32_f(MAC_MODE, tp->mac_mode); udelay(40); ap->state = ANEG_STATE_IDLE_DETECT; ret = ANEG_TIMER_ENAB; break; case ANEG_STATE_IDLE_DETECT: if (ap->ability_match != 0 && ap->rxconfig == 0) { ap->state = ANEG_STATE_AN_ENABLE; break; } delta = ap->cur_time - ap->link_time; if (delta > ANEG_STATE_SETTLE_TIME) { /* XXX another gem from the Broadcom driver :( */ ap->state = ANEG_STATE_LINK_OK; } break; case ANEG_STATE_LINK_OK: ap->flags |= (MR_AN_COMPLETE | MR_LINK_OK); ret = ANEG_DONE; break; case ANEG_STATE_NEXT_PAGE_WAIT_INIT: /* ??? unimplemented */ break; case ANEG_STATE_NEXT_PAGE_WAIT: /* ??? unimplemented */ break; default: ret = ANEG_FAILED; break; } return ret; } static int fiber_autoneg(struct tg3 *tp, u32 *txflags, u32 *rxflags) { int res = 0; struct tg3_fiber_aneginfo aninfo; int status = ANEG_FAILED; unsigned int tick; u32 tmp; tw32_f(MAC_TX_AUTO_NEG, 0); tmp = tp->mac_mode & ~MAC_MODE_PORT_MODE_MASK; tw32_f(MAC_MODE, tmp | MAC_MODE_PORT_MODE_GMII); udelay(40); tw32_f(MAC_MODE, tp->mac_mode | MAC_MODE_SEND_CONFIGS); udelay(40); memset(&aninfo, 0, sizeof(aninfo)); aninfo.flags |= MR_AN_ENABLE; aninfo.state = ANEG_STATE_UNKNOWN; aninfo.cur_time = 0; tick = 0; while (++tick < 195000) { status = tg3_fiber_aneg_smachine(tp, &aninfo); if (status == ANEG_DONE || status == ANEG_FAILED) break; udelay(1); } tp->mac_mode &= ~MAC_MODE_SEND_CONFIGS; tw32_f(MAC_MODE, tp->mac_mode); udelay(40); *txflags = aninfo.txconfig; *rxflags = aninfo.flags; if (status == ANEG_DONE && (aninfo.flags & (MR_AN_COMPLETE | MR_LINK_OK | MR_LP_ADV_FULL_DUPLEX))) res = 1; return res; } static void tg3_init_bcm8002(struct tg3 *tp) { u32 mac_status = tr32(MAC_STATUS); int i; /* Reset when initting first time or we have a link. */ if (tg3_flag(tp, INIT_COMPLETE) && !(mac_status & MAC_STATUS_PCS_SYNCED)) return; /* Set PLL lock range. */ tg3_writephy(tp, 0x16, 0x8007); /* SW reset */ tg3_writephy(tp, MII_BMCR, BMCR_RESET); /* Wait for reset to complete. */ /* XXX schedule_timeout() ... */ for (i = 0; i < 500; i++) udelay(10); /* Config mode; select PMA/Ch 1 regs. */ tg3_writephy(tp, 0x10, 0x8411); /* Enable auto-lock and comdet, select txclk for tx. */ tg3_writephy(tp, 0x11, 0x0a10); tg3_writephy(tp, 0x18, 0x00a0); tg3_writephy(tp, 0x16, 0x41ff); /* Assert and deassert POR. */ tg3_writephy(tp, 0x13, 0x0400); udelay(40); tg3_writephy(tp, 0x13, 0x0000); tg3_writephy(tp, 0x11, 0x0a50); udelay(40); tg3_writephy(tp, 0x11, 0x0a10); /* Wait for signal to stabilize */ /* XXX schedule_timeout() ... */ for (i = 0; i < 15000; i++) udelay(10); /* Deselect the channel register so we can read the PHYID * later. */ tg3_writephy(tp, 0x10, 0x8011); } static bool tg3_setup_fiber_hw_autoneg(struct tg3 *tp, u32 mac_status) { u16 flowctrl; bool current_link_up; u32 sg_dig_ctrl, sg_dig_status; u32 serdes_cfg, expected_sg_dig_ctrl; int workaround, port_a; serdes_cfg = 0; expected_sg_dig_ctrl = 0; workaround = 0; port_a = 1; current_link_up = false; if (tg3_chip_rev_id(tp) != CHIPREV_ID_5704_A0 && tg3_chip_rev_id(tp) != CHIPREV_ID_5704_A1) { workaround = 1; if (tr32(TG3PCI_DUAL_MAC_CTRL) & DUAL_MAC_CTRL_ID) port_a = 0; /* preserve bits 0-11,13,14 for signal pre-emphasis */ /* preserve bits 20-23 for voltage regulator */ serdes_cfg = tr32(MAC_SERDES_CFG) & 0x00f06fff; } sg_dig_ctrl = tr32(SG_DIG_CTRL); if (tp->link_config.autoneg != AUTONEG_ENABLE) { if (sg_dig_ctrl & SG_DIG_USING_HW_AUTONEG) { if (workaround) { u32 val = serdes_cfg; if (port_a) val |= 0xc010000; else val |= 0x4010000; tw32_f(MAC_SERDES_CFG, val); } tw32_f(SG_DIG_CTRL, SG_DIG_COMMON_SETUP); } if (mac_status & MAC_STATUS_PCS_SYNCED) { tg3_setup_flow_control(tp, 0, 0); current_link_up = true; } goto out; } /* Want auto-negotiation. */ expected_sg_dig_ctrl = SG_DIG_USING_HW_AUTONEG | SG_DIG_COMMON_SETUP; flowctrl = tg3_advert_flowctrl_1000X(tp->link_config.flowctrl); if (flowctrl & ADVERTISE_1000XPAUSE) expected_sg_dig_ctrl |= SG_DIG_PAUSE_CAP; if (flowctrl & ADVERTISE_1000XPSE_ASYM) expected_sg_dig_ctrl |= SG_DIG_ASYM_PAUSE; if (sg_dig_ctrl != expected_sg_dig_ctrl) { if ((tp->phy_flags & TG3_PHYFLG_PARALLEL_DETECT) && tp->serdes_counter && ((mac_status & (MAC_STATUS_PCS_SYNCED | MAC_STATUS_RCVD_CFG)) == MAC_STATUS_PCS_SYNCED)) { tp->serdes_counter--; current_link_up = true; goto out; } restart_autoneg: if (workaround) tw32_f(MAC_SERDES_CFG, serdes_cfg | 0xc011000); tw32_f(SG_DIG_CTRL, expected_sg_dig_ctrl | SG_DIG_SOFT_RESET); udelay(5); tw32_f(SG_DIG_CTRL, expected_sg_dig_ctrl); tp->serdes_counter = SERDES_AN_TIMEOUT_5704S; tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT; } else if (mac_status & (MAC_STATUS_PCS_SYNCED | MAC_STATUS_SIGNAL_DET)) { sg_dig_status = tr32(SG_DIG_STATUS); mac_status = tr32(MAC_STATUS); if ((sg_dig_status & SG_DIG_AUTONEG_COMPLETE) && (mac_status & MAC_STATUS_PCS_SYNCED)) { u32 local_adv = 0, remote_adv = 0; if (sg_dig_ctrl & SG_DIG_PAUSE_CAP) local_adv |= ADVERTISE_1000XPAUSE; if (sg_dig_ctrl & SG_DIG_ASYM_PAUSE) local_adv |= ADVERTISE_1000XPSE_ASYM; if (sg_dig_status & SG_DIG_PARTNER_PAUSE_CAPABLE) remote_adv |= LPA_1000XPAUSE; if (sg_dig_status & SG_DIG_PARTNER_ASYM_PAUSE) remote_adv |= LPA_1000XPAUSE_ASYM; tp->link_config.rmt_adv = mii_adv_to_ethtool_adv_x(remote_adv); tg3_setup_flow_control(tp, local_adv, remote_adv); current_link_up = true; tp->serdes_counter = 0; tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT; } else if (!(sg_dig_status & SG_DIG_AUTONEG_COMPLETE)) { if (tp->serdes_counter) tp->serdes_counter--; else { if (workaround) { u32 val = serdes_cfg; if (port_a) val |= 0xc010000; else val |= 0x4010000; tw32_f(MAC_SERDES_CFG, val); } tw32_f(SG_DIG_CTRL, SG_DIG_COMMON_SETUP); udelay(40); /* Link parallel detection - link is up */ /* only if we have PCS_SYNC and not */ /* receiving config code words */ mac_status = tr32(MAC_STATUS); if ((mac_status & MAC_STATUS_PCS_SYNCED) && !(mac_status & MAC_STATUS_RCVD_CFG)) { tg3_setup_flow_control(tp, 0, 0); current_link_up = true; tp->phy_flags |= TG3_PHYFLG_PARALLEL_DETECT; tp->serdes_counter = SERDES_PARALLEL_DET_TIMEOUT; } else goto restart_autoneg; } } } else { tp->serdes_counter = SERDES_AN_TIMEOUT_5704S; tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT; } out: return current_link_up; } static bool tg3_setup_fiber_by_hand(struct tg3 *tp, u32 mac_status) { bool current_link_up = false; if (!(mac_status & MAC_STATUS_PCS_SYNCED)) goto out; if (tp->link_config.autoneg == AUTONEG_ENABLE) { u32 txflags, rxflags; int i; if (fiber_autoneg(tp, &txflags, &rxflags)) { u32 local_adv = 0, remote_adv = 0; if (txflags & ANEG_CFG_PS1) local_adv |= ADVERTISE_1000XPAUSE; if (txflags & ANEG_CFG_PS2) local_adv |= ADVERTISE_1000XPSE_ASYM; if (rxflags & MR_LP_ADV_SYM_PAUSE) remote_adv |= LPA_1000XPAUSE; if (rxflags & MR_LP_ADV_ASYM_PAUSE) remote_adv |= LPA_1000XPAUSE_ASYM; tp->link_config.rmt_adv = mii_adv_to_ethtool_adv_x(remote_adv); tg3_setup_flow_control(tp, local_adv, remote_adv); current_link_up = true; } for (i = 0; i < 30; i++) { udelay(20); tw32_f(MAC_STATUS, (MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED)); udelay(40); if ((tr32(MAC_STATUS) & (MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED)) == 0) break; } mac_status = tr32(MAC_STATUS); if (!current_link_up && (mac_status & MAC_STATUS_PCS_SYNCED) && !(mac_status & MAC_STATUS_RCVD_CFG)) current_link_up = true; } else { tg3_setup_flow_control(tp, 0, 0); /* Forcing 1000FD link up. */ current_link_up = true; tw32_f(MAC_MODE, (tp->mac_mode | MAC_MODE_SEND_CONFIGS)); udelay(40); tw32_f(MAC_MODE, tp->mac_mode); udelay(40); } out: return current_link_up; } static int tg3_setup_fiber_phy(struct tg3 *tp, bool force_reset) { u32 orig_pause_cfg; u16 orig_active_speed; u8 orig_active_duplex; u32 mac_status; bool current_link_up; int i; orig_pause_cfg = tp->link_config.active_flowctrl; orig_active_speed = tp->link_config.active_speed; orig_active_duplex = tp->link_config.active_duplex; if (!tg3_flag(tp, HW_AUTONEG) && tp->link_up && tg3_flag(tp, INIT_COMPLETE)) { mac_status = tr32(MAC_STATUS); mac_status &= (MAC_STATUS_PCS_SYNCED | MAC_STATUS_SIGNAL_DET | MAC_STATUS_CFG_CHANGED | MAC_STATUS_RCVD_CFG); if (mac_status == (MAC_STATUS_PCS_SYNCED | MAC_STATUS_SIGNAL_DET)) { tw32_f(MAC_STATUS, (MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED)); return 0; } } tw32_f(MAC_TX_AUTO_NEG, 0); tp->mac_mode &= ~(MAC_MODE_PORT_MODE_MASK | MAC_MODE_HALF_DUPLEX); tp->mac_mode |= MAC_MODE_PORT_MODE_TBI; tw32_f(MAC_MODE, tp->mac_mode); udelay(40); if (tp->phy_id == TG3_PHY_ID_BCM8002) tg3_init_bcm8002(tp); /* Enable link change event even when serdes polling. */ tw32_f(MAC_EVENT, MAC_EVENT_LNKSTATE_CHANGED); udelay(40); current_link_up = false; tp->link_config.rmt_adv = 0; mac_status = tr32(MAC_STATUS); if (tg3_flag(tp, HW_AUTONEG)) current_link_up = tg3_setup_fiber_hw_autoneg(tp, mac_status); else current_link_up = tg3_setup_fiber_by_hand(tp, mac_status); tp->napi[0].hw_status->status = (SD_STATUS_UPDATED | (tp->napi[0].hw_status->status & ~SD_STATUS_LINK_CHG)); for (i = 0; i < 100; i++) { tw32_f(MAC_STATUS, (MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED)); udelay(5); if ((tr32(MAC_STATUS) & (MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED | MAC_STATUS_LNKSTATE_CHANGED)) == 0) break; } mac_status = tr32(MAC_STATUS); if ((mac_status & MAC_STATUS_PCS_SYNCED) == 0) { current_link_up = false; if (tp->link_config.autoneg == AUTONEG_ENABLE && tp->serdes_counter == 0) { tw32_f(MAC_MODE, (tp->mac_mode | MAC_MODE_SEND_CONFIGS)); udelay(1); tw32_f(MAC_MODE, tp->mac_mode); } } if (current_link_up) { tp->link_config.active_speed = SPEED_1000; tp->link_config.active_duplex = DUPLEX_FULL; tw32(MAC_LED_CTRL, (tp->led_ctrl | LED_CTRL_LNKLED_OVERRIDE | LED_CTRL_1000MBPS_ON)); } else { tp->link_config.active_speed = SPEED_UNKNOWN; tp->link_config.active_duplex = DUPLEX_UNKNOWN; tw32(MAC_LED_CTRL, (tp->led_ctrl | LED_CTRL_LNKLED_OVERRIDE | LED_CTRL_TRAFFIC_OVERRIDE)); } if (!tg3_test_and_report_link_chg(tp, current_link_up)) { u32 now_pause_cfg = tp->link_config.active_flowctrl; if (orig_pause_cfg != now_pause_cfg || orig_active_speed != tp->link_config.active_speed || orig_active_duplex != tp->link_config.active_duplex) tg3_link_report(tp); } return 0; } static int tg3_setup_fiber_mii_phy(struct tg3 *tp, bool force_reset) { int err = 0; u32 bmsr, bmcr; u16 current_speed = SPEED_UNKNOWN; u8 current_duplex = DUPLEX_UNKNOWN; bool current_link_up = false; u32 local_adv, remote_adv, sgsr; if ((tg3_asic_rev(tp) == ASIC_REV_5719 || tg3_asic_rev(tp) == ASIC_REV_5720) && !tg3_readphy(tp, SERDES_TG3_1000X_STATUS, &sgsr) && (sgsr & SERDES_TG3_SGMII_MODE)) { if (force_reset) tg3_phy_reset(tp); tp->mac_mode &= ~MAC_MODE_PORT_MODE_MASK; if (!(sgsr & SERDES_TG3_LINK_UP)) { tp->mac_mode |= MAC_MODE_PORT_MODE_GMII; } else { current_link_up = true; if (sgsr & SERDES_TG3_SPEED_1000) { current_speed = SPEED_1000; tp->mac_mode |= MAC_MODE_PORT_MODE_GMII; } else if (sgsr & SERDES_TG3_SPEED_100) { current_speed = SPEED_100; tp->mac_mode |= MAC_MODE_PORT_MODE_MII; } else { current_speed = SPEED_10; tp->mac_mode |= MAC_MODE_PORT_MODE_MII; } if (sgsr & SERDES_TG3_FULL_DUPLEX) current_duplex = DUPLEX_FULL; else current_duplex = DUPLEX_HALF; } tw32_f(MAC_MODE, tp->mac_mode); udelay(40); tg3_clear_mac_status(tp); goto fiber_setup_done; } tp->mac_mode |= MAC_MODE_PORT_MODE_GMII; tw32_f(MAC_MODE, tp->mac_mode); udelay(40); tg3_clear_mac_status(tp); if (force_reset) tg3_phy_reset(tp); tp->link_config.rmt_adv = 0; err |= tg3_readphy(tp, MII_BMSR, &bmsr); err |= tg3_readphy(tp, MII_BMSR, &bmsr); if (tg3_asic_rev(tp) == ASIC_REV_5714) { if (tr32(MAC_TX_STATUS) & TX_STATUS_LINK_UP) bmsr |= BMSR_LSTATUS; else bmsr &= ~BMSR_LSTATUS; } err |= tg3_readphy(tp, MII_BMCR, &bmcr); if ((tp->link_config.autoneg == AUTONEG_ENABLE) && !force_reset && (tp->phy_flags & TG3_PHYFLG_PARALLEL_DETECT)) { /* do nothing, just check for link up at the end */ } else if (tp->link_config.autoneg == AUTONEG_ENABLE) { u32 adv, newadv; err |= tg3_readphy(tp, MII_ADVERTISE, &adv); newadv = adv & ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF | ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM | ADVERTISE_SLCT); newadv |= tg3_advert_flowctrl_1000X(tp->link_config.flowctrl); newadv |= ethtool_adv_to_mii_adv_x(tp->link_config.advertising); if ((newadv != adv) || !(bmcr & BMCR_ANENABLE)) { tg3_writephy(tp, MII_ADVERTISE, newadv); bmcr |= BMCR_ANENABLE | BMCR_ANRESTART; tg3_writephy(tp, MII_BMCR, bmcr); tw32_f(MAC_EVENT, MAC_EVENT_LNKSTATE_CHANGED); tp->serdes_counter = SERDES_AN_TIMEOUT_5714S; tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT; return err; } } else { u32 new_bmcr; bmcr &= ~BMCR_SPEED1000; new_bmcr = bmcr & ~(BMCR_ANENABLE | BMCR_FULLDPLX); if (tp->link_config.duplex == DUPLEX_FULL) new_bmcr |= BMCR_FULLDPLX; if (new_bmcr != bmcr) { /* BMCR_SPEED1000 is a reserved bit that needs * to be set on write. */ new_bmcr |= BMCR_SPEED1000; /* Force a linkdown */ if (tp->link_up) { u32 adv; err |= tg3_readphy(tp, MII_ADVERTISE, &adv); adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF | ADVERTISE_SLCT); tg3_writephy(tp, MII_ADVERTISE, adv); tg3_writephy(tp, MII_BMCR, bmcr | BMCR_ANRESTART | BMCR_ANENABLE); udelay(10); tg3_carrier_off(tp); } tg3_writephy(tp, MII_BMCR, new_bmcr); bmcr = new_bmcr; err |= tg3_readphy(tp, MII_BMSR, &bmsr); err |= tg3_readphy(tp, MII_BMSR, &bmsr); if (tg3_asic_rev(tp) == ASIC_REV_5714) { if (tr32(MAC_TX_STATUS) & TX_STATUS_LINK_UP) bmsr |= BMSR_LSTATUS; else bmsr &= ~BMSR_LSTATUS; } tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT; } } if (bmsr & BMSR_LSTATUS) { current_speed = SPEED_1000; current_link_up = true; if (bmcr & BMCR_FULLDPLX) current_duplex = DUPLEX_FULL; else current_duplex = DUPLEX_HALF; local_adv = 0; remote_adv = 0; if (bmcr & BMCR_ANENABLE) { u32 common; err |= tg3_readphy(tp, MII_ADVERTISE, &local_adv); err |= tg3_readphy(tp, MII_LPA, &remote_adv); common = local_adv & remote_adv; if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) { if (common & ADVERTISE_1000XFULL) current_duplex = DUPLEX_FULL; else current_duplex = DUPLEX_HALF; tp->link_config.rmt_adv = mii_adv_to_ethtool_adv_x(remote_adv); } else if (!tg3_flag(tp, 5780_CLASS)) { /* Link is up via parallel detect */ } else { current_link_up = false; } } } fiber_setup_done: if (current_link_up && current_duplex == DUPLEX_FULL) tg3_setup_flow_control(tp, local_adv, remote_adv); tp->mac_mode &= ~MAC_MODE_HALF_DUPLEX; if (tp->link_config.active_duplex == DUPLEX_HALF) tp->mac_mode |= MAC_MODE_HALF_DUPLEX; tw32_f(MAC_MODE, tp->mac_mode); udelay(40); tw32_f(MAC_EVENT, MAC_EVENT_LNKSTATE_CHANGED); tp->link_config.active_speed = current_speed; tp->link_config.active_duplex = current_duplex; tg3_test_and_report_link_chg(tp, current_link_up); return err; } static void tg3_serdes_parallel_detect(struct tg3 *tp) { if (tp->serdes_counter) { /* Give autoneg time to complete. */ tp->serdes_counter--; return; } if (!tp->link_up && (tp->link_config.autoneg == AUTONEG_ENABLE)) { u32 bmcr; tg3_readphy(tp, MII_BMCR, &bmcr); if (bmcr & BMCR_ANENABLE) { u32 phy1, phy2; /* Select shadow register 0x1f */ tg3_writephy(tp, MII_TG3_MISC_SHDW, 0x7c00); tg3_readphy(tp, MII_TG3_MISC_SHDW, &phy1); /* Select expansion interrupt status register */ tg3_writephy(tp, MII_TG3_DSP_ADDRESS, MII_TG3_DSP_EXP1_INT_STAT); tg3_readphy(tp, MII_TG3_DSP_RW_PORT, &phy2); tg3_readphy(tp, MII_TG3_DSP_RW_PORT, &phy2); if ((phy1 & 0x10) && !(phy2 & 0x20)) { /* We have signal detect and not receiving * config code words, link is up by parallel * detection. */ bmcr &= ~BMCR_ANENABLE; bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX; tg3_writephy(tp, MII_BMCR, bmcr); tp->phy_flags |= TG3_PHYFLG_PARALLEL_DETECT; } } } else if (tp->link_up && (tp->link_config.autoneg == AUTONEG_ENABLE) && (tp->phy_flags & TG3_PHYFLG_PARALLEL_DETECT)) { u32 phy2; /* Select expansion interrupt status register */ tg3_writephy(tp, MII_TG3_DSP_ADDRESS, MII_TG3_DSP_EXP1_INT_STAT); tg3_readphy(tp, MII_TG3_DSP_RW_PORT, &phy2); if (phy2 & 0x20) { u32 bmcr; /* Config code words received, turn on autoneg. */ tg3_readphy(tp, MII_BMCR, &bmcr); tg3_writephy(tp, MII_BMCR, bmcr | BMCR_ANENABLE); tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT; } } } static int tg3_setup_phy(struct tg3 *tp, bool force_reset) { u32 val; int err; if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) err = tg3_setup_fiber_phy(tp, force_reset); else if (tp->phy_flags & TG3_PHYFLG_MII_SERDES) err = tg3_setup_fiber_mii_phy(tp, force_reset); else err = tg3_setup_copper_phy(tp, force_reset); if (tg3_chip_rev(tp) == CHIPREV_5784_AX) { u32 scale; val = tr32(TG3_CPMU_CLCK_STAT) & CPMU_CLCK_STAT_MAC_CLCK_MASK; if (val == CPMU_CLCK_STAT_MAC_CLCK_62_5) scale = 65; else if (val == CPMU_CLCK_STAT_MAC_CLCK_6_25) scale = 6; else scale = 12; val = tr32(GRC_MISC_CFG) & ~GRC_MISC_CFG_PRESCALAR_MASK; val |= (scale << GRC_MISC_CFG_PRESCALAR_SHIFT); tw32(GRC_MISC_CFG, val); } val = (2 << TX_LENGTHS_IPG_CRS_SHIFT) | (6 << TX_LENGTHS_IPG_SHIFT); if (tg3_asic_rev(tp) == ASIC_REV_5720 || tg3_asic_rev(tp) == ASIC_REV_5762) val |= tr32(MAC_TX_LENGTHS) & (TX_LENGTHS_JMB_FRM_LEN_MSK | TX_LENGTHS_CNT_DWN_VAL_MSK); if (tp->link_config.active_speed == SPEED_1000 && tp->link_config.active_duplex == DUPLEX_HALF) tw32(MAC_TX_LENGTHS, val | (0xff << TX_LENGTHS_SLOT_TIME_SHIFT)); else tw32(MAC_TX_LENGTHS, val | (32 << TX_LENGTHS_SLOT_TIME_SHIFT)); if (!tg3_flag(tp, 5705_PLUS)) { if (tp->link_up) { tw32(HOSTCC_STAT_COAL_TICKS, tp->coal.stats_block_coalesce_usecs); } else { tw32(HOSTCC_STAT_COAL_TICKS, 0); } } if (tg3_flag(tp, ASPM_WORKAROUND)) { val = tr32(PCIE_PWR_MGMT_THRESH); if (!tp->link_up) val = (val & ~PCIE_PWR_MGMT_L1_THRESH_MSK) | tp->pwrmgmt_thresh; else val |= PCIE_PWR_MGMT_L1_THRESH_MSK; tw32(PCIE_PWR_MGMT_THRESH, val); } return err; } /* tp->lock must be held */ static u64 tg3_refclk_read(struct tg3 *tp) { u64 stamp = tr32(TG3_EAV_REF_CLCK_LSB); return stamp | (u64)tr32(TG3_EAV_REF_CLCK_MSB) << 32; } /* tp->lock must be held */ static void tg3_refclk_write(struct tg3 *tp, u64 newval) { u32 clock_ctl = tr32(TG3_EAV_REF_CLCK_CTL); tw32(TG3_EAV_REF_CLCK_CTL, clock_ctl | TG3_EAV_REF_CLCK_CTL_STOP); tw32(TG3_EAV_REF_CLCK_LSB, newval & 0xffffffff); tw32(TG3_EAV_REF_CLCK_MSB, newval >> 32); tw32_f(TG3_EAV_REF_CLCK_CTL, clock_ctl | TG3_EAV_REF_CLCK_CTL_RESUME); } static inline void tg3_full_lock(struct tg3 *tp, int irq_sync); static inline void tg3_full_unlock(struct tg3 *tp); static int tg3_get_ts_info(struct net_device *dev, struct ethtool_ts_info *info) { struct tg3 *tp = netdev_priv(dev); info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_SOFTWARE; if (tg3_flag(tp, PTP_CAPABLE)) { info->so_timestamping |= SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; } if (tp->ptp_clock) info->phc_index = ptp_clock_index(tp->ptp_clock); else info->phc_index = -1; info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT); return 0; } static int tg3_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) { struct tg3 *tp = container_of(ptp, struct tg3, ptp_info); bool neg_adj = false; u32 correction = 0; if (ppb < 0) { neg_adj = true; ppb = -ppb; } /* Frequency adjustment is performed using hardware with a 24 bit * accumulator and a programmable correction value. On each clk, the * correction value gets added to the accumulator and when it * overflows, the time counter is incremented/decremented. * * So conversion from ppb to correction value is * ppb * (1 << 24) / 1000000000 */ correction = div_u64((u64)ppb * (1 << 24), 1000000000ULL) & TG3_EAV_REF_CLK_CORRECT_MASK; tg3_full_lock(tp, 0); if (correction) tw32(TG3_EAV_REF_CLK_CORRECT_CTL, TG3_EAV_REF_CLK_CORRECT_EN | (neg_adj ? TG3_EAV_REF_CLK_CORRECT_NEG : 0) | correction); else tw32(TG3_EAV_REF_CLK_CORRECT_CTL, 0); tg3_full_unlock(tp); return 0; } static int tg3_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct tg3 *tp = container_of(ptp, struct tg3, ptp_info); tg3_full_lock(tp, 0); tp->ptp_adjust += delta; tg3_full_unlock(tp); return 0; } static int tg3_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts) { u64 ns; u32 remainder; struct tg3 *tp = container_of(ptp, struct tg3, ptp_info); tg3_full_lock(tp, 0); ns = tg3_refclk_read(tp); ns += tp->ptp_adjust; tg3_full_unlock(tp); ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder); ts->tv_nsec = remainder; return 0; } static int tg3_ptp_settime(struct ptp_clock_info *ptp, const struct timespec *ts) { u64 ns; struct tg3 *tp = container_of(ptp, struct tg3, ptp_info); ns = timespec_to_ns(ts); tg3_full_lock(tp, 0); tg3_refclk_write(tp, ns); tp->ptp_adjust = 0; tg3_full_unlock(tp); return 0; } static int tg3_ptp_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct tg3 *tp = container_of(ptp, struct tg3, ptp_info); u32 clock_ctl; int rval = 0; switch (rq->type) { case PTP_CLK_REQ_PEROUT: if (rq->perout.index != 0) return -EINVAL; tg3_full_lock(tp, 0); clock_ctl = tr32(TG3_EAV_REF_CLCK_CTL); clock_ctl &= ~TG3_EAV_CTL_TSYNC_GPIO_MASK; if (on) { u64 nsec; nsec = rq->perout.start.sec * 1000000000ULL + rq->perout.start.nsec; if (rq->perout.period.sec || rq->perout.period.nsec) { netdev_warn(tp->dev, "Device supports only a one-shot timesync output, period must be 0\n"); rval = -EINVAL; goto err_out; } if (nsec & (1ULL << 63)) { netdev_warn(tp->dev, "Start value (nsec) is over limit. Maximum size of start is only 63 bits\n"); rval = -EINVAL; goto err_out; } tw32(TG3_EAV_WATCHDOG0_LSB, (nsec & 0xffffffff)); tw32(TG3_EAV_WATCHDOG0_MSB, TG3_EAV_WATCHDOG0_EN | ((nsec >> 32) & TG3_EAV_WATCHDOG_MSB_MASK)); tw32(TG3_EAV_REF_CLCK_CTL, clock_ctl | TG3_EAV_CTL_TSYNC_WDOG0); } else { tw32(TG3_EAV_WATCHDOG0_MSB, 0); tw32(TG3_EAV_REF_CLCK_CTL, clock_ctl); } err_out: tg3_full_unlock(tp); return rval; default: break; } return -EOPNOTSUPP; } static const struct ptp_clock_info tg3_ptp_caps = { .owner = THIS_MODULE, .name = "tg3 clock", .max_adj = 250000000, .n_alarm = 0, .n_ext_ts = 0, .n_per_out = 1, .pps = 0, .adjfreq = tg3_ptp_adjfreq, .adjtime = tg3_ptp_adjtime, .gettime = tg3_ptp_gettime, .settime = tg3_ptp_settime, .enable = tg3_ptp_enable, }; static void tg3_hwclock_to_timestamp(struct tg3 *tp, u64 hwclock, struct skb_shared_hwtstamps *timestamp) { memset(timestamp, 0, sizeof(struct skb_shared_hwtstamps)); timestamp->hwtstamp = ns_to_ktime((hwclock & TG3_TSTAMP_MASK) + tp->ptp_adjust); } /* tp->lock must be held */ static void tg3_ptp_init(struct tg3 *tp) { if (!tg3_flag(tp, PTP_CAPABLE)) return; /* Initialize the hardware clock to the system time. */ tg3_refclk_write(tp, ktime_to_ns(ktime_get_real())); tp->ptp_adjust = 0; tp->ptp_info = tg3_ptp_caps; } /* tp->lock must be held */ static void tg3_ptp_resume(struct tg3 *tp) { if (!tg3_flag(tp, PTP_CAPABLE)) return; tg3_refclk_write(tp, ktime_to_ns(ktime_get_real()) + tp->ptp_adjust); tp->ptp_adjust = 0; } static void tg3_ptp_fini(struct tg3 *tp) { if (!tg3_flag(tp, PTP_CAPABLE) || !tp->ptp_clock) return; ptp_clock_unregister(tp->ptp_clock); tp->ptp_clock = NULL; tp->ptp_adjust = 0; } static inline int tg3_irq_sync(struct tg3 *tp) { return tp->irq_sync; } static inline void tg3_rd32_loop(struct tg3 *tp, u32 *dst, u32 off, u32 len) { int i; dst = (u32 *)((u8 *)dst + off); for (i = 0; i < len; i += sizeof(u32)) *dst++ = tr32(off + i); } static void tg3_dump_legacy_regs(struct tg3 *tp, u32 *regs) { tg3_rd32_loop(tp, regs, TG3PCI_VENDOR, 0xb0); tg3_rd32_loop(tp, regs, MAILBOX_INTERRUPT_0, 0x200); tg3_rd32_loop(tp, regs, MAC_MODE, 0x4f0); tg3_rd32_loop(tp, regs, SNDDATAI_MODE, 0xe0); tg3_rd32_loop(tp, regs, SNDDATAC_MODE, 0x04); tg3_rd32_loop(tp, regs, SNDBDS_MODE, 0x80); tg3_rd32_loop(tp, regs, SNDBDI_MODE, 0x48); tg3_rd32_loop(tp, regs, SNDBDC_MODE, 0x04); tg3_rd32_loop(tp, regs, RCVLPC_MODE, 0x20); tg3_rd32_loop(tp, regs, RCVLPC_SELLST_BASE, 0x15c); tg3_rd32_loop(tp, regs, RCVDBDI_MODE, 0x0c); tg3_rd32_loop(tp, regs, RCVDBDI_JUMBO_BD, 0x3c); tg3_rd32_loop(tp, regs, RCVDBDI_BD_PROD_IDX_0, 0x44); tg3_rd32_loop(tp, regs, RCVDCC_MODE, 0x04); tg3_rd32_loop(tp, regs, RCVBDI_MODE, 0x20); tg3_rd32_loop(tp, regs, RCVCC_MODE, 0x14); tg3_rd32_loop(tp, regs, RCVLSC_MODE, 0x08); tg3_rd32_loop(tp, regs, MBFREE_MODE, 0x08); tg3_rd32_loop(tp, regs, HOSTCC_MODE, 0x100); if (tg3_flag(tp, SUPPORT_MSIX)) tg3_rd32_loop(tp, regs, HOSTCC_RXCOL_TICKS_VEC1, 0x180); tg3_rd32_loop(tp, regs, MEMARB_MODE, 0x10); tg3_rd32_loop(tp, regs, BUFMGR_MODE, 0x58); tg3_rd32_loop(tp, regs, RDMAC_MODE, 0x08); tg3_rd32_loop(tp, regs, WDMAC_MODE, 0x08); tg3_rd32_loop(tp, regs, RX_CPU_MODE, 0x04); tg3_rd32_loop(tp, regs, RX_CPU_STATE, 0x04); tg3_rd32_loop(tp, regs, RX_CPU_PGMCTR, 0x04); tg3_rd32_loop(tp, regs, RX_CPU_HWBKPT, 0x04); if (!tg3_flag(tp, 5705_PLUS)) { tg3_rd32_loop(tp, regs, TX_CPU_MODE, 0x04); tg3_rd32_loop(tp, regs, TX_CPU_STATE, 0x04); tg3_rd32_loop(tp, regs, TX_CPU_PGMCTR, 0x04); } tg3_rd32_loop(tp, regs, GRCMBOX_INTERRUPT_0, 0x110); tg3_rd32_loop(tp, regs, FTQ_RESET, 0x120); tg3_rd32_loop(tp, regs, MSGINT_MODE, 0x0c); tg3_rd32_loop(tp, regs, DMAC_MODE, 0x04); tg3_rd32_loop(tp, regs, GRC_MODE, 0x4c); if (tg3_flag(tp, NVRAM)) tg3_rd32_loop(tp, regs, NVRAM_CMD, 0x24); } static void tg3_dump_state(struct tg3 *tp) { int i; u32 *regs; regs = kzalloc(TG3_REG_BLK_SIZE, GFP_ATOMIC); if (!regs) return; if (tg3_flag(tp, PCI_EXPRESS)) { /* Read up to but not including private PCI registers */ for (i = 0; i < TG3_PCIE_TLDLPL_PORT; i += sizeof(u32)) regs[i / sizeof(u32)] = tr32(i); } else tg3_dump_legacy_regs(tp, regs); for (i = 0; i < TG3_REG_BLK_SIZE / sizeof(u32); i += 4) { if (!regs[i + 0] && !regs[i + 1] && !regs[i + 2] && !regs[i + 3]) continue; netdev_err(tp->dev, "0x%08x: 0x%08x, 0x%08x, 0x%08x, 0x%08x\n", i * 4, regs[i + 0], regs[i + 1], regs[i + 2], regs[i + 3]); } kfree(regs); for (i = 0; i < tp->irq_cnt; i++) { struct tg3_napi *tnapi = &tp->napi[i]; /* SW status block */ netdev_err(tp->dev, "%d: Host status block [%08x:%08x:(%04x:%04x:%04x):(%04x:%04x)]\n", i, tnapi->hw_status->status, tnapi->hw_status->status_tag, tnapi->hw_status->rx_jumbo_consumer, tnapi->hw_status->rx_consumer, tnapi->hw_status->rx_mini_consumer, tnapi->hw_status->idx[0].rx_producer, tnapi->hw_status->idx[0].tx_consumer); netdev_err(tp->dev, "%d: NAPI info [%08x:%08x:(%04x:%04x:%04x):%04x:(%04x:%04x:%04x:%04x)]\n", i, tnapi->last_tag, tnapi->last_irq_tag, tnapi->tx_prod, tnapi->tx_cons, tnapi->tx_pending, tnapi->rx_rcb_ptr, tnapi->prodring.rx_std_prod_idx, tnapi->prodring.rx_std_cons_idx, tnapi->prodring.rx_jmb_prod_idx, tnapi->prodring.rx_jmb_cons_idx); } } /* This is called whenever we suspect that the system chipset is re- * ordering the sequence of MMIO to the tx send mailbox. The symptom * is bogus tx completions. We try to recover by setting the * TG3_FLAG_MBOX_WRITE_REORDER flag and resetting the chip later * in the workqueue. */ static void tg3_tx_recover(struct tg3 *tp) { BUG_ON(tg3_flag(tp, MBOX_WRITE_REORDER) || tp->write32_tx_mbox == tg3_write_indirect_mbox); netdev_warn(tp->dev, "The system may be re-ordering memory-mapped I/O " "cycles to the network device, attempting to recover. " "Please report the problem to the driver maintainer " "and include system chipset information.\n"); tg3_flag_set(tp, TX_RECOVERY_PENDING); } static inline u32 tg3_tx_avail(struct tg3_napi *tnapi) { /* Tell compiler to fetch tx indices from memory. */ barrier(); return tnapi->tx_pending - ((tnapi->tx_prod - tnapi->tx_cons) & (TG3_TX_RING_SIZE - 1)); } /* Tigon3 never reports partial packet sends. So we do not * need special logic to handle SKBs that have not had all * of their frags sent yet, like SunGEM does. */ static void tg3_tx(struct tg3_napi *tnapi) { struct tg3 *tp = tnapi->tp; u32 hw_idx = tnapi->hw_status->idx[0].tx_consumer; u32 sw_idx = tnapi->tx_cons; struct netdev_queue *txq; int index = tnapi - tp->napi; unsigned int pkts_compl = 0, bytes_compl = 0; if (tg3_flag(tp, ENABLE_TSS)) index--; txq = netdev_get_tx_queue(tp->dev, index); while (sw_idx != hw_idx) { struct tg3_tx_ring_info *ri = &tnapi->tx_buffers[sw_idx]; struct sk_buff *skb = ri->skb; int i, tx_bug = 0; if (unlikely(skb == NULL)) { tg3_tx_recover(tp); return; } if (tnapi->tx_ring[sw_idx].len_flags & TXD_FLAG_HWTSTAMP) { struct skb_shared_hwtstamps timestamp; u64 hwclock = tr32(TG3_TX_TSTAMP_LSB); hwclock |= (u64)tr32(TG3_TX_TSTAMP_MSB) << 32; tg3_hwclock_to_timestamp(tp, hwclock, ×tamp); skb_tstamp_tx(skb, ×tamp); } pci_unmap_single(tp->pdev, dma_unmap_addr(ri, mapping), skb_headlen(skb), PCI_DMA_TODEVICE); ri->skb = NULL; while (ri->fragmented) { ri->fragmented = false; sw_idx = NEXT_TX(sw_idx); ri = &tnapi->tx_buffers[sw_idx]; } sw_idx = NEXT_TX(sw_idx); for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { ri = &tnapi->tx_buffers[sw_idx]; if (unlikely(ri->skb != NULL || sw_idx == hw_idx)) tx_bug = 1; pci_unmap_page(tp->pdev, dma_unmap_addr(ri, mapping), skb_frag_size(&skb_shinfo(skb)->frags[i]), PCI_DMA_TODEVICE); while (ri->fragmented) { ri->fragmented = false; sw_idx = NEXT_TX(sw_idx); ri = &tnapi->tx_buffers[sw_idx]; } sw_idx = NEXT_TX(sw_idx); } pkts_compl++; bytes_compl += skb->len; dev_kfree_skb(skb); if (unlikely(tx_bug)) { tg3_tx_recover(tp); return; } } netdev_tx_completed_queue(txq, pkts_compl, bytes_compl); tnapi->tx_cons = sw_idx; /* Need to make the tx_cons update visible to tg3_start_xmit() * before checking for netif_queue_stopped(). Without the * memory barrier, there is a small possibility that tg3_start_xmit() * will miss it and cause the queue to be stopped forever. */ smp_mb(); if (unlikely(netif_tx_queue_stopped(txq) && (tg3_tx_avail(tnapi) > TG3_TX_WAKEUP_THRESH(tnapi)))) { __netif_tx_lock(txq, smp_processor_id()); if (netif_tx_queue_stopped(txq) && (tg3_tx_avail(tnapi) > TG3_TX_WAKEUP_THRESH(tnapi))) netif_tx_wake_queue(txq); __netif_tx_unlock(txq); } } static void tg3_frag_free(bool is_frag, void *data) { if (is_frag) put_page(virt_to_head_page(data)); else kfree(data); } static void tg3_rx_data_free(struct tg3 *tp, struct ring_info *ri, u32 map_sz) { unsigned int skb_size = SKB_DATA_ALIGN(map_sz + TG3_RX_OFFSET(tp)) + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); if (!ri->data) return; pci_unmap_single(tp->pdev, dma_unmap_addr(ri, mapping), map_sz, PCI_DMA_FROMDEVICE); tg3_frag_free(skb_size <= PAGE_SIZE, ri->data); ri->data = NULL; } /* Returns size of skb allocated or < 0 on error. * * We only need to fill in the address because the other members * of the RX descriptor are invariant, see tg3_init_rings. * * Note the purposeful assymetry of cpu vs. chip accesses. For * posting buffers we only dirty the first cache line of the RX * descriptor (containing the address). Whereas for the RX status * buffers the cpu only reads the last cacheline of the RX descriptor * (to fetch the error flags, vlan tag, checksum, and opaque cookie). */ static int tg3_alloc_rx_data(struct tg3 *tp, struct tg3_rx_prodring_set *tpr, u32 opaque_key, u32 dest_idx_unmasked, unsigned int *frag_size) { struct tg3_rx_buffer_desc *desc; struct ring_info *map; u8 *data; dma_addr_t mapping; int skb_size, data_size, dest_idx; switch (opaque_key) { case RXD_OPAQUE_RING_STD: dest_idx = dest_idx_unmasked & tp->rx_std_ring_mask; desc = &tpr->rx_std[dest_idx]; map = &tpr->rx_std_buffers[dest_idx]; data_size = tp->rx_pkt_map_sz; break; case RXD_OPAQUE_RING_JUMBO: dest_idx = dest_idx_unmasked & tp->rx_jmb_ring_mask; desc = &tpr->rx_jmb[dest_idx].std; map = &tpr->rx_jmb_buffers[dest_idx]; data_size = TG3_RX_JMB_MAP_SZ; break; default: return -EINVAL; } /* Do not overwrite any of the map or rp information * until we are sure we can commit to a new buffer. * * Callers depend upon this behavior and assume that * we leave everything unchanged if we fail. */ skb_size = SKB_DATA_ALIGN(data_size + TG3_RX_OFFSET(tp)) + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); if (skb_size <= PAGE_SIZE) { data = netdev_alloc_frag(skb_size); *frag_size = skb_size; } else { data = kmalloc(skb_size, GFP_ATOMIC); *frag_size = 0; } if (!data) return -ENOMEM; mapping = pci_map_single(tp->pdev, data + TG3_RX_OFFSET(tp), data_size, PCI_DMA_FROMDEVICE); if (unlikely(pci_dma_mapping_error(tp->pdev, mapping))) { tg3_frag_free(skb_size <= PAGE_SIZE, data); return -EIO; } map->data = data; dma_unmap_addr_set(map, mapping, mapping); desc->addr_hi = ((u64)mapping >> 32); desc->addr_lo = ((u64)mapping & 0xffffffff); return data_size; } /* We only need to move over in the address because the other * members of the RX descriptor are invariant. See notes above * tg3_alloc_rx_data for full details. */ static void tg3_recycle_rx(struct tg3_napi *tnapi, struct tg3_rx_prodring_set *dpr, u32 opaque_key, int src_idx, u32 dest_idx_unmasked) { struct tg3 *tp = tnapi->tp; struct tg3_rx_buffer_desc *src_desc, *dest_desc; struct ring_info *src_map, *dest_map; struct tg3_rx_prodring_set *spr = &tp->napi[0].prodring; int dest_idx; switch (opaque_key) { case RXD_OPAQUE_RING_STD: dest_idx = dest_idx_unmasked & tp->rx_std_ring_mask; dest_desc = &dpr->rx_std[dest_idx]; dest_map = &dpr->rx_std_buffers[dest_idx]; src_desc = &spr->rx_std[src_idx]; src_map = &spr->rx_std_buffers[src_idx]; break; case RXD_OPAQUE_RING_JUMBO: dest_idx = dest_idx_unmasked & tp->rx_jmb_ring_mask; dest_desc = &dpr->rx_jmb[dest_idx].std; dest_map = &dpr->rx_jmb_buffers[dest_idx]; src_desc = &spr->rx_jmb[src_idx].std; src_map = &spr->rx_jmb_buffers[src_idx]; break; default: return; } dest_map->data = src_map->data; dma_unmap_addr_set(dest_map, mapping, dma_unmap_addr(src_map, mapping)); dest_desc->addr_hi = src_desc->addr_hi; dest_desc->addr_lo = src_desc->addr_lo; /* Ensure that the update to the skb happens after the physical * addresses have been transferred to the new BD location. */ smp_wmb(); src_map->data = NULL; } /* The RX ring scheme is composed of multiple rings which post fresh * buffers to the chip, and one special ring the chip uses to report * status back to the host. * * The special ring reports the status of received packets to the * host. The chip does not write into the original descriptor the * RX buffer was obtained from. The chip simply takes the original * descriptor as provided by the host, updates the status and length * field, then writes this into the next status ring entry. * * Each ring the host uses to post buffers to the chip is described * by a TG3_BDINFO entry in the chips SRAM area. When a packet arrives, * it is first placed into the on-chip ram. When the packet's length * is known, it walks down the TG3_BDINFO entries to select the ring. * Each TG3_BDINFO specifies a MAXLEN field and the first TG3_BDINFO * which is within the range of the new packet's length is chosen. * * The "separate ring for rx status" scheme may sound queer, but it makes * sense from a cache coherency perspective. If only the host writes * to the buffer post rings, and only the chip writes to the rx status * rings, then cache lines never move beyond shared-modified state. * If both the host and chip were to write into the same ring, cache line * eviction could occur since both entities want it in an exclusive state. */ static int tg3_rx(struct tg3_napi *tnapi, int budget) { struct tg3 *tp = tnapi->tp; u32 work_mask, rx_std_posted = 0; u32 std_prod_idx, jmb_prod_idx; u32 sw_idx = tnapi->rx_rcb_ptr; u16 hw_idx; int received; struct tg3_rx_prodring_set *tpr = &tnapi->prodring; hw_idx = *(tnapi->rx_rcb_prod_idx); /* * We need to order the read of hw_idx and the read of * the opaque cookie. */ rmb(); work_mask = 0; received = 0; std_prod_idx = tpr->rx_std_prod_idx; jmb_prod_idx = tpr->rx_jmb_prod_idx; while (sw_idx != hw_idx && budget > 0) { struct ring_info *ri; struct tg3_rx_buffer_desc *desc = &tnapi->rx_rcb[sw_idx]; unsigned int len; struct sk_buff *skb; dma_addr_t dma_addr; u32 opaque_key, desc_idx, *post_ptr; u8 *data; u64 tstamp = 0; desc_idx = desc->opaque & RXD_OPAQUE_INDEX_MASK; opaque_key = desc->opaque & RXD_OPAQUE_RING_MASK; if (opaque_key == RXD_OPAQUE_RING_STD) { ri = &tp->napi[0].prodring.rx_std_buffers[desc_idx]; dma_addr = dma_unmap_addr(ri, mapping); data = ri->data; post_ptr = &std_prod_idx; rx_std_posted++; } else if (opaque_key == RXD_OPAQUE_RING_JUMBO) { ri = &tp->napi[0].prodring.rx_jmb_buffers[desc_idx]; dma_addr = dma_unmap_addr(ri, mapping); data = ri->data; post_ptr = &jmb_prod_idx; } else goto next_pkt_nopost; work_mask |= opaque_key; if ((desc->err_vlan & RXD_ERR_MASK) != 0 && (desc->err_vlan != RXD_ERR_ODD_NIBBLE_RCVD_MII)) { drop_it: tg3_recycle_rx(tnapi, tpr, opaque_key, desc_idx, *post_ptr); drop_it_no_recycle: /* Other statistics kept track of by card. */ tp->rx_dropped++; goto next_pkt; } prefetch(data + TG3_RX_OFFSET(tp)); len = ((desc->idx_len & RXD_LEN_MASK) >> RXD_LEN_SHIFT) - ETH_FCS_LEN; if ((desc->type_flags & RXD_FLAG_PTPSTAT_MASK) == RXD_FLAG_PTPSTAT_PTPV1 || (desc->type_flags & RXD_FLAG_PTPSTAT_MASK) == RXD_FLAG_PTPSTAT_PTPV2) { tstamp = tr32(TG3_RX_TSTAMP_LSB); tstamp |= (u64)tr32(TG3_RX_TSTAMP_MSB) << 32; } if (len > TG3_RX_COPY_THRESH(tp)) { int skb_size; unsigned int frag_size; skb_size = tg3_alloc_rx_data(tp, tpr, opaque_key, *post_ptr, &frag_size); if (skb_size < 0) goto drop_it; pci_unmap_single(tp->pdev, dma_addr, skb_size, PCI_DMA_FROMDEVICE); skb = build_skb(data, frag_size); if (!skb) { tg3_frag_free(frag_size != 0, data); goto drop_it_no_recycle; } skb_reserve(skb, TG3_RX_OFFSET(tp)); /* Ensure that the update to the data happens * after the usage of the old DMA mapping. */ smp_wmb(); ri->data = NULL; } else { tg3_recycle_rx(tnapi, tpr, opaque_key, desc_idx, *post_ptr); skb = netdev_alloc_skb(tp->dev, len + TG3_RAW_IP_ALIGN); if (skb == NULL) goto drop_it_no_recycle; skb_reserve(skb, TG3_RAW_IP_ALIGN); pci_dma_sync_single_for_cpu(tp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE); memcpy(skb->data, data + TG3_RX_OFFSET(tp), len); pci_dma_sync_single_for_device(tp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE); } skb_put(skb, len); if (tstamp) tg3_hwclock_to_timestamp(tp, tstamp, skb_hwtstamps(skb)); if ((tp->dev->features & NETIF_F_RXCSUM) && (desc->type_flags & RXD_FLAG_TCPUDP_CSUM) && (((desc->ip_tcp_csum & RXD_TCPCSUM_MASK) >> RXD_TCPCSUM_SHIFT) == 0xffff)) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb_checksum_none_assert(skb); skb->protocol = eth_type_trans(skb, tp->dev); if (len > (tp->dev->mtu + ETH_HLEN) && skb->protocol != htons(ETH_P_8021Q)) { dev_kfree_skb(skb); goto drop_it_no_recycle; } if (desc->type_flags & RXD_FLAG_VLAN && !(tp->rx_mode & RX_MODE_KEEP_VLAN_TAG)) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), desc->err_vlan & RXD_VLAN_MASK); napi_gro_receive(&tnapi->napi, skb); received++; budget--; next_pkt: (*post_ptr)++; if (unlikely(rx_std_posted >= tp->rx_std_max_post)) { tpr->rx_std_prod_idx = std_prod_idx & tp->rx_std_ring_mask; tw32_rx_mbox(TG3_RX_STD_PROD_IDX_REG, tpr->rx_std_prod_idx); work_mask &= ~RXD_OPAQUE_RING_STD; rx_std_posted = 0; } next_pkt_nopost: sw_idx++; sw_idx &= tp->rx_ret_ring_mask; /* Refresh hw_idx to see if there is new work */ if (sw_idx == hw_idx) { hw_idx = *(tnapi->rx_rcb_prod_idx); rmb(); } } /* ACK the status ring. */ tnapi->rx_rcb_ptr = sw_idx; tw32_rx_mbox(tnapi->consmbox, sw_idx); /* Refill RX ring(s). */ if (!tg3_flag(tp, ENABLE_RSS)) { /* Sync BD data before updating mailbox */ wmb(); if (work_mask & RXD_OPAQUE_RING_STD) { tpr->rx_std_prod_idx = std_prod_idx & tp->rx_std_ring_mask; tw32_rx_mbox(TG3_RX_STD_PROD_IDX_REG, tpr->rx_std_prod_idx); } if (work_mask & RXD_OPAQUE_RING_JUMBO) { tpr->rx_jmb_prod_idx = jmb_prod_idx & tp->rx_jmb_ring_mask; tw32_rx_mbox(TG3_RX_JMB_PROD_IDX_REG, tpr->rx_jmb_prod_idx); } mmiowb(); } else if (work_mask) { /* rx_std_buffers[] and rx_jmb_buffers[] entries must be * updated before the producer indices can be updated. */ smp_wmb(); tpr->rx_std_prod_idx = std_prod_idx & tp->rx_std_ring_mask; tpr->rx_jmb_prod_idx = jmb_prod_idx & tp->rx_jmb_ring_mask; if (tnapi != &tp->napi[1]) { tp->rx_refill = true; napi_schedule(&tp->napi[1].napi); } } return received; } static void tg3_poll_link(struct tg3 *tp) { /* handle link change and other phy events */ if (!(tg3_flag(tp, USE_LINKCHG_REG) || tg3_flag(tp, POLL_SERDES))) { struct tg3_hw_status *sblk = tp->napi[0].hw_status; if (sblk->status & SD_STATUS_LINK_CHG) { sblk->status = SD_STATUS_UPDATED | (sblk->status & ~SD_STATUS_LINK_CHG); spin_lock(&tp->lock); if (tg3_flag(tp, USE_PHYLIB)) { tw32_f(MAC_STATUS, (MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED | MAC_STATUS_MI_COMPLETION | MAC_STATUS_LNKSTATE_CHANGED)); udelay(40); } else tg3_setup_phy(tp, false); spin_unlock(&tp->lock); } } } static int tg3_rx_prodring_xfer(struct tg3 *tp, struct tg3_rx_prodring_set *dpr, struct tg3_rx_prodring_set *spr) { u32 si, di, cpycnt, src_prod_idx; int i, err = 0; while (1) { src_prod_idx = spr->rx_std_prod_idx; /* Make sure updates to the rx_std_buffers[] entries and the * standard producer index are seen in the correct order. */ smp_rmb(); if (spr->rx_std_cons_idx == src_prod_idx) break; if (spr->rx_std_cons_idx < src_prod_idx) cpycnt = src_prod_idx - spr->rx_std_cons_idx; else cpycnt = tp->rx_std_ring_mask + 1 - spr->rx_std_cons_idx; cpycnt = min(cpycnt, tp->rx_std_ring_mask + 1 - dpr->rx_std_prod_idx); si = spr->rx_std_cons_idx; di = dpr->rx_std_prod_idx; for (i = di; i < di + cpycnt; i++) { if (dpr->rx_std_buffers[i].data) { cpycnt = i - di; err = -ENOSPC; break; } } if (!cpycnt) break; /* Ensure that updates to the rx_std_buffers ring and the * shadowed hardware producer ring from tg3_recycle_skb() are * ordered correctly WRT the skb check above. */ smp_rmb(); memcpy(&dpr->rx_std_buffers[di], &spr->rx_std_buffers[si], cpycnt * sizeof(struct ring_info)); for (i = 0; i < cpycnt; i++, di++, si++) { struct tg3_rx_buffer_desc *sbd, *dbd; sbd = &spr->rx_std[si]; dbd = &dpr->rx_std[di]; dbd->addr_hi = sbd->addr_hi; dbd->addr_lo = sbd->addr_lo; } spr->rx_std_cons_idx = (spr->rx_std_cons_idx + cpycnt) & tp->rx_std_ring_mask; dpr->rx_std_prod_idx = (dpr->rx_std_prod_idx + cpycnt) & tp->rx_std_ring_mask; } while (1) { src_prod_idx = spr->rx_jmb_prod_idx; /* Make sure updates to the rx_jmb_buffers[] entries and * the jumbo producer index are seen in the correct order. */ smp_rmb(); if (spr->rx_jmb_cons_idx == src_prod_idx) break; if (spr->rx_jmb_cons_idx < src_prod_idx) cpycnt = src_prod_idx - spr->rx_jmb_cons_idx; else cpycnt = tp->rx_jmb_ring_mask + 1 - spr->rx_jmb_cons_idx; cpycnt = min(cpycnt, tp->rx_jmb_ring_mask + 1 - dpr->rx_jmb_prod_idx); si = spr->rx_jmb_cons_idx; di = dpr->rx_jmb_prod_idx; for (i = di; i < di + cpycnt; i++) { if (dpr->rx_jmb_buffers[i].data) { cpycnt = i - di; err = -ENOSPC; break; } } if (!cpycnt) break; /* Ensure that updates to the rx_jmb_buffers ring and the * shadowed hardware producer ring from tg3_recycle_skb() are * ordered correctly WRT the skb check above. */ smp_rmb(); memcpy(&dpr->rx_jmb_buffers[di], &spr->rx_jmb_buffers[si], cpycnt * sizeof(struct ring_info)); for (i = 0; i < cpycnt; i++, di++, si++) { struct tg3_rx_buffer_desc *sbd, *dbd; sbd = &spr->rx_jmb[si].std; dbd = &dpr->rx_jmb[di].std; dbd->addr_hi = sbd->addr_hi; dbd->addr_lo = sbd->addr_lo; } spr->rx_jmb_cons_idx = (spr->rx_jmb_cons_idx + cpycnt) & tp->rx_jmb_ring_mask; dpr->rx_jmb_prod_idx = (dpr->rx_jmb_prod_idx + cpycnt) & tp->rx_jmb_ring_mask; } return err; } static int tg3_poll_work(struct tg3_napi *tnapi, int work_done, int budget) { struct tg3 *tp = tnapi->tp; /* run TX completion thread */ if (tnapi->hw_status->idx[0].tx_consumer != tnapi->tx_cons) { tg3_tx(tnapi); if (unlikely(tg3_flag(tp, TX_RECOVERY_PENDING))) return work_done; } if (!tnapi->rx_rcb_prod_idx) return work_done; /* run RX thread, within the bounds set by NAPI. * All RX "locking" is done by ensuring outside * code synchronizes with tg3->napi.poll() */ if (*(tnapi->rx_rcb_prod_idx) != tnapi->rx_rcb_ptr) work_done += tg3_rx(tnapi, budget - work_done); if (tg3_flag(tp, ENABLE_RSS) && tnapi == &tp->napi[1]) { struct tg3_rx_prodring_set *dpr = &tp->napi[0].prodring; int i, err = 0; u32 std_prod_idx = dpr->rx_std_prod_idx; u32 jmb_prod_idx = dpr->rx_jmb_prod_idx; tp->rx_refill = false; for (i = 1; i <= tp->rxq_cnt; i++) err |= tg3_rx_prodring_xfer(tp, dpr, &tp->napi[i].prodring); wmb(); if (std_prod_idx != dpr->rx_std_prod_idx) tw32_rx_mbox(TG3_RX_STD_PROD_IDX_REG, dpr->rx_std_prod_idx); if (jmb_prod_idx != dpr->rx_jmb_prod_idx) tw32_rx_mbox(TG3_RX_JMB_PROD_IDX_REG, dpr->rx_jmb_prod_idx); mmiowb(); if (err) tw32_f(HOSTCC_MODE, tp->coal_now); } return work_done; } static inline void tg3_reset_task_schedule(struct tg3 *tp) { if (!test_and_set_bit(TG3_FLAG_RESET_TASK_PENDING, tp->tg3_flags)) schedule_work(&tp->reset_task); } static inline void tg3_reset_task_cancel(struct tg3 *tp) { cancel_work_sync(&tp->reset_task); tg3_flag_clear(tp, RESET_TASK_PENDING); tg3_flag_clear(tp, TX_RECOVERY_PENDING); } static int tg3_poll_msix(struct napi_struct *napi, int budget) { struct tg3_napi *tnapi = container_of(napi, struct tg3_napi, napi); struct tg3 *tp = tnapi->tp; int work_done = 0; struct tg3_hw_status *sblk = tnapi->hw_status; while (1) { work_done = tg3_poll_work(tnapi, work_done, budget); if (unlikely(tg3_flag(tp, TX_RECOVERY_PENDING))) goto tx_recovery; if (unlikely(work_done >= budget)) break; /* tp->last_tag is used in tg3_int_reenable() below * to tell the hw how much work has been processed, * so we must read it before checking for more work. */ tnapi->last_tag = sblk->status_tag; tnapi->last_irq_tag = tnapi->last_tag; rmb(); /* check for RX/TX work to do */ if (likely(sblk->idx[0].tx_consumer == tnapi->tx_cons && *(tnapi->rx_rcb_prod_idx) == tnapi->rx_rcb_ptr)) { /* This test here is not race free, but will reduce * the number of interrupts by looping again. */ if (tnapi == &tp->napi[1] && tp->rx_refill) continue; napi_complete(napi); /* Reenable interrupts. */ tw32_mailbox(tnapi->int_mbox, tnapi->last_tag << 24); /* This test here is synchronized by napi_schedule() * and napi_complete() to close the race condition. */ if (unlikely(tnapi == &tp->napi[1] && tp->rx_refill)) { tw32(HOSTCC_MODE, tp->coalesce_mode | HOSTCC_MODE_ENABLE | tnapi->coal_now); } mmiowb(); break; } } return work_done; tx_recovery: /* work_done is guaranteed to be less than budget. */ napi_complete(napi); tg3_reset_task_schedule(tp); return work_done; } static void tg3_process_error(struct tg3 *tp) { u32 val; bool real_error = false; if (tg3_flag(tp, ERROR_PROCESSED)) return; /* Check Flow Attention register */ val = tr32(HOSTCC_FLOW_ATTN); if (val & ~HOSTCC_FLOW_ATTN_MBUF_LWM) { netdev_err(tp->dev, "FLOW Attention error. Resetting chip.\n"); real_error = true; } if (tr32(MSGINT_STATUS) & ~MSGINT_STATUS_MSI_REQ) { netdev_err(tp->dev, "MSI Status error. Resetting chip.\n"); real_error = true; } if (tr32(RDMAC_STATUS) || tr32(WDMAC_STATUS)) { netdev_err(tp->dev, "DMA Status error. Resetting chip.\n"); real_error = true; } if (!real_error) return; tg3_dump_state(tp); tg3_flag_set(tp, ERROR_PROCESSED); tg3_reset_task_schedule(tp); } static int tg3_poll(struct napi_struct *napi, int budget) { struct tg3_napi *tnapi = container_of(napi, struct tg3_napi, napi); struct tg3 *tp = tnapi->tp; int work_done = 0; struct tg3_hw_status *sblk = tnapi->hw_status; while (1) { if (sblk->status & SD_STATUS_ERROR) tg3_process_error(tp); tg3_poll_link(tp); work_done = tg3_poll_work(tnapi, work_done, budget); if (unlikely(tg3_flag(tp, TX_RECOVERY_PENDING))) goto tx_recovery; if (unlikely(work_done >= budget)) break; if (tg3_flag(tp, TAGGED_STATUS)) { /* tp->last_tag is used in tg3_int_reenable() below * to tell the hw how much work has been processed, * so we must read it before checking for more work. */ tnapi->last_tag = sblk->status_tag; tnapi->last_irq_tag = tnapi->last_tag; rmb(); } else sblk->status &= ~SD_STATUS_UPDATED; if (likely(!tg3_has_work(tnapi))) { napi_complete(napi); tg3_int_reenable(tnapi); break; } } return work_done; tx_recovery: /* work_done is guaranteed to be less than budget. */ napi_complete(napi); tg3_reset_task_schedule(tp); return work_done; } static void tg3_napi_disable(struct tg3 *tp) { int i; for (i = tp->irq_cnt - 1; i >= 0; i--) napi_disable(&tp->napi[i].napi); } static void tg3_napi_enable(struct tg3 *tp) { int i; for (i = 0; i < tp->irq_cnt; i++) napi_enable(&tp->napi[i].napi); } static void tg3_napi_init(struct tg3 *tp) { int i; netif_napi_add(tp->dev, &tp->napi[0].napi, tg3_poll, 64); for (i = 1; i < tp->irq_cnt; i++) netif_napi_add(tp->dev, &tp->napi[i].napi, tg3_poll_msix, 64); } static void tg3_napi_fini(struct tg3 *tp) { int i; for (i = 0; i < tp->irq_cnt; i++) netif_napi_del(&tp->napi[i].napi); } static inline void tg3_netif_stop(struct tg3 *tp) { tp->dev->trans_start = jiffies; /* prevent tx timeout */ tg3_napi_disable(tp); netif_carrier_off(tp->dev); netif_tx_disable(tp->dev); } /* tp->lock must be held */ static inline void tg3_netif_start(struct tg3 *tp) { tg3_ptp_resume(tp); /* NOTE: unconditional netif_tx_wake_all_queues is only * appropriate so long as all callers are assured to * have free tx slots (such as after tg3_init_hw) */ netif_tx_wake_all_queues(tp->dev); if (tp->link_up) netif_carrier_on(tp->dev); tg3_napi_enable(tp); tp->napi[0].hw_status->status |= SD_STATUS_UPDATED; tg3_enable_ints(tp); } static void tg3_irq_quiesce(struct tg3 *tp) { int i; BUG_ON(tp->irq_sync); tp->irq_sync = 1; smp_mb(); for (i = 0; i < tp->irq_cnt; i++) synchronize_irq(tp->napi[i].irq_vec); } /* Fully shutdown all tg3 driver activity elsewhere in the system. * If irq_sync is non-zero, then the IRQ handler must be synchronized * with as well. Most of the time, this is not necessary except when * shutting down the device. */ static inline void tg3_full_lock(struct tg3 *tp, int irq_sync) { spin_lock_bh(&tp->lock); if (irq_sync) tg3_irq_quiesce(tp); } static inline void tg3_full_unlock(struct tg3 *tp) { spin_unlock_bh(&tp->lock); } /* One-shot MSI handler - Chip automatically disables interrupt * after sending MSI so driver doesn't have to do it. */ static irqreturn_t tg3_msi_1shot(int irq, void *dev_id) { struct tg3_napi *tnapi = dev_id; struct tg3 *tp = tnapi->tp; prefetch(tnapi->hw_status); if (tnapi->rx_rcb) prefetch(&tnapi->rx_rcb[tnapi->rx_rcb_ptr]); if (likely(!tg3_irq_sync(tp))) napi_schedule(&tnapi->napi); return IRQ_HANDLED; } /* MSI ISR - No need to check for interrupt sharing and no need to * flush status block and interrupt mailbox. PCI ordering rules * guarantee that MSI will arrive after the status block. */ static irqreturn_t tg3_msi(int irq, void *dev_id) { struct tg3_napi *tnapi = dev_id; struct tg3 *tp = tnapi->tp; prefetch(tnapi->hw_status); if (tnapi->rx_rcb) prefetch(&tnapi->rx_rcb[tnapi->rx_rcb_ptr]); /* * Writing any value to intr-mbox-0 clears PCI INTA# and * chip-internal interrupt pending events. * Writing non-zero to intr-mbox-0 additional tells the * NIC to stop sending us irqs, engaging "in-intr-handler" * event coalescing. */ tw32_mailbox(tnapi->int_mbox, 0x00000001); if (likely(!tg3_irq_sync(tp))) napi_schedule(&tnapi->napi); return IRQ_RETVAL(1); } static irqreturn_t tg3_interrupt(int irq, void *dev_id) { struct tg3_napi *tnapi = dev_id; struct tg3 *tp = tnapi->tp; struct tg3_hw_status *sblk = tnapi->hw_status; unsigned int handled = 1; /* In INTx mode, it is possible for the interrupt to arrive at * the CPU before the status block posted prior to the interrupt. * Reading the PCI State register will confirm whether the * interrupt is ours and will flush the status block. */ if (unlikely(!(sblk->status & SD_STATUS_UPDATED))) { if (tg3_flag(tp, CHIP_RESETTING) || (tr32(TG3PCI_PCISTATE) & PCISTATE_INT_NOT_ACTIVE)) { handled = 0; goto out; } } /* * Writing any value to intr-mbox-0 clears PCI INTA# and * chip-internal interrupt pending events. * Writing non-zero to intr-mbox-0 additional tells the * NIC to stop sending us irqs, engaging "in-intr-handler" * event coalescing. * * Flush the mailbox to de-assert the IRQ immediately to prevent * spurious interrupts. The flush impacts performance but * excessive spurious interrupts can be worse in some cases. */ tw32_mailbox_f(MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW, 0x00000001); if (tg3_irq_sync(tp)) goto out; sblk->status &= ~SD_STATUS_UPDATED; if (likely(tg3_has_work(tnapi))) { prefetch(&tnapi->rx_rcb[tnapi->rx_rcb_ptr]); napi_schedule(&tnapi->napi); } else { /* No work, shared interrupt perhaps? re-enable * interrupts, and flush that PCI write */ tw32_mailbox_f(MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW, 0x00000000); } out: return IRQ_RETVAL(handled); } static irqreturn_t tg3_interrupt_tagged(int irq, void *dev_id) { struct tg3_napi *tnapi = dev_id; struct tg3 *tp = tnapi->tp; struct tg3_hw_status *sblk = tnapi->hw_status; unsigned int handled = 1; /* In INTx mode, it is possible for the interrupt to arrive at * the CPU before the status block posted prior to the interrupt. * Reading the PCI State register will confirm whether the * interrupt is ours and will flush the status block. */ if (unlikely(sblk->status_tag == tnapi->last_irq_tag)) { if (tg3_flag(tp, CHIP_RESETTING) || (tr32(TG3PCI_PCISTATE) & PCISTATE_INT_NOT_ACTIVE)) { handled = 0; goto out; } } /* * writing any value to intr-mbox-0 clears PCI INTA# and * chip-internal interrupt pending events. * writing non-zero to intr-mbox-0 additional tells the * NIC to stop sending us irqs, engaging "in-intr-handler" * event coalescing. * * Flush the mailbox to de-assert the IRQ immediately to prevent * spurious interrupts. The flush impacts performance but * excessive spurious interrupts can be worse in some cases. */ tw32_mailbox_f(MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW, 0x00000001); /* * In a shared interrupt configuration, sometimes other devices' * interrupts will scream. We record the current status tag here * so that the above check can report that the screaming interrupts * are unhandled. Eventually they will be silenced. */ tnapi->last_irq_tag = sblk->status_tag; if (tg3_irq_sync(tp)) goto out; prefetch(&tnapi->rx_rcb[tnapi->rx_rcb_ptr]); napi_schedule(&tnapi->napi); out: return IRQ_RETVAL(handled); } /* ISR for interrupt test */ static irqreturn_t tg3_test_isr(int irq, void *dev_id) { struct tg3_napi *tnapi = dev_id; struct tg3 *tp = tnapi->tp; struct tg3_hw_status *sblk = tnapi->hw_status; if ((sblk->status & SD_STATUS_UPDATED) || !(tr32(TG3PCI_PCISTATE) & PCISTATE_INT_NOT_ACTIVE)) { tg3_disable_ints(tp); return IRQ_RETVAL(1); } return IRQ_RETVAL(0); } #ifdef CONFIG_NET_POLL_CONTROLLER static void tg3_poll_controller(struct net_device *dev) { int i; struct tg3 *tp = netdev_priv(dev); if (tg3_irq_sync(tp)) return; for (i = 0; i < tp->irq_cnt; i++) tg3_interrupt(tp->napi[i].irq_vec, &tp->napi[i]); } #endif static void tg3_tx_timeout(struct net_device *dev) { struct tg3 *tp = netdev_priv(dev); if (netif_msg_tx_err(tp)) { netdev_err(dev, "transmit timed out, resetting\n"); tg3_dump_state(tp); } tg3_reset_task_schedule(tp); } /* Test for DMA buffers crossing any 4GB boundaries: 4G, 8G, etc */ static inline int tg3_4g_overflow_test(dma_addr_t mapping, int len) { u32 base = (u32) mapping & 0xffffffff; return (base > 0xffffdcc0) && (base + len + 8 < base); } /* Test for TSO DMA buffers that cross into regions which are within MSS bytes * of any 4GB boundaries: 4G, 8G, etc */ static inline int tg3_4g_tso_overflow_test(struct tg3 *tp, dma_addr_t mapping, u32 len, u32 mss) { if (tg3_asic_rev(tp) == ASIC_REV_5762 && mss) { u32 base = (u32) mapping & 0xffffffff; return ((base + len + (mss & 0x3fff)) < base); } return 0; } /* Test for DMA addresses > 40-bit */ static inline int tg3_40bit_overflow_test(struct tg3 *tp, dma_addr_t mapping, int len) { #if defined(CONFIG_HIGHMEM) && (BITS_PER_LONG == 64) if (tg3_flag(tp, 40BIT_DMA_BUG)) return ((u64) mapping + len) > DMA_BIT_MASK(40); return 0; #else return 0; #endif } static inline void tg3_tx_set_bd(struct tg3_tx_buffer_desc *txbd, dma_addr_t mapping, u32 len, u32 flags, u32 mss, u32 vlan) { txbd->addr_hi = ((u64) mapping >> 32); txbd->addr_lo = ((u64) mapping & 0xffffffff); txbd->len_flags = (len << TXD_LEN_SHIFT) | (flags & 0x0000ffff); txbd->vlan_tag = (mss << TXD_MSS_SHIFT) | (vlan << TXD_VLAN_TAG_SHIFT); } static bool tg3_tx_frag_set(struct tg3_napi *tnapi, u32 *entry, u32 *budget, dma_addr_t map, u32 len, u32 flags, u32 mss, u32 vlan) { struct tg3 *tp = tnapi->tp; bool hwbug = false; if (tg3_flag(tp, SHORT_DMA_BUG) && len <= 8) hwbug = true; if (tg3_4g_overflow_test(map, len)) hwbug = true; if (tg3_4g_tso_overflow_test(tp, map, len, mss)) hwbug = true; if (tg3_40bit_overflow_test(tp, map, len)) hwbug = true; if (tp->dma_limit) { u32 prvidx = *entry; u32 tmp_flag = flags & ~TXD_FLAG_END; while (len > tp->dma_limit && *budget) { u32 frag_len = tp->dma_limit; len -= tp->dma_limit; /* Avoid the 8byte DMA problem */ if (len <= 8) { len += tp->dma_limit / 2; frag_len = tp->dma_limit / 2; } tnapi->tx_buffers[*entry].fragmented = true; tg3_tx_set_bd(&tnapi->tx_ring[*entry], map, frag_len, tmp_flag, mss, vlan); *budget -= 1; prvidx = *entry; *entry = NEXT_TX(*entry); map += frag_len; } if (len) { if (*budget) { tg3_tx_set_bd(&tnapi->tx_ring[*entry], map, len, flags, mss, vlan); *budget -= 1; *entry = NEXT_TX(*entry); } else { hwbug = true; tnapi->tx_buffers[prvidx].fragmented = false; } } } else { tg3_tx_set_bd(&tnapi->tx_ring[*entry], map, len, flags, mss, vlan); *entry = NEXT_TX(*entry); } return hwbug; } static void tg3_tx_skb_unmap(struct tg3_napi *tnapi, u32 entry, int last) { int i; struct sk_buff *skb; struct tg3_tx_ring_info *txb = &tnapi->tx_buffers[entry]; skb = txb->skb; txb->skb = NULL; pci_unmap_single(tnapi->tp->pdev, dma_unmap_addr(txb, mapping), skb_headlen(skb), PCI_DMA_TODEVICE); while (txb->fragmented) { txb->fragmented = false; entry = NEXT_TX(entry); txb = &tnapi->tx_buffers[entry]; } for (i = 0; i <= last; i++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; entry = NEXT_TX(entry); txb = &tnapi->tx_buffers[entry]; pci_unmap_page(tnapi->tp->pdev, dma_unmap_addr(txb, mapping), skb_frag_size(frag), PCI_DMA_TODEVICE); while (txb->fragmented) { txb->fragmented = false; entry = NEXT_TX(entry); txb = &tnapi->tx_buffers[entry]; } } } /* Workaround 4GB and 40-bit hardware DMA bugs. */ static int tigon3_dma_hwbug_workaround(struct tg3_napi *tnapi, struct sk_buff **pskb, u32 *entry, u32 *budget, u32 base_flags, u32 mss, u32 vlan) { struct tg3 *tp = tnapi->tp; struct sk_buff *new_skb, *skb = *pskb; dma_addr_t new_addr = 0; int ret = 0; if (tg3_asic_rev(tp) != ASIC_REV_5701) new_skb = skb_copy(skb, GFP_ATOMIC); else { int more_headroom = 4 - ((unsigned long)skb->data & 3); new_skb = skb_copy_expand(skb, skb_headroom(skb) + more_headroom, skb_tailroom(skb), GFP_ATOMIC); } if (!new_skb) { ret = -1; } else { /* New SKB is guaranteed to be linear. */ new_addr = pci_map_single(tp->pdev, new_skb->data, new_skb->len, PCI_DMA_TODEVICE); /* Make sure the mapping succeeded */ if (pci_dma_mapping_error(tp->pdev, new_addr)) { dev_kfree_skb(new_skb); ret = -1; } else { u32 save_entry = *entry; base_flags |= TXD_FLAG_END; tnapi->tx_buffers[*entry].skb = new_skb; dma_unmap_addr_set(&tnapi->tx_buffers[*entry], mapping, new_addr); if (tg3_tx_frag_set(tnapi, entry, budget, new_addr, new_skb->len, base_flags, mss, vlan)) { tg3_tx_skb_unmap(tnapi, save_entry, -1); dev_kfree_skb(new_skb); ret = -1; } } } dev_kfree_skb(skb); *pskb = new_skb; return ret; } static netdev_tx_t tg3_start_xmit(struct sk_buff *, struct net_device *); /* Use GSO to workaround a rare TSO bug that may be triggered when the * TSO header is greater than 80 bytes. */ static int tg3_tso_bug(struct tg3 *tp, struct sk_buff *skb) { struct sk_buff *segs, *nskb; u32 frag_cnt_est = skb_shinfo(skb)->gso_segs * 3; /* Estimate the number of fragments in the worst case */ if (unlikely(tg3_tx_avail(&tp->napi[0]) <= frag_cnt_est)) { netif_stop_queue(tp->dev); /* netif_tx_stop_queue() must be done before checking * checking tx index in tg3_tx_avail() below, because in * tg3_tx(), we update tx index before checking for * netif_tx_queue_stopped(). */ smp_mb(); if (tg3_tx_avail(&tp->napi[0]) <= frag_cnt_est) return NETDEV_TX_BUSY; netif_wake_queue(tp->dev); } segs = skb_gso_segment(skb, tp->dev->features & ~NETIF_F_TSO); if (IS_ERR(segs)) goto tg3_tso_bug_end; do { nskb = segs; segs = segs->next; nskb->next = NULL; tg3_start_xmit(nskb, tp->dev); } while (segs); tg3_tso_bug_end: dev_kfree_skb(skb); return NETDEV_TX_OK; } /* hard_start_xmit for devices that have the 4G bug and/or 40-bit bug and * support TG3_FLAG_HW_TSO_1 or firmware TSO only. */ static netdev_tx_t tg3_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct tg3 *tp = netdev_priv(dev); u32 len, entry, base_flags, mss, vlan = 0; u32 budget; int i = -1, would_hit_hwbug; dma_addr_t mapping; struct tg3_napi *tnapi; struct netdev_queue *txq; unsigned int last; txq = netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); tnapi = &tp->napi[skb_get_queue_mapping(skb)]; if (tg3_flag(tp, ENABLE_TSS)) tnapi++; budget = tg3_tx_avail(tnapi); /* We are running in BH disabled context with netif_tx_lock * and TX reclaim runs via tp->napi.poll inside of a software * interrupt. Furthermore, IRQ processing runs lockless so we have * no IRQ context deadlocks to worry about either. Rejoice! */ if (unlikely(budget <= (skb_shinfo(skb)->nr_frags + 1))) { if (!netif_tx_queue_stopped(txq)) { netif_tx_stop_queue(txq); /* This is a hard error, log it. */ netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); } return NETDEV_TX_BUSY; } entry = tnapi->tx_prod; base_flags = 0; if (skb->ip_summed == CHECKSUM_PARTIAL) base_flags |= TXD_FLAG_TCPUDP_CSUM; mss = skb_shinfo(skb)->gso_size; if (mss) { struct iphdr *iph; u32 tcp_opt_len, hdr_len; if (skb_header_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) goto drop; iph = ip_hdr(skb); tcp_opt_len = tcp_optlen(skb); hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb) - ETH_HLEN; if (!skb_is_gso_v6(skb)) { iph->check = 0; iph->tot_len = htons(mss + hdr_len); } if (unlikely((ETH_HLEN + hdr_len) > 80) && tg3_flag(tp, TSO_BUG)) return tg3_tso_bug(tp, skb); base_flags |= (TXD_FLAG_CPU_PRE_DMA | TXD_FLAG_CPU_POST_DMA); if (tg3_flag(tp, HW_TSO_1) || tg3_flag(tp, HW_TSO_2) || tg3_flag(tp, HW_TSO_3)) { tcp_hdr(skb)->check = 0; base_flags &= ~TXD_FLAG_TCPUDP_CSUM; } else tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0, IPPROTO_TCP, 0); if (tg3_flag(tp, HW_TSO_3)) { mss |= (hdr_len & 0xc) << 12; if (hdr_len & 0x10) base_flags |= 0x00000010; base_flags |= (hdr_len & 0x3e0) << 5; } else if (tg3_flag(tp, HW_TSO_2)) mss |= hdr_len << 9; else if (tg3_flag(tp, HW_TSO_1) || tg3_asic_rev(tp) == ASIC_REV_5705) { if (tcp_opt_len || iph->ihl > 5) { int tsflags; tsflags = (iph->ihl - 5) + (tcp_opt_len >> 2); mss |= (tsflags << 11); } } else { if (tcp_opt_len || iph->ihl > 5) { int tsflags; tsflags = (iph->ihl - 5) + (tcp_opt_len >> 2); base_flags |= tsflags << 12; } } } if (tg3_flag(tp, USE_JUMBO_BDFLAG) && !mss && skb->len > VLAN_ETH_FRAME_LEN) base_flags |= TXD_FLAG_JMB_PKT; if (vlan_tx_tag_present(skb)) { base_flags |= TXD_FLAG_VLAN; vlan = vlan_tx_tag_get(skb); } if ((unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) && tg3_flag(tp, TX_TSTAMP_EN)) { skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; base_flags |= TXD_FLAG_HWTSTAMP; } len = skb_headlen(skb); mapping = pci_map_single(tp->pdev, skb->data, len, PCI_DMA_TODEVICE); if (pci_dma_mapping_error(tp->pdev, mapping)) goto drop; tnapi->tx_buffers[entry].skb = skb; dma_unmap_addr_set(&tnapi->tx_buffers[entry], mapping, mapping); would_hit_hwbug = 0; if (tg3_flag(tp, 5701_DMA_BUG)) would_hit_hwbug = 1; if (tg3_tx_frag_set(tnapi, &entry, &budget, mapping, len, base_flags | ((skb_shinfo(skb)->nr_frags == 0) ? TXD_FLAG_END : 0), mss, vlan)) { would_hit_hwbug = 1; } else if (skb_shinfo(skb)->nr_frags > 0) { u32 tmp_mss = mss; if (!tg3_flag(tp, HW_TSO_1) && !tg3_flag(tp, HW_TSO_2) && !tg3_flag(tp, HW_TSO_3)) tmp_mss = 0; /* Now loop through additional data * fragments, and queue them. */ last = skb_shinfo(skb)->nr_frags - 1; for (i = 0; i <= last; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; len = skb_frag_size(frag); mapping = skb_frag_dma_map(&tp->pdev->dev, frag, 0, len, DMA_TO_DEVICE); tnapi->tx_buffers[entry].skb = NULL; dma_unmap_addr_set(&tnapi->tx_buffers[entry], mapping, mapping); if (dma_mapping_error(&tp->pdev->dev, mapping)) goto dma_error; if (!budget || tg3_tx_frag_set(tnapi, &entry, &budget, mapping, len, base_flags | ((i == last) ? TXD_FLAG_END : 0), tmp_mss, vlan)) { would_hit_hwbug = 1; break; } } } if (would_hit_hwbug) { tg3_tx_skb_unmap(tnapi, tnapi->tx_prod, i); /* If the workaround fails due to memory/mapping * failure, silently drop this packet. */ entry = tnapi->tx_prod; budget = tg3_tx_avail(tnapi); if (tigon3_dma_hwbug_workaround(tnapi, &skb, &entry, &budget, base_flags, mss, vlan)) goto drop_nofree; } skb_tx_timestamp(skb); netdev_tx_sent_queue(txq, skb->len); /* Sync BD data before updating mailbox */ wmb(); /* Packets are ready, update Tx producer idx local and on card. */ tw32_tx_mbox(tnapi->prodmbox, entry); tnapi->tx_prod = entry; if (unlikely(tg3_tx_avail(tnapi) <= (MAX_SKB_FRAGS + 1))) { netif_tx_stop_queue(txq); /* netif_tx_stop_queue() must be done before checking * checking tx index in tg3_tx_avail() below, because in * tg3_tx(), we update tx index before checking for * netif_tx_queue_stopped(). */ smp_mb(); if (tg3_tx_avail(tnapi) > TG3_TX_WAKEUP_THRESH(tnapi)) netif_tx_wake_queue(txq); } mmiowb(); return NETDEV_TX_OK; dma_error: tg3_tx_skb_unmap(tnapi, tnapi->tx_prod, --i); tnapi->tx_buffers[tnapi->tx_prod].skb = NULL; drop: dev_kfree_skb(skb); drop_nofree: tp->tx_dropped++; return NETDEV_TX_OK; } static void tg3_mac_loopback(struct tg3 *tp, bool enable) { if (enable) { tp->mac_mode &= ~(MAC_MODE_HALF_DUPLEX | MAC_MODE_PORT_MODE_MASK); tp->mac_mode |= MAC_MODE_PORT_INT_LPBACK; if (!tg3_flag(tp, 5705_PLUS)) tp->mac_mode |= MAC_MODE_LINK_POLARITY; if (tp->phy_flags & TG3_PHYFLG_10_100_ONLY) tp->mac_mode |= MAC_MODE_PORT_MODE_MII; else tp->mac_mode |= MAC_MODE_PORT_MODE_GMII; } else { tp->mac_mode &= ~MAC_MODE_PORT_INT_LPBACK; if (tg3_flag(tp, 5705_PLUS) || (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) || tg3_asic_rev(tp) == ASIC_REV_5700) tp->mac_mode &= ~MAC_MODE_LINK_POLARITY; } tw32(MAC_MODE, tp->mac_mode); udelay(40); } static int tg3_phy_lpbk_set(struct tg3 *tp, u32 speed, bool extlpbk) { u32 val, bmcr, mac_mode, ptest = 0; tg3_phy_toggle_apd(tp, false); tg3_phy_toggle_automdix(tp, false); if (extlpbk && tg3_phy_set_extloopbk(tp)) return -EIO; bmcr = BMCR_FULLDPLX; switch (speed) { case SPEED_10: break; case SPEED_100: bmcr |= BMCR_SPEED100; break; case SPEED_1000: default: if (tp->phy_flags & TG3_PHYFLG_IS_FET) { speed = SPEED_100; bmcr |= BMCR_SPEED100; } else { speed = SPEED_1000; bmcr |= BMCR_SPEED1000; } } if (extlpbk) { if (!(tp->phy_flags & TG3_PHYFLG_IS_FET)) { tg3_readphy(tp, MII_CTRL1000, &val); val |= CTL1000_AS_MASTER | CTL1000_ENABLE_MASTER; tg3_writephy(tp, MII_CTRL1000, val); } else { ptest = MII_TG3_FET_PTEST_TRIM_SEL | MII_TG3_FET_PTEST_TRIM_2; tg3_writephy(tp, MII_TG3_FET_PTEST, ptest); } } else bmcr |= BMCR_LOOPBACK; tg3_writephy(tp, MII_BMCR, bmcr); /* The write needs to be flushed for the FETs */ if (tp->phy_flags & TG3_PHYFLG_IS_FET) tg3_readphy(tp, MII_BMCR, &bmcr); udelay(40); if ((tp->phy_flags & TG3_PHYFLG_IS_FET) && tg3_asic_rev(tp) == ASIC_REV_5785) { tg3_writephy(tp, MII_TG3_FET_PTEST, ptest | MII_TG3_FET_PTEST_FRC_TX_LINK | MII_TG3_FET_PTEST_FRC_TX_LOCK); /* The write needs to be flushed for the AC131 */ tg3_readphy(tp, MII_TG3_FET_PTEST, &val); } /* Reset to prevent losing 1st rx packet intermittently */ if ((tp->phy_flags & TG3_PHYFLG_MII_SERDES) && tg3_flag(tp, 5780_CLASS)) { tw32_f(MAC_RX_MODE, RX_MODE_RESET); udelay(10); tw32_f(MAC_RX_MODE, tp->rx_mode); } mac_mode = tp->mac_mode & ~(MAC_MODE_PORT_MODE_MASK | MAC_MODE_HALF_DUPLEX); if (speed == SPEED_1000) mac_mode |= MAC_MODE_PORT_MODE_GMII; else mac_mode |= MAC_MODE_PORT_MODE_MII; if (tg3_asic_rev(tp) == ASIC_REV_5700) { u32 masked_phy_id = tp->phy_id & TG3_PHY_ID_MASK; if (masked_phy_id == TG3_PHY_ID_BCM5401) mac_mode &= ~MAC_MODE_LINK_POLARITY; else if (masked_phy_id == TG3_PHY_ID_BCM5411) mac_mode |= MAC_MODE_LINK_POLARITY; tg3_writephy(tp, MII_TG3_EXT_CTRL, MII_TG3_EXT_CTRL_LNK3_LED_MODE); } tw32(MAC_MODE, mac_mode); udelay(40); return 0; } static void tg3_set_loopback(struct net_device *dev, netdev_features_t features) { struct tg3 *tp = netdev_priv(dev); if (features & NETIF_F_LOOPBACK) { if (tp->mac_mode & MAC_MODE_PORT_INT_LPBACK) return; spin_lock_bh(&tp->lock); tg3_mac_loopback(tp, true); netif_carrier_on(tp->dev); spin_unlock_bh(&tp->lock); netdev_info(dev, "Internal MAC loopback mode enabled.\n"); } else { if (!(tp->mac_mode & MAC_MODE_PORT_INT_LPBACK)) return; spin_lock_bh(&tp->lock); tg3_mac_loopback(tp, false); /* Force link status check */ tg3_setup_phy(tp, true); spin_unlock_bh(&tp->lock); netdev_info(dev, "Internal MAC loopback mode disabled.\n"); } } static netdev_features_t tg3_fix_features(struct net_device *dev, netdev_features_t features) { struct tg3 *tp = netdev_priv(dev); if (dev->mtu > ETH_DATA_LEN && tg3_flag(tp, 5780_CLASS)) features &= ~NETIF_F_ALL_TSO; return features; } static int tg3_set_features(struct net_device *dev, netdev_features_t features) { netdev_features_t changed = dev->features ^ features; if ((changed & NETIF_F_LOOPBACK) && netif_running(dev)) tg3_set_loopback(dev, features); return 0; } static void tg3_rx_prodring_free(struct tg3 *tp, struct tg3_rx_prodring_set *tpr) { int i; if (tpr != &tp->napi[0].prodring) { for (i = tpr->rx_std_cons_idx; i != tpr->rx_std_prod_idx; i = (i + 1) & tp->rx_std_ring_mask) tg3_rx_data_free(tp, &tpr->rx_std_buffers[i], tp->rx_pkt_map_sz); if (tg3_flag(tp, JUMBO_CAPABLE)) { for (i = tpr->rx_jmb_cons_idx; i != tpr->rx_jmb_prod_idx; i = (i + 1) & tp->rx_jmb_ring_mask) { tg3_rx_data_free(tp, &tpr->rx_jmb_buffers[i], TG3_RX_JMB_MAP_SZ); } } return; } for (i = 0; i <= tp->rx_std_ring_mask; i++) tg3_rx_data_free(tp, &tpr->rx_std_buffers[i], tp->rx_pkt_map_sz); if (tg3_flag(tp, JUMBO_CAPABLE) && !tg3_flag(tp, 5780_CLASS)) { for (i = 0; i <= tp->rx_jmb_ring_mask; i++) tg3_rx_data_free(tp, &tpr->rx_jmb_buffers[i], TG3_RX_JMB_MAP_SZ); } } /* Initialize rx rings for packet processing. * * The chip has been shut down and the driver detached from * the networking, so no interrupts or new tx packets will * end up in the driver. tp->{tx,}lock are held and thus * we may not sleep. */ static int tg3_rx_prodring_alloc(struct tg3 *tp, struct tg3_rx_prodring_set *tpr) { u32 i, rx_pkt_dma_sz; tpr->rx_std_cons_idx = 0; tpr->rx_std_prod_idx = 0; tpr->rx_jmb_cons_idx = 0; tpr->rx_jmb_prod_idx = 0; if (tpr != &tp->napi[0].prodring) { memset(&tpr->rx_std_buffers[0], 0, TG3_RX_STD_BUFF_RING_SIZE(tp)); if (tpr->rx_jmb_buffers) memset(&tpr->rx_jmb_buffers[0], 0, TG3_RX_JMB_BUFF_RING_SIZE(tp)); goto done; } /* Zero out all descriptors. */ memset(tpr->rx_std, 0, TG3_RX_STD_RING_BYTES(tp)); rx_pkt_dma_sz = TG3_RX_STD_DMA_SZ; if (tg3_flag(tp, 5780_CLASS) && tp->dev->mtu > ETH_DATA_LEN) rx_pkt_dma_sz = TG3_RX_JMB_DMA_SZ; tp->rx_pkt_map_sz = TG3_RX_DMA_TO_MAP_SZ(rx_pkt_dma_sz); /* Initialize invariants of the rings, we only set this * stuff once. This works because the card does not * write into the rx buffer posting rings. */ for (i = 0; i <= tp->rx_std_ring_mask; i++) { struct tg3_rx_buffer_desc *rxd; rxd = &tpr->rx_std[i]; rxd->idx_len = rx_pkt_dma_sz << RXD_LEN_SHIFT; rxd->type_flags = (RXD_FLAG_END << RXD_FLAGS_SHIFT); rxd->opaque = (RXD_OPAQUE_RING_STD | (i << RXD_OPAQUE_INDEX_SHIFT)); } /* Now allocate fresh SKBs for each rx ring. */ for (i = 0; i < tp->rx_pending; i++) { unsigned int frag_size; if (tg3_alloc_rx_data(tp, tpr, RXD_OPAQUE_RING_STD, i, &frag_size) < 0) { netdev_warn(tp->dev, "Using a smaller RX standard ring. Only " "%d out of %d buffers were allocated " "successfully\n", i, tp->rx_pending); if (i == 0) goto initfail; tp->rx_pending = i; break; } } if (!tg3_flag(tp, JUMBO_CAPABLE) || tg3_flag(tp, 5780_CLASS)) goto done; memset(tpr->rx_jmb, 0, TG3_RX_JMB_RING_BYTES(tp)); if (!tg3_flag(tp, JUMBO_RING_ENABLE)) goto done; for (i = 0; i <= tp->rx_jmb_ring_mask; i++) { struct tg3_rx_buffer_desc *rxd; rxd = &tpr->rx_jmb[i].std; rxd->idx_len = TG3_RX_JMB_DMA_SZ << RXD_LEN_SHIFT; rxd->type_flags = (RXD_FLAG_END << RXD_FLAGS_SHIFT) | RXD_FLAG_JUMBO; rxd->opaque = (RXD_OPAQUE_RING_JUMBO | (i << RXD_OPAQUE_INDEX_SHIFT)); } for (i = 0; i < tp->rx_jumbo_pending; i++) { unsigned int frag_size; if (tg3_alloc_rx_data(tp, tpr, RXD_OPAQUE_RING_JUMBO, i, &frag_size) < 0) { netdev_warn(tp->dev, "Using a smaller RX jumbo ring. Only %d " "out of %d buffers were allocated " "successfully\n", i, tp->rx_jumbo_pending); if (i == 0) goto initfail; tp->rx_jumbo_pending = i; break; } } done: return 0; initfail: tg3_rx_prodring_free(tp, tpr); return -ENOMEM; } static void tg3_rx_prodring_fini(struct tg3 *tp, struct tg3_rx_prodring_set *tpr) { kfree(tpr->rx_std_buffers); tpr->rx_std_buffers = NULL; kfree(tpr->rx_jmb_buffers); tpr->rx_jmb_buffers = NULL; if (tpr->rx_std) { dma_free_coherent(&tp->pdev->dev, TG3_RX_STD_RING_BYTES(tp), tpr->rx_std, tpr->rx_std_mapping); tpr->rx_std = NULL; } if (tpr->rx_jmb) { dma_free_coherent(&tp->pdev->dev, TG3_RX_JMB_RING_BYTES(tp), tpr->rx_jmb, tpr->rx_jmb_mapping); tpr->rx_jmb = NULL; } } static int tg3_rx_prodring_init(struct tg3 *tp, struct tg3_rx_prodring_set *tpr) { tpr->rx_std_buffers = kzalloc(TG3_RX_STD_BUFF_RING_SIZE(tp), GFP_KERNEL); if (!tpr->rx_std_buffers) return -ENOMEM; tpr->rx_std = dma_alloc_coherent(&tp->pdev->dev, TG3_RX_STD_RING_BYTES(tp), &tpr->rx_std_mapping, GFP_KERNEL); if (!tpr->rx_std) goto err_out; if (tg3_flag(tp, JUMBO_CAPABLE) && !tg3_flag(tp, 5780_CLASS)) { tpr->rx_jmb_buffers = kzalloc(TG3_RX_JMB_BUFF_RING_SIZE(tp), GFP_KERNEL); if (!tpr->rx_jmb_buffers) goto err_out; tpr->rx_jmb = dma_alloc_coherent(&tp->pdev->dev, TG3_RX_JMB_RING_BYTES(tp), &tpr->rx_jmb_mapping, GFP_KERNEL); if (!tpr->rx_jmb) goto err_out; } return 0; err_out: tg3_rx_prodring_fini(tp, tpr); return -ENOMEM; } /* Free up pending packets in all rx/tx rings. * * The chip has been shut down and the driver detached from * the networking, so no interrupts or new tx packets will * end up in the driver. tp->{tx,}lock is not held and we are not * in an interrupt context and thus may sleep. */ static void tg3_free_rings(struct tg3 *tp) { int i, j; for (j = 0; j < tp->irq_cnt; j++) { struct tg3_napi *tnapi = &tp->napi[j]; tg3_rx_prodring_free(tp, &tnapi->prodring); if (!tnapi->tx_buffers) continue; for (i = 0; i < TG3_TX_RING_SIZE; i++) { struct sk_buff *skb = tnapi->tx_buffers[i].skb; if (!skb) continue; tg3_tx_skb_unmap(tnapi, i, skb_shinfo(skb)->nr_frags - 1); dev_kfree_skb_any(skb); } netdev_tx_reset_queue(netdev_get_tx_queue(tp->dev, j)); } } /* Initialize tx/rx rings for packet processing. * * The chip has been shut down and the driver detached from * the networking, so no interrupts or new tx packets will * end up in the driver. tp->{tx,}lock are held and thus * we may not sleep. */ static int tg3_init_rings(struct tg3 *tp) { int i; /* Free up all the SKBs. */ tg3_free_rings(tp); for (i = 0; i < tp->irq_cnt; i++) { struct tg3_napi *tnapi = &tp->napi[i]; tnapi->last_tag = 0; tnapi->last_irq_tag = 0; tnapi->hw_status->status = 0; tnapi->hw_status->status_tag = 0; memset(tnapi->hw_status, 0, TG3_HW_STATUS_SIZE); tnapi->tx_prod = 0; tnapi->tx_cons = 0; if (tnapi->tx_ring) memset(tnapi->tx_ring, 0, TG3_TX_RING_BYTES); tnapi->rx_rcb_ptr = 0; if (tnapi->rx_rcb) memset(tnapi->rx_rcb, 0, TG3_RX_RCB_RING_BYTES(tp)); if (tg3_rx_prodring_alloc(tp, &tnapi->prodring)) { tg3_free_rings(tp); return -ENOMEM; } } return 0; } static void tg3_mem_tx_release(struct tg3 *tp) { int i; for (i = 0; i < tp->irq_max; i++) { struct tg3_napi *tnapi = &tp->napi[i]; if (tnapi->tx_ring) { dma_free_coherent(&tp->pdev->dev, TG3_TX_RING_BYTES, tnapi->tx_ring, tnapi->tx_desc_mapping); tnapi->tx_ring = NULL; } kfree(tnapi->tx_buffers); tnapi->tx_buffers = NULL; } } static int tg3_mem_tx_acquire(struct tg3 *tp) { int i; struct tg3_napi *tnapi = &tp->napi[0]; /* If multivector TSS is enabled, vector 0 does not handle * tx interrupts. Don't allocate any resources for it. */ if (tg3_flag(tp, ENABLE_TSS)) tnapi++; for (i = 0; i < tp->txq_cnt; i++, tnapi++) { tnapi->tx_buffers = kzalloc(sizeof(struct tg3_tx_ring_info) * TG3_TX_RING_SIZE, GFP_KERNEL); if (!tnapi->tx_buffers) goto err_out; tnapi->tx_ring = dma_alloc_coherent(&tp->pdev->dev, TG3_TX_RING_BYTES, &tnapi->tx_desc_mapping, GFP_KERNEL); if (!tnapi->tx_ring) goto err_out; } return 0; err_out: tg3_mem_tx_release(tp); return -ENOMEM; } static void tg3_mem_rx_release(struct tg3 *tp) { int i; for (i = 0; i < tp->irq_max; i++) { struct tg3_napi *tnapi = &tp->napi[i]; tg3_rx_prodring_fini(tp, &tnapi->prodring); if (!tnapi->rx_rcb) continue; dma_free_coherent(&tp->pdev->dev, TG3_RX_RCB_RING_BYTES(tp), tnapi->rx_rcb, tnapi->rx_rcb_mapping); tnapi->rx_rcb = NULL; } } static int tg3_mem_rx_acquire(struct tg3 *tp) { unsigned int i, limit; limit = tp->rxq_cnt; /* If RSS is enabled, we need a (dummy) producer ring * set on vector zero. This is the true hw prodring. */ if (tg3_flag(tp, ENABLE_RSS)) limit++; for (i = 0; i < limit; i++) { struct tg3_napi *tnapi = &tp->napi[i]; if (tg3_rx_prodring_init(tp, &tnapi->prodring)) goto err_out; /* If multivector RSS is enabled, vector 0 * does not handle rx or tx interrupts. * Don't allocate any resources for it. */ if (!i && tg3_flag(tp, ENABLE_RSS)) continue; tnapi->rx_rcb = dma_alloc_coherent(&tp->pdev->dev, TG3_RX_RCB_RING_BYTES(tp), &tnapi->rx_rcb_mapping, GFP_KERNEL | __GFP_ZERO); if (!tnapi->rx_rcb) goto err_out; } return 0; err_out: tg3_mem_rx_release(tp); return -ENOMEM; } /* * Must not be invoked with interrupt sources disabled and * the hardware shutdown down. */ static void tg3_free_consistent(struct tg3 *tp) { int i; for (i = 0; i < tp->irq_cnt; i++) { struct tg3_napi *tnapi = &tp->napi[i]; if (tnapi->hw_status) { dma_free_coherent(&tp->pdev->dev, TG3_HW_STATUS_SIZE, tnapi->hw_status, tnapi->status_mapping); tnapi->hw_status = NULL; } } tg3_mem_rx_release(tp); tg3_mem_tx_release(tp); if (tp->hw_stats) { dma_free_coherent(&tp->pdev->dev, sizeof(struct tg3_hw_stats), tp->hw_stats, tp->stats_mapping); tp->hw_stats = NULL; } } /* * Must not be invoked with interrupt sources disabled and * the hardware shutdown down. Can sleep. */ static int tg3_alloc_consistent(struct tg3 *tp) { int i; tp->hw_stats = dma_alloc_coherent(&tp->pdev->dev, sizeof(struct tg3_hw_stats), &tp->stats_mapping, GFP_KERNEL | __GFP_ZERO); if (!tp->hw_stats) goto err_out; for (i = 0; i < tp->irq_cnt; i++) { struct tg3_napi *tnapi = &tp->napi[i]; struct tg3_hw_status *sblk; tnapi->hw_status = dma_alloc_coherent(&tp->pdev->dev, TG3_HW_STATUS_SIZE, &tnapi->status_mapping, GFP_KERNEL | __GFP_ZERO); if (!tnapi->hw_status) goto err_out; sblk = tnapi->hw_status; if (tg3_flag(tp, ENABLE_RSS)) { u16 *prodptr = NULL; /* * When RSS is enabled, the status block format changes * slightly. The "rx_jumbo_consumer", "reserved", * and "rx_mini_consumer" members get mapped to the * other three rx return ring producer indexes. */ switch (i) { case 1: prodptr = &sblk->idx[0].rx_producer; break; case 2: prodptr = &sblk->rx_jumbo_consumer; break; case 3: prodptr = &sblk->reserved; break; case 4: prodptr = &sblk->rx_mini_consumer; break; } tnapi->rx_rcb_prod_idx = prodptr; } else { tnapi->rx_rcb_prod_idx = &sblk->idx[0].rx_producer; } } if (tg3_mem_tx_acquire(tp) || tg3_mem_rx_acquire(tp)) goto err_out; return 0; err_out: tg3_free_consistent(tp); return -ENOMEM; } #define MAX_WAIT_CNT 1000 /* To stop a block, clear the enable bit and poll till it * clears. tp->lock is held. */ static int tg3_stop_block(struct tg3 *tp, unsigned long ofs, u32 enable_bit, bool silent) { unsigned int i; u32 val; if (tg3_flag(tp, 5705_PLUS)) { switch (ofs) { case RCVLSC_MODE: case DMAC_MODE: case MBFREE_MODE: case BUFMGR_MODE: case MEMARB_MODE: /* We can't enable/disable these bits of the * 5705/5750, just say success. */ return 0; default: break; } } val = tr32(ofs); val &= ~enable_bit; tw32_f(ofs, val); for (i = 0; i < MAX_WAIT_CNT; i++) { if (pci_channel_offline(tp->pdev)) { dev_err(&tp->pdev->dev, "tg3_stop_block device offline, " "ofs=%lx enable_bit=%x\n", ofs, enable_bit); return -ENODEV; } udelay(100); val = tr32(ofs); if ((val & enable_bit) == 0) break; } if (i == MAX_WAIT_CNT && !silent) { dev_err(&tp->pdev->dev, "tg3_stop_block timed out, ofs=%lx enable_bit=%x\n", ofs, enable_bit); return -ENODEV; } return 0; } /* tp->lock is held. */ static int tg3_abort_hw(struct tg3 *tp, bool silent) { int i, err; tg3_disable_ints(tp); if (pci_channel_offline(tp->pdev)) { tp->rx_mode &= ~(RX_MODE_ENABLE | TX_MODE_ENABLE); tp->mac_mode &= ~MAC_MODE_TDE_ENABLE; err = -ENODEV; goto err_no_dev; } tp->rx_mode &= ~RX_MODE_ENABLE; tw32_f(MAC_RX_MODE, tp->rx_mode); udelay(10); err = tg3_stop_block(tp, RCVBDI_MODE, RCVBDI_MODE_ENABLE, silent); err |= tg3_stop_block(tp, RCVLPC_MODE, RCVLPC_MODE_ENABLE, silent); err |= tg3_stop_block(tp, RCVLSC_MODE, RCVLSC_MODE_ENABLE, silent); err |= tg3_stop_block(tp, RCVDBDI_MODE, RCVDBDI_MODE_ENABLE, silent); err |= tg3_stop_block(tp, RCVDCC_MODE, RCVDCC_MODE_ENABLE, silent); err |= tg3_stop_block(tp, RCVCC_MODE, RCVCC_MODE_ENABLE, silent); err |= tg3_stop_block(tp, SNDBDS_MODE, SNDBDS_MODE_ENABLE, silent); err |= tg3_stop_block(tp, SNDBDI_MODE, SNDBDI_MODE_ENABLE, silent); err |= tg3_stop_block(tp, SNDDATAI_MODE, SNDDATAI_MODE_ENABLE, silent); err |= tg3_stop_block(tp, RDMAC_MODE, RDMAC_MODE_ENABLE, silent); err |= tg3_stop_block(tp, SNDDATAC_MODE, SNDDATAC_MODE_ENABLE, silent); err |= tg3_stop_block(tp, DMAC_MODE, DMAC_MODE_ENABLE, silent); err |= tg3_stop_block(tp, SNDBDC_MODE, SNDBDC_MODE_ENABLE, silent); tp->mac_mode &= ~MAC_MODE_TDE_ENABLE; tw32_f(MAC_MODE, tp->mac_mode); udelay(40); tp->tx_mode &= ~TX_MODE_ENABLE; tw32_f(MAC_TX_MODE, tp->tx_mode); for (i = 0; i < MAX_WAIT_CNT; i++) { udelay(100); if (!(tr32(MAC_TX_MODE) & TX_MODE_ENABLE)) break; } if (i >= MAX_WAIT_CNT) { dev_err(&tp->pdev->dev, "%s timed out, TX_MODE_ENABLE will not clear " "MAC_TX_MODE=%08x\n", __func__, tr32(MAC_TX_MODE)); err |= -ENODEV; } err |= tg3_stop_block(tp, HOSTCC_MODE, HOSTCC_MODE_ENABLE, silent); err |= tg3_stop_block(tp, WDMAC_MODE, WDMAC_MODE_ENABLE, silent); err |= tg3_stop_block(tp, MBFREE_MODE, MBFREE_MODE_ENABLE, silent); tw32(FTQ_RESET, 0xffffffff); tw32(FTQ_RESET, 0x00000000); err |= tg3_stop_block(tp, BUFMGR_MODE, BUFMGR_MODE_ENABLE, silent); err |= tg3_stop_block(tp, MEMARB_MODE, MEMARB_MODE_ENABLE, silent); err_no_dev: for (i = 0; i < tp->irq_cnt; i++) { struct tg3_napi *tnapi = &tp->napi[i]; if (tnapi->hw_status) memset(tnapi->hw_status, 0, TG3_HW_STATUS_SIZE); } return err; } /* Save PCI command register before chip reset */ static void tg3_save_pci_state(struct tg3 *tp) { pci_read_config_word(tp->pdev, PCI_COMMAND, &tp->pci_cmd); } /* Restore PCI state after chip reset */ static void tg3_restore_pci_state(struct tg3 *tp) { u32 val; /* Re-enable indirect register accesses. */ pci_write_config_dword(tp->pdev, TG3PCI_MISC_HOST_CTRL, tp->misc_host_ctrl); /* Set MAX PCI retry to zero. */ val = (PCISTATE_ROM_ENABLE | PCISTATE_ROM_RETRY_ENABLE); if (tg3_chip_rev_id(tp) == CHIPREV_ID_5704_A0 && tg3_flag(tp, PCIX_MODE)) val |= PCISTATE_RETRY_SAME_DMA; /* Allow reads and writes to the APE register and memory space. */ if (tg3_flag(tp, ENABLE_APE)) val |= PCISTATE_ALLOW_APE_CTLSPC_WR | PCISTATE_ALLOW_APE_SHMEM_WR | PCISTATE_ALLOW_APE_PSPACE_WR; pci_write_config_dword(tp->pdev, TG3PCI_PCISTATE, val); pci_write_config_word(tp->pdev, PCI_COMMAND, tp->pci_cmd); if (!tg3_flag(tp, PCI_EXPRESS)) { pci_write_config_byte(tp->pdev, PCI_CACHE_LINE_SIZE, tp->pci_cacheline_sz); pci_write_config_byte(tp->pdev, PCI_LATENCY_TIMER, tp->pci_lat_timer); } /* Make sure PCI-X relaxed ordering bit is clear. */ if (tg3_flag(tp, PCIX_MODE)) { u16 pcix_cmd; pci_read_config_word(tp->pdev, tp->pcix_cap + PCI_X_CMD, &pcix_cmd); pcix_cmd &= ~PCI_X_CMD_ERO; pci_write_config_word(tp->pdev, tp->pcix_cap + PCI_X_CMD, pcix_cmd); } if (tg3_flag(tp, 5780_CLASS)) { /* Chip reset on 5780 will reset MSI enable bit, * so need to restore it. */ if (tg3_flag(tp, USING_MSI)) { u16 ctrl; pci_read_config_word(tp->pdev, tp->msi_cap + PCI_MSI_FLAGS, &ctrl); pci_write_config_word(tp->pdev, tp->msi_cap + PCI_MSI_FLAGS, ctrl | PCI_MSI_FLAGS_ENABLE); val = tr32(MSGINT_MODE); tw32(MSGINT_MODE, val | MSGINT_MODE_ENABLE); } } } /* tp->lock is held. */ static int tg3_chip_reset(struct tg3 *tp) { u32 val; void (*write_op)(struct tg3 *, u32, u32); int i, err; tg3_nvram_lock(tp); tg3_ape_lock(tp, TG3_APE_LOCK_GRC); /* No matching tg3_nvram_unlock() after this because * chip reset below will undo the nvram lock. */ tp->nvram_lock_cnt = 0; /* GRC_MISC_CFG core clock reset will clear the memory * enable bit in PCI register 4 and the MSI enable bit * on some chips, so we save relevant registers here. */ tg3_save_pci_state(tp); if (tg3_asic_rev(tp) == ASIC_REV_5752 || tg3_flag(tp, 5755_PLUS)) tw32(GRC_FASTBOOT_PC, 0); /* * We must avoid the readl() that normally takes place. * It locks machines, causes machine checks, and other * fun things. So, temporarily disable the 5701 * hardware workaround, while we do the reset. */ write_op = tp->write32; if (write_op == tg3_write_flush_reg32) tp->write32 = tg3_write32; /* Prevent the irq handler from reading or writing PCI registers * during chip reset when the memory enable bit in the PCI command * register may be cleared. The chip does not generate interrupt * at this time, but the irq handler may still be called due to irq * sharing or irqpoll. */ tg3_flag_set(tp, CHIP_RESETTING); for (i = 0; i < tp->irq_cnt; i++) { struct tg3_napi *tnapi = &tp->napi[i]; if (tnapi->hw_status) { tnapi->hw_status->status = 0; tnapi->hw_status->status_tag = 0; } tnapi->last_tag = 0; tnapi->last_irq_tag = 0; } smp_mb(); for (i = 0; i < tp->irq_cnt; i++) synchronize_irq(tp->napi[i].irq_vec); if (tg3_asic_rev(tp) == ASIC_REV_57780) { val = tr32(TG3_PCIE_LNKCTL) & ~TG3_PCIE_LNKCTL_L1_PLL_PD_EN; tw32(TG3_PCIE_LNKCTL, val | TG3_PCIE_LNKCTL_L1_PLL_PD_DIS); } /* do the reset */ val = GRC_MISC_CFG_CORECLK_RESET; if (tg3_flag(tp, PCI_EXPRESS)) { /* Force PCIe 1.0a mode */ if (tg3_asic_rev(tp) != ASIC_REV_5785 && !tg3_flag(tp, 57765_PLUS) && tr32(TG3_PCIE_PHY_TSTCTL) == (TG3_PCIE_PHY_TSTCTL_PCIE10 | TG3_PCIE_PHY_TSTCTL_PSCRAM)) tw32(TG3_PCIE_PHY_TSTCTL, TG3_PCIE_PHY_TSTCTL_PSCRAM); if (tg3_chip_rev_id(tp) != CHIPREV_ID_5750_A0) { tw32(GRC_MISC_CFG, (1 << 29)); val |= (1 << 29); } } if (tg3_asic_rev(tp) == ASIC_REV_5906) { tw32(VCPU_STATUS, tr32(VCPU_STATUS) | VCPU_STATUS_DRV_RESET); tw32(GRC_VCPU_EXT_CTRL, tr32(GRC_VCPU_EXT_CTRL) & ~GRC_VCPU_EXT_CTRL_HALT_CPU); } /* Manage gphy power for all CPMU absent PCIe devices. */ if (tg3_flag(tp, 5705_PLUS) && !tg3_flag(tp, CPMU_PRESENT)) val |= GRC_MISC_CFG_KEEP_GPHY_POWER; tw32(GRC_MISC_CFG, val); /* restore 5701 hardware bug workaround write method */ tp->write32 = write_op; /* Unfortunately, we have to delay before the PCI read back. * Some 575X chips even will not respond to a PCI cfg access * when the reset command is given to the chip. * * How do these hardware designers expect things to work * properly if the PCI write is posted for a long period * of time? It is always necessary to have some method by * which a register read back can occur to push the write * out which does the reset. * * For most tg3 variants the trick below was working. * Ho hum... */ udelay(120); /* Flush PCI posted writes. The normal MMIO registers * are inaccessible at this time so this is the only * way to make this reliably (actually, this is no longer * the case, see above). I tried to use indirect * register read/write but this upset some 5701 variants. */ pci_read_config_dword(tp->pdev, PCI_COMMAND, &val); udelay(120); if (tg3_flag(tp, PCI_EXPRESS) && pci_is_pcie(tp->pdev)) { u16 val16; if (tg3_chip_rev_id(tp) == CHIPREV_ID_5750_A0) { int j; u32 cfg_val; /* Wait for link training to complete. */ for (j = 0; j < 5000; j++) udelay(100); pci_read_config_dword(tp->pdev, 0xc4, &cfg_val); pci_write_config_dword(tp->pdev, 0xc4, cfg_val | (1 << 15)); } /* Clear the "no snoop" and "relaxed ordering" bits. */ val16 = PCI_EXP_DEVCTL_RELAX_EN | PCI_EXP_DEVCTL_NOSNOOP_EN; /* * Older PCIe devices only support the 128 byte * MPS setting. Enforce the restriction. */ if (!tg3_flag(tp, CPMU_PRESENT)) val16 |= PCI_EXP_DEVCTL_PAYLOAD; pcie_capability_clear_word(tp->pdev, PCI_EXP_DEVCTL, val16); /* Clear error status */ pcie_capability_write_word(tp->pdev, PCI_EXP_DEVSTA, PCI_EXP_DEVSTA_CED | PCI_EXP_DEVSTA_NFED | PCI_EXP_DEVSTA_FED | PCI_EXP_DEVSTA_URD); } tg3_restore_pci_state(tp); tg3_flag_clear(tp, CHIP_RESETTING); tg3_flag_clear(tp, ERROR_PROCESSED); val = 0; if (tg3_flag(tp, 5780_CLASS)) val = tr32(MEMARB_MODE); tw32(MEMARB_MODE, val | MEMARB_MODE_ENABLE); if (tg3_chip_rev_id(tp) == CHIPREV_ID_5750_A3) { tg3_stop_fw(tp); tw32(0x5000, 0x400); } if (tg3_flag(tp, IS_SSB_CORE)) { /* * BCM4785: In order to avoid repercussions from using * potentially defective internal ROM, stop the Rx RISC CPU, * which is not required. */ tg3_stop_fw(tp); tg3_halt_cpu(tp, RX_CPU_BASE); } err = tg3_poll_fw(tp); if (err) return err; tw32(GRC_MODE, tp->grc_mode); if (tg3_chip_rev_id(tp) == CHIPREV_ID_5705_A0) { val = tr32(0xc4); tw32(0xc4, val | (1 << 15)); } if ((tp->nic_sram_data_cfg & NIC_SRAM_DATA_CFG_MINI_PCI) != 0 && tg3_asic_rev(tp) == ASIC_REV_5705) { tp->pci_clock_ctrl |= CLOCK_CTRL_CLKRUN_OENABLE; if (tg3_chip_rev_id(tp) == CHIPREV_ID_5705_A0) tp->pci_clock_ctrl |= CLOCK_CTRL_FORCE_CLKRUN; tw32(TG3PCI_CLOCK_CTRL, tp->pci_clock_ctrl); } if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) { tp->mac_mode = MAC_MODE_PORT_MODE_TBI; val = tp->mac_mode; } else if (tp->phy_flags & TG3_PHYFLG_MII_SERDES) { tp->mac_mode = MAC_MODE_PORT_MODE_GMII; val = tp->mac_mode; } else val = 0; tw32_f(MAC_MODE, val); udelay(40); tg3_ape_unlock(tp, TG3_APE_LOCK_GRC); tg3_mdio_start(tp); if (tg3_flag(tp, PCI_EXPRESS) && tg3_chip_rev_id(tp) != CHIPREV_ID_5750_A0 && tg3_asic_rev(tp) != ASIC_REV_5785 && !tg3_flag(tp, 57765_PLUS)) { val = tr32(0x7c00); tw32(0x7c00, val | (1 << 25)); } if (tg3_asic_rev(tp) == ASIC_REV_5720) { val = tr32(TG3_CPMU_CLCK_ORIDE); tw32(TG3_CPMU_CLCK_ORIDE, val & ~CPMU_CLCK_ORIDE_MAC_ORIDE_EN); } /* Reprobe ASF enable state. */ tg3_flag_clear(tp, ENABLE_ASF); tp->phy_flags &= ~(TG3_PHYFLG_1G_ON_VAUX_OK | TG3_PHYFLG_KEEP_LINK_ON_PWRDN); tg3_flag_clear(tp, ASF_NEW_HANDSHAKE); tg3_read_mem(tp, NIC_SRAM_DATA_SIG, &val); if (val == NIC_SRAM_DATA_SIG_MAGIC) { u32 nic_cfg; tg3_read_mem(tp, NIC_SRAM_DATA_CFG, &nic_cfg); if (nic_cfg & NIC_SRAM_DATA_CFG_ASF_ENABLE) { tg3_flag_set(tp, ENABLE_ASF); tp->last_event_jiffies = jiffies; if (tg3_flag(tp, 5750_PLUS)) tg3_flag_set(tp, ASF_NEW_HANDSHAKE); tg3_read_mem(tp, NIC_SRAM_DATA_CFG_3, &nic_cfg); if (nic_cfg & NIC_SRAM_1G_ON_VAUX_OK) tp->phy_flags |= TG3_PHYFLG_1G_ON_VAUX_OK; if (nic_cfg & NIC_SRAM_LNK_FLAP_AVOID) tp->phy_flags |= TG3_PHYFLG_KEEP_LINK_ON_PWRDN; } } return 0; } static void tg3_get_nstats(struct tg3 *, struct rtnl_link_stats64 *); static void tg3_get_estats(struct tg3 *, struct tg3_ethtool_stats *); /* tp->lock is held. */ static int tg3_halt(struct tg3 *tp, int kind, bool silent) { int err; tg3_stop_fw(tp); tg3_write_sig_pre_reset(tp, kind); tg3_abort_hw(tp, silent); err = tg3_chip_reset(tp); __tg3_set_mac_addr(tp, false); tg3_write_sig_legacy(tp, kind); tg3_write_sig_post_reset(tp, kind); if (tp->hw_stats) { /* Save the stats across chip resets... */ tg3_get_nstats(tp, &tp->net_stats_prev); tg3_get_estats(tp, &tp->estats_prev); /* And make sure the next sample is new data */ memset(tp->hw_stats, 0, sizeof(struct tg3_hw_stats)); } if (err) return err; return 0; } static int tg3_set_mac_addr(struct net_device *dev, void *p) { struct tg3 *tp = netdev_priv(dev); struct sockaddr *addr = p; int err = 0; bool skip_mac_1 = false; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); if (!netif_running(dev)) return 0; if (tg3_flag(tp, ENABLE_ASF)) { u32 addr0_high, addr0_low, addr1_high, addr1_low; addr0_high = tr32(MAC_ADDR_0_HIGH); addr0_low = tr32(MAC_ADDR_0_LOW); addr1_high = tr32(MAC_ADDR_1_HIGH); addr1_low = tr32(MAC_ADDR_1_LOW); /* Skip MAC addr 1 if ASF is using it. */ if ((addr0_high != addr1_high || addr0_low != addr1_low) && !(addr1_high == 0 && addr1_low == 0)) skip_mac_1 = true; } spin_lock_bh(&tp->lock); __tg3_set_mac_addr(tp, skip_mac_1); spin_unlock_bh(&tp->lock); return err; } /* tp->lock is held. */ static void tg3_set_bdinfo(struct tg3 *tp, u32 bdinfo_addr, dma_addr_t mapping, u32 maxlen_flags, u32 nic_addr) { tg3_write_mem(tp, (bdinfo_addr + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_HIGH), ((u64) mapping >> 32)); tg3_write_mem(tp, (bdinfo_addr + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_LOW), ((u64) mapping & 0xffffffff)); tg3_write_mem(tp, (bdinfo_addr + TG3_BDINFO_MAXLEN_FLAGS), maxlen_flags); if (!tg3_flag(tp, 5705_PLUS)) tg3_write_mem(tp, (bdinfo_addr + TG3_BDINFO_NIC_ADDR), nic_addr); } static void tg3_coal_tx_init(struct tg3 *tp, struct ethtool_coalesce *ec) { int i = 0; if (!tg3_flag(tp, ENABLE_TSS)) { tw32(HOSTCC_TXCOL_TICKS, ec->tx_coalesce_usecs); tw32(HOSTCC_TXMAX_FRAMES, ec->tx_max_coalesced_frames); tw32(HOSTCC_TXCOAL_MAXF_INT, ec->tx_max_coalesced_frames_irq); } else { tw32(HOSTCC_TXCOL_TICKS, 0); tw32(HOSTCC_TXMAX_FRAMES, 0); tw32(HOSTCC_TXCOAL_MAXF_INT, 0); for (; i < tp->txq_cnt; i++) { u32 reg; reg = HOSTCC_TXCOL_TICKS_VEC1 + i * 0x18; tw32(reg, ec->tx_coalesce_usecs); reg = HOSTCC_TXMAX_FRAMES_VEC1 + i * 0x18; tw32(reg, ec->tx_max_coalesced_frames); reg = HOSTCC_TXCOAL_MAXF_INT_VEC1 + i * 0x18; tw32(reg, ec->tx_max_coalesced_frames_irq); } } for (; i < tp->irq_max - 1; i++) { tw32(HOSTCC_TXCOL_TICKS_VEC1 + i * 0x18, 0); tw32(HOSTCC_TXMAX_FRAMES_VEC1 + i * 0x18, 0); tw32(HOSTCC_TXCOAL_MAXF_INT_VEC1 + i * 0x18, 0); } } static void tg3_coal_rx_init(struct tg3 *tp, struct ethtool_coalesce *ec) { int i = 0; u32 limit = tp->rxq_cnt; if (!tg3_flag(tp, ENABLE_RSS)) { tw32(HOSTCC_RXCOL_TICKS, ec->rx_coalesce_usecs); tw32(HOSTCC_RXMAX_FRAMES, ec->rx_max_coalesced_frames); tw32(HOSTCC_RXCOAL_MAXF_INT, ec->rx_max_coalesced_frames_irq); limit--; } else { tw32(HOSTCC_RXCOL_TICKS, 0); tw32(HOSTCC_RXMAX_FRAMES, 0); tw32(HOSTCC_RXCOAL_MAXF_INT, 0); } for (; i < limit; i++) { u32 reg; reg = HOSTCC_RXCOL_TICKS_VEC1 + i * 0x18; tw32(reg, ec->rx_coalesce_usecs); reg = HOSTCC_RXMAX_FRAMES_VEC1 + i * 0x18; tw32(reg, ec->rx_max_coalesced_frames); reg = HOSTCC_RXCOAL_MAXF_INT_VEC1 + i * 0x18; tw32(reg, ec->rx_max_coalesced_frames_irq); } for (; i < tp->irq_max - 1; i++) { tw32(HOSTCC_RXCOL_TICKS_VEC1 + i * 0x18, 0); tw32(HOSTCC_RXMAX_FRAMES_VEC1 + i * 0x18, 0); tw32(HOSTCC_RXCOAL_MAXF_INT_VEC1 + i * 0x18, 0); } } static void __tg3_set_coalesce(struct tg3 *tp, struct ethtool_coalesce *ec) { tg3_coal_tx_init(tp, ec); tg3_coal_rx_init(tp, ec); if (!tg3_flag(tp, 5705_PLUS)) { u32 val = ec->stats_block_coalesce_usecs; tw32(HOSTCC_RXCOAL_TICK_INT, ec->rx_coalesce_usecs_irq); tw32(HOSTCC_TXCOAL_TICK_INT, ec->tx_coalesce_usecs_irq); if (!tp->link_up) val = 0; tw32(HOSTCC_STAT_COAL_TICKS, val); } } /* tp->lock is held. */ static void tg3_tx_rcbs_disable(struct tg3 *tp) { u32 txrcb, limit; /* Disable all transmit rings but the first. */ if (!tg3_flag(tp, 5705_PLUS)) limit = NIC_SRAM_SEND_RCB + TG3_BDINFO_SIZE * 16; else if (tg3_flag(tp, 5717_PLUS)) limit = NIC_SRAM_SEND_RCB + TG3_BDINFO_SIZE * 4; else if (tg3_flag(tp, 57765_CLASS) || tg3_asic_rev(tp) == ASIC_REV_5762) limit = NIC_SRAM_SEND_RCB + TG3_BDINFO_SIZE * 2; else limit = NIC_SRAM_SEND_RCB + TG3_BDINFO_SIZE; for (txrcb = NIC_SRAM_SEND_RCB + TG3_BDINFO_SIZE; txrcb < limit; txrcb += TG3_BDINFO_SIZE) tg3_write_mem(tp, txrcb + TG3_BDINFO_MAXLEN_FLAGS, BDINFO_FLAGS_DISABLED); } /* tp->lock is held. */ static void tg3_tx_rcbs_init(struct tg3 *tp) { int i = 0; u32 txrcb = NIC_SRAM_SEND_RCB; if (tg3_flag(tp, ENABLE_TSS)) i++; for (; i < tp->irq_max; i++, txrcb += TG3_BDINFO_SIZE) { struct tg3_napi *tnapi = &tp->napi[i]; if (!tnapi->tx_ring) continue; tg3_set_bdinfo(tp, txrcb, tnapi->tx_desc_mapping, (TG3_TX_RING_SIZE << BDINFO_FLAGS_MAXLEN_SHIFT), NIC_SRAM_TX_BUFFER_DESC); } } /* tp->lock is held. */ static void tg3_rx_ret_rcbs_disable(struct tg3 *tp) { u32 rxrcb, limit; /* Disable all receive return rings but the first. */ if (tg3_flag(tp, 5717_PLUS)) limit = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE * 17; else if (!tg3_flag(tp, 5705_PLUS)) limit = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE * 16; else if (tg3_asic_rev(tp) == ASIC_REV_5755 || tg3_asic_rev(tp) == ASIC_REV_5762 || tg3_flag(tp, 57765_CLASS)) limit = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE * 4; else limit = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE; for (rxrcb = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE; rxrcb < limit; rxrcb += TG3_BDINFO_SIZE) tg3_write_mem(tp, rxrcb + TG3_BDINFO_MAXLEN_FLAGS, BDINFO_FLAGS_DISABLED); } /* tp->lock is held. */ static void tg3_rx_ret_rcbs_init(struct tg3 *tp) { int i = 0; u32 rxrcb = NIC_SRAM_RCV_RET_RCB; if (tg3_flag(tp, ENABLE_RSS)) i++; for (; i < tp->irq_max; i++, rxrcb += TG3_BDINFO_SIZE) { struct tg3_napi *tnapi = &tp->napi[i]; if (!tnapi->rx_rcb) continue; tg3_set_bdinfo(tp, rxrcb, tnapi->rx_rcb_mapping, (tp->rx_ret_ring_mask + 1) << BDINFO_FLAGS_MAXLEN_SHIFT, 0); } } /* tp->lock is held. */ static void tg3_rings_reset(struct tg3 *tp) { int i; u32 stblk; struct tg3_napi *tnapi = &tp->napi[0]; tg3_tx_rcbs_disable(tp); tg3_rx_ret_rcbs_disable(tp); /* Disable interrupts */ tw32_mailbox_f(tp->napi[0].int_mbox, 1); tp->napi[0].chk_msi_cnt = 0; tp->napi[0].last_rx_cons = 0; tp->napi[0].last_tx_cons = 0; /* Zero mailbox registers. */ if (tg3_flag(tp, SUPPORT_MSIX)) { for (i = 1; i < tp->irq_max; i++) { tp->napi[i].tx_prod = 0; tp->napi[i].tx_cons = 0; if (tg3_flag(tp, ENABLE_TSS)) tw32_mailbox(tp->napi[i].prodmbox, 0); tw32_rx_mbox(tp->napi[i].consmbox, 0); tw32_mailbox_f(tp->napi[i].int_mbox, 1); tp->napi[i].chk_msi_cnt = 0; tp->napi[i].last_rx_cons = 0; tp->napi[i].last_tx_cons = 0; } if (!tg3_flag(tp, ENABLE_TSS)) tw32_mailbox(tp->napi[0].prodmbox, 0); } else { tp->napi[0].tx_prod = 0; tp->napi[0].tx_cons = 0; tw32_mailbox(tp->napi[0].prodmbox, 0); tw32_rx_mbox(tp->napi[0].consmbox, 0); } /* Make sure the NIC-based send BD rings are disabled. */ if (!tg3_flag(tp, 5705_PLUS)) { u32 mbox = MAILBOX_SNDNIC_PROD_IDX_0 + TG3_64BIT_REG_LOW; for (i = 0; i < 16; i++) tw32_tx_mbox(mbox + i * 8, 0); } /* Clear status block in ram. */ memset(tnapi->hw_status, 0, TG3_HW_STATUS_SIZE); /* Set status block DMA address */ tw32(HOSTCC_STATUS_BLK_HOST_ADDR + TG3_64BIT_REG_HIGH, ((u64) tnapi->status_mapping >> 32)); tw32(HOSTCC_STATUS_BLK_HOST_ADDR + TG3_64BIT_REG_LOW, ((u64) tnapi->status_mapping & 0xffffffff)); stblk = HOSTCC_STATBLCK_RING1; for (i = 1, tnapi++; i < tp->irq_cnt; i++, tnapi++) { u64 mapping = (u64)tnapi->status_mapping; tw32(stblk + TG3_64BIT_REG_HIGH, mapping >> 32); tw32(stblk + TG3_64BIT_REG_LOW, mapping & 0xffffffff); stblk += 8; /* Clear status block in ram. */ memset(tnapi->hw_status, 0, TG3_HW_STATUS_SIZE); } tg3_tx_rcbs_init(tp); tg3_rx_ret_rcbs_init(tp); } static void tg3_setup_rxbd_thresholds(struct tg3 *tp) { u32 val, bdcache_maxcnt, host_rep_thresh, nic_rep_thresh; if (!tg3_flag(tp, 5750_PLUS) || tg3_flag(tp, 5780_CLASS) || tg3_asic_rev(tp) == ASIC_REV_5750 || tg3_asic_rev(tp) == ASIC_REV_5752 || tg3_flag(tp, 57765_PLUS)) bdcache_maxcnt = TG3_SRAM_RX_STD_BDCACHE_SIZE_5700; else if (tg3_asic_rev(tp) == ASIC_REV_5755 || tg3_asic_rev(tp) == ASIC_REV_5787) bdcache_maxcnt = TG3_SRAM_RX_STD_BDCACHE_SIZE_5755; else bdcache_maxcnt = TG3_SRAM_RX_STD_BDCACHE_SIZE_5906; nic_rep_thresh = min(bdcache_maxcnt / 2, tp->rx_std_max_post); host_rep_thresh = max_t(u32, tp->rx_pending / 8, 1); val = min(nic_rep_thresh, host_rep_thresh); tw32(RCVBDI_STD_THRESH, val); if (tg3_flag(tp, 57765_PLUS)) tw32(STD_REPLENISH_LWM, bdcache_maxcnt); if (!tg3_flag(tp, JUMBO_CAPABLE) || tg3_flag(tp, 5780_CLASS)) return; bdcache_maxcnt = TG3_SRAM_RX_JMB_BDCACHE_SIZE_5700; host_rep_thresh = max_t(u32, tp->rx_jumbo_pending / 8, 1); val = min(bdcache_maxcnt / 2, host_rep_thresh); tw32(RCVBDI_JUMBO_THRESH, val); if (tg3_flag(tp, 57765_PLUS)) tw32(JMB_REPLENISH_LWM, bdcache_maxcnt); } static inline u32 calc_crc(unsigned char *buf, int len) { u32 reg; u32 tmp; int j, k; reg = 0xffffffff; for (j = 0; j < len; j++) { reg ^= buf[j]; for (k = 0; k < 8; k++) { tmp = reg & 0x01; reg >>= 1; if (tmp) reg ^= 0xedb88320; } } return ~reg; } static void tg3_set_multi(struct tg3 *tp, unsigned int accept_all) { /* accept or reject all multicast frames */ tw32(MAC_HASH_REG_0, accept_all ? 0xffffffff : 0); tw32(MAC_HASH_REG_1, accept_all ? 0xffffffff : 0); tw32(MAC_HASH_REG_2, accept_all ? 0xffffffff : 0); tw32(MAC_HASH_REG_3, accept_all ? 0xffffffff : 0); } static void __tg3_set_rx_mode(struct net_device *dev) { struct tg3 *tp = netdev_priv(dev); u32 rx_mode; rx_mode = tp->rx_mode & ~(RX_MODE_PROMISC | RX_MODE_KEEP_VLAN_TAG); #if !defined(CONFIG_VLAN_8021Q) && !defined(CONFIG_VLAN_8021Q_MODULE) /* When ASF is in use, we always keep the RX_MODE_KEEP_VLAN_TAG * flag clear. */ if (!tg3_flag(tp, ENABLE_ASF)) rx_mode |= RX_MODE_KEEP_VLAN_TAG; #endif if (dev->flags & IFF_PROMISC) { /* Promiscuous mode. */ rx_mode |= RX_MODE_PROMISC; } else if (dev->flags & IFF_ALLMULTI) { /* Accept all multicast. */ tg3_set_multi(tp, 1); } else if (netdev_mc_empty(dev)) { /* Reject all multicast. */ tg3_set_multi(tp, 0); } else { /* Accept one or more multicast(s). */ struct netdev_hw_addr *ha; u32 mc_filter[4] = { 0, }; u32 regidx; u32 bit; u32 crc; netdev_for_each_mc_addr(ha, dev) { crc = calc_crc(ha->addr, ETH_ALEN); bit = ~crc & 0x7f; regidx = (bit & 0x60) >> 5; bit &= 0x1f; mc_filter[regidx] |= (1 << bit); } tw32(MAC_HASH_REG_0, mc_filter[0]); tw32(MAC_HASH_REG_1, mc_filter[1]); tw32(MAC_HASH_REG_2, mc_filter[2]); tw32(MAC_HASH_REG_3, mc_filter[3]); } if (rx_mode != tp->rx_mode) { tp->rx_mode = rx_mode; tw32_f(MAC_RX_MODE, rx_mode); udelay(10); } } static void tg3_rss_init_dflt_indir_tbl(struct tg3 *tp, u32 qcnt) { int i; for (i = 0; i < TG3_RSS_INDIR_TBL_SIZE; i++) tp->rss_ind_tbl[i] = ethtool_rxfh_indir_default(i, qcnt); } static void tg3_rss_check_indir_tbl(struct tg3 *tp) { int i; if (!tg3_flag(tp, SUPPORT_MSIX)) return; if (tp->rxq_cnt == 1) { memset(&tp->rss_ind_tbl[0], 0, sizeof(tp->rss_ind_tbl)); return; } /* Validate table against current IRQ count */ for (i = 0; i < TG3_RSS_INDIR_TBL_SIZE; i++) { if (tp->rss_ind_tbl[i] >= tp->rxq_cnt) break; } if (i != TG3_RSS_INDIR_TBL_SIZE) tg3_rss_init_dflt_indir_tbl(tp, tp->rxq_cnt); } static void tg3_rss_write_indir_tbl(struct tg3 *tp) { int i = 0; u32 reg = MAC_RSS_INDIR_TBL_0; while (i < TG3_RSS_INDIR_TBL_SIZE) { u32 val = tp->rss_ind_tbl[i]; i++; for (; i % 8; i++) { val <<= 4; val |= tp->rss_ind_tbl[i]; } tw32(reg, val); reg += 4; } } static inline u32 tg3_lso_rd_dma_workaround_bit(struct tg3 *tp) { if (tg3_asic_rev(tp) == ASIC_REV_5719) return TG3_LSO_RD_DMA_TX_LENGTH_WA_5719; else return TG3_LSO_RD_DMA_TX_LENGTH_WA_5720; } /* tp->lock is held. */ static int tg3_reset_hw(struct tg3 *tp, bool reset_phy) { u32 val, rdmac_mode; int i, err, limit; struct tg3_rx_prodring_set *tpr = &tp->napi[0].prodring; tg3_disable_ints(tp); tg3_stop_fw(tp); tg3_write_sig_pre_reset(tp, RESET_KIND_INIT); if (tg3_flag(tp, INIT_COMPLETE)) tg3_abort_hw(tp, 1); if ((tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN) && !(tp->phy_flags & TG3_PHYFLG_USER_CONFIGURED)) { tg3_phy_pull_config(tp); tg3_eee_pull_config(tp, NULL); tp->phy_flags |= TG3_PHYFLG_USER_CONFIGURED; } /* Enable MAC control of LPI */ if (tp->phy_flags & TG3_PHYFLG_EEE_CAP) tg3_setup_eee(tp); if (reset_phy) tg3_phy_reset(tp); err = tg3_chip_reset(tp); if (err) return err; tg3_write_sig_legacy(tp, RESET_KIND_INIT); if (tg3_chip_rev(tp) == CHIPREV_5784_AX) { val = tr32(TG3_CPMU_CTRL); val &= ~(CPMU_CTRL_LINK_AWARE_MODE | CPMU_CTRL_LINK_IDLE_MODE); tw32(TG3_CPMU_CTRL, val); val = tr32(TG3_CPMU_LSPD_10MB_CLK); val &= ~CPMU_LSPD_10MB_MACCLK_MASK; val |= CPMU_LSPD_10MB_MACCLK_6_25; tw32(TG3_CPMU_LSPD_10MB_CLK, val); val = tr32(TG3_CPMU_LNK_AWARE_PWRMD); val &= ~CPMU_LNK_AWARE_MACCLK_MASK; val |= CPMU_LNK_AWARE_MACCLK_6_25; tw32(TG3_CPMU_LNK_AWARE_PWRMD, val); val = tr32(TG3_CPMU_HST_ACC); val &= ~CPMU_HST_ACC_MACCLK_MASK; val |= CPMU_HST_ACC_MACCLK_6_25; tw32(TG3_CPMU_HST_ACC, val); } if (tg3_asic_rev(tp) == ASIC_REV_57780) { val = tr32(PCIE_PWR_MGMT_THRESH) & ~PCIE_PWR_MGMT_L1_THRESH_MSK; val |= PCIE_PWR_MGMT_EXT_ASPM_TMR_EN | PCIE_PWR_MGMT_L1_THRESH_4MS; tw32(PCIE_PWR_MGMT_THRESH, val); val = tr32(TG3_PCIE_EIDLE_DELAY) & ~TG3_PCIE_EIDLE_DELAY_MASK; tw32(TG3_PCIE_EIDLE_DELAY, val | TG3_PCIE_EIDLE_DELAY_13_CLKS); tw32(TG3_CORR_ERR_STAT, TG3_CORR_ERR_STAT_CLEAR); val = tr32(TG3_PCIE_LNKCTL) & ~TG3_PCIE_LNKCTL_L1_PLL_PD_EN; tw32(TG3_PCIE_LNKCTL, val | TG3_PCIE_LNKCTL_L1_PLL_PD_DIS); } if (tg3_flag(tp, L1PLLPD_EN)) { u32 grc_mode = tr32(GRC_MODE); /* Access the lower 1K of PL PCIE block registers. */ val = grc_mode & ~GRC_MODE_PCIE_PORT_MASK; tw32(GRC_MODE, val | GRC_MODE_PCIE_PL_SEL); val = tr32(TG3_PCIE_TLDLPL_PORT + TG3_PCIE_PL_LO_PHYCTL1); tw32(TG3_PCIE_TLDLPL_PORT + TG3_PCIE_PL_LO_PHYCTL1, val | TG3_PCIE_PL_LO_PHYCTL1_L1PLLPD_EN); tw32(GRC_MODE, grc_mode); } if (tg3_flag(tp, 57765_CLASS)) { if (tg3_chip_rev_id(tp) == CHIPREV_ID_57765_A0) { u32 grc_mode = tr32(GRC_MODE); /* Access the lower 1K of PL PCIE block registers. */ val = grc_mode & ~GRC_MODE_PCIE_PORT_MASK; tw32(GRC_MODE, val | GRC_MODE_PCIE_PL_SEL); val = tr32(TG3_PCIE_TLDLPL_PORT + TG3_PCIE_PL_LO_PHYCTL5); tw32(TG3_PCIE_TLDLPL_PORT + TG3_PCIE_PL_LO_PHYCTL5, val | TG3_PCIE_PL_LO_PHYCTL5_DIS_L2CLKREQ); tw32(GRC_MODE, grc_mode); } if (tg3_chip_rev(tp) != CHIPREV_57765_AX) { u32 grc_mode; /* Fix transmit hangs */ val = tr32(TG3_CPMU_PADRNG_CTL); val |= TG3_CPMU_PADRNG_CTL_RDIV2; tw32(TG3_CPMU_PADRNG_CTL, val); grc_mode = tr32(GRC_MODE); /* Access the lower 1K of DL PCIE block registers. */ val = grc_mode & ~GRC_MODE_PCIE_PORT_MASK; tw32(GRC_MODE, val | GRC_MODE_PCIE_DL_SEL); val = tr32(TG3_PCIE_TLDLPL_PORT + TG3_PCIE_DL_LO_FTSMAX); val &= ~TG3_PCIE_DL_LO_FTSMAX_MSK; tw32(TG3_PCIE_TLDLPL_PORT + TG3_PCIE_DL_LO_FTSMAX, val | TG3_PCIE_DL_LO_FTSMAX_VAL); tw32(GRC_MODE, grc_mode); } val = tr32(TG3_CPMU_LSPD_10MB_CLK); val &= ~CPMU_LSPD_10MB_MACCLK_MASK; val |= CPMU_LSPD_10MB_MACCLK_6_25; tw32(TG3_CPMU_LSPD_10MB_CLK, val); } /* This works around an issue with Athlon chipsets on * B3 tigon3 silicon. This bit has no effect on any * other revision. But do not set this on PCI Express * chips and don't even touch the clocks if the CPMU is present. */ if (!tg3_flag(tp, CPMU_PRESENT)) { if (!tg3_flag(tp, PCI_EXPRESS)) tp->pci_clock_ctrl |= CLOCK_CTRL_DELAY_PCI_GRANT; tw32_f(TG3PCI_CLOCK_CTRL, tp->pci_clock_ctrl); } if (tg3_chip_rev_id(tp) == CHIPREV_ID_5704_A0 && tg3_flag(tp, PCIX_MODE)) { val = tr32(TG3PCI_PCISTATE); val |= PCISTATE_RETRY_SAME_DMA; tw32(TG3PCI_PCISTATE, val); } if (tg3_flag(tp, ENABLE_APE)) { /* Allow reads and writes to the * APE register and memory space. */ val = tr32(TG3PCI_PCISTATE); val |= PCISTATE_ALLOW_APE_CTLSPC_WR | PCISTATE_ALLOW_APE_SHMEM_WR | PCISTATE_ALLOW_APE_PSPACE_WR; tw32(TG3PCI_PCISTATE, val); } if (tg3_chip_rev(tp) == CHIPREV_5704_BX) { /* Enable some hw fixes. */ val = tr32(TG3PCI_MSI_DATA); val |= (1 << 26) | (1 << 28) | (1 << 29); tw32(TG3PCI_MSI_DATA, val); } /* Descriptor ring init may make accesses to the * NIC SRAM area to setup the TX descriptors, so we * can only do this after the hardware has been * successfully reset. */ err = tg3_init_rings(tp); if (err) return err; if (tg3_flag(tp, 57765_PLUS)) { val = tr32(TG3PCI_DMA_RW_CTRL) & ~DMA_RWCTRL_DIS_CACHE_ALIGNMENT; if (tg3_chip_rev_id(tp) == CHIPREV_ID_57765_A0) val &= ~DMA_RWCTRL_CRDRDR_RDMA_MRRS_MSK; if (!tg3_flag(tp, 57765_CLASS) && tg3_asic_rev(tp) != ASIC_REV_5717 && tg3_asic_rev(tp) != ASIC_REV_5762) val |= DMA_RWCTRL_TAGGED_STAT_WA; tw32(TG3PCI_DMA_RW_CTRL, val | tp->dma_rwctrl); } else if (tg3_asic_rev(tp) != ASIC_REV_5784 && tg3_asic_rev(tp) != ASIC_REV_5761) { /* This value is determined during the probe time DMA * engine test, tg3_test_dma. */ tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl); } tp->grc_mode &= ~(GRC_MODE_HOST_SENDBDS | GRC_MODE_4X_NIC_SEND_RINGS | GRC_MODE_NO_TX_PHDR_CSUM | GRC_MODE_NO_RX_PHDR_CSUM); tp->grc_mode |= GRC_MODE_HOST_SENDBDS; /* Pseudo-header checksum is done by hardware logic and not * the offload processers, so make the chip do the pseudo- * header checksums on receive. For transmit it is more * convenient to do the pseudo-header checksum in software * as Linux does that on transmit for us in all cases. */ tp->grc_mode |= GRC_MODE_NO_TX_PHDR_CSUM; val = GRC_MODE_IRQ_ON_MAC_ATTN | GRC_MODE_HOST_STACKUP; if (tp->rxptpctl) tw32(TG3_RX_PTP_CTL, tp->rxptpctl | TG3_RX_PTP_CTL_HWTS_INTERLOCK); if (tg3_flag(tp, PTP_CAPABLE)) val |= GRC_MODE_TIME_SYNC_ENABLE; tw32(GRC_MODE, tp->grc_mode | val); /* Setup the timer prescalar register. Clock is always 66Mhz. */ val = tr32(GRC_MISC_CFG); val &= ~0xff; val |= (65 << GRC_MISC_CFG_PRESCALAR_SHIFT); tw32(GRC_MISC_CFG, val); /* Initialize MBUF/DESC pool. */ if (tg3_flag(tp, 5750_PLUS)) { /* Do nothing. */ } else if (tg3_asic_rev(tp) != ASIC_REV_5705) { tw32(BUFMGR_MB_POOL_ADDR, NIC_SRAM_MBUF_POOL_BASE); if (tg3_asic_rev(tp) == ASIC_REV_5704) tw32(BUFMGR_MB_POOL_SIZE, NIC_SRAM_MBUF_POOL_SIZE64); else tw32(BUFMGR_MB_POOL_SIZE, NIC_SRAM_MBUF_POOL_SIZE96); tw32(BUFMGR_DMA_DESC_POOL_ADDR, NIC_SRAM_DMA_DESC_POOL_BASE); tw32(BUFMGR_DMA_DESC_POOL_SIZE, NIC_SRAM_DMA_DESC_POOL_SIZE); } else if (tg3_flag(tp, TSO_CAPABLE)) { int fw_len; fw_len = tp->fw_len; fw_len = (fw_len + (0x80 - 1)) & ~(0x80 - 1); tw32(BUFMGR_MB_POOL_ADDR, NIC_SRAM_MBUF_POOL_BASE5705 + fw_len); tw32(BUFMGR_MB_POOL_SIZE, NIC_SRAM_MBUF_POOL_SIZE5705 - fw_len - 0xa00); } if (tp->dev->mtu <= ETH_DATA_LEN) { tw32(BUFMGR_MB_RDMA_LOW_WATER, tp->bufmgr_config.mbuf_read_dma_low_water); tw32(BUFMGR_MB_MACRX_LOW_WATER, tp->bufmgr_config.mbuf_mac_rx_low_water); tw32(BUFMGR_MB_HIGH_WATER, tp->bufmgr_config.mbuf_high_water); } else { tw32(BUFMGR_MB_RDMA_LOW_WATER, tp->bufmgr_config.mbuf_read_dma_low_water_jumbo); tw32(BUFMGR_MB_MACRX_LOW_WATER, tp->bufmgr_config.mbuf_mac_rx_low_water_jumbo); tw32(BUFMGR_MB_HIGH_WATER, tp->bufmgr_config.mbuf_high_water_jumbo); } tw32(BUFMGR_DMA_LOW_WATER, tp->bufmgr_config.dma_low_water); tw32(BUFMGR_DMA_HIGH_WATER, tp->bufmgr_config.dma_high_water); val = BUFMGR_MODE_ENABLE | BUFMGR_MODE_ATTN_ENABLE; if (tg3_asic_rev(tp) == ASIC_REV_5719) val |= BUFMGR_MODE_NO_TX_UNDERRUN; if (tg3_asic_rev(tp) == ASIC_REV_5717 || tg3_chip_rev_id(tp) == CHIPREV_ID_5719_A0 || tg3_chip_rev_id(tp) == CHIPREV_ID_5720_A0) val |= BUFMGR_MODE_MBLOW_ATTN_ENAB; tw32(BUFMGR_MODE, val); for (i = 0; i < 2000; i++) { if (tr32(BUFMGR_MODE) & BUFMGR_MODE_ENABLE) break; udelay(10); } if (i >= 2000) { netdev_err(tp->dev, "%s cannot enable BUFMGR\n", __func__); return -ENODEV; } if (tg3_chip_rev_id(tp) == CHIPREV_ID_5906_A1) tw32(ISO_PKT_TX, (tr32(ISO_PKT_TX) & ~0x3) | 0x2); tg3_setup_rxbd_thresholds(tp); /* Initialize TG3_BDINFO's at: * RCVDBDI_STD_BD: standard eth size rx ring * RCVDBDI_JUMBO_BD: jumbo frame rx ring * RCVDBDI_MINI_BD: small frame rx ring (??? does not work) * * like so: * TG3_BDINFO_HOST_ADDR: high/low parts of DMA address of ring * TG3_BDINFO_MAXLEN_FLAGS: (rx max buffer size << 16) | * ring attribute flags * TG3_BDINFO_NIC_ADDR: location of descriptors in nic SRAM * * Standard receive ring @ NIC_SRAM_RX_BUFFER_DESC, 512 entries. * Jumbo receive ring @ NIC_SRAM_RX_JUMBO_BUFFER_DESC, 256 entries. * * The size of each ring is fixed in the firmware, but the location is * configurable. */ tw32(RCVDBDI_STD_BD + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_HIGH, ((u64) tpr->rx_std_mapping >> 32)); tw32(RCVDBDI_STD_BD + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_LOW, ((u64) tpr->rx_std_mapping & 0xffffffff)); if (!tg3_flag(tp, 5717_PLUS)) tw32(RCVDBDI_STD_BD + TG3_BDINFO_NIC_ADDR, NIC_SRAM_RX_BUFFER_DESC); /* Disable the mini ring */ if (!tg3_flag(tp, 5705_PLUS)) tw32(RCVDBDI_MINI_BD + TG3_BDINFO_MAXLEN_FLAGS, BDINFO_FLAGS_DISABLED); /* Program the jumbo buffer descriptor ring control * blocks on those devices that have them. */ if (tg3_chip_rev_id(tp) == CHIPREV_ID_5719_A0 || (tg3_flag(tp, JUMBO_CAPABLE) && !tg3_flag(tp, 5780_CLASS))) { if (tg3_flag(tp, JUMBO_RING_ENABLE)) { tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_HIGH, ((u64) tpr->rx_jmb_mapping >> 32)); tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_LOW, ((u64) tpr->rx_jmb_mapping & 0xffffffff)); val = TG3_RX_JMB_RING_SIZE(tp) << BDINFO_FLAGS_MAXLEN_SHIFT; tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_MAXLEN_FLAGS, val | BDINFO_FLAGS_USE_EXT_RECV); if (!tg3_flag(tp, USE_JUMBO_BDFLAG) || tg3_flag(tp, 57765_CLASS) || tg3_asic_rev(tp) == ASIC_REV_5762) tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_NIC_ADDR, NIC_SRAM_RX_JUMBO_BUFFER_DESC); } else { tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_MAXLEN_FLAGS, BDINFO_FLAGS_DISABLED); } if (tg3_flag(tp, 57765_PLUS)) { val = TG3_RX_STD_RING_SIZE(tp); val <<= BDINFO_FLAGS_MAXLEN_SHIFT; val |= (TG3_RX_STD_DMA_SZ << 2); } else val = TG3_RX_STD_DMA_SZ << BDINFO_FLAGS_MAXLEN_SHIFT; } else val = TG3_RX_STD_MAX_SIZE_5700 << BDINFO_FLAGS_MAXLEN_SHIFT; tw32(RCVDBDI_STD_BD + TG3_BDINFO_MAXLEN_FLAGS, val); tpr->rx_std_prod_idx = tp->rx_pending; tw32_rx_mbox(TG3_RX_STD_PROD_IDX_REG, tpr->rx_std_prod_idx); tpr->rx_jmb_prod_idx = tg3_flag(tp, JUMBO_RING_ENABLE) ? tp->rx_jumbo_pending : 0; tw32_rx_mbox(TG3_RX_JMB_PROD_IDX_REG, tpr->rx_jmb_prod_idx); tg3_rings_reset(tp); /* Initialize MAC address and backoff seed. */ __tg3_set_mac_addr(tp, false); /* MTU + ethernet header + FCS + optional VLAN tag */ tw32(MAC_RX_MTU_SIZE, tp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); /* The slot time is changed by tg3_setup_phy if we * run at gigabit with half duplex. */ val = (2 << TX_LENGTHS_IPG_CRS_SHIFT) | (6 << TX_LENGTHS_IPG_SHIFT) | (32 << TX_LENGTHS_SLOT_TIME_SHIFT); if (tg3_asic_rev(tp) == ASIC_REV_5720 || tg3_asic_rev(tp) == ASIC_REV_5762) val |= tr32(MAC_TX_LENGTHS) & (TX_LENGTHS_JMB_FRM_LEN_MSK | TX_LENGTHS_CNT_DWN_VAL_MSK); tw32(MAC_TX_LENGTHS, val); /* Receive rules. */ tw32(MAC_RCV_RULE_CFG, RCV_RULE_CFG_DEFAULT_CLASS); tw32(RCVLPC_CONFIG, 0x0181); /* Calculate RDMAC_MODE setting early, we need it to determine * the RCVLPC_STATE_ENABLE mask. */ rdmac_mode = (RDMAC_MODE_ENABLE | RDMAC_MODE_TGTABORT_ENAB | RDMAC_MODE_MSTABORT_ENAB | RDMAC_MODE_PARITYERR_ENAB | RDMAC_MODE_ADDROFLOW_ENAB | RDMAC_MODE_FIFOOFLOW_ENAB | RDMAC_MODE_FIFOURUN_ENAB | RDMAC_MODE_FIFOOREAD_ENAB | RDMAC_MODE_LNGREAD_ENAB); if (tg3_asic_rev(tp) == ASIC_REV_5717) rdmac_mode |= RDMAC_MODE_MULT_DMA_RD_DIS; if (tg3_asic_rev(tp) == ASIC_REV_5784 || tg3_asic_rev(tp) == ASIC_REV_5785 || tg3_asic_rev(tp) == ASIC_REV_57780) rdmac_mode |= RDMAC_MODE_BD_SBD_CRPT_ENAB | RDMAC_MODE_MBUF_RBD_CRPT_ENAB | RDMAC_MODE_MBUF_SBD_CRPT_ENAB; if (tg3_asic_rev(tp) == ASIC_REV_5705 && tg3_chip_rev_id(tp) != CHIPREV_ID_5705_A0) { if (tg3_flag(tp, TSO_CAPABLE) && tg3_asic_rev(tp) == ASIC_REV_5705) { rdmac_mode |= RDMAC_MODE_FIFO_SIZE_128; } else if (!(tr32(TG3PCI_PCISTATE) & PCISTATE_BUS_SPEED_HIGH) && !tg3_flag(tp, IS_5788)) { rdmac_mode |= RDMAC_MODE_FIFO_LONG_BURST; } } if (tg3_flag(tp, PCI_EXPRESS)) rdmac_mode |= RDMAC_MODE_FIFO_LONG_BURST; if (tg3_asic_rev(tp) == ASIC_REV_57766) { tp->dma_limit = 0; if (tp->dev->mtu <= ETH_DATA_LEN) { rdmac_mode |= RDMAC_MODE_JMB_2K_MMRR; tp->dma_limit = TG3_TX_BD_DMA_MAX_2K; } } if (tg3_flag(tp, HW_TSO_1) || tg3_flag(tp, HW_TSO_2) || tg3_flag(tp, HW_TSO_3)) rdmac_mode |= RDMAC_MODE_IPV4_LSO_EN; if (tg3_flag(tp, 57765_PLUS) || tg3_asic_rev(tp) == ASIC_REV_5785 || tg3_asic_rev(tp) == ASIC_REV_57780) rdmac_mode |= RDMAC_MODE_IPV6_LSO_EN; if (tg3_asic_rev(tp) == ASIC_REV_5720 || tg3_asic_rev(tp) == ASIC_REV_5762) rdmac_mode |= tr32(RDMAC_MODE) & RDMAC_MODE_H2BNC_VLAN_DET; if (tg3_asic_rev(tp) == ASIC_REV_5761 || tg3_asic_rev(tp) == ASIC_REV_5784 || tg3_asic_rev(tp) == ASIC_REV_5785 || tg3_asic_rev(tp) == ASIC_REV_57780 || tg3_flag(tp, 57765_PLUS)) { u32 tgtreg; if (tg3_asic_rev(tp) == ASIC_REV_5762) tgtreg = TG3_RDMA_RSRVCTRL_REG2; else tgtreg = TG3_RDMA_RSRVCTRL_REG; val = tr32(tgtreg); if (tg3_chip_rev_id(tp) == CHIPREV_ID_5719_A0 || tg3_asic_rev(tp) == ASIC_REV_5762) { val &= ~(TG3_RDMA_RSRVCTRL_TXMRGN_MASK | TG3_RDMA_RSRVCTRL_FIFO_LWM_MASK | TG3_RDMA_RSRVCTRL_FIFO_HWM_MASK); val |= TG3_RDMA_RSRVCTRL_TXMRGN_320B | TG3_RDMA_RSRVCTRL_FIFO_LWM_1_5K | TG3_RDMA_RSRVCTRL_FIFO_HWM_1_5K; } tw32(tgtreg, val | TG3_RDMA_RSRVCTRL_FIFO_OFLW_FIX); } if (tg3_asic_rev(tp) == ASIC_REV_5719 || tg3_asic_rev(tp) == ASIC_REV_5720 || tg3_asic_rev(tp) == ASIC_REV_5762) { u32 tgtreg; if (tg3_asic_rev(tp) == ASIC_REV_5762) tgtreg = TG3_LSO_RD_DMA_CRPTEN_CTRL2; else tgtreg = TG3_LSO_RD_DMA_CRPTEN_CTRL; val = tr32(tgtreg); tw32(tgtreg, val | TG3_LSO_RD_DMA_CRPTEN_CTRL_BLEN_BD_4K | TG3_LSO_RD_DMA_CRPTEN_CTRL_BLEN_LSO_4K); } /* Receive/send statistics. */ if (tg3_flag(tp, 5750_PLUS)) { val = tr32(RCVLPC_STATS_ENABLE); val &= ~RCVLPC_STATSENAB_DACK_FIX; tw32(RCVLPC_STATS_ENABLE, val); } else if ((rdmac_mode & RDMAC_MODE_FIFO_SIZE_128) && tg3_flag(tp, TSO_CAPABLE)) { val = tr32(RCVLPC_STATS_ENABLE); val &= ~RCVLPC_STATSENAB_LNGBRST_RFIX; tw32(RCVLPC_STATS_ENABLE, val); } else { tw32(RCVLPC_STATS_ENABLE, 0xffffff); } tw32(RCVLPC_STATSCTRL, RCVLPC_STATSCTRL_ENABLE); tw32(SNDDATAI_STATSENAB, 0xffffff); tw32(SNDDATAI_STATSCTRL, (SNDDATAI_SCTRL_ENABLE | SNDDATAI_SCTRL_FASTUPD)); /* Setup host coalescing engine. */ tw32(HOSTCC_MODE, 0); for (i = 0; i < 2000; i++) { if (!(tr32(HOSTCC_MODE) & HOSTCC_MODE_ENABLE)) break; udelay(10); } __tg3_set_coalesce(tp, &tp->coal); if (!tg3_flag(tp, 5705_PLUS)) { /* Status/statistics block address. See tg3_timer, * the tg3_periodic_fetch_stats call there, and * tg3_get_stats to see how this works for 5705/5750 chips. */ tw32(HOSTCC_STATS_BLK_HOST_ADDR + TG3_64BIT_REG_HIGH, ((u64) tp->stats_mapping >> 32)); tw32(HOSTCC_STATS_BLK_HOST_ADDR + TG3_64BIT_REG_LOW, ((u64) tp->stats_mapping & 0xffffffff)); tw32(HOSTCC_STATS_BLK_NIC_ADDR, NIC_SRAM_STATS_BLK); tw32(HOSTCC_STATUS_BLK_NIC_ADDR, NIC_SRAM_STATUS_BLK); /* Clear statistics and status block memory areas */ for (i = NIC_SRAM_STATS_BLK; i < NIC_SRAM_STATUS_BLK + TG3_HW_STATUS_SIZE; i += sizeof(u32)) { tg3_write_mem(tp, i, 0); udelay(40); } } tw32(HOSTCC_MODE, HOSTCC_MODE_ENABLE | tp->coalesce_mode); tw32(RCVCC_MODE, RCVCC_MODE_ENABLE | RCVCC_MODE_ATTN_ENABLE); tw32(RCVLPC_MODE, RCVLPC_MODE_ENABLE); if (!tg3_flag(tp, 5705_PLUS)) tw32(RCVLSC_MODE, RCVLSC_MODE_ENABLE | RCVLSC_MODE_ATTN_ENABLE); if (tp->phy_flags & TG3_PHYFLG_MII_SERDES) { tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT; /* reset to prevent losing 1st rx packet intermittently */ tw32_f(MAC_RX_MODE, RX_MODE_RESET); udelay(10); } tp->mac_mode |= MAC_MODE_TXSTAT_ENABLE | MAC_MODE_RXSTAT_ENABLE | MAC_MODE_TDE_ENABLE | MAC_MODE_RDE_ENABLE | MAC_MODE_FHDE_ENABLE; if (tg3_flag(tp, ENABLE_APE)) tp->mac_mode |= MAC_MODE_APE_TX_EN | MAC_MODE_APE_RX_EN; if (!tg3_flag(tp, 5705_PLUS) && !(tp->phy_flags & TG3_PHYFLG_PHY_SERDES) && tg3_asic_rev(tp) != ASIC_REV_5700) tp->mac_mode |= MAC_MODE_LINK_POLARITY; tw32_f(MAC_MODE, tp->mac_mode | MAC_MODE_RXSTAT_CLEAR | MAC_MODE_TXSTAT_CLEAR); udelay(40); /* tp->grc_local_ctrl is partially set up during tg3_get_invariants(). * If TG3_FLAG_IS_NIC is zero, we should read the * register to preserve the GPIO settings for LOMs. The GPIOs, * whether used as inputs or outputs, are set by boot code after * reset. */ if (!tg3_flag(tp, IS_NIC)) { u32 gpio_mask; gpio_mask = GRC_LCLCTRL_GPIO_OE0 | GRC_LCLCTRL_GPIO_OE1 | GRC_LCLCTRL_GPIO_OE2 | GRC_LCLCTRL_GPIO_OUTPUT0 | GRC_LCLCTRL_GPIO_OUTPUT1 | GRC_LCLCTRL_GPIO_OUTPUT2; if (tg3_asic_rev(tp) == ASIC_REV_5752) gpio_mask |= GRC_LCLCTRL_GPIO_OE3 | GRC_LCLCTRL_GPIO_OUTPUT3; if (tg3_asic_rev(tp) == ASIC_REV_5755) gpio_mask |= GRC_LCLCTRL_GPIO_UART_SEL; tp->grc_local_ctrl &= ~gpio_mask; tp->grc_local_ctrl |= tr32(GRC_LOCAL_CTRL) & gpio_mask; /* GPIO1 must be driven high for eeprom write protect */ if (tg3_flag(tp, EEPROM_WRITE_PROT)) tp->grc_local_ctrl |= (GRC_LCLCTRL_GPIO_OE1 | GRC_LCLCTRL_GPIO_OUTPUT1); } tw32_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl); udelay(100); if (tg3_flag(tp, USING_MSIX)) { val = tr32(MSGINT_MODE); val |= MSGINT_MODE_ENABLE; if (tp->irq_cnt > 1) val |= MSGINT_MODE_MULTIVEC_EN; if (!tg3_flag(tp, 1SHOT_MSI)) val |= MSGINT_MODE_ONE_SHOT_DISABLE; tw32(MSGINT_MODE, val); } if (!tg3_flag(tp, 5705_PLUS)) { tw32_f(DMAC_MODE, DMAC_MODE_ENABLE); udelay(40); } val = (WDMAC_MODE_ENABLE | WDMAC_MODE_TGTABORT_ENAB | WDMAC_MODE_MSTABORT_ENAB | WDMAC_MODE_PARITYERR_ENAB | WDMAC_MODE_ADDROFLOW_ENAB | WDMAC_MODE_FIFOOFLOW_ENAB | WDMAC_MODE_FIFOURUN_ENAB | WDMAC_MODE_FIFOOREAD_ENAB | WDMAC_MODE_LNGREAD_ENAB); if (tg3_asic_rev(tp) == ASIC_REV_5705 && tg3_chip_rev_id(tp) != CHIPREV_ID_5705_A0) { if (tg3_flag(tp, TSO_CAPABLE) && (tg3_chip_rev_id(tp) == CHIPREV_ID_5705_A1 || tg3_chip_rev_id(tp) == CHIPREV_ID_5705_A2)) { /* nothing */ } else if (!(tr32(TG3PCI_PCISTATE) & PCISTATE_BUS_SPEED_HIGH) && !tg3_flag(tp, IS_5788)) { val |= WDMAC_MODE_RX_ACCEL; } } /* Enable host coalescing bug fix */ if (tg3_flag(tp, 5755_PLUS)) val |= WDMAC_MODE_STATUS_TAG_FIX; if (tg3_asic_rev(tp) == ASIC_REV_5785) val |= WDMAC_MODE_BURST_ALL_DATA; tw32_f(WDMAC_MODE, val); udelay(40); if (tg3_flag(tp, PCIX_MODE)) { u16 pcix_cmd; pci_read_config_word(tp->pdev, tp->pcix_cap + PCI_X_CMD, &pcix_cmd); if (tg3_asic_rev(tp) == ASIC_REV_5703) { pcix_cmd &= ~PCI_X_CMD_MAX_READ; pcix_cmd |= PCI_X_CMD_READ_2K; } else if (tg3_asic_rev(tp) == ASIC_REV_5704) { pcix_cmd &= ~(PCI_X_CMD_MAX_SPLIT | PCI_X_CMD_MAX_READ); pcix_cmd |= PCI_X_CMD_READ_2K; } pci_write_config_word(tp->pdev, tp->pcix_cap + PCI_X_CMD, pcix_cmd); } tw32_f(RDMAC_MODE, rdmac_mode); udelay(40); if (tg3_asic_rev(tp) == ASIC_REV_5719 || tg3_asic_rev(tp) == ASIC_REV_5720) { for (i = 0; i < TG3_NUM_RDMA_CHANNELS; i++) { if (tr32(TG3_RDMA_LENGTH + (i << 2)) > TG3_MAX_MTU(tp)) break; } if (i < TG3_NUM_RDMA_CHANNELS) { val = tr32(TG3_LSO_RD_DMA_CRPTEN_CTRL); val |= tg3_lso_rd_dma_workaround_bit(tp); tw32(TG3_LSO_RD_DMA_CRPTEN_CTRL, val); tg3_flag_set(tp, 5719_5720_RDMA_BUG); } } tw32(RCVDCC_MODE, RCVDCC_MODE_ENABLE | RCVDCC_MODE_ATTN_ENABLE); if (!tg3_flag(tp, 5705_PLUS)) tw32(MBFREE_MODE, MBFREE_MODE_ENABLE); if (tg3_asic_rev(tp) == ASIC_REV_5761) tw32(SNDDATAC_MODE, SNDDATAC_MODE_ENABLE | SNDDATAC_MODE_CDELAY); else tw32(SNDDATAC_MODE, SNDDATAC_MODE_ENABLE); tw32(SNDBDC_MODE, SNDBDC_MODE_ENABLE | SNDBDC_MODE_ATTN_ENABLE); tw32(RCVBDI_MODE, RCVBDI_MODE_ENABLE | RCVBDI_MODE_RCB_ATTN_ENAB); val = RCVDBDI_MODE_ENABLE | RCVDBDI_MODE_INV_RING_SZ; if (tg3_flag(tp, LRG_PROD_RING_CAP)) val |= RCVDBDI_MODE_LRG_RING_SZ; tw32(RCVDBDI_MODE, val); tw32(SNDDATAI_MODE, SNDDATAI_MODE_ENABLE); if (tg3_flag(tp, HW_TSO_1) || tg3_flag(tp, HW_TSO_2) || tg3_flag(tp, HW_TSO_3)) tw32(SNDDATAI_MODE, SNDDATAI_MODE_ENABLE | 0x8); val = SNDBDI_MODE_ENABLE | SNDBDI_MODE_ATTN_ENABLE; if (tg3_flag(tp, ENABLE_TSS)) val |= SNDBDI_MODE_MULTI_TXQ_EN; tw32(SNDBDI_MODE, val); tw32(SNDBDS_MODE, SNDBDS_MODE_ENABLE | SNDBDS_MODE_ATTN_ENABLE); if (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0) { err = tg3_load_5701_a0_firmware_fix(tp); if (err) return err; } if (tg3_asic_rev(tp) == ASIC_REV_57766) { /* Ignore any errors for the firmware download. If download * fails, the device will operate with EEE disabled */ tg3_load_57766_firmware(tp); } if (tg3_flag(tp, TSO_CAPABLE)) { err = tg3_load_tso_firmware(tp); if (err) return err; } tp->tx_mode = TX_MODE_ENABLE; if (tg3_flag(tp, 5755_PLUS) || tg3_asic_rev(tp) == ASIC_REV_5906) tp->tx_mode |= TX_MODE_MBUF_LOCKUP_FIX; if (tg3_asic_rev(tp) == ASIC_REV_5720 || tg3_asic_rev(tp) == ASIC_REV_5762) { val = TX_MODE_JMB_FRM_LEN | TX_MODE_CNT_DN_MODE; tp->tx_mode &= ~val; tp->tx_mode |= tr32(MAC_TX_MODE) & val; } tw32_f(MAC_TX_MODE, tp->tx_mode); udelay(100); if (tg3_flag(tp, ENABLE_RSS)) { tg3_rss_write_indir_tbl(tp); /* Setup the "secret" hash key. */ tw32(MAC_RSS_HASH_KEY_0, 0x5f865437); tw32(MAC_RSS_HASH_KEY_1, 0xe4ac62cc); tw32(MAC_RSS_HASH_KEY_2, 0x50103a45); tw32(MAC_RSS_HASH_KEY_3, 0x36621985); tw32(MAC_RSS_HASH_KEY_4, 0xbf14c0e8); tw32(MAC_RSS_HASH_KEY_5, 0x1bc27a1e); tw32(MAC_RSS_HASH_KEY_6, 0x84f4b556); tw32(MAC_RSS_HASH_KEY_7, 0x094ea6fe); tw32(MAC_RSS_HASH_KEY_8, 0x7dda01e7); tw32(MAC_RSS_HASH_KEY_9, 0xc04d7481); } tp->rx_mode = RX_MODE_ENABLE; if (tg3_flag(tp, 5755_PLUS)) tp->rx_mode |= RX_MODE_IPV6_CSUM_ENABLE; if (tg3_asic_rev(tp) == ASIC_REV_5762) tp->rx_mode |= RX_MODE_IPV4_FRAG_FIX; if (tg3_flag(tp, ENABLE_RSS)) tp->rx_mode |= RX_MODE_RSS_ENABLE | RX_MODE_RSS_ITBL_HASH_BITS_7 | RX_MODE_RSS_IPV6_HASH_EN | RX_MODE_RSS_TCP_IPV6_HASH_EN | RX_MODE_RSS_IPV4_HASH_EN | RX_MODE_RSS_TCP_IPV4_HASH_EN; tw32_f(MAC_RX_MODE, tp->rx_mode); udelay(10); tw32(MAC_LED_CTRL, tp->led_ctrl); tw32(MAC_MI_STAT, MAC_MI_STAT_LNKSTAT_ATTN_ENAB); if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) { tw32_f(MAC_RX_MODE, RX_MODE_RESET); udelay(10); } tw32_f(MAC_RX_MODE, tp->rx_mode); udelay(10); if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) { if ((tg3_asic_rev(tp) == ASIC_REV_5704) && !(tp->phy_flags & TG3_PHYFLG_SERDES_PREEMPHASIS)) { /* Set drive transmission level to 1.2V */ /* only if the signal pre-emphasis bit is not set */ val = tr32(MAC_SERDES_CFG); val &= 0xfffff000; val |= 0x880; tw32(MAC_SERDES_CFG, val); } if (tg3_chip_rev_id(tp) == CHIPREV_ID_5703_A1) tw32(MAC_SERDES_CFG, 0x616000); } /* Prevent chip from dropping frames when flow control * is enabled. */ if (tg3_flag(tp, 57765_CLASS)) val = 1; else val = 2; tw32_f(MAC_LOW_WMARK_MAX_RX_FRAME, val); if (tg3_asic_rev(tp) == ASIC_REV_5704 && (tp->phy_flags & TG3_PHYFLG_PHY_SERDES)) { /* Use hardware link auto-negotiation */ tg3_flag_set(tp, HW_AUTONEG); } if ((tp->phy_flags & TG3_PHYFLG_MII_SERDES) && tg3_asic_rev(tp) == ASIC_REV_5714) { u32 tmp; tmp = tr32(SERDES_RX_CTRL); tw32(SERDES_RX_CTRL, tmp | SERDES_RX_SIG_DETECT); tp->grc_local_ctrl &= ~GRC_LCLCTRL_USE_EXT_SIG_DETECT; tp->grc_local_ctrl |= GRC_LCLCTRL_USE_SIG_DETECT; tw32(GRC_LOCAL_CTRL, tp->grc_local_ctrl); } if (!tg3_flag(tp, USE_PHYLIB)) { if (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER) tp->phy_flags &= ~TG3_PHYFLG_IS_LOW_POWER; err = tg3_setup_phy(tp, false); if (err) return err; if (!(tp->phy_flags & TG3_PHYFLG_PHY_SERDES) && !(tp->phy_flags & TG3_PHYFLG_IS_FET)) { u32 tmp; /* Clear CRC stats. */ if (!tg3_readphy(tp, MII_TG3_TEST1, &tmp)) { tg3_writephy(tp, MII_TG3_TEST1, tmp | MII_TG3_TEST1_CRC_EN); tg3_readphy(tp, MII_TG3_RXR_COUNTERS, &tmp); } } } __tg3_set_rx_mode(tp->dev); /* Initialize receive rules. */ tw32(MAC_RCV_RULE_0, 0xc2000000 & RCV_RULE_DISABLE_MASK); tw32(MAC_RCV_VALUE_0, 0xffffffff & RCV_RULE_DISABLE_MASK); tw32(MAC_RCV_RULE_1, 0x86000004 & RCV_RULE_DISABLE_MASK); tw32(MAC_RCV_VALUE_1, 0xffffffff & RCV_RULE_DISABLE_MASK); if (tg3_flag(tp, 5705_PLUS) && !tg3_flag(tp, 5780_CLASS)) limit = 8; else limit = 16; if (tg3_flag(tp, ENABLE_ASF)) limit -= 4; switch (limit) { case 16: tw32(MAC_RCV_RULE_15, 0); tw32(MAC_RCV_VALUE_15, 0); case 15: tw32(MAC_RCV_RULE_14, 0); tw32(MAC_RCV_VALUE_14, 0); case 14: tw32(MAC_RCV_RULE_13, 0); tw32(MAC_RCV_VALUE_13, 0); case 13: tw32(MAC_RCV_RULE_12, 0); tw32(MAC_RCV_VALUE_12, 0); case 12: tw32(MAC_RCV_RULE_11, 0); tw32(MAC_RCV_VALUE_11, 0); case 11: tw32(MAC_RCV_RULE_10, 0); tw32(MAC_RCV_VALUE_10, 0); case 10: tw32(MAC_RCV_RULE_9, 0); tw32(MAC_RCV_VALUE_9, 0); case 9: tw32(MAC_RCV_RULE_8, 0); tw32(MAC_RCV_VALUE_8, 0); case 8: tw32(MAC_RCV_RULE_7, 0); tw32(MAC_RCV_VALUE_7, 0); case 7: tw32(MAC_RCV_RULE_6, 0); tw32(MAC_RCV_VALUE_6, 0); case 6: tw32(MAC_RCV_RULE_5, 0); tw32(MAC_RCV_VALUE_5, 0); case 5: tw32(MAC_RCV_RULE_4, 0); tw32(MAC_RCV_VALUE_4, 0); case 4: /* tw32(MAC_RCV_RULE_3, 0); tw32(MAC_RCV_VALUE_3, 0); */ case 3: /* tw32(MAC_RCV_RULE_2, 0); tw32(MAC_RCV_VALUE_2, 0); */ case 2: case 1: default: break; } if (tg3_flag(tp, ENABLE_APE)) /* Write our heartbeat update interval to APE. */ tg3_ape_write32(tp, TG3_APE_HOST_HEARTBEAT_INT_MS, APE_HOST_HEARTBEAT_INT_DISABLE); tg3_write_sig_post_reset(tp, RESET_KIND_INIT); return 0; } /* Called at device open time to get the chip ready for * packet processing. Invoked with tp->lock held. */ static int tg3_init_hw(struct tg3 *tp, bool reset_phy) { /* Chip may have been just powered on. If so, the boot code may still * be running initialization. Wait for it to finish to avoid races in * accessing the hardware. */ tg3_enable_register_access(tp); tg3_poll_fw(tp); tg3_switch_clocks(tp); tw32(TG3PCI_MEM_WIN_BASE_ADDR, 0); return tg3_reset_hw(tp, reset_phy); } static void tg3_sd_scan_scratchpad(struct tg3 *tp, struct tg3_ocir *ocir) { int i; for (i = 0; i < TG3_SD_NUM_RECS; i++, ocir++) { u32 off = i * TG3_OCIR_LEN, len = TG3_OCIR_LEN; tg3_ape_scratchpad_read(tp, (u32 *) ocir, off, len); off += len; if (ocir->signature != TG3_OCIR_SIG_MAGIC || !(ocir->version_flags & TG3_OCIR_FLAG_ACTIVE)) memset(ocir, 0, TG3_OCIR_LEN); } } /* sysfs attributes for hwmon */ static ssize_t tg3_show_temp(struct device *dev, struct device_attribute *devattr, char *buf) { struct pci_dev *pdev = to_pci_dev(dev); struct net_device *netdev = pci_get_drvdata(pdev); struct tg3 *tp = netdev_priv(netdev); struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); u32 temperature; spin_lock_bh(&tp->lock); tg3_ape_scratchpad_read(tp, &temperature, attr->index, sizeof(temperature)); spin_unlock_bh(&tp->lock); return sprintf(buf, "%u\n", temperature); } static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, tg3_show_temp, NULL, TG3_TEMP_SENSOR_OFFSET); static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, tg3_show_temp, NULL, TG3_TEMP_CAUTION_OFFSET); static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO, tg3_show_temp, NULL, TG3_TEMP_MAX_OFFSET); static struct attribute *tg3_attributes[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, NULL }; static const struct attribute_group tg3_group = { .attrs = tg3_attributes, }; static void tg3_hwmon_close(struct tg3 *tp) { if (tp->hwmon_dev) { hwmon_device_unregister(tp->hwmon_dev); tp->hwmon_dev = NULL; sysfs_remove_group(&tp->pdev->dev.kobj, &tg3_group); } } static void tg3_hwmon_open(struct tg3 *tp) { int i, err; u32 size = 0; struct pci_dev *pdev = tp->pdev; struct tg3_ocir ocirs[TG3_SD_NUM_RECS]; tg3_sd_scan_scratchpad(tp, ocirs); for (i = 0; i < TG3_SD_NUM_RECS; i++) { if (!ocirs[i].src_data_length) continue; size += ocirs[i].src_hdr_length; size += ocirs[i].src_data_length; } if (!size) return; /* Register hwmon sysfs hooks */ err = sysfs_create_group(&pdev->dev.kobj, &tg3_group); if (err) { dev_err(&pdev->dev, "Cannot create sysfs group, aborting\n"); return; } tp->hwmon_dev = hwmon_device_register(&pdev->dev); if (IS_ERR(tp->hwmon_dev)) { tp->hwmon_dev = NULL; dev_err(&pdev->dev, "Cannot register hwmon device, aborting\n"); sysfs_remove_group(&pdev->dev.kobj, &tg3_group); } } #define TG3_STAT_ADD32(PSTAT, REG) \ do { u32 __val = tr32(REG); \ (PSTAT)->low += __val; \ if ((PSTAT)->low < __val) \ (PSTAT)->high += 1; \ } while (0) static void tg3_periodic_fetch_stats(struct tg3 *tp) { struct tg3_hw_stats *sp = tp->hw_stats; if (!tp->link_up) return; TG3_STAT_ADD32(&sp->tx_octets, MAC_TX_STATS_OCTETS); TG3_STAT_ADD32(&sp->tx_collisions, MAC_TX_STATS_COLLISIONS); TG3_STAT_ADD32(&sp->tx_xon_sent, MAC_TX_STATS_XON_SENT); TG3_STAT_ADD32(&sp->tx_xoff_sent, MAC_TX_STATS_XOFF_SENT); TG3_STAT_ADD32(&sp->tx_mac_errors, MAC_TX_STATS_MAC_ERRORS); TG3_STAT_ADD32(&sp->tx_single_collisions, MAC_TX_STATS_SINGLE_COLLISIONS); TG3_STAT_ADD32(&sp->tx_mult_collisions, MAC_TX_STATS_MULT_COLLISIONS); TG3_STAT_ADD32(&sp->tx_deferred, MAC_TX_STATS_DEFERRED); TG3_STAT_ADD32(&sp->tx_excessive_collisions, MAC_TX_STATS_EXCESSIVE_COL); TG3_STAT_ADD32(&sp->tx_late_collisions, MAC_TX_STATS_LATE_COL); TG3_STAT_ADD32(&sp->tx_ucast_packets, MAC_TX_STATS_UCAST); TG3_STAT_ADD32(&sp->tx_mcast_packets, MAC_TX_STATS_MCAST); TG3_STAT_ADD32(&sp->tx_bcast_packets, MAC_TX_STATS_BCAST); if (unlikely(tg3_flag(tp, 5719_5720_RDMA_BUG) && (sp->tx_ucast_packets.low + sp->tx_mcast_packets.low + sp->tx_bcast_packets.low) > TG3_NUM_RDMA_CHANNELS)) { u32 val; val = tr32(TG3_LSO_RD_DMA_CRPTEN_CTRL); val &= ~tg3_lso_rd_dma_workaround_bit(tp); tw32(TG3_LSO_RD_DMA_CRPTEN_CTRL, val); tg3_flag_clear(tp, 5719_5720_RDMA_BUG); } TG3_STAT_ADD32(&sp->rx_octets, MAC_RX_STATS_OCTETS); TG3_STAT_ADD32(&sp->rx_fragments, MAC_RX_STATS_FRAGMENTS); TG3_STAT_ADD32(&sp->rx_ucast_packets, MAC_RX_STATS_UCAST); TG3_STAT_ADD32(&sp->rx_mcast_packets, MAC_RX_STATS_MCAST); TG3_STAT_ADD32(&sp->rx_bcast_packets, MAC_RX_STATS_BCAST); TG3_STAT_ADD32(&sp->rx_fcs_errors, MAC_RX_STATS_FCS_ERRORS); TG3_STAT_ADD32(&sp->rx_align_errors, MAC_RX_STATS_ALIGN_ERRORS); TG3_STAT_ADD32(&sp->rx_xon_pause_rcvd, MAC_RX_STATS_XON_PAUSE_RECVD); TG3_STAT_ADD32(&sp->rx_xoff_pause_rcvd, MAC_RX_STATS_XOFF_PAUSE_RECVD); TG3_STAT_ADD32(&sp->rx_mac_ctrl_rcvd, MAC_RX_STATS_MAC_CTRL_RECVD); TG3_STAT_ADD32(&sp->rx_xoff_entered, MAC_RX_STATS_XOFF_ENTERED); TG3_STAT_ADD32(&sp->rx_frame_too_long_errors, MAC_RX_STATS_FRAME_TOO_LONG); TG3_STAT_ADD32(&sp->rx_jabbers, MAC_RX_STATS_JABBERS); TG3_STAT_ADD32(&sp->rx_undersize_packets, MAC_RX_STATS_UNDERSIZE); TG3_STAT_ADD32(&sp->rxbds_empty, RCVLPC_NO_RCV_BD_CNT); if (tg3_asic_rev(tp) != ASIC_REV_5717 && tg3_chip_rev_id(tp) != CHIPREV_ID_5719_A0 && tg3_chip_rev_id(tp) != CHIPREV_ID_5720_A0) { TG3_STAT_ADD32(&sp->rx_discards, RCVLPC_IN_DISCARDS_CNT); } else { u32 val = tr32(HOSTCC_FLOW_ATTN); val = (val & HOSTCC_FLOW_ATTN_MBUF_LWM) ? 1 : 0; if (val) { tw32(HOSTCC_FLOW_ATTN, HOSTCC_FLOW_ATTN_MBUF_LWM); sp->rx_discards.low += val; if (sp->rx_discards.low < val) sp->rx_discards.high += 1; } sp->mbuf_lwm_thresh_hit = sp->rx_discards; } TG3_STAT_ADD32(&sp->rx_errors, RCVLPC_IN_ERRORS_CNT); } static void tg3_chk_missed_msi(struct tg3 *tp) { u32 i; for (i = 0; i < tp->irq_cnt; i++) { struct tg3_napi *tnapi = &tp->napi[i]; if (tg3_has_work(tnapi)) { if (tnapi->last_rx_cons == tnapi->rx_rcb_ptr && tnapi->last_tx_cons == tnapi->tx_cons) { if (tnapi->chk_msi_cnt < 1) { tnapi->chk_msi_cnt++; return; } tg3_msi(0, tnapi); } } tnapi->chk_msi_cnt = 0; tnapi->last_rx_cons = tnapi->rx_rcb_ptr; tnapi->last_tx_cons = tnapi->tx_cons; } } static void tg3_timer(unsigned long __opaque) { struct tg3 *tp = (struct tg3 *) __opaque; if (tp->irq_sync || tg3_flag(tp, RESET_TASK_PENDING)) goto restart_timer; spin_lock(&tp->lock); if (tg3_asic_rev(tp) == ASIC_REV_5717 || tg3_flag(tp, 57765_CLASS)) tg3_chk_missed_msi(tp); if (tg3_flag(tp, FLUSH_POSTED_WRITES)) { /* BCM4785: Flush posted writes from GbE to host memory. */ tr32(HOSTCC_MODE); } if (!tg3_flag(tp, TAGGED_STATUS)) { /* All of this garbage is because when using non-tagged * IRQ status the mailbox/status_block protocol the chip * uses with the cpu is race prone. */ if (tp->napi[0].hw_status->status & SD_STATUS_UPDATED) { tw32(GRC_LOCAL_CTRL, tp->grc_local_ctrl | GRC_LCLCTRL_SETINT); } else { tw32(HOSTCC_MODE, tp->coalesce_mode | HOSTCC_MODE_ENABLE | HOSTCC_MODE_NOW); } if (!(tr32(WDMAC_MODE) & WDMAC_MODE_ENABLE)) { spin_unlock(&tp->lock); tg3_reset_task_schedule(tp); goto restart_timer; } } /* This part only runs once per second. */ if (!--tp->timer_counter) { if (tg3_flag(tp, 5705_PLUS)) tg3_periodic_fetch_stats(tp); if (tp->setlpicnt && !--tp->setlpicnt) tg3_phy_eee_enable(tp); if (tg3_flag(tp, USE_LINKCHG_REG)) { u32 mac_stat; int phy_event; mac_stat = tr32(MAC_STATUS); phy_event = 0; if (tp->phy_flags & TG3_PHYFLG_USE_MI_INTERRUPT) { if (mac_stat & MAC_STATUS_MI_INTERRUPT) phy_event = 1; } else if (mac_stat & MAC_STATUS_LNKSTATE_CHANGED) phy_event = 1; if (phy_event) tg3_setup_phy(tp, false); } else if (tg3_flag(tp, POLL_SERDES)) { u32 mac_stat = tr32(MAC_STATUS); int need_setup = 0; if (tp->link_up && (mac_stat & MAC_STATUS_LNKSTATE_CHANGED)) { need_setup = 1; } if (!tp->link_up && (mac_stat & (MAC_STATUS_PCS_SYNCED | MAC_STATUS_SIGNAL_DET))) { need_setup = 1; } if (need_setup) { if (!tp->serdes_counter) { tw32_f(MAC_MODE, (tp->mac_mode & ~MAC_MODE_PORT_MODE_MASK)); udelay(40); tw32_f(MAC_MODE, tp->mac_mode); udelay(40); } tg3_setup_phy(tp, false); } } else if ((tp->phy_flags & TG3_PHYFLG_MII_SERDES) && tg3_flag(tp, 5780_CLASS)) { tg3_serdes_parallel_detect(tp); } tp->timer_counter = tp->timer_multiplier; } /* Heartbeat is only sent once every 2 seconds. * * The heartbeat is to tell the ASF firmware that the host * driver is still alive. In the event that the OS crashes, * ASF needs to reset the hardware to free up the FIFO space * that may be filled with rx packets destined for the host. * If the FIFO is full, ASF will no longer function properly. * * Unintended resets have been reported on real time kernels * where the timer doesn't run on time. Netpoll will also have * same problem. * * The new FWCMD_NICDRV_ALIVE3 command tells the ASF firmware * to check the ring condition when the heartbeat is expiring * before doing the reset. This will prevent most unintended * resets. */ if (!--tp->asf_counter) { if (tg3_flag(tp, ENABLE_ASF) && !tg3_flag(tp, ENABLE_APE)) { tg3_wait_for_event_ack(tp); tg3_write_mem(tp, NIC_SRAM_FW_CMD_MBOX, FWCMD_NICDRV_ALIVE3); tg3_write_mem(tp, NIC_SRAM_FW_CMD_LEN_MBOX, 4); tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX, TG3_FW_UPDATE_TIMEOUT_SEC); tg3_generate_fw_event(tp); } tp->asf_counter = tp->asf_multiplier; } spin_unlock(&tp->lock); restart_timer: tp->timer.expires = jiffies + tp->timer_offset; add_timer(&tp->timer); } static void tg3_timer_init(struct tg3 *tp) { if (tg3_flag(tp, TAGGED_STATUS) && tg3_asic_rev(tp) != ASIC_REV_5717 && !tg3_flag(tp, 57765_CLASS)) tp->timer_offset = HZ; else tp->timer_offset = HZ / 10; BUG_ON(tp->timer_offset > HZ); tp->timer_multiplier = (HZ / tp->timer_offset); tp->asf_multiplier = (HZ / tp->timer_offset) * TG3_FW_UPDATE_FREQ_SEC; init_timer(&tp->timer); tp->timer.data = (unsigned long) tp; tp->timer.function = tg3_timer; } static void tg3_timer_start(struct tg3 *tp) { tp->asf_counter = tp->asf_multiplier; tp->timer_counter = tp->timer_multiplier; tp->timer.expires = jiffies + tp->timer_offset; add_timer(&tp->timer); } static void tg3_timer_stop(struct tg3 *tp) { del_timer_sync(&tp->timer); } /* Restart hardware after configuration changes, self-test, etc. * Invoked with tp->lock held. */ static int tg3_restart_hw(struct tg3 *tp, bool reset_phy) __releases(tp->lock) __acquires(tp->lock) { int err; err = tg3_init_hw(tp, reset_phy); if (err) { netdev_err(tp->dev, "Failed to re-initialize device, aborting\n"); tg3_halt(tp, RESET_KIND_SHUTDOWN, 1); tg3_full_unlock(tp); tg3_timer_stop(tp); tp->irq_sync = 0; tg3_napi_enable(tp); dev_close(tp->dev); tg3_full_lock(tp, 0); } return err; } static void tg3_reset_task(struct work_struct *work) { struct tg3 *tp = container_of(work, struct tg3, reset_task); int err; tg3_full_lock(tp, 0); if (!netif_running(tp->dev)) { tg3_flag_clear(tp, RESET_TASK_PENDING); tg3_full_unlock(tp); return; } tg3_full_unlock(tp); tg3_phy_stop(tp); tg3_netif_stop(tp); tg3_full_lock(tp, 1); if (tg3_flag(tp, TX_RECOVERY_PENDING)) { tp->write32_tx_mbox = tg3_write32_tx_mbox; tp->write32_rx_mbox = tg3_write_flush_reg32; tg3_flag_set(tp, MBOX_WRITE_REORDER); tg3_flag_clear(tp, TX_RECOVERY_PENDING); } tg3_halt(tp, RESET_KIND_SHUTDOWN, 0); err = tg3_init_hw(tp, true); if (err) goto out; tg3_netif_start(tp); out: tg3_full_unlock(tp); if (!err) tg3_phy_start(tp); tg3_flag_clear(tp, RESET_TASK_PENDING); } static int tg3_request_irq(struct tg3 *tp, int irq_num) { irq_handler_t fn; unsigned long flags; char *name; struct tg3_napi *tnapi = &tp->napi[irq_num]; if (tp->irq_cnt == 1) name = tp->dev->name; else { name = &tnapi->irq_lbl[0]; snprintf(name, IFNAMSIZ, "%s-%d", tp->dev->name, irq_num); name[IFNAMSIZ-1] = 0; } if (tg3_flag(tp, USING_MSI) || tg3_flag(tp, USING_MSIX)) { fn = tg3_msi; if (tg3_flag(tp, 1SHOT_MSI)) fn = tg3_msi_1shot; flags = 0; } else { fn = tg3_interrupt; if (tg3_flag(tp, TAGGED_STATUS)) fn = tg3_interrupt_tagged; flags = IRQF_SHARED; } return request_irq(tnapi->irq_vec, fn, flags, name, tnapi); } static int tg3_test_interrupt(struct tg3 *tp) { struct tg3_napi *tnapi = &tp->napi[0]; struct net_device *dev = tp->dev; int err, i, intr_ok = 0; u32 val; if (!netif_running(dev)) return -ENODEV; tg3_disable_ints(tp); free_irq(tnapi->irq_vec, tnapi); /* * Turn off MSI one shot mode. Otherwise this test has no * observable way to know whether the interrupt was delivered. */ if (tg3_flag(tp, 57765_PLUS)) { val = tr32(MSGINT_MODE) | MSGINT_MODE_ONE_SHOT_DISABLE; tw32(MSGINT_MODE, val); } err = request_irq(tnapi->irq_vec, tg3_test_isr, IRQF_SHARED, dev->name, tnapi); if (err) return err; tnapi->hw_status->status &= ~SD_STATUS_UPDATED; tg3_enable_ints(tp); tw32_f(HOSTCC_MODE, tp->coalesce_mode | HOSTCC_MODE_ENABLE | tnapi->coal_now); for (i = 0; i < 5; i++) { u32 int_mbox, misc_host_ctrl; int_mbox = tr32_mailbox(tnapi->int_mbox); misc_host_ctrl = tr32(TG3PCI_MISC_HOST_CTRL); if ((int_mbox != 0) || (misc_host_ctrl & MISC_HOST_CTRL_MASK_PCI_INT)) { intr_ok = 1; break; } if (tg3_flag(tp, 57765_PLUS) && tnapi->hw_status->status_tag != tnapi->last_tag) tw32_mailbox_f(tnapi->int_mbox, tnapi->last_tag << 24); msleep(10); } tg3_disable_ints(tp); free_irq(tnapi->irq_vec, tnapi); err = tg3_request_irq(tp, 0); if (err) return err; if (intr_ok) { /* Reenable MSI one shot mode. */ if (tg3_flag(tp, 57765_PLUS) && tg3_flag(tp, 1SHOT_MSI)) { val = tr32(MSGINT_MODE) & ~MSGINT_MODE_ONE_SHOT_DISABLE; tw32(MSGINT_MODE, val); } return 0; } return -EIO; } /* Returns 0 if MSI test succeeds or MSI test fails and INTx mode is * successfully restored */ static int tg3_test_msi(struct tg3 *tp) { int err; u16 pci_cmd; if (!tg3_flag(tp, USING_MSI)) return 0; /* Turn off SERR reporting in case MSI terminates with Master * Abort. */ pci_read_config_word(tp->pdev, PCI_COMMAND, &pci_cmd); pci_write_config_word(tp->pdev, PCI_COMMAND, pci_cmd & ~PCI_COMMAND_SERR); err = tg3_test_interrupt(tp); pci_write_config_word(tp->pdev, PCI_COMMAND, pci_cmd); if (!err) return 0; /* other failures */ if (err != -EIO) return err; /* MSI test failed, go back to INTx mode */ netdev_warn(tp->dev, "No interrupt was generated using MSI. Switching " "to INTx mode. Please report this failure to the PCI " "maintainer and include system chipset information\n"); free_irq(tp->napi[0].irq_vec, &tp->napi[0]); pci_disable_msi(tp->pdev); tg3_flag_clear(tp, USING_MSI); tp->napi[0].irq_vec = tp->pdev->irq; err = tg3_request_irq(tp, 0); if (err) return err; /* Need to reset the chip because the MSI cycle may have terminated * with Master Abort. */ tg3_full_lock(tp, 1); tg3_halt(tp, RESET_KIND_SHUTDOWN, 1); err = tg3_init_hw(tp, true); tg3_full_unlock(tp); if (err) free_irq(tp->napi[0].irq_vec, &tp->napi[0]); return err; } static int tg3_request_firmware(struct tg3 *tp) { const struct tg3_firmware_hdr *fw_hdr; if (request_firmware(&tp->fw, tp->fw_needed, &tp->pdev->dev)) { netdev_err(tp->dev, "Failed to load firmware \"%s\"\n", tp->fw_needed); return -ENOENT; } fw_hdr = (struct tg3_firmware_hdr *)tp->fw->data; /* Firmware blob starts with version numbers, followed by * start address and _full_ length including BSS sections * (which must be longer than the actual data, of course */ tp->fw_len = be32_to_cpu(fw_hdr->len); /* includes bss */ if (tp->fw_len < (tp->fw->size - TG3_FW_HDR_LEN)) { netdev_err(tp->dev, "bogus length %d in \"%s\"\n", tp->fw_len, tp->fw_needed); release_firmware(tp->fw); tp->fw = NULL; return -EINVAL; } /* We no longer need firmware; we have it. */ tp->fw_needed = NULL; return 0; } static u32 tg3_irq_count(struct tg3 *tp) { u32 irq_cnt = max(tp->rxq_cnt, tp->txq_cnt); if (irq_cnt > 1) { /* We want as many rx rings enabled as there are cpus. * In multiqueue MSI-X mode, the first MSI-X vector * only deals with link interrupts, etc, so we add * one to the number of vectors we are requesting. */ irq_cnt = min_t(unsigned, irq_cnt + 1, tp->irq_max); } return irq_cnt; } static bool tg3_enable_msix(struct tg3 *tp) { int i, rc; struct msix_entry msix_ent[TG3_IRQ_MAX_VECS]; tp->txq_cnt = tp->txq_req; tp->rxq_cnt = tp->rxq_req; if (!tp->rxq_cnt) tp->rxq_cnt = netif_get_num_default_rss_queues(); if (tp->rxq_cnt > tp->rxq_max) tp->rxq_cnt = tp->rxq_max; /* Disable multiple TX rings by default. Simple round-robin hardware * scheduling of the TX rings can cause starvation of rings with * small packets when other rings have TSO or jumbo packets. */ if (!tp->txq_req) tp->txq_cnt = 1; tp->irq_cnt = tg3_irq_count(tp); for (i = 0; i < tp->irq_max; i++) { msix_ent[i].entry = i; msix_ent[i].vector = 0; } rc = pci_enable_msix(tp->pdev, msix_ent, tp->irq_cnt); if (rc < 0) { return false; } else if (rc != 0) { if (pci_enable_msix(tp->pdev, msix_ent, rc)) return false; netdev_notice(tp->dev, "Requested %d MSI-X vectors, received %d\n", tp->irq_cnt, rc); tp->irq_cnt = rc; tp->rxq_cnt = max(rc - 1, 1); if (tp->txq_cnt) tp->txq_cnt = min(tp->rxq_cnt, tp->txq_max); } for (i = 0; i < tp->irq_max; i++) tp->napi[i].irq_vec = msix_ent[i].vector; if (netif_set_real_num_rx_queues(tp->dev, tp->rxq_cnt)) { pci_disable_msix(tp->pdev); return false; } if (tp->irq_cnt == 1) return true; tg3_flag_set(tp, ENABLE_RSS); if (tp->txq_cnt > 1) tg3_flag_set(tp, ENABLE_TSS); netif_set_real_num_tx_queues(tp->dev, tp->txq_cnt); return true; } static void tg3_ints_init(struct tg3 *tp) { if ((tg3_flag(tp, SUPPORT_MSI) || tg3_flag(tp, SUPPORT_MSIX)) && !tg3_flag(tp, TAGGED_STATUS)) { /* All MSI supporting chips should support tagged * status. Assert that this is the case. */ netdev_warn(tp->dev, "MSI without TAGGED_STATUS? Not using MSI\n"); goto defcfg; } if (tg3_flag(tp, SUPPORT_MSIX) && tg3_enable_msix(tp)) tg3_flag_set(tp, USING_MSIX); else if (tg3_flag(tp, SUPPORT_MSI) && pci_enable_msi(tp->pdev) == 0) tg3_flag_set(tp, USING_MSI); if (tg3_flag(tp, USING_MSI) || tg3_flag(tp, USING_MSIX)) { u32 msi_mode = tr32(MSGINT_MODE); if (tg3_flag(tp, USING_MSIX) && tp->irq_cnt > 1) msi_mode |= MSGINT_MODE_MULTIVEC_EN; if (!tg3_flag(tp, 1SHOT_MSI)) msi_mode |= MSGINT_MODE_ONE_SHOT_DISABLE; tw32(MSGINT_MODE, msi_mode | MSGINT_MODE_ENABLE); } defcfg: if (!tg3_flag(tp, USING_MSIX)) { tp->irq_cnt = 1; tp->napi[0].irq_vec = tp->pdev->irq; } if (tp->irq_cnt == 1) { tp->txq_cnt = 1; tp->rxq_cnt = 1; netif_set_real_num_tx_queues(tp->dev, 1); netif_set_real_num_rx_queues(tp->dev, 1); } } static void tg3_ints_fini(struct tg3 *tp) { if (tg3_flag(tp, USING_MSIX)) pci_disable_msix(tp->pdev); else if (tg3_flag(tp, USING_MSI)) pci_disable_msi(tp->pdev); tg3_flag_clear(tp, USING_MSI); tg3_flag_clear(tp, USING_MSIX); tg3_flag_clear(tp, ENABLE_RSS); tg3_flag_clear(tp, ENABLE_TSS); } static int tg3_start(struct tg3 *tp, bool reset_phy, bool test_irq, bool init) { struct net_device *dev = tp->dev; int i, err; /* * Setup interrupts first so we know how * many NAPI resources to allocate */ tg3_ints_init(tp); tg3_rss_check_indir_tbl(tp); /* The placement of this call is tied * to the setup and use of Host TX descriptors. */ err = tg3_alloc_consistent(tp); if (err) goto out_ints_fini; tg3_napi_init(tp); tg3_napi_enable(tp); for (i = 0; i < tp->irq_cnt; i++) { struct tg3_napi *tnapi = &tp->napi[i]; err = tg3_request_irq(tp, i); if (err) { for (i--; i >= 0; i--) { tnapi = &tp->napi[i]; free_irq(tnapi->irq_vec, tnapi); } goto out_napi_fini; } } tg3_full_lock(tp, 0); if (init) tg3_ape_driver_state_change(tp, RESET_KIND_INIT); err = tg3_init_hw(tp, reset_phy); if (err) { tg3_halt(tp, RESET_KIND_SHUTDOWN, 1); tg3_free_rings(tp); } tg3_full_unlock(tp); if (err) goto out_free_irq; if (test_irq && tg3_flag(tp, USING_MSI)) { err = tg3_test_msi(tp); if (err) { tg3_full_lock(tp, 0); tg3_halt(tp, RESET_KIND_SHUTDOWN, 1); tg3_free_rings(tp); tg3_full_unlock(tp); goto out_napi_fini; } if (!tg3_flag(tp, 57765_PLUS) && tg3_flag(tp, USING_MSI)) { u32 val = tr32(PCIE_TRANSACTION_CFG); tw32(PCIE_TRANSACTION_CFG, val | PCIE_TRANS_CFG_1SHOT_MSI); } } tg3_phy_start(tp); tg3_hwmon_open(tp); tg3_full_lock(tp, 0); tg3_timer_start(tp); tg3_flag_set(tp, INIT_COMPLETE); tg3_enable_ints(tp); if (init) tg3_ptp_init(tp); else tg3_ptp_resume(tp); tg3_full_unlock(tp); netif_tx_start_all_queues(dev); /* * Reset loopback feature if it was turned on while the device was down * make sure that it's installed properly now. */ if (dev->features & NETIF_F_LOOPBACK) tg3_set_loopback(dev, dev->features); return 0; out_free_irq: for (i = tp->irq_cnt - 1; i >= 0; i--) { struct tg3_napi *tnapi = &tp->napi[i]; free_irq(tnapi->irq_vec, tnapi); } out_napi_fini: tg3_napi_disable(tp); tg3_napi_fini(tp); tg3_free_consistent(tp); out_ints_fini: tg3_ints_fini(tp); return err; } static void tg3_stop(struct tg3 *tp) { int i; tg3_reset_task_cancel(tp); tg3_netif_stop(tp); tg3_timer_stop(tp); tg3_hwmon_close(tp); tg3_phy_stop(tp); tg3_full_lock(tp, 1); tg3_disable_ints(tp); tg3_halt(tp, RESET_KIND_SHUTDOWN, 1); tg3_free_rings(tp); tg3_flag_clear(tp, INIT_COMPLETE); tg3_full_unlock(tp); for (i = tp->irq_cnt - 1; i >= 0; i--) { struct tg3_napi *tnapi = &tp->napi[i]; free_irq(tnapi->irq_vec, tnapi); } tg3_ints_fini(tp); tg3_napi_fini(tp); tg3_free_consistent(tp); } static int tg3_open(struct net_device *dev) { struct tg3 *tp = netdev_priv(dev); int err; if (tp->fw_needed) { err = tg3_request_firmware(tp); if (tg3_asic_rev(tp) == ASIC_REV_57766) { if (err) { netdev_warn(tp->dev, "EEE capability disabled\n"); tp->phy_flags &= ~TG3_PHYFLG_EEE_CAP; } else if (!(tp->phy_flags & TG3_PHYFLG_EEE_CAP)) { netdev_warn(tp->dev, "EEE capability restored\n"); tp->phy_flags |= TG3_PHYFLG_EEE_CAP; } } else if (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0) { if (err) return err; } else if (err) { netdev_warn(tp->dev, "TSO capability disabled\n"); tg3_flag_clear(tp, TSO_CAPABLE); } else if (!tg3_flag(tp, TSO_CAPABLE)) { netdev_notice(tp->dev, "TSO capability restored\n"); tg3_flag_set(tp, TSO_CAPABLE); } } tg3_carrier_off(tp); err = tg3_power_up(tp); if (err) return err; tg3_full_lock(tp, 0); tg3_disable_ints(tp); tg3_flag_clear(tp, INIT_COMPLETE); tg3_full_unlock(tp); err = tg3_start(tp, !(tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN), true, true); if (err) { tg3_frob_aux_power(tp, false); pci_set_power_state(tp->pdev, PCI_D3hot); } if (tg3_flag(tp, PTP_CAPABLE)) { tp->ptp_clock = ptp_clock_register(&tp->ptp_info, &tp->pdev->dev); if (IS_ERR(tp->ptp_clock)) tp->ptp_clock = NULL; } return err; } static int tg3_close(struct net_device *dev) { struct tg3 *tp = netdev_priv(dev); tg3_ptp_fini(tp); tg3_stop(tp); /* Clear stats across close / open calls */ memset(&tp->net_stats_prev, 0, sizeof(tp->net_stats_prev)); memset(&tp->estats_prev, 0, sizeof(tp->estats_prev)); tg3_power_down_prepare(tp); tg3_carrier_off(tp); return 0; } static inline u64 get_stat64(tg3_stat64_t *val) { return ((u64)val->high << 32) | ((u64)val->low); } static u64 tg3_calc_crc_errors(struct tg3 *tp) { struct tg3_hw_stats *hw_stats = tp->hw_stats; if (!(tp->phy_flags & TG3_PHYFLG_PHY_SERDES) && (tg3_asic_rev(tp) == ASIC_REV_5700 || tg3_asic_rev(tp) == ASIC_REV_5701)) { u32 val; if (!tg3_readphy(tp, MII_TG3_TEST1, &val)) { tg3_writephy(tp, MII_TG3_TEST1, val | MII_TG3_TEST1_CRC_EN); tg3_readphy(tp, MII_TG3_RXR_COUNTERS, &val); } else val = 0; tp->phy_crc_errors += val; return tp->phy_crc_errors; } return get_stat64(&hw_stats->rx_fcs_errors); } #define ESTAT_ADD(member) \ estats->member = old_estats->member + \ get_stat64(&hw_stats->member) static void tg3_get_estats(struct tg3 *tp, struct tg3_ethtool_stats *estats) { struct tg3_ethtool_stats *old_estats = &tp->estats_prev; struct tg3_hw_stats *hw_stats = tp->hw_stats; ESTAT_ADD(rx_octets); ESTAT_ADD(rx_fragments); ESTAT_ADD(rx_ucast_packets); ESTAT_ADD(rx_mcast_packets); ESTAT_ADD(rx_bcast_packets); ESTAT_ADD(rx_fcs_errors); ESTAT_ADD(rx_align_errors); ESTAT_ADD(rx_xon_pause_rcvd); ESTAT_ADD(rx_xoff_pause_rcvd); ESTAT_ADD(rx_mac_ctrl_rcvd); ESTAT_ADD(rx_xoff_entered); ESTAT_ADD(rx_frame_too_long_errors); ESTAT_ADD(rx_jabbers); ESTAT_ADD(rx_undersize_packets); ESTAT_ADD(rx_in_length_errors); ESTAT_ADD(rx_out_length_errors); ESTAT_ADD(rx_64_or_less_octet_packets); ESTAT_ADD(rx_65_to_127_octet_packets); ESTAT_ADD(rx_128_to_255_octet_packets); ESTAT_ADD(rx_256_to_511_octet_packets); ESTAT_ADD(rx_512_to_1023_octet_packets); ESTAT_ADD(rx_1024_to_1522_octet_packets); ESTAT_ADD(rx_1523_to_2047_octet_packets); ESTAT_ADD(rx_2048_to_4095_octet_packets); ESTAT_ADD(rx_4096_to_8191_octet_packets); ESTAT_ADD(rx_8192_to_9022_octet_packets); ESTAT_ADD(tx_octets); ESTAT_ADD(tx_collisions); ESTAT_ADD(tx_xon_sent); ESTAT_ADD(tx_xoff_sent); ESTAT_ADD(tx_flow_control); ESTAT_ADD(tx_mac_errors); ESTAT_ADD(tx_single_collisions); ESTAT_ADD(tx_mult_collisions); ESTAT_ADD(tx_deferred); ESTAT_ADD(tx_excessive_collisions); ESTAT_ADD(tx_late_collisions); ESTAT_ADD(tx_collide_2times); ESTAT_ADD(tx_collide_3times); ESTAT_ADD(tx_collide_4times); ESTAT_ADD(tx_collide_5times); ESTAT_ADD(tx_collide_6times); ESTAT_ADD(tx_collide_7times); ESTAT_ADD(tx_collide_8times); ESTAT_ADD(tx_collide_9times); ESTAT_ADD(tx_collide_10times); ESTAT_ADD(tx_collide_11times); ESTAT_ADD(tx_collide_12times); ESTAT_ADD(tx_collide_13times); ESTAT_ADD(tx_collide_14times); ESTAT_ADD(tx_collide_15times); ESTAT_ADD(tx_ucast_packets); ESTAT_ADD(tx_mcast_packets); ESTAT_ADD(tx_bcast_packets); ESTAT_ADD(tx_carrier_sense_errors); ESTAT_ADD(tx_discards); ESTAT_ADD(tx_errors); ESTAT_ADD(dma_writeq_full); ESTAT_ADD(dma_write_prioq_full); ESTAT_ADD(rxbds_empty); ESTAT_ADD(rx_discards); ESTAT_ADD(rx_errors); ESTAT_ADD(rx_threshold_hit); ESTAT_ADD(dma_readq_full); ESTAT_ADD(dma_read_prioq_full); ESTAT_ADD(tx_comp_queue_full); ESTAT_ADD(ring_set_send_prod_index); ESTAT_ADD(ring_status_update); ESTAT_ADD(nic_irqs); ESTAT_ADD(nic_avoided_irqs); ESTAT_ADD(nic_tx_threshold_hit); ESTAT_ADD(mbuf_lwm_thresh_hit); } static void tg3_get_nstats(struct tg3 *tp, struct rtnl_link_stats64 *stats) { struct rtnl_link_stats64 *old_stats = &tp->net_stats_prev; struct tg3_hw_stats *hw_stats = tp->hw_stats; stats->rx_packets = old_stats->rx_packets + get_stat64(&hw_stats->rx_ucast_packets) + get_stat64(&hw_stats->rx_mcast_packets) + get_stat64(&hw_stats->rx_bcast_packets); stats->tx_packets = old_stats->tx_packets + get_stat64(&hw_stats->tx_ucast_packets) + get_stat64(&hw_stats->tx_mcast_packets) + get_stat64(&hw_stats->tx_bcast_packets); stats->rx_bytes = old_stats->rx_bytes + get_stat64(&hw_stats->rx_octets); stats->tx_bytes = old_stats->tx_bytes + get_stat64(&hw_stats->tx_octets); stats->rx_errors = old_stats->rx_errors + get_stat64(&hw_stats->rx_errors); stats->tx_errors = old_stats->tx_errors + get_stat64(&hw_stats->tx_errors) + get_stat64(&hw_stats->tx_mac_errors) + get_stat64(&hw_stats->tx_carrier_sense_errors) + get_stat64(&hw_stats->tx_discards); stats->multicast = old_stats->multicast + get_stat64(&hw_stats->rx_mcast_packets); stats->collisions = old_stats->collisions + get_stat64(&hw_stats->tx_collisions); stats->rx_length_errors = old_stats->rx_length_errors + get_stat64(&hw_stats->rx_frame_too_long_errors) + get_stat64(&hw_stats->rx_undersize_packets); stats->rx_over_errors = old_stats->rx_over_errors + get_stat64(&hw_stats->rxbds_empty); stats->rx_frame_errors = old_stats->rx_frame_errors + get_stat64(&hw_stats->rx_align_errors); stats->tx_aborted_errors = old_stats->tx_aborted_errors + get_stat64(&hw_stats->tx_discards); stats->tx_carrier_errors = old_stats->tx_carrier_errors + get_stat64(&hw_stats->tx_carrier_sense_errors); stats->rx_crc_errors = old_stats->rx_crc_errors + tg3_calc_crc_errors(tp); stats->rx_missed_errors = old_stats->rx_missed_errors + get_stat64(&hw_stats->rx_discards); stats->rx_dropped = tp->rx_dropped; stats->tx_dropped = tp->tx_dropped; } static int tg3_get_regs_len(struct net_device *dev) { return TG3_REG_BLK_SIZE; } static void tg3_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p) { struct tg3 *tp = netdev_priv(dev); regs->version = 0; memset(_p, 0, TG3_REG_BLK_SIZE); if (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER) return; tg3_full_lock(tp, 0); tg3_dump_legacy_regs(tp, (u32 *)_p); tg3_full_unlock(tp); } static int tg3_get_eeprom_len(struct net_device *dev) { struct tg3 *tp = netdev_priv(dev); return tp->nvram_size; } static int tg3_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { struct tg3 *tp = netdev_priv(dev); int ret; u8 *pd; u32 i, offset, len, b_offset, b_count; __be32 val; if (tg3_flag(tp, NO_NVRAM)) return -EINVAL; offset = eeprom->offset; len = eeprom->len; eeprom->len = 0; eeprom->magic = TG3_EEPROM_MAGIC; if (offset & 3) { /* adjustments to start on required 4 byte boundary */ b_offset = offset & 3; b_count = 4 - b_offset; if (b_count > len) { /* i.e. offset=1 len=2 */ b_count = len; } ret = tg3_nvram_read_be32(tp, offset-b_offset, &val); if (ret) return ret; memcpy(data, ((char *)&val) + b_offset, b_count); len -= b_count; offset += b_count; eeprom->len += b_count; } /* read bytes up to the last 4 byte boundary */ pd = &data[eeprom->len]; for (i = 0; i < (len - (len & 3)); i += 4) { ret = tg3_nvram_read_be32(tp, offset + i, &val); if (ret) { eeprom->len += i; return ret; } memcpy(pd + i, &val, 4); } eeprom->len += i; if (len & 3) { /* read last bytes not ending on 4 byte boundary */ pd = &data[eeprom->len]; b_count = len & 3; b_offset = offset + len - b_count; ret = tg3_nvram_read_be32(tp, b_offset, &val); if (ret) return ret; memcpy(pd, &val, b_count); eeprom->len += b_count; } return 0; } static int tg3_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { struct tg3 *tp = netdev_priv(dev); int ret; u32 offset, len, b_offset, odd_len; u8 *buf; __be32 start, end; if (tg3_flag(tp, NO_NVRAM) || eeprom->magic != TG3_EEPROM_MAGIC) return -EINVAL; offset = eeprom->offset; len = eeprom->len; if ((b_offset = (offset & 3))) { /* adjustments to start on required 4 byte boundary */ ret = tg3_nvram_read_be32(tp, offset-b_offset, &start); if (ret) return ret; len += b_offset; offset &= ~3; if (len < 4) len = 4; } odd_len = 0; if (len & 3) { /* adjustments to end on required 4 byte boundary */ odd_len = 1; len = (len + 3) & ~3; ret = tg3_nvram_read_be32(tp, offset+len-4, &end); if (ret) return ret; } buf = data; if (b_offset || odd_len) { buf = kmalloc(len, GFP_KERNEL); if (!buf) return -ENOMEM; if (b_offset) memcpy(buf, &start, 4); if (odd_len) memcpy(buf+len-4, &end, 4); memcpy(buf + b_offset, data, eeprom->len); } ret = tg3_nvram_write_block(tp, offset, len, buf); if (buf != data) kfree(buf); return ret; } static int tg3_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct tg3 *tp = netdev_priv(dev); if (tg3_flag(tp, USE_PHYLIB)) { struct phy_device *phydev; if (!(tp->phy_flags & TG3_PHYFLG_IS_CONNECTED)) return -EAGAIN; phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]; return phy_ethtool_gset(phydev, cmd); } cmd->supported = (SUPPORTED_Autoneg); if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) cmd->supported |= (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full); if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES)) { cmd->supported |= (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_TP); cmd->port = PORT_TP; } else { cmd->supported |= SUPPORTED_FIBRE; cmd->port = PORT_FIBRE; } cmd->advertising = tp->link_config.advertising; if (tg3_flag(tp, PAUSE_AUTONEG)) { if (tp->link_config.flowctrl & FLOW_CTRL_RX) { if (tp->link_config.flowctrl & FLOW_CTRL_TX) { cmd->advertising |= ADVERTISED_Pause; } else { cmd->advertising |= ADVERTISED_Pause | ADVERTISED_Asym_Pause; } } else if (tp->link_config.flowctrl & FLOW_CTRL_TX) { cmd->advertising |= ADVERTISED_Asym_Pause; } } if (netif_running(dev) && tp->link_up) { ethtool_cmd_speed_set(cmd, tp->link_config.active_speed); cmd->duplex = tp->link_config.active_duplex; cmd->lp_advertising = tp->link_config.rmt_adv; if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES)) { if (tp->phy_flags & TG3_PHYFLG_MDIX_STATE) cmd->eth_tp_mdix = ETH_TP_MDI_X; else cmd->eth_tp_mdix = ETH_TP_MDI; } } else { ethtool_cmd_speed_set(cmd, SPEED_UNKNOWN); cmd->duplex = DUPLEX_UNKNOWN; cmd->eth_tp_mdix = ETH_TP_MDI_INVALID; } cmd->phy_address = tp->phy_addr; cmd->transceiver = XCVR_INTERNAL; cmd->autoneg = tp->link_config.autoneg; cmd->maxtxpkt = 0; cmd->maxrxpkt = 0; return 0; } static int tg3_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct tg3 *tp = netdev_priv(dev); u32 speed = ethtool_cmd_speed(cmd); if (tg3_flag(tp, USE_PHYLIB)) { struct phy_device *phydev; if (!(tp->phy_flags & TG3_PHYFLG_IS_CONNECTED)) return -EAGAIN; phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]; return phy_ethtool_sset(phydev, cmd); } if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE) return -EINVAL; if (cmd->autoneg == AUTONEG_DISABLE && cmd->duplex != DUPLEX_FULL && cmd->duplex != DUPLEX_HALF) return -EINVAL; if (cmd->autoneg == AUTONEG_ENABLE) { u32 mask = ADVERTISED_Autoneg | ADVERTISED_Pause | ADVERTISED_Asym_Pause; if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) mask |= ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full; if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES)) mask |= ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_TP; else mask |= ADVERTISED_FIBRE; if (cmd->advertising & ~mask) return -EINVAL; mask &= (ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full); cmd->advertising &= mask; } else { if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES) { if (speed != SPEED_1000) return -EINVAL; if (cmd->duplex != DUPLEX_FULL) return -EINVAL; } else { if (speed != SPEED_100 && speed != SPEED_10) return -EINVAL; } } tg3_full_lock(tp, 0); tp->link_config.autoneg = cmd->autoneg; if (cmd->autoneg == AUTONEG_ENABLE) { tp->link_config.advertising = (cmd->advertising | ADVERTISED_Autoneg); tp->link_config.speed = SPEED_UNKNOWN; tp->link_config.duplex = DUPLEX_UNKNOWN; } else { tp->link_config.advertising = 0; tp->link_config.speed = speed; tp->link_config.duplex = cmd->duplex; } tp->phy_flags |= TG3_PHYFLG_USER_CONFIGURED; tg3_warn_mgmt_link_flap(tp); if (netif_running(dev)) tg3_setup_phy(tp, true); tg3_full_unlock(tp); return 0; } static void tg3_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct tg3 *tp = netdev_priv(dev); strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); strlcpy(info->fw_version, tp->fw_ver, sizeof(info->fw_version)); strlcpy(info->bus_info, pci_name(tp->pdev), sizeof(info->bus_info)); } static void tg3_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct tg3 *tp = netdev_priv(dev); if (tg3_flag(tp, WOL_CAP) && device_can_wakeup(&tp->pdev->dev)) wol->supported = WAKE_MAGIC; else wol->supported = 0; wol->wolopts = 0; if (tg3_flag(tp, WOL_ENABLE) && device_can_wakeup(&tp->pdev->dev)) wol->wolopts = WAKE_MAGIC; memset(&wol->sopass, 0, sizeof(wol->sopass)); } static int tg3_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct tg3 *tp = netdev_priv(dev); struct device *dp = &tp->pdev->dev; if (wol->wolopts & ~WAKE_MAGIC) return -EINVAL; if ((wol->wolopts & WAKE_MAGIC) && !(tg3_flag(tp, WOL_CAP) && device_can_wakeup(dp))) return -EINVAL; device_set_wakeup_enable(dp, wol->wolopts & WAKE_MAGIC); spin_lock_bh(&tp->lock); if (device_may_wakeup(dp)) tg3_flag_set(tp, WOL_ENABLE); else tg3_flag_clear(tp, WOL_ENABLE); spin_unlock_bh(&tp->lock); return 0; } static u32 tg3_get_msglevel(struct net_device *dev) { struct tg3 *tp = netdev_priv(dev); return tp->msg_enable; } static void tg3_set_msglevel(struct net_device *dev, u32 value) { struct tg3 *tp = netdev_priv(dev); tp->msg_enable = value; } static int tg3_nway_reset(struct net_device *dev) { struct tg3 *tp = netdev_priv(dev); int r; if (!netif_running(dev)) return -EAGAIN; if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) return -EINVAL; tg3_warn_mgmt_link_flap(tp); if (tg3_flag(tp, USE_PHYLIB)) { if (!(tp->phy_flags & TG3_PHYFLG_IS_CONNECTED)) return -EAGAIN; r = phy_start_aneg(tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]); } else { u32 bmcr; spin_lock_bh(&tp->lock); r = -EINVAL; tg3_readphy(tp, MII_BMCR, &bmcr); if (!tg3_readphy(tp, MII_BMCR, &bmcr) && ((bmcr & BMCR_ANENABLE) || (tp->phy_flags & TG3_PHYFLG_PARALLEL_DETECT))) { tg3_writephy(tp, MII_BMCR, bmcr | BMCR_ANRESTART | BMCR_ANENABLE); r = 0; } spin_unlock_bh(&tp->lock); } return r; } static void tg3_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) { struct tg3 *tp = netdev_priv(dev); ering->rx_max_pending = tp->rx_std_ring_mask; if (tg3_flag(tp, JUMBO_RING_ENABLE)) ering->rx_jumbo_max_pending = tp->rx_jmb_ring_mask; else ering->rx_jumbo_max_pending = 0; ering->tx_max_pending = TG3_TX_RING_SIZE - 1; ering->rx_pending = tp->rx_pending; if (tg3_flag(tp, JUMBO_RING_ENABLE)) ering->rx_jumbo_pending = tp->rx_jumbo_pending; else ering->rx_jumbo_pending = 0; ering->tx_pending = tp->napi[0].tx_pending; } static int tg3_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) { struct tg3 *tp = netdev_priv(dev); int i, irq_sync = 0, err = 0; if ((ering->rx_pending > tp->rx_std_ring_mask) || (ering->rx_jumbo_pending > tp->rx_jmb_ring_mask) || (ering->tx_pending > TG3_TX_RING_SIZE - 1) || (ering->tx_pending <= MAX_SKB_FRAGS) || (tg3_flag(tp, TSO_BUG) && (ering->tx_pending <= (MAX_SKB_FRAGS * 3)))) return -EINVAL; if (netif_running(dev)) { tg3_phy_stop(tp); tg3_netif_stop(tp); irq_sync = 1; } tg3_full_lock(tp, irq_sync); tp->rx_pending = ering->rx_pending; if (tg3_flag(tp, MAX_RXPEND_64) && tp->rx_pending > 63) tp->rx_pending = 63; tp->rx_jumbo_pending = ering->rx_jumbo_pending; for (i = 0; i < tp->irq_max; i++) tp->napi[i].tx_pending = ering->tx_pending; if (netif_running(dev)) { tg3_halt(tp, RESET_KIND_SHUTDOWN, 1); err = tg3_restart_hw(tp, false); if (!err) tg3_netif_start(tp); } tg3_full_unlock(tp); if (irq_sync && !err) tg3_phy_start(tp); return err; } static void tg3_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) { struct tg3 *tp = netdev_priv(dev); epause->autoneg = !!tg3_flag(tp, PAUSE_AUTONEG); if (tp->link_config.flowctrl & FLOW_CTRL_RX) epause->rx_pause = 1; else epause->rx_pause = 0; if (tp->link_config.flowctrl & FLOW_CTRL_TX) epause->tx_pause = 1; else epause->tx_pause = 0; } static int tg3_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) { struct tg3 *tp = netdev_priv(dev); int err = 0; if (tp->link_config.autoneg == AUTONEG_ENABLE) tg3_warn_mgmt_link_flap(tp); if (tg3_flag(tp, USE_PHYLIB)) { u32 newadv; struct phy_device *phydev; phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]; if (!(phydev->supported & SUPPORTED_Pause) || (!(phydev->supported & SUPPORTED_Asym_Pause) && (epause->rx_pause != epause->tx_pause))) return -EINVAL; tp->link_config.flowctrl = 0; if (epause->rx_pause) { tp->link_config.flowctrl |= FLOW_CTRL_RX; if (epause->tx_pause) { tp->link_config.flowctrl |= FLOW_CTRL_TX; newadv = ADVERTISED_Pause; } else newadv = ADVERTISED_Pause | ADVERTISED_Asym_Pause; } else if (epause->tx_pause) { tp->link_config.flowctrl |= FLOW_CTRL_TX; newadv = ADVERTISED_Asym_Pause; } else newadv = 0; if (epause->autoneg) tg3_flag_set(tp, PAUSE_AUTONEG); else tg3_flag_clear(tp, PAUSE_AUTONEG); if (tp->phy_flags & TG3_PHYFLG_IS_CONNECTED) { u32 oldadv = phydev->advertising & (ADVERTISED_Pause | ADVERTISED_Asym_Pause); if (oldadv != newadv) { phydev->advertising &= ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause); phydev->advertising |= newadv; if (phydev->autoneg) { /* * Always renegotiate the link to * inform our link partner of our * flow control settings, even if the * flow control is forced. Let * tg3_adjust_link() do the final * flow control setup. */ return phy_start_aneg(phydev); } } if (!epause->autoneg) tg3_setup_flow_control(tp, 0, 0); } else { tp->link_config.advertising &= ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause); tp->link_config.advertising |= newadv; } } else { int irq_sync = 0; if (netif_running(dev)) { tg3_netif_stop(tp); irq_sync = 1; } tg3_full_lock(tp, irq_sync); if (epause->autoneg) tg3_flag_set(tp, PAUSE_AUTONEG); else tg3_flag_clear(tp, PAUSE_AUTONEG); if (epause->rx_pause) tp->link_config.flowctrl |= FLOW_CTRL_RX; else tp->link_config.flowctrl &= ~FLOW_CTRL_RX; if (epause->tx_pause) tp->link_config.flowctrl |= FLOW_CTRL_TX; else tp->link_config.flowctrl &= ~FLOW_CTRL_TX; if (netif_running(dev)) { tg3_halt(tp, RESET_KIND_SHUTDOWN, 1); err = tg3_restart_hw(tp, false); if (!err) tg3_netif_start(tp); } tg3_full_unlock(tp); } tp->phy_flags |= TG3_PHYFLG_USER_CONFIGURED; return err; } static int tg3_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_TEST: return TG3_NUM_TEST; case ETH_SS_STATS: return TG3_NUM_STATS; default: return -EOPNOTSUPP; } } static int tg3_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, u32 *rules __always_unused) { struct tg3 *tp = netdev_priv(dev); if (!tg3_flag(tp, SUPPORT_MSIX)) return -EOPNOTSUPP; switch (info->cmd) { case ETHTOOL_GRXRINGS: if (netif_running(tp->dev)) info->data = tp->rxq_cnt; else { info->data = num_online_cpus(); if (info->data > TG3_RSS_MAX_NUM_QS) info->data = TG3_RSS_MAX_NUM_QS; } /* The first interrupt vector only * handles link interrupts. */ info->data -= 1; return 0; default: return -EOPNOTSUPP; } } static u32 tg3_get_rxfh_indir_size(struct net_device *dev) { u32 size = 0; struct tg3 *tp = netdev_priv(dev); if (tg3_flag(tp, SUPPORT_MSIX)) size = TG3_RSS_INDIR_TBL_SIZE; return size; } static int tg3_get_rxfh_indir(struct net_device *dev, u32 *indir) { struct tg3 *tp = netdev_priv(dev); int i; for (i = 0; i < TG3_RSS_INDIR_TBL_SIZE; i++) indir[i] = tp->rss_ind_tbl[i]; return 0; } static int tg3_set_rxfh_indir(struct net_device *dev, const u32 *indir) { struct tg3 *tp = netdev_priv(dev); size_t i; for (i = 0; i < TG3_RSS_INDIR_TBL_SIZE; i++) tp->rss_ind_tbl[i] = indir[i]; if (!netif_running(dev) || !tg3_flag(tp, ENABLE_RSS)) return 0; /* It is legal to write the indirection * table while the device is running. */ tg3_full_lock(tp, 0); tg3_rss_write_indir_tbl(tp); tg3_full_unlock(tp); return 0; } static void tg3_get_channels(struct net_device *dev, struct ethtool_channels *channel) { struct tg3 *tp = netdev_priv(dev); u32 deflt_qs = netif_get_num_default_rss_queues(); channel->max_rx = tp->rxq_max; channel->max_tx = tp->txq_max; if (netif_running(dev)) { channel->rx_count = tp->rxq_cnt; channel->tx_count = tp->txq_cnt; } else { if (tp->rxq_req) channel->rx_count = tp->rxq_req; else channel->rx_count = min(deflt_qs, tp->rxq_max); if (tp->txq_req) channel->tx_count = tp->txq_req; else channel->tx_count = min(deflt_qs, tp->txq_max); } } static int tg3_set_channels(struct net_device *dev, struct ethtool_channels *channel) { struct tg3 *tp = netdev_priv(dev); if (!tg3_flag(tp, SUPPORT_MSIX)) return -EOPNOTSUPP; if (channel->rx_count > tp->rxq_max || channel->tx_count > tp->txq_max) return -EINVAL; tp->rxq_req = channel->rx_count; tp->txq_req = channel->tx_count; if (!netif_running(dev)) return 0; tg3_stop(tp); tg3_carrier_off(tp); tg3_start(tp, true, false, false); return 0; } static void tg3_get_strings(struct net_device *dev, u32 stringset, u8 *buf) { switch (stringset) { case ETH_SS_STATS: memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys)); break; case ETH_SS_TEST: memcpy(buf, ðtool_test_keys, sizeof(ethtool_test_keys)); break; default: WARN_ON(1); /* we need a WARN() */ break; } } static int tg3_set_phys_id(struct net_device *dev, enum ethtool_phys_id_state state) { struct tg3 *tp = netdev_priv(dev); if (!netif_running(tp->dev)) return -EAGAIN; switch (state) { case ETHTOOL_ID_ACTIVE: return 1; /* cycle on/off once per second */ case ETHTOOL_ID_ON: tw32(MAC_LED_CTRL, LED_CTRL_LNKLED_OVERRIDE | LED_CTRL_1000MBPS_ON | LED_CTRL_100MBPS_ON | LED_CTRL_10MBPS_ON | LED_CTRL_TRAFFIC_OVERRIDE | LED_CTRL_TRAFFIC_BLINK | LED_CTRL_TRAFFIC_LED); break; case ETHTOOL_ID_OFF: tw32(MAC_LED_CTRL, LED_CTRL_LNKLED_OVERRIDE | LED_CTRL_TRAFFIC_OVERRIDE); break; case ETHTOOL_ID_INACTIVE: tw32(MAC_LED_CTRL, tp->led_ctrl); break; } return 0; } static void tg3_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *tmp_stats) { struct tg3 *tp = netdev_priv(dev); if (tp->hw_stats) tg3_get_estats(tp, (struct tg3_ethtool_stats *)tmp_stats); else memset(tmp_stats, 0, sizeof(struct tg3_ethtool_stats)); } static __be32 *tg3_vpd_readblock(struct tg3 *tp, u32 *vpdlen) { int i; __be32 *buf; u32 offset = 0, len = 0; u32 magic, val; if (tg3_flag(tp, NO_NVRAM) || tg3_nvram_read(tp, 0, &magic)) return NULL; if (magic == TG3_EEPROM_MAGIC) { for (offset = TG3_NVM_DIR_START; offset < TG3_NVM_DIR_END; offset += TG3_NVM_DIRENT_SIZE) { if (tg3_nvram_read(tp, offset, &val)) return NULL; if ((val >> TG3_NVM_DIRTYPE_SHIFT) == TG3_NVM_DIRTYPE_EXTVPD) break; } if (offset != TG3_NVM_DIR_END) { len = (val & TG3_NVM_DIRTYPE_LENMSK) * 4; if (tg3_nvram_read(tp, offset + 4, &offset)) return NULL; offset = tg3_nvram_logical_addr(tp, offset); } } if (!offset || !len) { offset = TG3_NVM_VPD_OFF; len = TG3_NVM_VPD_LEN; } buf = kmalloc(len, GFP_KERNEL); if (buf == NULL) return NULL; if (magic == TG3_EEPROM_MAGIC) { for (i = 0; i < len; i += 4) { /* The data is in little-endian format in NVRAM. * Use the big-endian read routines to preserve * the byte order as it exists in NVRAM. */ if (tg3_nvram_read_be32(tp, offset + i, &buf[i/4])) goto error; } } else { u8 *ptr; ssize_t cnt; unsigned int pos = 0; ptr = (u8 *)&buf[0]; for (i = 0; pos < len && i < 3; i++, pos += cnt, ptr += cnt) { cnt = pci_read_vpd(tp->pdev, pos, len - pos, ptr); if (cnt == -ETIMEDOUT || cnt == -EINTR) cnt = 0; else if (cnt < 0) goto error; } if (pos != len) goto error; } *vpdlen = len; return buf; error: kfree(buf); return NULL; } #define NVRAM_TEST_SIZE 0x100 #define NVRAM_SELFBOOT_FORMAT1_0_SIZE 0x14 #define NVRAM_SELFBOOT_FORMAT1_2_SIZE 0x18 #define NVRAM_SELFBOOT_FORMAT1_3_SIZE 0x1c #define NVRAM_SELFBOOT_FORMAT1_4_SIZE 0x20 #define NVRAM_SELFBOOT_FORMAT1_5_SIZE 0x24 #define NVRAM_SELFBOOT_FORMAT1_6_SIZE 0x50 #define NVRAM_SELFBOOT_HW_SIZE 0x20 #define NVRAM_SELFBOOT_DATA_SIZE 0x1c static int tg3_test_nvram(struct tg3 *tp) { u32 csum, magic, len; __be32 *buf; int i, j, k, err = 0, size; if (tg3_flag(tp, NO_NVRAM)) return 0; if (tg3_nvram_read(tp, 0, &magic) != 0) return -EIO; if (magic == TG3_EEPROM_MAGIC) size = NVRAM_TEST_SIZE; else if ((magic & TG3_EEPROM_MAGIC_FW_MSK) == TG3_EEPROM_MAGIC_FW) { if ((magic & TG3_EEPROM_SB_FORMAT_MASK) == TG3_EEPROM_SB_FORMAT_1) { switch (magic & TG3_EEPROM_SB_REVISION_MASK) { case TG3_EEPROM_SB_REVISION_0: size = NVRAM_SELFBOOT_FORMAT1_0_SIZE; break; case TG3_EEPROM_SB_REVISION_2: size = NVRAM_SELFBOOT_FORMAT1_2_SIZE; break; case TG3_EEPROM_SB_REVISION_3: size = NVRAM_SELFBOOT_FORMAT1_3_SIZE; break; case TG3_EEPROM_SB_REVISION_4: size = NVRAM_SELFBOOT_FORMAT1_4_SIZE; break; case TG3_EEPROM_SB_REVISION_5: size = NVRAM_SELFBOOT_FORMAT1_5_SIZE; break; case TG3_EEPROM_SB_REVISION_6: size = NVRAM_SELFBOOT_FORMAT1_6_SIZE; break; default: return -EIO; } } else return 0; } else if ((magic & TG3_EEPROM_MAGIC_HW_MSK) == TG3_EEPROM_MAGIC_HW) size = NVRAM_SELFBOOT_HW_SIZE; else return -EIO; buf = kmalloc(size, GFP_KERNEL); if (buf == NULL) return -ENOMEM; err = -EIO; for (i = 0, j = 0; i < size; i += 4, j++) { err = tg3_nvram_read_be32(tp, i, &buf[j]); if (err) break; } if (i < size) goto out; /* Selfboot format */ magic = be32_to_cpu(buf[0]); if ((magic & TG3_EEPROM_MAGIC_FW_MSK) == TG3_EEPROM_MAGIC_FW) { u8 *buf8 = (u8 *) buf, csum8 = 0; if ((magic & TG3_EEPROM_SB_REVISION_MASK) == TG3_EEPROM_SB_REVISION_2) { /* For rev 2, the csum doesn't include the MBA. */ for (i = 0; i < TG3_EEPROM_SB_F1R2_MBA_OFF; i++) csum8 += buf8[i]; for (i = TG3_EEPROM_SB_F1R2_MBA_OFF + 4; i < size; i++) csum8 += buf8[i]; } else { for (i = 0; i < size; i++) csum8 += buf8[i]; } if (csum8 == 0) { err = 0; goto out; } err = -EIO; goto out; } if ((magic & TG3_EEPROM_MAGIC_HW_MSK) == TG3_EEPROM_MAGIC_HW) { u8 data[NVRAM_SELFBOOT_DATA_SIZE]; u8 parity[NVRAM_SELFBOOT_DATA_SIZE]; u8 *buf8 = (u8 *) buf; /* Separate the parity bits and the data bytes. */ for (i = 0, j = 0, k = 0; i < NVRAM_SELFBOOT_HW_SIZE; i++) { if ((i == 0) || (i == 8)) { int l; u8 msk; for (l = 0, msk = 0x80; l < 7; l++, msk >>= 1) parity[k++] = buf8[i] & msk; i++; } else if (i == 16) { int l; u8 msk; for (l = 0, msk = 0x20; l < 6; l++, msk >>= 1) parity[k++] = buf8[i] & msk; i++; for (l = 0, msk = 0x80; l < 8; l++, msk >>= 1) parity[k++] = buf8[i] & msk; i++; } data[j++] = buf8[i]; } err = -EIO; for (i = 0; i < NVRAM_SELFBOOT_DATA_SIZE; i++) { u8 hw8 = hweight8(data[i]); if ((hw8 & 0x1) && parity[i]) goto out; else if (!(hw8 & 0x1) && !parity[i]) goto out; } err = 0; goto out; } err = -EIO; /* Bootstrap checksum at offset 0x10 */ csum = calc_crc((unsigned char *) buf, 0x10); if (csum != le32_to_cpu(buf[0x10/4])) goto out; /* Manufacturing block starts at offset 0x74, checksum at 0xfc */ csum = calc_crc((unsigned char *) &buf[0x74/4], 0x88); if (csum != le32_to_cpu(buf[0xfc/4])) goto out; kfree(buf); buf = tg3_vpd_readblock(tp, &len); if (!buf) return -ENOMEM; i = pci_vpd_find_tag((u8 *)buf, 0, len, PCI_VPD_LRDT_RO_DATA); if (i > 0) { j = pci_vpd_lrdt_size(&((u8 *)buf)[i]); if (j < 0) goto out; if (i + PCI_VPD_LRDT_TAG_SIZE + j > len) goto out; i += PCI_VPD_LRDT_TAG_SIZE; j = pci_vpd_find_info_keyword((u8 *)buf, i, j, PCI_VPD_RO_KEYWORD_CHKSUM); if (j > 0) { u8 csum8 = 0; j += PCI_VPD_INFO_FLD_HDR_SIZE; for (i = 0; i <= j; i++) csum8 += ((u8 *)buf)[i]; if (csum8) goto out; } } err = 0; out: kfree(buf); return err; } #define TG3_SERDES_TIMEOUT_SEC 2 #define TG3_COPPER_TIMEOUT_SEC 6 static int tg3_test_link(struct tg3 *tp) { int i, max; if (!netif_running(tp->dev)) return -ENODEV; if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES) max = TG3_SERDES_TIMEOUT_SEC; else max = TG3_COPPER_TIMEOUT_SEC; for (i = 0; i < max; i++) { if (tp->link_up) return 0; if (msleep_interruptible(1000)) break; } return -EIO; } /* Only test the commonly used registers */ static int tg3_test_registers(struct tg3 *tp) { int i, is_5705, is_5750; u32 offset, read_mask, write_mask, val, save_val, read_val; static struct { u16 offset; u16 flags; #define TG3_FL_5705 0x1 #define TG3_FL_NOT_5705 0x2 #define TG3_FL_NOT_5788 0x4 #define TG3_FL_NOT_5750 0x8 u32 read_mask; u32 write_mask; } reg_tbl[] = { /* MAC Control Registers */ { MAC_MODE, TG3_FL_NOT_5705, 0x00000000, 0x00ef6f8c }, { MAC_MODE, TG3_FL_5705, 0x00000000, 0x01ef6b8c }, { MAC_STATUS, TG3_FL_NOT_5705, 0x03800107, 0x00000000 }, { MAC_STATUS, TG3_FL_5705, 0x03800100, 0x00000000 }, { MAC_ADDR_0_HIGH, 0x0000, 0x00000000, 0x0000ffff }, { MAC_ADDR_0_LOW, 0x0000, 0x00000000, 0xffffffff }, { MAC_RX_MTU_SIZE, 0x0000, 0x00000000, 0x0000ffff }, { MAC_TX_MODE, 0x0000, 0x00000000, 0x00000070 }, { MAC_TX_LENGTHS, 0x0000, 0x00000000, 0x00003fff }, { MAC_RX_MODE, TG3_FL_NOT_5705, 0x00000000, 0x000007fc }, { MAC_RX_MODE, TG3_FL_5705, 0x00000000, 0x000007dc }, { MAC_HASH_REG_0, 0x0000, 0x00000000, 0xffffffff }, { MAC_HASH_REG_1, 0x0000, 0x00000000, 0xffffffff }, { MAC_HASH_REG_2, 0x0000, 0x00000000, 0xffffffff }, { MAC_HASH_REG_3, 0x0000, 0x00000000, 0xffffffff }, /* Receive Data and Receive BD Initiator Control Registers. */ { RCVDBDI_JUMBO_BD+0, TG3_FL_NOT_5705, 0x00000000, 0xffffffff }, { RCVDBDI_JUMBO_BD+4, TG3_FL_NOT_5705, 0x00000000, 0xffffffff }, { RCVDBDI_JUMBO_BD+8, TG3_FL_NOT_5705, 0x00000000, 0x00000003 }, { RCVDBDI_JUMBO_BD+0xc, TG3_FL_NOT_5705, 0x00000000, 0xffffffff }, { RCVDBDI_STD_BD+0, 0x0000, 0x00000000, 0xffffffff }, { RCVDBDI_STD_BD+4, 0x0000, 0x00000000, 0xffffffff }, { RCVDBDI_STD_BD+8, 0x0000, 0x00000000, 0xffff0002 }, { RCVDBDI_STD_BD+0xc, 0x0000, 0x00000000, 0xffffffff }, /* Receive BD Initiator Control Registers. */ { RCVBDI_STD_THRESH, TG3_FL_NOT_5705, 0x00000000, 0xffffffff }, { RCVBDI_STD_THRESH, TG3_FL_5705, 0x00000000, 0x000003ff }, { RCVBDI_JUMBO_THRESH, TG3_FL_NOT_5705, 0x00000000, 0xffffffff }, /* Host Coalescing Control Registers. */ { HOSTCC_MODE, TG3_FL_NOT_5705, 0x00000000, 0x00000004 }, { HOSTCC_MODE, TG3_FL_5705, 0x00000000, 0x000000f6 }, { HOSTCC_RXCOL_TICKS, TG3_FL_NOT_5705, 0x00000000, 0xffffffff }, { HOSTCC_RXCOL_TICKS, TG3_FL_5705, 0x00000000, 0x000003ff }, { HOSTCC_TXCOL_TICKS, TG3_FL_NOT_5705, 0x00000000, 0xffffffff }, { HOSTCC_TXCOL_TICKS, TG3_FL_5705, 0x00000000, 0x000003ff }, { HOSTCC_RXMAX_FRAMES, TG3_FL_NOT_5705, 0x00000000, 0xffffffff }, { HOSTCC_RXMAX_FRAMES, TG3_FL_5705 | TG3_FL_NOT_5788, 0x00000000, 0x000000ff }, { HOSTCC_TXMAX_FRAMES, TG3_FL_NOT_5705, 0x00000000, 0xffffffff }, { HOSTCC_TXMAX_FRAMES, TG3_FL_5705 | TG3_FL_NOT_5788, 0x00000000, 0x000000ff }, { HOSTCC_RXCOAL_TICK_INT, TG3_FL_NOT_5705, 0x00000000, 0xffffffff }, { HOSTCC_TXCOAL_TICK_INT, TG3_FL_NOT_5705, 0x00000000, 0xffffffff }, { HOSTCC_RXCOAL_MAXF_INT, TG3_FL_NOT_5705, 0x00000000, 0xffffffff }, { HOSTCC_RXCOAL_MAXF_INT, TG3_FL_5705 | TG3_FL_NOT_5788, 0x00000000, 0x000000ff }, { HOSTCC_TXCOAL_MAXF_INT, TG3_FL_NOT_5705, 0x00000000, 0xffffffff }, { HOSTCC_TXCOAL_MAXF_INT, TG3_FL_5705 | TG3_FL_NOT_5788, 0x00000000, 0x000000ff }, { HOSTCC_STAT_COAL_TICKS, TG3_FL_NOT_5705, 0x00000000, 0xffffffff }, { HOSTCC_STATS_BLK_HOST_ADDR, TG3_FL_NOT_5705, 0x00000000, 0xffffffff }, { HOSTCC_STATS_BLK_HOST_ADDR+4, TG3_FL_NOT_5705, 0x00000000, 0xffffffff }, { HOSTCC_STATUS_BLK_HOST_ADDR, 0x0000, 0x00000000, 0xffffffff }, { HOSTCC_STATUS_BLK_HOST_ADDR+4, 0x0000, 0x00000000, 0xffffffff }, { HOSTCC_STATS_BLK_NIC_ADDR, 0x0000, 0xffffffff, 0x00000000 }, { HOSTCC_STATUS_BLK_NIC_ADDR, 0x0000, 0xffffffff, 0x00000000 }, /* Buffer Manager Control Registers. */ { BUFMGR_MB_POOL_ADDR, TG3_FL_NOT_5750, 0x00000000, 0x007fff80 }, { BUFMGR_MB_POOL_SIZE, TG3_FL_NOT_5750, 0x00000000, 0x007fffff }, { BUFMGR_MB_RDMA_LOW_WATER, 0x0000, 0x00000000, 0x0000003f }, { BUFMGR_MB_MACRX_LOW_WATER, 0x0000, 0x00000000, 0x000001ff }, { BUFMGR_MB_HIGH_WATER, 0x0000, 0x00000000, 0x000001ff }, { BUFMGR_DMA_DESC_POOL_ADDR, TG3_FL_NOT_5705, 0xffffffff, 0x00000000 }, { BUFMGR_DMA_DESC_POOL_SIZE, TG3_FL_NOT_5705, 0xffffffff, 0x00000000 }, /* Mailbox Registers */ { GRCMBOX_RCVSTD_PROD_IDX+4, 0x0000, 0x00000000, 0x000001ff }, { GRCMBOX_RCVJUMBO_PROD_IDX+4, TG3_FL_NOT_5705, 0x00000000, 0x000001ff }, { GRCMBOX_RCVRET_CON_IDX_0+4, 0x0000, 0x00000000, 0x000007ff }, { GRCMBOX_SNDHOST_PROD_IDX_0+4, 0x0000, 0x00000000, 0x000001ff }, { 0xffff, 0x0000, 0x00000000, 0x00000000 }, }; is_5705 = is_5750 = 0; if (tg3_flag(tp, 5705_PLUS)) { is_5705 = 1; if (tg3_flag(tp, 5750_PLUS)) is_5750 = 1; } for (i = 0; reg_tbl[i].offset != 0xffff; i++) { if (is_5705 && (reg_tbl[i].flags & TG3_FL_NOT_5705)) continue; if (!is_5705 && (reg_tbl[i].flags & TG3_FL_5705)) continue; if (tg3_flag(tp, IS_5788) && (reg_tbl[i].flags & TG3_FL_NOT_5788)) continue; if (is_5750 && (reg_tbl[i].flags & TG3_FL_NOT_5750)) continue; offset = (u32) reg_tbl[i].offset; read_mask = reg_tbl[i].read_mask; write_mask = reg_tbl[i].write_mask; /* Save the original register content */ save_val = tr32(offset); /* Determine the read-only value. */ read_val = save_val & read_mask; /* Write zero to the register, then make sure the read-only bits * are not changed and the read/write bits are all zeros. */ tw32(offset, 0); val = tr32(offset); /* Test the read-only and read/write bits. */ if (((val & read_mask) != read_val) || (val & write_mask)) goto out; /* Write ones to all the bits defined by RdMask and WrMask, then * make sure the read-only bits are not changed and the * read/write bits are all ones. */ tw32(offset, read_mask | write_mask); val = tr32(offset); /* Test the read-only bits. */ if ((val & read_mask) != read_val) goto out; /* Test the read/write bits. */ if ((val & write_mask) != write_mask) goto out; tw32(offset, save_val); } return 0; out: if (netif_msg_hw(tp)) netdev_err(tp->dev, "Register test failed at offset %x\n", offset); tw32(offset, save_val); return -EIO; } static int tg3_do_mem_test(struct tg3 *tp, u32 offset, u32 len) { static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0xaa55a55a }; int i; u32 j; for (i = 0; i < ARRAY_SIZE(test_pattern); i++) { for (j = 0; j < len; j += 4) { u32 val; tg3_write_mem(tp, offset + j, test_pattern[i]); tg3_read_mem(tp, offset + j, &val); if (val != test_pattern[i]) return -EIO; } } return 0; } static int tg3_test_memory(struct tg3 *tp) { static struct mem_entry { u32 offset; u32 len; } mem_tbl_570x[] = { { 0x00000000, 0x00b50}, { 0x00002000, 0x1c000}, { 0xffffffff, 0x00000} }, mem_tbl_5705[] = { { 0x00000100, 0x0000c}, { 0x00000200, 0x00008}, { 0x00004000, 0x00800}, { 0x00006000, 0x01000}, { 0x00008000, 0x02000}, { 0x00010000, 0x0e000}, { 0xffffffff, 0x00000} }, mem_tbl_5755[] = { { 0x00000200, 0x00008}, { 0x00004000, 0x00800}, { 0x00006000, 0x00800}, { 0x00008000, 0x02000}, { 0x00010000, 0x0c000}, { 0xffffffff, 0x00000} }, mem_tbl_5906[] = { { 0x00000200, 0x00008}, { 0x00004000, 0x00400}, { 0x00006000, 0x00400}, { 0x00008000, 0x01000}, { 0x00010000, 0x01000}, { 0xffffffff, 0x00000} }, mem_tbl_5717[] = { { 0x00000200, 0x00008}, { 0x00010000, 0x0a000}, { 0x00020000, 0x13c00}, { 0xffffffff, 0x00000} }, mem_tbl_57765[] = { { 0x00000200, 0x00008}, { 0x00004000, 0x00800}, { 0x00006000, 0x09800}, { 0x00010000, 0x0a000}, { 0xffffffff, 0x00000} }; struct mem_entry *mem_tbl; int err = 0; int i; if (tg3_flag(tp, 5717_PLUS)) mem_tbl = mem_tbl_5717; else if (tg3_flag(tp, 57765_CLASS) || tg3_asic_rev(tp) == ASIC_REV_5762) mem_tbl = mem_tbl_57765; else if (tg3_flag(tp, 5755_PLUS)) mem_tbl = mem_tbl_5755; else if (tg3_asic_rev(tp) == ASIC_REV_5906) mem_tbl = mem_tbl_5906; else if (tg3_flag(tp, 5705_PLUS)) mem_tbl = mem_tbl_5705; else mem_tbl = mem_tbl_570x; for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) { err = tg3_do_mem_test(tp, mem_tbl[i].offset, mem_tbl[i].len); if (err) break; } return err; } #define TG3_TSO_MSS 500 #define TG3_TSO_IP_HDR_LEN 20 #define TG3_TSO_TCP_HDR_LEN 20 #define TG3_TSO_TCP_OPT_LEN 12 static const u8 tg3_tso_header[] = { 0x08, 0x00, 0x45, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x40, 0x06, 0x00, 0x00, 0x0a, 0x00, 0x00, 0x01, 0x0a, 0x00, 0x00, 0x02, 0x0d, 0x00, 0xe0, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x80, 0x10, 0x10, 0x00, 0x14, 0x09, 0x00, 0x00, 0x01, 0x01, 0x08, 0x0a, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, }; static int tg3_run_loopback(struct tg3 *tp, u32 pktsz, bool tso_loopback) { u32 rx_start_idx, rx_idx, tx_idx, opaque_key; u32 base_flags = 0, mss = 0, desc_idx, coal_now, data_off, val; u32 budget; struct sk_buff *skb; u8 *tx_data, *rx_data; dma_addr_t map; int num_pkts, tx_len, rx_len, i, err; struct tg3_rx_buffer_desc *desc; struct tg3_napi *tnapi, *rnapi; struct tg3_rx_prodring_set *tpr = &tp->napi[0].prodring; tnapi = &tp->napi[0]; rnapi = &tp->napi[0]; if (tp->irq_cnt > 1) { if (tg3_flag(tp, ENABLE_RSS)) rnapi = &tp->napi[1]; if (tg3_flag(tp, ENABLE_TSS)) tnapi = &tp->napi[1]; } coal_now = tnapi->coal_now | rnapi->coal_now; err = -EIO; tx_len = pktsz; skb = netdev_alloc_skb(tp->dev, tx_len); if (!skb) return -ENOMEM; tx_data = skb_put(skb, tx_len); memcpy(tx_data, tp->dev->dev_addr, 6); memset(tx_data + 6, 0x0, 8); tw32(MAC_RX_MTU_SIZE, tx_len + ETH_FCS_LEN); if (tso_loopback) { struct iphdr *iph = (struct iphdr *)&tx_data[ETH_HLEN]; u32 hdr_len = TG3_TSO_IP_HDR_LEN + TG3_TSO_TCP_HDR_LEN + TG3_TSO_TCP_OPT_LEN; memcpy(tx_data + ETH_ALEN * 2, tg3_tso_header, sizeof(tg3_tso_header)); mss = TG3_TSO_MSS; val = tx_len - ETH_ALEN * 2 - sizeof(tg3_tso_header); num_pkts = DIV_ROUND_UP(val, TG3_TSO_MSS); /* Set the total length field in the IP header */ iph->tot_len = htons((u16)(mss + hdr_len)); base_flags = (TXD_FLAG_CPU_PRE_DMA | TXD_FLAG_CPU_POST_DMA); if (tg3_flag(tp, HW_TSO_1) || tg3_flag(tp, HW_TSO_2) || tg3_flag(tp, HW_TSO_3)) { struct tcphdr *th; val = ETH_HLEN + TG3_TSO_IP_HDR_LEN; th = (struct tcphdr *)&tx_data[val]; th->check = 0; } else base_flags |= TXD_FLAG_TCPUDP_CSUM; if (tg3_flag(tp, HW_TSO_3)) { mss |= (hdr_len & 0xc) << 12; if (hdr_len & 0x10) base_flags |= 0x00000010; base_flags |= (hdr_len & 0x3e0) << 5; } else if (tg3_flag(tp, HW_TSO_2)) mss |= hdr_len << 9; else if (tg3_flag(tp, HW_TSO_1) || tg3_asic_rev(tp) == ASIC_REV_5705) { mss |= (TG3_TSO_TCP_OPT_LEN << 9); } else { base_flags |= (TG3_TSO_TCP_OPT_LEN << 10); } data_off = ETH_ALEN * 2 + sizeof(tg3_tso_header); } else { num_pkts = 1; data_off = ETH_HLEN; if (tg3_flag(tp, USE_JUMBO_BDFLAG) && tx_len > VLAN_ETH_FRAME_LEN) base_flags |= TXD_FLAG_JMB_PKT; } for (i = data_off; i < tx_len; i++) tx_data[i] = (u8) (i & 0xff); map = pci_map_single(tp->pdev, skb->data, tx_len, PCI_DMA_TODEVICE); if (pci_dma_mapping_error(tp->pdev, map)) { dev_kfree_skb(skb); return -EIO; } val = tnapi->tx_prod; tnapi->tx_buffers[val].skb = skb; dma_unmap_addr_set(&tnapi->tx_buffers[val], mapping, map); tw32_f(HOSTCC_MODE, tp->coalesce_mode | HOSTCC_MODE_ENABLE | rnapi->coal_now); udelay(10); rx_start_idx = rnapi->hw_status->idx[0].rx_producer; budget = tg3_tx_avail(tnapi); if (tg3_tx_frag_set(tnapi, &val, &budget, map, tx_len, base_flags | TXD_FLAG_END, mss, 0)) { tnapi->tx_buffers[val].skb = NULL; dev_kfree_skb(skb); return -EIO; } tnapi->tx_prod++; /* Sync BD data before updating mailbox */ wmb(); tw32_tx_mbox(tnapi->prodmbox, tnapi->tx_prod); tr32_mailbox(tnapi->prodmbox); udelay(10); /* 350 usec to allow enough time on some 10/100 Mbps devices. */ for (i = 0; i < 35; i++) { tw32_f(HOSTCC_MODE, tp->coalesce_mode | HOSTCC_MODE_ENABLE | coal_now); udelay(10); tx_idx = tnapi->hw_status->idx[0].tx_consumer; rx_idx = rnapi->hw_status->idx[0].rx_producer; if ((tx_idx == tnapi->tx_prod) && (rx_idx == (rx_start_idx + num_pkts))) break; } tg3_tx_skb_unmap(tnapi, tnapi->tx_prod - 1, -1); dev_kfree_skb(skb); if (tx_idx != tnapi->tx_prod) goto out; if (rx_idx != rx_start_idx + num_pkts) goto out; val = data_off; while (rx_idx != rx_start_idx) { desc = &rnapi->rx_rcb[rx_start_idx++]; desc_idx = desc->opaque & RXD_OPAQUE_INDEX_MASK; opaque_key = desc->opaque & RXD_OPAQUE_RING_MASK; if ((desc->err_vlan & RXD_ERR_MASK) != 0 && (desc->err_vlan != RXD_ERR_ODD_NIBBLE_RCVD_MII)) goto out; rx_len = ((desc->idx_len & RXD_LEN_MASK) >> RXD_LEN_SHIFT) - ETH_FCS_LEN; if (!tso_loopback) { if (rx_len != tx_len) goto out; if (pktsz <= TG3_RX_STD_DMA_SZ - ETH_FCS_LEN) { if (opaque_key != RXD_OPAQUE_RING_STD) goto out; } else { if (opaque_key != RXD_OPAQUE_RING_JUMBO) goto out; } } else if ((desc->type_flags & RXD_FLAG_TCPUDP_CSUM) && (desc->ip_tcp_csum & RXD_TCPCSUM_MASK) >> RXD_TCPCSUM_SHIFT != 0xffff) { goto out; } if (opaque_key == RXD_OPAQUE_RING_STD) { rx_data = tpr->rx_std_buffers[desc_idx].data; map = dma_unmap_addr(&tpr->rx_std_buffers[desc_idx], mapping); } else if (opaque_key == RXD_OPAQUE_RING_JUMBO) { rx_data = tpr->rx_jmb_buffers[desc_idx].data; map = dma_unmap_addr(&tpr->rx_jmb_buffers[desc_idx], mapping); } else goto out; pci_dma_sync_single_for_cpu(tp->pdev, map, rx_len, PCI_DMA_FROMDEVICE); rx_data += TG3_RX_OFFSET(tp); for (i = data_off; i < rx_len; i++, val++) { if (*(rx_data + i) != (u8) (val & 0xff)) goto out; } } err = 0; /* tg3_free_rings will unmap and free the rx_data */ out: return err; } #define TG3_STD_LOOPBACK_FAILED 1 #define TG3_JMB_LOOPBACK_FAILED 2 #define TG3_TSO_LOOPBACK_FAILED 4 #define TG3_LOOPBACK_FAILED \ (TG3_STD_LOOPBACK_FAILED | \ TG3_JMB_LOOPBACK_FAILED | \ TG3_TSO_LOOPBACK_FAILED) static int tg3_test_loopback(struct tg3 *tp, u64 *data, bool do_extlpbk) { int err = -EIO; u32 eee_cap; u32 jmb_pkt_sz = 9000; if (tp->dma_limit) jmb_pkt_sz = tp->dma_limit - ETH_HLEN; eee_cap = tp->phy_flags & TG3_PHYFLG_EEE_CAP; tp->phy_flags &= ~TG3_PHYFLG_EEE_CAP; if (!netif_running(tp->dev)) { data[TG3_MAC_LOOPB_TEST] = TG3_LOOPBACK_FAILED; data[TG3_PHY_LOOPB_TEST] = TG3_LOOPBACK_FAILED; if (do_extlpbk) data[TG3_EXT_LOOPB_TEST] = TG3_LOOPBACK_FAILED; goto done; } err = tg3_reset_hw(tp, true); if (err) { data[TG3_MAC_LOOPB_TEST] = TG3_LOOPBACK_FAILED; data[TG3_PHY_LOOPB_TEST] = TG3_LOOPBACK_FAILED; if (do_extlpbk) data[TG3_EXT_LOOPB_TEST] = TG3_LOOPBACK_FAILED; goto done; } if (tg3_flag(tp, ENABLE_RSS)) { int i; /* Reroute all rx packets to the 1st queue */ for (i = MAC_RSS_INDIR_TBL_0; i < MAC_RSS_INDIR_TBL_0 + TG3_RSS_INDIR_TBL_SIZE; i += 4) tw32(i, 0x0); } /* HW errata - mac loopback fails in some cases on 5780. * Normal traffic and PHY loopback are not affected by * errata. Also, the MAC loopback test is deprecated for * all newer ASIC revisions. */ if (tg3_asic_rev(tp) != ASIC_REV_5780 && !tg3_flag(tp, CPMU_PRESENT)) { tg3_mac_loopback(tp, true); if (tg3_run_loopback(tp, ETH_FRAME_LEN, false)) data[TG3_MAC_LOOPB_TEST] |= TG3_STD_LOOPBACK_FAILED; if (tg3_flag(tp, JUMBO_RING_ENABLE) && tg3_run_loopback(tp, jmb_pkt_sz + ETH_HLEN, false)) data[TG3_MAC_LOOPB_TEST] |= TG3_JMB_LOOPBACK_FAILED; tg3_mac_loopback(tp, false); } if (!(tp->phy_flags & TG3_PHYFLG_PHY_SERDES) && !tg3_flag(tp, USE_PHYLIB)) { int i; tg3_phy_lpbk_set(tp, 0, false); /* Wait for link */ for (i = 0; i < 100; i++) { if (tr32(MAC_TX_STATUS) & TX_STATUS_LINK_UP) break; mdelay(1); } if (tg3_run_loopback(tp, ETH_FRAME_LEN, false)) data[TG3_PHY_LOOPB_TEST] |= TG3_STD_LOOPBACK_FAILED; if (tg3_flag(tp, TSO_CAPABLE) && tg3_run_loopback(tp, ETH_FRAME_LEN, true)) data[TG3_PHY_LOOPB_TEST] |= TG3_TSO_LOOPBACK_FAILED; if (tg3_flag(tp, JUMBO_RING_ENABLE) && tg3_run_loopback(tp, jmb_pkt_sz + ETH_HLEN, false)) data[TG3_PHY_LOOPB_TEST] |= TG3_JMB_LOOPBACK_FAILED; if (do_extlpbk) { tg3_phy_lpbk_set(tp, 0, true); /* All link indications report up, but the hardware * isn't really ready for about 20 msec. Double it * to be sure. */ mdelay(40); if (tg3_run_loopback(tp, ETH_FRAME_LEN, false)) data[TG3_EXT_LOOPB_TEST] |= TG3_STD_LOOPBACK_FAILED; if (tg3_flag(tp, TSO_CAPABLE) && tg3_run_loopback(tp, ETH_FRAME_LEN, true)) data[TG3_EXT_LOOPB_TEST] |= TG3_TSO_LOOPBACK_FAILED; if (tg3_flag(tp, JUMBO_RING_ENABLE) && tg3_run_loopback(tp, jmb_pkt_sz + ETH_HLEN, false)) data[TG3_EXT_LOOPB_TEST] |= TG3_JMB_LOOPBACK_FAILED; } /* Re-enable gphy autopowerdown. */ if (tp->phy_flags & TG3_PHYFLG_ENABLE_APD) tg3_phy_toggle_apd(tp, true); } err = (data[TG3_MAC_LOOPB_TEST] | data[TG3_PHY_LOOPB_TEST] | data[TG3_EXT_LOOPB_TEST]) ? -EIO : 0; done: tp->phy_flags |= eee_cap; return err; } static void tg3_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *data) { struct tg3 *tp = netdev_priv(dev); bool doextlpbk = etest->flags & ETH_TEST_FL_EXTERNAL_LB; if (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER) { if (tg3_power_up(tp)) { etest->flags |= ETH_TEST_FL_FAILED; memset(data, 1, sizeof(u64) * TG3_NUM_TEST); return; } tg3_ape_driver_state_change(tp, RESET_KIND_INIT); } memset(data, 0, sizeof(u64) * TG3_NUM_TEST); if (tg3_test_nvram(tp) != 0) { etest->flags |= ETH_TEST_FL_FAILED; data[TG3_NVRAM_TEST] = 1; } if (!doextlpbk && tg3_test_link(tp)) { etest->flags |= ETH_TEST_FL_FAILED; data[TG3_LINK_TEST] = 1; } if (etest->flags & ETH_TEST_FL_OFFLINE) { int err, err2 = 0, irq_sync = 0; if (netif_running(dev)) { tg3_phy_stop(tp); tg3_netif_stop(tp); irq_sync = 1; } tg3_full_lock(tp, irq_sync); tg3_halt(tp, RESET_KIND_SUSPEND, 1); err = tg3_nvram_lock(tp); tg3_halt_cpu(tp, RX_CPU_BASE); if (!tg3_flag(tp, 5705_PLUS)) tg3_halt_cpu(tp, TX_CPU_BASE); if (!err) tg3_nvram_unlock(tp); if (tp->phy_flags & TG3_PHYFLG_MII_SERDES) tg3_phy_reset(tp); if (tg3_test_registers(tp) != 0) { etest->flags |= ETH_TEST_FL_FAILED; data[TG3_REGISTER_TEST] = 1; } if (tg3_test_memory(tp) != 0) { etest->flags |= ETH_TEST_FL_FAILED; data[TG3_MEMORY_TEST] = 1; } if (doextlpbk) etest->flags |= ETH_TEST_FL_EXTERNAL_LB_DONE; if (tg3_test_loopback(tp, data, doextlpbk)) etest->flags |= ETH_TEST_FL_FAILED; tg3_full_unlock(tp); if (tg3_test_interrupt(tp) != 0) { etest->flags |= ETH_TEST_FL_FAILED; data[TG3_INTERRUPT_TEST] = 1; } tg3_full_lock(tp, 0); tg3_halt(tp, RESET_KIND_SHUTDOWN, 1); if (netif_running(dev)) { tg3_flag_set(tp, INIT_COMPLETE); err2 = tg3_restart_hw(tp, true); if (!err2) tg3_netif_start(tp); } tg3_full_unlock(tp); if (irq_sync && !err2) tg3_phy_start(tp); } if (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER) tg3_power_down_prepare(tp); } static int tg3_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct tg3 *tp = netdev_priv(dev); struct hwtstamp_config stmpconf; if (!tg3_flag(tp, PTP_CAPABLE)) return -EINVAL; if (copy_from_user(&stmpconf, ifr->ifr_data, sizeof(stmpconf))) return -EFAULT; if (stmpconf.flags) return -EINVAL; switch (stmpconf.tx_type) { case HWTSTAMP_TX_ON: tg3_flag_set(tp, TX_TSTAMP_EN); break; case HWTSTAMP_TX_OFF: tg3_flag_clear(tp, TX_TSTAMP_EN); break; default: return -ERANGE; } switch (stmpconf.rx_filter) { case HWTSTAMP_FILTER_NONE: tp->rxptpctl = 0; break; case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V1_EN | TG3_RX_PTP_CTL_ALL_V1_EVENTS; break; case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V1_EN | TG3_RX_PTP_CTL_SYNC_EVNT; break; case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V1_EN | TG3_RX_PTP_CTL_DELAY_REQ; break; case HWTSTAMP_FILTER_PTP_V2_EVENT: tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_EN | TG3_RX_PTP_CTL_ALL_V2_EVENTS; break; case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_L2_EN | TG3_RX_PTP_CTL_ALL_V2_EVENTS; break; case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_L4_EN | TG3_RX_PTP_CTL_ALL_V2_EVENTS; break; case HWTSTAMP_FILTER_PTP_V2_SYNC: tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_EN | TG3_RX_PTP_CTL_SYNC_EVNT; break; case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_L2_EN | TG3_RX_PTP_CTL_SYNC_EVNT; break; case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_L4_EN | TG3_RX_PTP_CTL_SYNC_EVNT; break; case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_EN | TG3_RX_PTP_CTL_DELAY_REQ; break; case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_L2_EN | TG3_RX_PTP_CTL_DELAY_REQ; break; case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_L4_EN | TG3_RX_PTP_CTL_DELAY_REQ; break; default: return -ERANGE; } if (netif_running(dev) && tp->rxptpctl) tw32(TG3_RX_PTP_CTL, tp->rxptpctl | TG3_RX_PTP_CTL_HWTS_INTERLOCK); return copy_to_user(ifr->ifr_data, &stmpconf, sizeof(stmpconf)) ? -EFAULT : 0; } static int tg3_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct mii_ioctl_data *data = if_mii(ifr); struct tg3 *tp = netdev_priv(dev); int err; if (tg3_flag(tp, USE_PHYLIB)) { struct phy_device *phydev; if (!(tp->phy_flags & TG3_PHYFLG_IS_CONNECTED)) return -EAGAIN; phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]; return phy_mii_ioctl(phydev, ifr, cmd); } switch (cmd) { case SIOCGMIIPHY: data->phy_id = tp->phy_addr; /* fallthru */ case SIOCGMIIREG: { u32 mii_regval; if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) break; /* We have no PHY */ if (!netif_running(dev)) return -EAGAIN; spin_lock_bh(&tp->lock); err = __tg3_readphy(tp, data->phy_id & 0x1f, data->reg_num & 0x1f, &mii_regval); spin_unlock_bh(&tp->lock); data->val_out = mii_regval; return err; } case SIOCSMIIREG: if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) break; /* We have no PHY */ if (!netif_running(dev)) return -EAGAIN; spin_lock_bh(&tp->lock); err = __tg3_writephy(tp, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in); spin_unlock_bh(&tp->lock); return err; case SIOCSHWTSTAMP: return tg3_hwtstamp_ioctl(dev, ifr, cmd); default: /* do nothing */ break; } return -EOPNOTSUPP; } static int tg3_get_coalesce(struct net_device *dev, struct ethtool_coalesce *ec) { struct tg3 *tp = netdev_priv(dev); memcpy(ec, &tp->coal, sizeof(*ec)); return 0; } static int tg3_set_coalesce(struct net_device *dev, struct ethtool_coalesce *ec) { struct tg3 *tp = netdev_priv(dev); u32 max_rxcoal_tick_int = 0, max_txcoal_tick_int = 0; u32 max_stat_coal_ticks = 0, min_stat_coal_ticks = 0; if (!tg3_flag(tp, 5705_PLUS)) { max_rxcoal_tick_int = MAX_RXCOAL_TICK_INT; max_txcoal_tick_int = MAX_TXCOAL_TICK_INT; max_stat_coal_ticks = MAX_STAT_COAL_TICKS; min_stat_coal_ticks = MIN_STAT_COAL_TICKS; } if ((ec->rx_coalesce_usecs > MAX_RXCOL_TICKS) || (ec->tx_coalesce_usecs > MAX_TXCOL_TICKS) || (ec->rx_max_coalesced_frames > MAX_RXMAX_FRAMES) || (ec->tx_max_coalesced_frames > MAX_TXMAX_FRAMES) || (ec->rx_coalesce_usecs_irq > max_rxcoal_tick_int) || (ec->tx_coalesce_usecs_irq > max_txcoal_tick_int) || (ec->rx_max_coalesced_frames_irq > MAX_RXCOAL_MAXF_INT) || (ec->tx_max_coalesced_frames_irq > MAX_TXCOAL_MAXF_INT) || (ec->stats_block_coalesce_usecs > max_stat_coal_ticks) || (ec->stats_block_coalesce_usecs < min_stat_coal_ticks)) return -EINVAL; /* No rx interrupts will be generated if both are zero */ if ((ec->rx_coalesce_usecs == 0) && (ec->rx_max_coalesced_frames == 0)) return -EINVAL; /* No tx interrupts will be generated if both are zero */ if ((ec->tx_coalesce_usecs == 0) && (ec->tx_max_coalesced_frames == 0)) return -EINVAL; /* Only copy relevant parameters, ignore all others. */ tp->coal.rx_coalesce_usecs = ec->rx_coalesce_usecs; tp->coal.tx_coalesce_usecs = ec->tx_coalesce_usecs; tp->coal.rx_max_coalesced_frames = ec->rx_max_coalesced_frames; tp->coal.tx_max_coalesced_frames = ec->tx_max_coalesced_frames; tp->coal.rx_coalesce_usecs_irq = ec->rx_coalesce_usecs_irq; tp->coal.tx_coalesce_usecs_irq = ec->tx_coalesce_usecs_irq; tp->coal.rx_max_coalesced_frames_irq = ec->rx_max_coalesced_frames_irq; tp->coal.tx_max_coalesced_frames_irq = ec->tx_max_coalesced_frames_irq; tp->coal.stats_block_coalesce_usecs = ec->stats_block_coalesce_usecs; if (netif_running(dev)) { tg3_full_lock(tp, 0); __tg3_set_coalesce(tp, &tp->coal); tg3_full_unlock(tp); } return 0; } static int tg3_set_eee(struct net_device *dev, struct ethtool_eee *edata) { struct tg3 *tp = netdev_priv(dev); if (!(tp->phy_flags & TG3_PHYFLG_EEE_CAP)) { netdev_warn(tp->dev, "Board does not support EEE!\n"); return -EOPNOTSUPP; } if (edata->advertised != tp->eee.advertised) { netdev_warn(tp->dev, "Direct manipulation of EEE advertisement is not supported\n"); return -EINVAL; } if (edata->tx_lpi_timer > TG3_CPMU_DBTMR1_LNKIDLE_MAX) { netdev_warn(tp->dev, "Maximal Tx Lpi timer supported is %#x(u)\n", TG3_CPMU_DBTMR1_LNKIDLE_MAX); return -EINVAL; } tp->eee = *edata; tp->phy_flags |= TG3_PHYFLG_USER_CONFIGURED; tg3_warn_mgmt_link_flap(tp); if (netif_running(tp->dev)) { tg3_full_lock(tp, 0); tg3_setup_eee(tp); tg3_phy_reset(tp); tg3_full_unlock(tp); } return 0; } static int tg3_get_eee(struct net_device *dev, struct ethtool_eee *edata) { struct tg3 *tp = netdev_priv(dev); if (!(tp->phy_flags & TG3_PHYFLG_EEE_CAP)) { netdev_warn(tp->dev, "Board does not support EEE!\n"); return -EOPNOTSUPP; } *edata = tp->eee; return 0; } static const struct ethtool_ops tg3_ethtool_ops = { .get_settings = tg3_get_settings, .set_settings = tg3_set_settings, .get_drvinfo = tg3_get_drvinfo, .get_regs_len = tg3_get_regs_len, .get_regs = tg3_get_regs, .get_wol = tg3_get_wol, .set_wol = tg3_set_wol, .get_msglevel = tg3_get_msglevel, .set_msglevel = tg3_set_msglevel, .nway_reset = tg3_nway_reset, .get_link = ethtool_op_get_link, .get_eeprom_len = tg3_get_eeprom_len, .get_eeprom = tg3_get_eeprom, .set_eeprom = tg3_set_eeprom, .get_ringparam = tg3_get_ringparam, .set_ringparam = tg3_set_ringparam, .get_pauseparam = tg3_get_pauseparam, .set_pauseparam = tg3_set_pauseparam, .self_test = tg3_self_test, .get_strings = tg3_get_strings, .set_phys_id = tg3_set_phys_id, .get_ethtool_stats = tg3_get_ethtool_stats, .get_coalesce = tg3_get_coalesce, .set_coalesce = tg3_set_coalesce, .get_sset_count = tg3_get_sset_count, .get_rxnfc = tg3_get_rxnfc, .get_rxfh_indir_size = tg3_get_rxfh_indir_size, .get_rxfh_indir = tg3_get_rxfh_indir, .set_rxfh_indir = tg3_set_rxfh_indir, .get_channels = tg3_get_channels, .set_channels = tg3_set_channels, .get_ts_info = tg3_get_ts_info, .get_eee = tg3_get_eee, .set_eee = tg3_set_eee, }; static struct rtnl_link_stats64 *tg3_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { struct tg3 *tp = netdev_priv(dev); spin_lock_bh(&tp->lock); if (!tp->hw_stats) { spin_unlock_bh(&tp->lock); return &tp->net_stats_prev; } tg3_get_nstats(tp, stats); spin_unlock_bh(&tp->lock); return stats; } static void tg3_set_rx_mode(struct net_device *dev) { struct tg3 *tp = netdev_priv(dev); if (!netif_running(dev)) return; tg3_full_lock(tp, 0); __tg3_set_rx_mode(dev); tg3_full_unlock(tp); } static inline void tg3_set_mtu(struct net_device *dev, struct tg3 *tp, int new_mtu) { dev->mtu = new_mtu; if (new_mtu > ETH_DATA_LEN) { if (tg3_flag(tp, 5780_CLASS)) { netdev_update_features(dev); tg3_flag_clear(tp, TSO_CAPABLE); } else { tg3_flag_set(tp, JUMBO_RING_ENABLE); } } else { if (tg3_flag(tp, 5780_CLASS)) { tg3_flag_set(tp, TSO_CAPABLE); netdev_update_features(dev); } tg3_flag_clear(tp, JUMBO_RING_ENABLE); } } static int tg3_change_mtu(struct net_device *dev, int new_mtu) { struct tg3 *tp = netdev_priv(dev); int err; bool reset_phy = false; if (new_mtu < TG3_MIN_MTU || new_mtu > TG3_MAX_MTU(tp)) return -EINVAL; if (!netif_running(dev)) { /* We'll just catch it later when the * device is up'd. */ tg3_set_mtu(dev, tp, new_mtu); return 0; } tg3_phy_stop(tp); tg3_netif_stop(tp); tg3_full_lock(tp, 1); tg3_halt(tp, RESET_KIND_SHUTDOWN, 1); tg3_set_mtu(dev, tp, new_mtu); /* Reset PHY, otherwise the read DMA engine will be in a mode that * breaks all requests to 256 bytes. */ if (tg3_asic_rev(tp) == ASIC_REV_57766) reset_phy = true; err = tg3_restart_hw(tp, reset_phy); if (!err) tg3_netif_start(tp); tg3_full_unlock(tp); if (!err) tg3_phy_start(tp); return err; } static const struct net_device_ops tg3_netdev_ops = { .ndo_open = tg3_open, .ndo_stop = tg3_close, .ndo_start_xmit = tg3_start_xmit, .ndo_get_stats64 = tg3_get_stats64, .ndo_validate_addr = eth_validate_addr, .ndo_set_rx_mode = tg3_set_rx_mode, .ndo_set_mac_address = tg3_set_mac_addr, .ndo_do_ioctl = tg3_ioctl, .ndo_tx_timeout = tg3_tx_timeout, .ndo_change_mtu = tg3_change_mtu, .ndo_fix_features = tg3_fix_features, .ndo_set_features = tg3_set_features, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = tg3_poll_controller, #endif }; static void tg3_get_eeprom_size(struct tg3 *tp) { u32 cursize, val, magic; tp->nvram_size = EEPROM_CHIP_SIZE; if (tg3_nvram_read(tp, 0, &magic) != 0) return; if ((magic != TG3_EEPROM_MAGIC) && ((magic & TG3_EEPROM_MAGIC_FW_MSK) != TG3_EEPROM_MAGIC_FW) && ((magic & TG3_EEPROM_MAGIC_HW_MSK) != TG3_EEPROM_MAGIC_HW)) return; /* * Size the chip by reading offsets at increasing powers of two. * When we encounter our validation signature, we know the addressing * has wrapped around, and thus have our chip size. */ cursize = 0x10; while (cursize < tp->nvram_size) { if (tg3_nvram_read(tp, cursize, &val) != 0) return; if (val == magic) break; cursize <<= 1; } tp->nvram_size = cursize; } static void tg3_get_nvram_size(struct tg3 *tp) { u32 val; if (tg3_flag(tp, NO_NVRAM) || tg3_nvram_read(tp, 0, &val) != 0) return; /* Selfboot format */ if (val != TG3_EEPROM_MAGIC) { tg3_get_eeprom_size(tp); return; } if (tg3_nvram_read(tp, 0xf0, &val) == 0) { if (val != 0) { /* This is confusing. We want to operate on the * 16-bit value at offset 0xf2. The tg3_nvram_read() * call will read from NVRAM and byteswap the data * according to the byteswapping settings for all * other register accesses. This ensures the data we * want will always reside in the lower 16-bits. * However, the data in NVRAM is in LE format, which * means the data from the NVRAM read will always be * opposite the endianness of the CPU. The 16-bit * byteswap then brings the data to CPU endianness. */ tp->nvram_size = swab16((u16)(val & 0x0000ffff)) * 1024; return; } } tp->nvram_size = TG3_NVRAM_SIZE_512KB; } static void tg3_get_nvram_info(struct tg3 *tp) { u32 nvcfg1; nvcfg1 = tr32(NVRAM_CFG1); if (nvcfg1 & NVRAM_CFG1_FLASHIF_ENAB) { tg3_flag_set(tp, FLASH); } else { nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS; tw32(NVRAM_CFG1, nvcfg1); } if (tg3_asic_rev(tp) == ASIC_REV_5750 || tg3_flag(tp, 5780_CLASS)) { switch (nvcfg1 & NVRAM_CFG1_VENDOR_MASK) { case FLASH_VENDOR_ATMEL_FLASH_BUFFERED: tp->nvram_jedecnum = JEDEC_ATMEL; tp->nvram_pagesize = ATMEL_AT45DB0X1B_PAGE_SIZE; tg3_flag_set(tp, NVRAM_BUFFERED); break; case FLASH_VENDOR_ATMEL_FLASH_UNBUFFERED: tp->nvram_jedecnum = JEDEC_ATMEL; tp->nvram_pagesize = ATMEL_AT25F512_PAGE_SIZE; break; case FLASH_VENDOR_ATMEL_EEPROM: tp->nvram_jedecnum = JEDEC_ATMEL; tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE; tg3_flag_set(tp, NVRAM_BUFFERED); break; case FLASH_VENDOR_ST: tp->nvram_jedecnum = JEDEC_ST; tp->nvram_pagesize = ST_M45PEX0_PAGE_SIZE; tg3_flag_set(tp, NVRAM_BUFFERED); break; case FLASH_VENDOR_SAIFUN: tp->nvram_jedecnum = JEDEC_SAIFUN; tp->nvram_pagesize = SAIFUN_SA25F0XX_PAGE_SIZE; break; case FLASH_VENDOR_SST_SMALL: case FLASH_VENDOR_SST_LARGE: tp->nvram_jedecnum = JEDEC_SST; tp->nvram_pagesize = SST_25VF0X0_PAGE_SIZE; break; } } else { tp->nvram_jedecnum = JEDEC_ATMEL; tp->nvram_pagesize = ATMEL_AT45DB0X1B_PAGE_SIZE; tg3_flag_set(tp, NVRAM_BUFFERED); } } static void tg3_nvram_get_pagesize(struct tg3 *tp, u32 nvmcfg1) { switch (nvmcfg1 & NVRAM_CFG1_5752PAGE_SIZE_MASK) { case FLASH_5752PAGE_SIZE_256: tp->nvram_pagesize = 256; break; case FLASH_5752PAGE_SIZE_512: tp->nvram_pagesize = 512; break; case FLASH_5752PAGE_SIZE_1K: tp->nvram_pagesize = 1024; break; case FLASH_5752PAGE_SIZE_2K: tp->nvram_pagesize = 2048; break; case FLASH_5752PAGE_SIZE_4K: tp->nvram_pagesize = 4096; break; case FLASH_5752PAGE_SIZE_264: tp->nvram_pagesize = 264; break; case FLASH_5752PAGE_SIZE_528: tp->nvram_pagesize = 528; break; } } static void tg3_get_5752_nvram_info(struct tg3 *tp) { u32 nvcfg1; nvcfg1 = tr32(NVRAM_CFG1); /* NVRAM protection for TPM */ if (nvcfg1 & (1 << 27)) tg3_flag_set(tp, PROTECTED_NVRAM); switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) { case FLASH_5752VENDOR_ATMEL_EEPROM_64KHZ: case FLASH_5752VENDOR_ATMEL_EEPROM_376KHZ: tp->nvram_jedecnum = JEDEC_ATMEL; tg3_flag_set(tp, NVRAM_BUFFERED); break; case FLASH_5752VENDOR_ATMEL_FLASH_BUFFERED: tp->nvram_jedecnum = JEDEC_ATMEL; tg3_flag_set(tp, NVRAM_BUFFERED); tg3_flag_set(tp, FLASH); break; case FLASH_5752VENDOR_ST_M45PE10: case FLASH_5752VENDOR_ST_M45PE20: case FLASH_5752VENDOR_ST_M45PE40: tp->nvram_jedecnum = JEDEC_ST; tg3_flag_set(tp, NVRAM_BUFFERED); tg3_flag_set(tp, FLASH); break; } if (tg3_flag(tp, FLASH)) { tg3_nvram_get_pagesize(tp, nvcfg1); } else { /* For eeprom, set pagesize to maximum eeprom size */ tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE; nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS; tw32(NVRAM_CFG1, nvcfg1); } } static void tg3_get_5755_nvram_info(struct tg3 *tp) { u32 nvcfg1, protect = 0; nvcfg1 = tr32(NVRAM_CFG1); /* NVRAM protection for TPM */ if (nvcfg1 & (1 << 27)) { tg3_flag_set(tp, PROTECTED_NVRAM); protect = 1; } nvcfg1 &= NVRAM_CFG1_5752VENDOR_MASK; switch (nvcfg1) { case FLASH_5755VENDOR_ATMEL_FLASH_1: case FLASH_5755VENDOR_ATMEL_FLASH_2: case FLASH_5755VENDOR_ATMEL_FLASH_3: case FLASH_5755VENDOR_ATMEL_FLASH_5: tp->nvram_jedecnum = JEDEC_ATMEL; tg3_flag_set(tp, NVRAM_BUFFERED); tg3_flag_set(tp, FLASH); tp->nvram_pagesize = 264; if (nvcfg1 == FLASH_5755VENDOR_ATMEL_FLASH_1 || nvcfg1 == FLASH_5755VENDOR_ATMEL_FLASH_5) tp->nvram_size = (protect ? 0x3e200 : TG3_NVRAM_SIZE_512KB); else if (nvcfg1 == FLASH_5755VENDOR_ATMEL_FLASH_2) tp->nvram_size = (protect ? 0x1f200 : TG3_NVRAM_SIZE_256KB); else tp->nvram_size = (protect ? 0x1f200 : TG3_NVRAM_SIZE_128KB); break; case FLASH_5752VENDOR_ST_M45PE10: case FLASH_5752VENDOR_ST_M45PE20: case FLASH_5752VENDOR_ST_M45PE40: tp->nvram_jedecnum = JEDEC_ST; tg3_flag_set(tp, NVRAM_BUFFERED); tg3_flag_set(tp, FLASH); tp->nvram_pagesize = 256; if (nvcfg1 == FLASH_5752VENDOR_ST_M45PE10) tp->nvram_size = (protect ? TG3_NVRAM_SIZE_64KB : TG3_NVRAM_SIZE_128KB); else if (nvcfg1 == FLASH_5752VENDOR_ST_M45PE20) tp->nvram_size = (protect ? TG3_NVRAM_SIZE_64KB : TG3_NVRAM_SIZE_256KB); else tp->nvram_size = (protect ? TG3_NVRAM_SIZE_128KB : TG3_NVRAM_SIZE_512KB); break; } } static void tg3_get_5787_nvram_info(struct tg3 *tp) { u32 nvcfg1; nvcfg1 = tr32(NVRAM_CFG1); switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) { case FLASH_5787VENDOR_ATMEL_EEPROM_64KHZ: case FLASH_5787VENDOR_ATMEL_EEPROM_376KHZ: case FLASH_5787VENDOR_MICRO_EEPROM_64KHZ: case FLASH_5787VENDOR_MICRO_EEPROM_376KHZ: tp->nvram_jedecnum = JEDEC_ATMEL; tg3_flag_set(tp, NVRAM_BUFFERED); tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE; nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS; tw32(NVRAM_CFG1, nvcfg1); break; case FLASH_5752VENDOR_ATMEL_FLASH_BUFFERED: case FLASH_5755VENDOR_ATMEL_FLASH_1: case FLASH_5755VENDOR_ATMEL_FLASH_2: case FLASH_5755VENDOR_ATMEL_FLASH_3: tp->nvram_jedecnum = JEDEC_ATMEL; tg3_flag_set(tp, NVRAM_BUFFERED); tg3_flag_set(tp, FLASH); tp->nvram_pagesize = 264; break; case FLASH_5752VENDOR_ST_M45PE10: case FLASH_5752VENDOR_ST_M45PE20: case FLASH_5752VENDOR_ST_M45PE40: tp->nvram_jedecnum = JEDEC_ST; tg3_flag_set(tp, NVRAM_BUFFERED); tg3_flag_set(tp, FLASH); tp->nvram_pagesize = 256; break; } } static void tg3_get_5761_nvram_info(struct tg3 *tp) { u32 nvcfg1, protect = 0; nvcfg1 = tr32(NVRAM_CFG1); /* NVRAM protection for TPM */ if (nvcfg1 & (1 << 27)) { tg3_flag_set(tp, PROTECTED_NVRAM); protect = 1; } nvcfg1 &= NVRAM_CFG1_5752VENDOR_MASK; switch (nvcfg1) { case FLASH_5761VENDOR_ATMEL_ADB021D: case FLASH_5761VENDOR_ATMEL_ADB041D: case FLASH_5761VENDOR_ATMEL_ADB081D: case FLASH_5761VENDOR_ATMEL_ADB161D: case FLASH_5761VENDOR_ATMEL_MDB021D: case FLASH_5761VENDOR_ATMEL_MDB041D: case FLASH_5761VENDOR_ATMEL_MDB081D: case FLASH_5761VENDOR_ATMEL_MDB161D: tp->nvram_jedecnum = JEDEC_ATMEL; tg3_flag_set(tp, NVRAM_BUFFERED); tg3_flag_set(tp, FLASH); tg3_flag_set(tp, NO_NVRAM_ADDR_TRANS); tp->nvram_pagesize = 256; break; case FLASH_5761VENDOR_ST_A_M45PE20: case FLASH_5761VENDOR_ST_A_M45PE40: case FLASH_5761VENDOR_ST_A_M45PE80: case FLASH_5761VENDOR_ST_A_M45PE16: case FLASH_5761VENDOR_ST_M_M45PE20: case FLASH_5761VENDOR_ST_M_M45PE40: case FLASH_5761VENDOR_ST_M_M45PE80: case FLASH_5761VENDOR_ST_M_M45PE16: tp->nvram_jedecnum = JEDEC_ST; tg3_flag_set(tp, NVRAM_BUFFERED); tg3_flag_set(tp, FLASH); tp->nvram_pagesize = 256; break; } if (protect) { tp->nvram_size = tr32(NVRAM_ADDR_LOCKOUT); } else { switch (nvcfg1) { case FLASH_5761VENDOR_ATMEL_ADB161D: case FLASH_5761VENDOR_ATMEL_MDB161D: case FLASH_5761VENDOR_ST_A_M45PE16: case FLASH_5761VENDOR_ST_M_M45PE16: tp->nvram_size = TG3_NVRAM_SIZE_2MB; break; case FLASH_5761VENDOR_ATMEL_ADB081D: case FLASH_5761VENDOR_ATMEL_MDB081D: case FLASH_5761VENDOR_ST_A_M45PE80: case FLASH_5761VENDOR_ST_M_M45PE80: tp->nvram_size = TG3_NVRAM_SIZE_1MB; break; case FLASH_5761VENDOR_ATMEL_ADB041D: case FLASH_5761VENDOR_ATMEL_MDB041D: case FLASH_5761VENDOR_ST_A_M45PE40: case FLASH_5761VENDOR_ST_M_M45PE40: tp->nvram_size = TG3_NVRAM_SIZE_512KB; break; case FLASH_5761VENDOR_ATMEL_ADB021D: case FLASH_5761VENDOR_ATMEL_MDB021D: case FLASH_5761VENDOR_ST_A_M45PE20: case FLASH_5761VENDOR_ST_M_M45PE20: tp->nvram_size = TG3_NVRAM_SIZE_256KB; break; } } } static void tg3_get_5906_nvram_info(struct tg3 *tp) { tp->nvram_jedecnum = JEDEC_ATMEL; tg3_flag_set(tp, NVRAM_BUFFERED); tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE; } static void tg3_get_57780_nvram_info(struct tg3 *tp) { u32 nvcfg1; nvcfg1 = tr32(NVRAM_CFG1); switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) { case FLASH_5787VENDOR_ATMEL_EEPROM_376KHZ: case FLASH_5787VENDOR_MICRO_EEPROM_376KHZ: tp->nvram_jedecnum = JEDEC_ATMEL; tg3_flag_set(tp, NVRAM_BUFFERED); tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE; nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS; tw32(NVRAM_CFG1, nvcfg1); return; case FLASH_5752VENDOR_ATMEL_FLASH_BUFFERED: case FLASH_57780VENDOR_ATMEL_AT45DB011D: case FLASH_57780VENDOR_ATMEL_AT45DB011B: case FLASH_57780VENDOR_ATMEL_AT45DB021D: case FLASH_57780VENDOR_ATMEL_AT45DB021B: case FLASH_57780VENDOR_ATMEL_AT45DB041D: case FLASH_57780VENDOR_ATMEL_AT45DB041B: tp->nvram_jedecnum = JEDEC_ATMEL; tg3_flag_set(tp, NVRAM_BUFFERED); tg3_flag_set(tp, FLASH); switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) { case FLASH_5752VENDOR_ATMEL_FLASH_BUFFERED: case FLASH_57780VENDOR_ATMEL_AT45DB011D: case FLASH_57780VENDOR_ATMEL_AT45DB011B: tp->nvram_size = TG3_NVRAM_SIZE_128KB; break; case FLASH_57780VENDOR_ATMEL_AT45DB021D: case FLASH_57780VENDOR_ATMEL_AT45DB021B: tp->nvram_size = TG3_NVRAM_SIZE_256KB; break; case FLASH_57780VENDOR_ATMEL_AT45DB041D: case FLASH_57780VENDOR_ATMEL_AT45DB041B: tp->nvram_size = TG3_NVRAM_SIZE_512KB; break; } break; case FLASH_5752VENDOR_ST_M45PE10: case FLASH_5752VENDOR_ST_M45PE20: case FLASH_5752VENDOR_ST_M45PE40: tp->nvram_jedecnum = JEDEC_ST; tg3_flag_set(tp, NVRAM_BUFFERED); tg3_flag_set(tp, FLASH); switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) { case FLASH_5752VENDOR_ST_M45PE10: tp->nvram_size = TG3_NVRAM_SIZE_128KB; break; case FLASH_5752VENDOR_ST_M45PE20: tp->nvram_size = TG3_NVRAM_SIZE_256KB; break; case FLASH_5752VENDOR_ST_M45PE40: tp->nvram_size = TG3_NVRAM_SIZE_512KB; break; } break; default: tg3_flag_set(tp, NO_NVRAM); return; } tg3_nvram_get_pagesize(tp, nvcfg1); if (tp->nvram_pagesize != 264 && tp->nvram_pagesize != 528) tg3_flag_set(tp, NO_NVRAM_ADDR_TRANS); } static void tg3_get_5717_nvram_info(struct tg3 *tp) { u32 nvcfg1; nvcfg1 = tr32(NVRAM_CFG1); switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) { case FLASH_5717VENDOR_ATMEL_EEPROM: case FLASH_5717VENDOR_MICRO_EEPROM: tp->nvram_jedecnum = JEDEC_ATMEL; tg3_flag_set(tp, NVRAM_BUFFERED); tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE; nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS; tw32(NVRAM_CFG1, nvcfg1); return; case FLASH_5717VENDOR_ATMEL_MDB011D: case FLASH_5717VENDOR_ATMEL_ADB011B: case FLASH_5717VENDOR_ATMEL_ADB011D: case FLASH_5717VENDOR_ATMEL_MDB021D: case FLASH_5717VENDOR_ATMEL_ADB021B: case FLASH_5717VENDOR_ATMEL_ADB021D: case FLASH_5717VENDOR_ATMEL_45USPT: tp->nvram_jedecnum = JEDEC_ATMEL; tg3_flag_set(tp, NVRAM_BUFFERED); tg3_flag_set(tp, FLASH); switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) { case FLASH_5717VENDOR_ATMEL_MDB021D: /* Detect size with tg3_nvram_get_size() */ break; case FLASH_5717VENDOR_ATMEL_ADB021B: case FLASH_5717VENDOR_ATMEL_ADB021D: tp->nvram_size = TG3_NVRAM_SIZE_256KB; break; default: tp->nvram_size = TG3_NVRAM_SIZE_128KB; break; } break; case FLASH_5717VENDOR_ST_M_M25PE10: case FLASH_5717VENDOR_ST_A_M25PE10: case FLASH_5717VENDOR_ST_M_M45PE10: case FLASH_5717VENDOR_ST_A_M45PE10: case FLASH_5717VENDOR_ST_M_M25PE20: case FLASH_5717VENDOR_ST_A_M25PE20: case FLASH_5717VENDOR_ST_M_M45PE20: case FLASH_5717VENDOR_ST_A_M45PE20: case FLASH_5717VENDOR_ST_25USPT: case FLASH_5717VENDOR_ST_45USPT: tp->nvram_jedecnum = JEDEC_ST; tg3_flag_set(tp, NVRAM_BUFFERED); tg3_flag_set(tp, FLASH); switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) { case FLASH_5717VENDOR_ST_M_M25PE20: case FLASH_5717VENDOR_ST_M_M45PE20: /* Detect size with tg3_nvram_get_size() */ break; case FLASH_5717VENDOR_ST_A_M25PE20: case FLASH_5717VENDOR_ST_A_M45PE20: tp->nvram_size = TG3_NVRAM_SIZE_256KB; break; default: tp->nvram_size = TG3_NVRAM_SIZE_128KB; break; } break; default: tg3_flag_set(tp, NO_NVRAM); return; } tg3_nvram_get_pagesize(tp, nvcfg1); if (tp->nvram_pagesize != 264 && tp->nvram_pagesize != 528) tg3_flag_set(tp, NO_NVRAM_ADDR_TRANS); } static void tg3_get_5720_nvram_info(struct tg3 *tp) { u32 nvcfg1, nvmpinstrp; nvcfg1 = tr32(NVRAM_CFG1); nvmpinstrp = nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK; if (tg3_asic_rev(tp) == ASIC_REV_5762) { if (!(nvcfg1 & NVRAM_CFG1_5762VENDOR_MASK)) { tg3_flag_set(tp, NO_NVRAM); return; } switch (nvmpinstrp) { case FLASH_5762_EEPROM_HD: nvmpinstrp = FLASH_5720_EEPROM_HD; break; case FLASH_5762_EEPROM_LD: nvmpinstrp = FLASH_5720_EEPROM_LD; break; case FLASH_5720VENDOR_M_ST_M45PE20: /* This pinstrap supports multiple sizes, so force it * to read the actual size from location 0xf0. */ nvmpinstrp = FLASH_5720VENDOR_ST_45USPT; break; } } switch (nvmpinstrp) { case FLASH_5720_EEPROM_HD: case FLASH_5720_EEPROM_LD: tp->nvram_jedecnum = JEDEC_ATMEL; tg3_flag_set(tp, NVRAM_BUFFERED); nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS; tw32(NVRAM_CFG1, nvcfg1); if (nvmpinstrp == FLASH_5720_EEPROM_HD) tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE; else tp->nvram_pagesize = ATMEL_AT24C02_CHIP_SIZE; return; case FLASH_5720VENDOR_M_ATMEL_DB011D: case FLASH_5720VENDOR_A_ATMEL_DB011B: case FLASH_5720VENDOR_A_ATMEL_DB011D: case FLASH_5720VENDOR_M_ATMEL_DB021D: case FLASH_5720VENDOR_A_ATMEL_DB021B: case FLASH_5720VENDOR_A_ATMEL_DB021D: case FLASH_5720VENDOR_M_ATMEL_DB041D: case FLASH_5720VENDOR_A_ATMEL_DB041B: case FLASH_5720VENDOR_A_ATMEL_DB041D: case FLASH_5720VENDOR_M_ATMEL_DB081D: case FLASH_5720VENDOR_A_ATMEL_DB081D: case FLASH_5720VENDOR_ATMEL_45USPT: tp->nvram_jedecnum = JEDEC_ATMEL; tg3_flag_set(tp, NVRAM_BUFFERED); tg3_flag_set(tp, FLASH); switch (nvmpinstrp) { case FLASH_5720VENDOR_M_ATMEL_DB021D: case FLASH_5720VENDOR_A_ATMEL_DB021B: case FLASH_5720VENDOR_A_ATMEL_DB021D: tp->nvram_size = TG3_NVRAM_SIZE_256KB; break; case FLASH_5720VENDOR_M_ATMEL_DB041D: case FLASH_5720VENDOR_A_ATMEL_DB041B: case FLASH_5720VENDOR_A_ATMEL_DB041D: tp->nvram_size = TG3_NVRAM_SIZE_512KB; break; case FLASH_5720VENDOR_M_ATMEL_DB081D: case FLASH_5720VENDOR_A_ATMEL_DB081D: tp->nvram_size = TG3_NVRAM_SIZE_1MB; break; default: if (tg3_asic_rev(tp) != ASIC_REV_5762) tp->nvram_size = TG3_NVRAM_SIZE_128KB; break; } break; case FLASH_5720VENDOR_M_ST_M25PE10: case FLASH_5720VENDOR_M_ST_M45PE10: case FLASH_5720VENDOR_A_ST_M25PE10: case FLASH_5720VENDOR_A_ST_M45PE10: case FLASH_5720VENDOR_M_ST_M25PE20: case FLASH_5720VENDOR_M_ST_M45PE20: case FLASH_5720VENDOR_A_ST_M25PE20: case FLASH_5720VENDOR_A_ST_M45PE20: case FLASH_5720VENDOR_M_ST_M25PE40: case FLASH_5720VENDOR_M_ST_M45PE40: case FLASH_5720VENDOR_A_ST_M25PE40: case FLASH_5720VENDOR_A_ST_M45PE40: case FLASH_5720VENDOR_M_ST_M25PE80: case FLASH_5720VENDOR_M_ST_M45PE80: case FLASH_5720VENDOR_A_ST_M25PE80: case FLASH_5720VENDOR_A_ST_M45PE80: case FLASH_5720VENDOR_ST_25USPT: case FLASH_5720VENDOR_ST_45USPT: tp->nvram_jedecnum = JEDEC_ST; tg3_flag_set(tp, NVRAM_BUFFERED); tg3_flag_set(tp, FLASH); switch (nvmpinstrp) { case FLASH_5720VENDOR_M_ST_M25PE20: case FLASH_5720VENDOR_M_ST_M45PE20: case FLASH_5720VENDOR_A_ST_M25PE20: case FLASH_5720VENDOR_A_ST_M45PE20: tp->nvram_size = TG3_NVRAM_SIZE_256KB; break; case FLASH_5720VENDOR_M_ST_M25PE40: case FLASH_5720VENDOR_M_ST_M45PE40: case FLASH_5720VENDOR_A_ST_M25PE40: case FLASH_5720VENDOR_A_ST_M45PE40: tp->nvram_size = TG3_NVRAM_SIZE_512KB; break; case FLASH_5720VENDOR_M_ST_M25PE80: case FLASH_5720VENDOR_M_ST_M45PE80: case FLASH_5720VENDOR_A_ST_M25PE80: case FLASH_5720VENDOR_A_ST_M45PE80: tp->nvram_size = TG3_NVRAM_SIZE_1MB; break; default: if (tg3_asic_rev(tp) != ASIC_REV_5762) tp->nvram_size = TG3_NVRAM_SIZE_128KB; break; } break; default: tg3_flag_set(tp, NO_NVRAM); return; } tg3_nvram_get_pagesize(tp, nvcfg1); if (tp->nvram_pagesize != 264 && tp->nvram_pagesize != 528) tg3_flag_set(tp, NO_NVRAM_ADDR_TRANS); if (tg3_asic_rev(tp) == ASIC_REV_5762) { u32 val; if (tg3_nvram_read(tp, 0, &val)) return; if (val != TG3_EEPROM_MAGIC && (val & TG3_EEPROM_MAGIC_FW_MSK) != TG3_EEPROM_MAGIC_FW) tg3_flag_set(tp, NO_NVRAM); } } /* Chips other than 5700/5701 use the NVRAM for fetching info. */ static void tg3_nvram_init(struct tg3 *tp) { if (tg3_flag(tp, IS_SSB_CORE)) { /* No NVRAM and EEPROM on the SSB Broadcom GigE core. */ tg3_flag_clear(tp, NVRAM); tg3_flag_clear(tp, NVRAM_BUFFERED); tg3_flag_set(tp, NO_NVRAM); return; } tw32_f(GRC_EEPROM_ADDR, (EEPROM_ADDR_FSM_RESET | (EEPROM_DEFAULT_CLOCK_PERIOD << EEPROM_ADDR_CLKPERD_SHIFT))); msleep(1); /* Enable seeprom accesses. */ tw32_f(GRC_LOCAL_CTRL, tr32(GRC_LOCAL_CTRL) | GRC_LCLCTRL_AUTO_SEEPROM); udelay(100); if (tg3_asic_rev(tp) != ASIC_REV_5700 && tg3_asic_rev(tp) != ASIC_REV_5701) { tg3_flag_set(tp, NVRAM); if (tg3_nvram_lock(tp)) { netdev_warn(tp->dev, "Cannot get nvram lock, %s failed\n", __func__); return; } tg3_enable_nvram_access(tp); tp->nvram_size = 0; if (tg3_asic_rev(tp) == ASIC_REV_5752) tg3_get_5752_nvram_info(tp); else if (tg3_asic_rev(tp) == ASIC_REV_5755) tg3_get_5755_nvram_info(tp); else if (tg3_asic_rev(tp) == ASIC_REV_5787 || tg3_asic_rev(tp) == ASIC_REV_5784 || tg3_asic_rev(tp) == ASIC_REV_5785) tg3_get_5787_nvram_info(tp); else if (tg3_asic_rev(tp) == ASIC_REV_5761) tg3_get_5761_nvram_info(tp); else if (tg3_asic_rev(tp) == ASIC_REV_5906) tg3_get_5906_nvram_info(tp); else if (tg3_asic_rev(tp) == ASIC_REV_57780 || tg3_flag(tp, 57765_CLASS)) tg3_get_57780_nvram_info(tp); else if (tg3_asic_rev(tp) == ASIC_REV_5717 || tg3_asic_rev(tp) == ASIC_REV_5719) tg3_get_5717_nvram_info(tp); else if (tg3_asic_rev(tp) == ASIC_REV_5720 || tg3_asic_rev(tp) == ASIC_REV_5762) tg3_get_5720_nvram_info(tp); else tg3_get_nvram_info(tp); if (tp->nvram_size == 0) tg3_get_nvram_size(tp); tg3_disable_nvram_access(tp); tg3_nvram_unlock(tp); } else { tg3_flag_clear(tp, NVRAM); tg3_flag_clear(tp, NVRAM_BUFFERED); tg3_get_eeprom_size(tp); } } struct subsys_tbl_ent { u16 subsys_vendor, subsys_devid; u32 phy_id; }; static struct subsys_tbl_ent subsys_id_to_phy_id[] = { /* Broadcom boards. */ { TG3PCI_SUBVENDOR_ID_BROADCOM, TG3PCI_SUBDEVICE_ID_BROADCOM_95700A6, TG3_PHY_ID_BCM5401 }, { TG3PCI_SUBVENDOR_ID_BROADCOM, TG3PCI_SUBDEVICE_ID_BROADCOM_95701A5, TG3_PHY_ID_BCM5701 }, { TG3PCI_SUBVENDOR_ID_BROADCOM, TG3PCI_SUBDEVICE_ID_BROADCOM_95700T6, TG3_PHY_ID_BCM8002 }, { TG3PCI_SUBVENDOR_ID_BROADCOM, TG3PCI_SUBDEVICE_ID_BROADCOM_95700A9, 0 }, { TG3PCI_SUBVENDOR_ID_BROADCOM, TG3PCI_SUBDEVICE_ID_BROADCOM_95701T1, TG3_PHY_ID_BCM5701 }, { TG3PCI_SUBVENDOR_ID_BROADCOM, TG3PCI_SUBDEVICE_ID_BROADCOM_95701T8, TG3_PHY_ID_BCM5701 }, { TG3PCI_SUBVENDOR_ID_BROADCOM, TG3PCI_SUBDEVICE_ID_BROADCOM_95701A7, 0 }, { TG3PCI_SUBVENDOR_ID_BROADCOM, TG3PCI_SUBDEVICE_ID_BROADCOM_95701A10, TG3_PHY_ID_BCM5701 }, { TG3PCI_SUBVENDOR_ID_BROADCOM, TG3PCI_SUBDEVICE_ID_BROADCOM_95701A12, TG3_PHY_ID_BCM5701 }, { TG3PCI_SUBVENDOR_ID_BROADCOM, TG3PCI_SUBDEVICE_ID_BROADCOM_95703AX1, TG3_PHY_ID_BCM5703 }, { TG3PCI_SUBVENDOR_ID_BROADCOM, TG3PCI_SUBDEVICE_ID_BROADCOM_95703AX2, TG3_PHY_ID_BCM5703 }, /* 3com boards. */ { TG3PCI_SUBVENDOR_ID_3COM, TG3PCI_SUBDEVICE_ID_3COM_3C996T, TG3_PHY_ID_BCM5401 }, { TG3PCI_SUBVENDOR_ID_3COM, TG3PCI_SUBDEVICE_ID_3COM_3C996BT, TG3_PHY_ID_BCM5701 }, { TG3PCI_SUBVENDOR_ID_3COM, TG3PCI_SUBDEVICE_ID_3COM_3C996SX, 0 }, { TG3PCI_SUBVENDOR_ID_3COM, TG3PCI_SUBDEVICE_ID_3COM_3C1000T, TG3_PHY_ID_BCM5701 }, { TG3PCI_SUBVENDOR_ID_3COM, TG3PCI_SUBDEVICE_ID_3COM_3C940BR01, TG3_PHY_ID_BCM5701 }, /* DELL boards. */ { TG3PCI_SUBVENDOR_ID_DELL, TG3PCI_SUBDEVICE_ID_DELL_VIPER, TG3_PHY_ID_BCM5401 }, { TG3PCI_SUBVENDOR_ID_DELL, TG3PCI_SUBDEVICE_ID_DELL_JAGUAR, TG3_PHY_ID_BCM5401 }, { TG3PCI_SUBVENDOR_ID_DELL, TG3PCI_SUBDEVICE_ID_DELL_MERLOT, TG3_PHY_ID_BCM5411 }, { TG3PCI_SUBVENDOR_ID_DELL, TG3PCI_SUBDEVICE_ID_DELL_SLIM_MERLOT, TG3_PHY_ID_BCM5411 }, /* Compaq boards. */ { TG3PCI_SUBVENDOR_ID_COMPAQ, TG3PCI_SUBDEVICE_ID_COMPAQ_BANSHEE, TG3_PHY_ID_BCM5701 }, { TG3PCI_SUBVENDOR_ID_COMPAQ, TG3PCI_SUBDEVICE_ID_COMPAQ_BANSHEE_2, TG3_PHY_ID_BCM5701 }, { TG3PCI_SUBVENDOR_ID_COMPAQ, TG3PCI_SUBDEVICE_ID_COMPAQ_CHANGELING, 0 }, { TG3PCI_SUBVENDOR_ID_COMPAQ, TG3PCI_SUBDEVICE_ID_COMPAQ_NC7780, TG3_PHY_ID_BCM5701 }, { TG3PCI_SUBVENDOR_ID_COMPAQ, TG3PCI_SUBDEVICE_ID_COMPAQ_NC7780_2, TG3_PHY_ID_BCM5701 }, /* IBM boards. */ { TG3PCI_SUBVENDOR_ID_IBM, TG3PCI_SUBDEVICE_ID_IBM_5703SAX2, 0 } }; static struct subsys_tbl_ent *tg3_lookup_by_subsys(struct tg3 *tp) { int i; for (i = 0; i < ARRAY_SIZE(subsys_id_to_phy_id); i++) { if ((subsys_id_to_phy_id[i].subsys_vendor == tp->pdev->subsystem_vendor) && (subsys_id_to_phy_id[i].subsys_devid == tp->pdev->subsystem_device)) return &subsys_id_to_phy_id[i]; } return NULL; } static void tg3_get_eeprom_hw_cfg(struct tg3 *tp) { u32 val; tp->phy_id = TG3_PHY_ID_INVALID; tp->led_ctrl = LED_CTRL_MODE_PHY_1; /* Assume an onboard device and WOL capable by default. */ tg3_flag_set(tp, EEPROM_WRITE_PROT); tg3_flag_set(tp, WOL_CAP); if (tg3_asic_rev(tp) == ASIC_REV_5906) { if (!(tr32(PCIE_TRANSACTION_CFG) & PCIE_TRANS_CFG_LOM)) { tg3_flag_clear(tp, EEPROM_WRITE_PROT); tg3_flag_set(tp, IS_NIC); } val = tr32(VCPU_CFGSHDW); if (val & VCPU_CFGSHDW_ASPM_DBNC) tg3_flag_set(tp, ASPM_WORKAROUND); if ((val & VCPU_CFGSHDW_WOL_ENABLE) && (val & VCPU_CFGSHDW_WOL_MAGPKT)) { tg3_flag_set(tp, WOL_ENABLE); device_set_wakeup_enable(&tp->pdev->dev, true); } goto done; } tg3_read_mem(tp, NIC_SRAM_DATA_SIG, &val); if (val == NIC_SRAM_DATA_SIG_MAGIC) { u32 nic_cfg, led_cfg; u32 nic_phy_id, ver, cfg2 = 0, cfg4 = 0, eeprom_phy_id; int eeprom_phy_serdes = 0; tg3_read_mem(tp, NIC_SRAM_DATA_CFG, &nic_cfg); tp->nic_sram_data_cfg = nic_cfg; tg3_read_mem(tp, NIC_SRAM_DATA_VER, &ver); ver >>= NIC_SRAM_DATA_VER_SHIFT; if (tg3_asic_rev(tp) != ASIC_REV_5700 && tg3_asic_rev(tp) != ASIC_REV_5701 && tg3_asic_rev(tp) != ASIC_REV_5703 && (ver > 0) && (ver < 0x100)) tg3_read_mem(tp, NIC_SRAM_DATA_CFG_2, &cfg2); if (tg3_asic_rev(tp) == ASIC_REV_5785) tg3_read_mem(tp, NIC_SRAM_DATA_CFG_4, &cfg4); if ((nic_cfg & NIC_SRAM_DATA_CFG_PHY_TYPE_MASK) == NIC_SRAM_DATA_CFG_PHY_TYPE_FIBER) eeprom_phy_serdes = 1; tg3_read_mem(tp, NIC_SRAM_DATA_PHY_ID, &nic_phy_id); if (nic_phy_id != 0) { u32 id1 = nic_phy_id & NIC_SRAM_DATA_PHY_ID1_MASK; u32 id2 = nic_phy_id & NIC_SRAM_DATA_PHY_ID2_MASK; eeprom_phy_id = (id1 >> 16) << 10; eeprom_phy_id |= (id2 & 0xfc00) << 16; eeprom_phy_id |= (id2 & 0x03ff) << 0; } else eeprom_phy_id = 0; tp->phy_id = eeprom_phy_id; if (eeprom_phy_serdes) { if (!tg3_flag(tp, 5705_PLUS)) tp->phy_flags |= TG3_PHYFLG_PHY_SERDES; else tp->phy_flags |= TG3_PHYFLG_MII_SERDES; } if (tg3_flag(tp, 5750_PLUS)) led_cfg = cfg2 & (NIC_SRAM_DATA_CFG_LED_MODE_MASK | SHASTA_EXT_LED_MODE_MASK); else led_cfg = nic_cfg & NIC_SRAM_DATA_CFG_LED_MODE_MASK; switch (led_cfg) { default: case NIC_SRAM_DATA_CFG_LED_MODE_PHY_1: tp->led_ctrl = LED_CTRL_MODE_PHY_1; break; case NIC_SRAM_DATA_CFG_LED_MODE_PHY_2: tp->led_ctrl = LED_CTRL_MODE_PHY_2; break; case NIC_SRAM_DATA_CFG_LED_MODE_MAC: tp->led_ctrl = LED_CTRL_MODE_MAC; /* Default to PHY_1_MODE if 0 (MAC_MODE) is * read on some older 5700/5701 bootcode. */ if (tg3_asic_rev(tp) == ASIC_REV_5700 || tg3_asic_rev(tp) == ASIC_REV_5701) tp->led_ctrl = LED_CTRL_MODE_PHY_1; break; case SHASTA_EXT_LED_SHARED: tp->led_ctrl = LED_CTRL_MODE_SHARED; if (tg3_chip_rev_id(tp) != CHIPREV_ID_5750_A0 && tg3_chip_rev_id(tp) != CHIPREV_ID_5750_A1) tp->led_ctrl |= (LED_CTRL_MODE_PHY_1 | LED_CTRL_MODE_PHY_2); break; case SHASTA_EXT_LED_MAC: tp->led_ctrl = LED_CTRL_MODE_SHASTA_MAC; break; case SHASTA_EXT_LED_COMBO: tp->led_ctrl = LED_CTRL_MODE_COMBO; if (tg3_chip_rev_id(tp) != CHIPREV_ID_5750_A0) tp->led_ctrl |= (LED_CTRL_MODE_PHY_1 | LED_CTRL_MODE_PHY_2); break; } if ((tg3_asic_rev(tp) == ASIC_REV_5700 || tg3_asic_rev(tp) == ASIC_REV_5701) && tp->pdev->subsystem_vendor == PCI_VENDOR_ID_DELL) tp->led_ctrl = LED_CTRL_MODE_PHY_2; if (tg3_chip_rev(tp) == CHIPREV_5784_AX) tp->led_ctrl = LED_CTRL_MODE_PHY_1; if (nic_cfg & NIC_SRAM_DATA_CFG_EEPROM_WP) { tg3_flag_set(tp, EEPROM_WRITE_PROT); if ((tp->pdev->subsystem_vendor == PCI_VENDOR_ID_ARIMA) && (tp->pdev->subsystem_device == 0x205a || tp->pdev->subsystem_device == 0x2063)) tg3_flag_clear(tp, EEPROM_WRITE_PROT); } else { tg3_flag_clear(tp, EEPROM_WRITE_PROT); tg3_flag_set(tp, IS_NIC); } if (nic_cfg & NIC_SRAM_DATA_CFG_ASF_ENABLE) { tg3_flag_set(tp, ENABLE_ASF); if (tg3_flag(tp, 5750_PLUS)) tg3_flag_set(tp, ASF_NEW_HANDSHAKE); } if ((nic_cfg & NIC_SRAM_DATA_CFG_APE_ENABLE) && tg3_flag(tp, 5750_PLUS)) tg3_flag_set(tp, ENABLE_APE); if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES && !(nic_cfg & NIC_SRAM_DATA_CFG_FIBER_WOL)) tg3_flag_clear(tp, WOL_CAP); if (tg3_flag(tp, WOL_CAP) && (nic_cfg & NIC_SRAM_DATA_CFG_WOL_ENABLE)) { tg3_flag_set(tp, WOL_ENABLE); device_set_wakeup_enable(&tp->pdev->dev, true); } if (cfg2 & (1 << 17)) tp->phy_flags |= TG3_PHYFLG_CAPACITIVE_COUPLING; /* serdes signal pre-emphasis in register 0x590 set by */ /* bootcode if bit 18 is set */ if (cfg2 & (1 << 18)) tp->phy_flags |= TG3_PHYFLG_SERDES_PREEMPHASIS; if ((tg3_flag(tp, 57765_PLUS) || (tg3_asic_rev(tp) == ASIC_REV_5784 && tg3_chip_rev(tp) != CHIPREV_5784_AX)) && (cfg2 & NIC_SRAM_DATA_CFG_2_APD_EN)) tp->phy_flags |= TG3_PHYFLG_ENABLE_APD; if (tg3_flag(tp, PCI_EXPRESS)) { u32 cfg3; tg3_read_mem(tp, NIC_SRAM_DATA_CFG_3, &cfg3); if (tg3_asic_rev(tp) != ASIC_REV_5785 && !tg3_flag(tp, 57765_PLUS) && (cfg3 & NIC_SRAM_ASPM_DEBOUNCE)) tg3_flag_set(tp, ASPM_WORKAROUND); if (cfg3 & NIC_SRAM_LNK_FLAP_AVOID) tp->phy_flags |= TG3_PHYFLG_KEEP_LINK_ON_PWRDN; if (cfg3 & NIC_SRAM_1G_ON_VAUX_OK) tp->phy_flags |= TG3_PHYFLG_1G_ON_VAUX_OK; } if (cfg4 & NIC_SRAM_RGMII_INBAND_DISABLE) tg3_flag_set(tp, RGMII_INBAND_DISABLE); if (cfg4 & NIC_SRAM_RGMII_EXT_IBND_RX_EN) tg3_flag_set(tp, RGMII_EXT_IBND_RX_EN); if (cfg4 & NIC_SRAM_RGMII_EXT_IBND_TX_EN) tg3_flag_set(tp, RGMII_EXT_IBND_TX_EN); } done: if (tg3_flag(tp, WOL_CAP)) device_set_wakeup_enable(&tp->pdev->dev, tg3_flag(tp, WOL_ENABLE)); else device_set_wakeup_capable(&tp->pdev->dev, false); } static int tg3_ape_otp_read(struct tg3 *tp, u32 offset, u32 *val) { int i, err; u32 val2, off = offset * 8; err = tg3_nvram_lock(tp); if (err) return err; tg3_ape_write32(tp, TG3_APE_OTP_ADDR, off | APE_OTP_ADDR_CPU_ENABLE); tg3_ape_write32(tp, TG3_APE_OTP_CTRL, APE_OTP_CTRL_PROG_EN | APE_OTP_CTRL_CMD_RD | APE_OTP_CTRL_START); tg3_ape_read32(tp, TG3_APE_OTP_CTRL); udelay(10); for (i = 0; i < 100; i++) { val2 = tg3_ape_read32(tp, TG3_APE_OTP_STATUS); if (val2 & APE_OTP_STATUS_CMD_DONE) { *val = tg3_ape_read32(tp, TG3_APE_OTP_RD_DATA); break; } udelay(10); } tg3_ape_write32(tp, TG3_APE_OTP_CTRL, 0); tg3_nvram_unlock(tp); if (val2 & APE_OTP_STATUS_CMD_DONE) return 0; return -EBUSY; } static int tg3_issue_otp_command(struct tg3 *tp, u32 cmd) { int i; u32 val; tw32(OTP_CTRL, cmd | OTP_CTRL_OTP_CMD_START); tw32(OTP_CTRL, cmd); /* Wait for up to 1 ms for command to execute. */ for (i = 0; i < 100; i++) { val = tr32(OTP_STATUS); if (val & OTP_STATUS_CMD_DONE) break; udelay(10); } return (val & OTP_STATUS_CMD_DONE) ? 0 : -EBUSY; } /* Read the gphy configuration from the OTP region of the chip. The gphy * configuration is a 32-bit value that straddles the alignment boundary. * We do two 32-bit reads and then shift and merge the results. */ static u32 tg3_read_otp_phycfg(struct tg3 *tp) { u32 bhalf_otp, thalf_otp; tw32(OTP_MODE, OTP_MODE_OTP_THRU_GRC); if (tg3_issue_otp_command(tp, OTP_CTRL_OTP_CMD_INIT)) return 0; tw32(OTP_ADDRESS, OTP_ADDRESS_MAGIC1); if (tg3_issue_otp_command(tp, OTP_CTRL_OTP_CMD_READ)) return 0; thalf_otp = tr32(OTP_READ_DATA); tw32(OTP_ADDRESS, OTP_ADDRESS_MAGIC2); if (tg3_issue_otp_command(tp, OTP_CTRL_OTP_CMD_READ)) return 0; bhalf_otp = tr32(OTP_READ_DATA); return ((thalf_otp & 0x0000ffff) << 16) | (bhalf_otp >> 16); } static void tg3_phy_init_link_config(struct tg3 *tp) { u32 adv = ADVERTISED_Autoneg; if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) adv |= ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full; if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES)) adv |= ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_TP; else adv |= ADVERTISED_FIBRE; tp->link_config.advertising = adv; tp->link_config.speed = SPEED_UNKNOWN; tp->link_config.duplex = DUPLEX_UNKNOWN; tp->link_config.autoneg = AUTONEG_ENABLE; tp->link_config.active_speed = SPEED_UNKNOWN; tp->link_config.active_duplex = DUPLEX_UNKNOWN; tp->old_link = -1; } static int tg3_phy_probe(struct tg3 *tp) { u32 hw_phy_id_1, hw_phy_id_2; u32 hw_phy_id, hw_phy_id_masked; int err; /* flow control autonegotiation is default behavior */ tg3_flag_set(tp, PAUSE_AUTONEG); tp->link_config.flowctrl = FLOW_CTRL_TX | FLOW_CTRL_RX; if (tg3_flag(tp, ENABLE_APE)) { switch (tp->pci_fn) { case 0: tp->phy_ape_lock = TG3_APE_LOCK_PHY0; break; case 1: tp->phy_ape_lock = TG3_APE_LOCK_PHY1; break; case 2: tp->phy_ape_lock = TG3_APE_LOCK_PHY2; break; case 3: tp->phy_ape_lock = TG3_APE_LOCK_PHY3; break; } } if (!tg3_flag(tp, ENABLE_ASF) && !(tp->phy_flags & TG3_PHYFLG_ANY_SERDES) && !(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) tp->phy_flags &= ~(TG3_PHYFLG_1G_ON_VAUX_OK | TG3_PHYFLG_KEEP_LINK_ON_PWRDN); if (tg3_flag(tp, USE_PHYLIB)) return tg3_phy_init(tp); /* Reading the PHY ID register can conflict with ASF * firmware access to the PHY hardware. */ err = 0; if (tg3_flag(tp, ENABLE_ASF) || tg3_flag(tp, ENABLE_APE)) { hw_phy_id = hw_phy_id_masked = TG3_PHY_ID_INVALID; } else { /* Now read the physical PHY_ID from the chip and verify * that it is sane. If it doesn't look good, we fall back * to either the hard-coded table based PHY_ID and failing * that the value found in the eeprom area. */ err |= tg3_readphy(tp, MII_PHYSID1, &hw_phy_id_1); err |= tg3_readphy(tp, MII_PHYSID2, &hw_phy_id_2); hw_phy_id = (hw_phy_id_1 & 0xffff) << 10; hw_phy_id |= (hw_phy_id_2 & 0xfc00) << 16; hw_phy_id |= (hw_phy_id_2 & 0x03ff) << 0; hw_phy_id_masked = hw_phy_id & TG3_PHY_ID_MASK; } if (!err && TG3_KNOWN_PHY_ID(hw_phy_id_masked)) { tp->phy_id = hw_phy_id; if (hw_phy_id_masked == TG3_PHY_ID_BCM8002) tp->phy_flags |= TG3_PHYFLG_PHY_SERDES; else tp->phy_flags &= ~TG3_PHYFLG_PHY_SERDES; } else { if (tp->phy_id != TG3_PHY_ID_INVALID) { /* Do nothing, phy ID already set up in * tg3_get_eeprom_hw_cfg(). */ } else { struct subsys_tbl_ent *p; /* No eeprom signature? Try the hardcoded * subsys device table. */ p = tg3_lookup_by_subsys(tp); if (p) { tp->phy_id = p->phy_id; } else if (!tg3_flag(tp, IS_SSB_CORE)) { /* For now we saw the IDs 0xbc050cd0, * 0xbc050f80 and 0xbc050c30 on devices * connected to an BCM4785 and there are * probably more. Just assume that the phy is * supported when it is connected to a SSB core * for now. */ return -ENODEV; } if (!tp->phy_id || tp->phy_id == TG3_PHY_ID_BCM8002) tp->phy_flags |= TG3_PHYFLG_PHY_SERDES; } } if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES) && (tg3_asic_rev(tp) == ASIC_REV_5719 || tg3_asic_rev(tp) == ASIC_REV_5720 || tg3_asic_rev(tp) == ASIC_REV_57766 || tg3_asic_rev(tp) == ASIC_REV_5762 || (tg3_asic_rev(tp) == ASIC_REV_5717 && tg3_chip_rev_id(tp) != CHIPREV_ID_5717_A0) || (tg3_asic_rev(tp) == ASIC_REV_57765 && tg3_chip_rev_id(tp) != CHIPREV_ID_57765_A0))) { tp->phy_flags |= TG3_PHYFLG_EEE_CAP; tp->eee.supported = SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full; tp->eee.advertised = ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full; tp->eee.eee_enabled = 1; tp->eee.tx_lpi_enabled = 1; tp->eee.tx_lpi_timer = TG3_CPMU_DBTMR1_LNKIDLE_2047US; } tg3_phy_init_link_config(tp); if (!(tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN) && !(tp->phy_flags & TG3_PHYFLG_ANY_SERDES) && !tg3_flag(tp, ENABLE_APE) && !tg3_flag(tp, ENABLE_ASF)) { u32 bmsr, dummy; tg3_readphy(tp, MII_BMSR, &bmsr); if (!tg3_readphy(tp, MII_BMSR, &bmsr) && (bmsr & BMSR_LSTATUS)) goto skip_phy_reset; err = tg3_phy_reset(tp); if (err) return err; tg3_phy_set_wirespeed(tp); if (!tg3_phy_copper_an_config_ok(tp, &dummy)) { tg3_phy_autoneg_cfg(tp, tp->link_config.advertising, tp->link_config.flowctrl); tg3_writephy(tp, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART); } } skip_phy_reset: if ((tp->phy_id & TG3_PHY_ID_MASK) == TG3_PHY_ID_BCM5401) { err = tg3_init_5401phy_dsp(tp); if (err) return err; err = tg3_init_5401phy_dsp(tp); } return err; } static void tg3_read_vpd(struct tg3 *tp) { u8 *vpd_data; unsigned int block_end, rosize, len; u32 vpdlen; int j, i = 0; vpd_data = (u8 *)tg3_vpd_readblock(tp, &vpdlen); if (!vpd_data) goto out_no_vpd; i = pci_vpd_find_tag(vpd_data, 0, vpdlen, PCI_VPD_LRDT_RO_DATA); if (i < 0) goto out_not_found; rosize = pci_vpd_lrdt_size(&vpd_data[i]); block_end = i + PCI_VPD_LRDT_TAG_SIZE + rosize; i += PCI_VPD_LRDT_TAG_SIZE; if (block_end > vpdlen) goto out_not_found; j = pci_vpd_find_info_keyword(vpd_data, i, rosize, PCI_VPD_RO_KEYWORD_MFR_ID); if (j > 0) { len = pci_vpd_info_field_size(&vpd_data[j]); j += PCI_VPD_INFO_FLD_HDR_SIZE; if (j + len > block_end || len != 4 || memcmp(&vpd_data[j], "1028", 4)) goto partno; j = pci_vpd_find_info_keyword(vpd_data, i, rosize, PCI_VPD_RO_KEYWORD_VENDOR0); if (j < 0) goto partno; len = pci_vpd_info_field_size(&vpd_data[j]); j += PCI_VPD_INFO_FLD_HDR_SIZE; if (j + len > block_end) goto partno; if (len >= sizeof(tp->fw_ver)) len = sizeof(tp->fw_ver) - 1; memset(tp->fw_ver, 0, sizeof(tp->fw_ver)); snprintf(tp->fw_ver, sizeof(tp->fw_ver), "%.*s bc ", len, &vpd_data[j]); } partno: i = pci_vpd_find_info_keyword(vpd_data, i, rosize, PCI_VPD_RO_KEYWORD_PARTNO); if (i < 0) goto out_not_found; len = pci_vpd_info_field_size(&vpd_data[i]); i += PCI_VPD_INFO_FLD_HDR_SIZE; if (len > TG3_BPN_SIZE || (len + i) > vpdlen) goto out_not_found; memcpy(tp->board_part_number, &vpd_data[i], len); out_not_found: kfree(vpd_data); if (tp->board_part_number[0]) return; out_no_vpd: if (tg3_asic_rev(tp) == ASIC_REV_5717) { if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717_C) strcpy(tp->board_part_number, "BCM5717"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_5718) strcpy(tp->board_part_number, "BCM5718"); else goto nomatch; } else if (tg3_asic_rev(tp) == ASIC_REV_57780) { if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57780) strcpy(tp->board_part_number, "BCM57780"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57760) strcpy(tp->board_part_number, "BCM57760"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57790) strcpy(tp->board_part_number, "BCM57790"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57788) strcpy(tp->board_part_number, "BCM57788"); else goto nomatch; } else if (tg3_asic_rev(tp) == ASIC_REV_57765) { if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57761) strcpy(tp->board_part_number, "BCM57761"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57765) strcpy(tp->board_part_number, "BCM57765"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57781) strcpy(tp->board_part_number, "BCM57781"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57785) strcpy(tp->board_part_number, "BCM57785"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57791) strcpy(tp->board_part_number, "BCM57791"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57795) strcpy(tp->board_part_number, "BCM57795"); else goto nomatch; } else if (tg3_asic_rev(tp) == ASIC_REV_57766) { if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57762) strcpy(tp->board_part_number, "BCM57762"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57766) strcpy(tp->board_part_number, "BCM57766"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57782) strcpy(tp->board_part_number, "BCM57782"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57786) strcpy(tp->board_part_number, "BCM57786"); else goto nomatch; } else if (tg3_asic_rev(tp) == ASIC_REV_5906) { strcpy(tp->board_part_number, "BCM95906"); } else { nomatch: strcpy(tp->board_part_number, "none"); } } static int tg3_fw_img_is_valid(struct tg3 *tp, u32 offset) { u32 val; if (tg3_nvram_read(tp, offset, &val) || (val & 0xfc000000) != 0x0c000000 || tg3_nvram_read(tp, offset + 4, &val) || val != 0) return 0; return 1; } static void tg3_read_bc_ver(struct tg3 *tp) { u32 val, offset, start, ver_offset; int i, dst_off; bool newver = false; if (tg3_nvram_read(tp, 0xc, &offset) || tg3_nvram_read(tp, 0x4, &start)) return; offset = tg3_nvram_logical_addr(tp, offset); if (tg3_nvram_read(tp, offset, &val)) return; if ((val & 0xfc000000) == 0x0c000000) { if (tg3_nvram_read(tp, offset + 4, &val)) return; if (val == 0) newver = true; } dst_off = strlen(tp->fw_ver); if (newver) { if (TG3_VER_SIZE - dst_off < 16 || tg3_nvram_read(tp, offset + 8, &ver_offset)) return; offset = offset + ver_offset - start; for (i = 0; i < 16; i += 4) { __be32 v; if (tg3_nvram_read_be32(tp, offset + i, &v)) return; memcpy(tp->fw_ver + dst_off + i, &v, sizeof(v)); } } else { u32 major, minor; if (tg3_nvram_read(tp, TG3_NVM_PTREV_BCVER, &ver_offset)) return; major = (ver_offset & TG3_NVM_BCVER_MAJMSK) >> TG3_NVM_BCVER_MAJSFT; minor = ver_offset & TG3_NVM_BCVER_MINMSK; snprintf(&tp->fw_ver[dst_off], TG3_VER_SIZE - dst_off, "v%d.%02d", major, minor); } } static void tg3_read_hwsb_ver(struct tg3 *tp) { u32 val, major, minor; /* Use native endian representation */ if (tg3_nvram_read(tp, TG3_NVM_HWSB_CFG1, &val)) return; major = (val & TG3_NVM_HWSB_CFG1_MAJMSK) >> TG3_NVM_HWSB_CFG1_MAJSFT; minor = (val & TG3_NVM_HWSB_CFG1_MINMSK) >> TG3_NVM_HWSB_CFG1_MINSFT; snprintf(&tp->fw_ver[0], 32, "sb v%d.%02d", major, minor); } static void tg3_read_sb_ver(struct tg3 *tp, u32 val) { u32 offset, major, minor, build; strncat(tp->fw_ver, "sb", TG3_VER_SIZE - strlen(tp->fw_ver) - 1); if ((val & TG3_EEPROM_SB_FORMAT_MASK) != TG3_EEPROM_SB_FORMAT_1) return; switch (val & TG3_EEPROM_SB_REVISION_MASK) { case TG3_EEPROM_SB_REVISION_0: offset = TG3_EEPROM_SB_F1R0_EDH_OFF; break; case TG3_EEPROM_SB_REVISION_2: offset = TG3_EEPROM_SB_F1R2_EDH_OFF; break; case TG3_EEPROM_SB_REVISION_3: offset = TG3_EEPROM_SB_F1R3_EDH_OFF; break; case TG3_EEPROM_SB_REVISION_4: offset = TG3_EEPROM_SB_F1R4_EDH_OFF; break; case TG3_EEPROM_SB_REVISION_5: offset = TG3_EEPROM_SB_F1R5_EDH_OFF; break; case TG3_EEPROM_SB_REVISION_6: offset = TG3_EEPROM_SB_F1R6_EDH_OFF; break; default: return; } if (tg3_nvram_read(tp, offset, &val)) return; build = (val & TG3_EEPROM_SB_EDH_BLD_MASK) >> TG3_EEPROM_SB_EDH_BLD_SHFT; major = (val & TG3_EEPROM_SB_EDH_MAJ_MASK) >> TG3_EEPROM_SB_EDH_MAJ_SHFT; minor = val & TG3_EEPROM_SB_EDH_MIN_MASK; if (minor > 99 || build > 26) return; offset = strlen(tp->fw_ver); snprintf(&tp->fw_ver[offset], TG3_VER_SIZE - offset, " v%d.%02d", major, minor); if (build > 0) { offset = strlen(tp->fw_ver); if (offset < TG3_VER_SIZE - 1) tp->fw_ver[offset] = 'a' + build - 1; } } static void tg3_read_mgmtfw_ver(struct tg3 *tp) { u32 val, offset, start; int i, vlen; for (offset = TG3_NVM_DIR_START; offset < TG3_NVM_DIR_END; offset += TG3_NVM_DIRENT_SIZE) { if (tg3_nvram_read(tp, offset, &val)) return; if ((val >> TG3_NVM_DIRTYPE_SHIFT) == TG3_NVM_DIRTYPE_ASFINI) break; } if (offset == TG3_NVM_DIR_END) return; if (!tg3_flag(tp, 5705_PLUS)) start = 0x08000000; else if (tg3_nvram_read(tp, offset - 4, &start)) return; if (tg3_nvram_read(tp, offset + 4, &offset) || !tg3_fw_img_is_valid(tp, offset) || tg3_nvram_read(tp, offset + 8, &val)) return; offset += val - start; vlen = strlen(tp->fw_ver); tp->fw_ver[vlen++] = ','; tp->fw_ver[vlen++] = ' '; for (i = 0; i < 4; i++) { __be32 v; if (tg3_nvram_read_be32(tp, offset, &v)) return; offset += sizeof(v); if (vlen > TG3_VER_SIZE - sizeof(v)) { memcpy(&tp->fw_ver[vlen], &v, TG3_VER_SIZE - vlen); break; } memcpy(&tp->fw_ver[vlen], &v, sizeof(v)); vlen += sizeof(v); } } static void tg3_probe_ncsi(struct tg3 *tp) { u32 apedata; apedata = tg3_ape_read32(tp, TG3_APE_SEG_SIG); if (apedata != APE_SEG_SIG_MAGIC) return; apedata = tg3_ape_read32(tp, TG3_APE_FW_STATUS); if (!(apedata & APE_FW_STATUS_READY)) return; if (tg3_ape_read32(tp, TG3_APE_FW_FEATURES) & TG3_APE_FW_FEATURE_NCSI) tg3_flag_set(tp, APE_HAS_NCSI); } static void tg3_read_dash_ver(struct tg3 *tp) { int vlen; u32 apedata; char *fwtype; apedata = tg3_ape_read32(tp, TG3_APE_FW_VERSION); if (tg3_flag(tp, APE_HAS_NCSI)) fwtype = "NCSI"; else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_5725) fwtype = "SMASH"; else fwtype = "DASH"; vlen = strlen(tp->fw_ver); snprintf(&tp->fw_ver[vlen], TG3_VER_SIZE - vlen, " %s v%d.%d.%d.%d", fwtype, (apedata & APE_FW_VERSION_MAJMSK) >> APE_FW_VERSION_MAJSFT, (apedata & APE_FW_VERSION_MINMSK) >> APE_FW_VERSION_MINSFT, (apedata & APE_FW_VERSION_REVMSK) >> APE_FW_VERSION_REVSFT, (apedata & APE_FW_VERSION_BLDMSK)); } static void tg3_read_otp_ver(struct tg3 *tp) { u32 val, val2; if (tg3_asic_rev(tp) != ASIC_REV_5762) return; if (!tg3_ape_otp_read(tp, OTP_ADDRESS_MAGIC0, &val) && !tg3_ape_otp_read(tp, OTP_ADDRESS_MAGIC0 + 4, &val2) && TG3_OTP_MAGIC0_VALID(val)) { u64 val64 = (u64) val << 32 | val2; u32 ver = 0; int i, vlen; for (i = 0; i < 7; i++) { if ((val64 & 0xff) == 0) break; ver = val64 & 0xff; val64 >>= 8; } vlen = strlen(tp->fw_ver); snprintf(&tp->fw_ver[vlen], TG3_VER_SIZE - vlen, " .%02d", ver); } } static void tg3_read_fw_ver(struct tg3 *tp) { u32 val; bool vpd_vers = false; if (tp->fw_ver[0] != 0) vpd_vers = true; if (tg3_flag(tp, NO_NVRAM)) { strcat(tp->fw_ver, "sb"); tg3_read_otp_ver(tp); return; } if (tg3_nvram_read(tp, 0, &val)) return; if (val == TG3_EEPROM_MAGIC) tg3_read_bc_ver(tp); else if ((val & TG3_EEPROM_MAGIC_FW_MSK) == TG3_EEPROM_MAGIC_FW) tg3_read_sb_ver(tp, val); else if ((val & TG3_EEPROM_MAGIC_HW_MSK) == TG3_EEPROM_MAGIC_HW) tg3_read_hwsb_ver(tp); if (tg3_flag(tp, ENABLE_ASF)) { if (tg3_flag(tp, ENABLE_APE)) { tg3_probe_ncsi(tp); if (!vpd_vers) tg3_read_dash_ver(tp); } else if (!vpd_vers) { tg3_read_mgmtfw_ver(tp); } } tp->fw_ver[TG3_VER_SIZE - 1] = 0; } static inline u32 tg3_rx_ret_ring_size(struct tg3 *tp) { if (tg3_flag(tp, LRG_PROD_RING_CAP)) return TG3_RX_RET_MAX_SIZE_5717; else if (tg3_flag(tp, JUMBO_CAPABLE) && !tg3_flag(tp, 5780_CLASS)) return TG3_RX_RET_MAX_SIZE_5700; else return TG3_RX_RET_MAX_SIZE_5705; } static DEFINE_PCI_DEVICE_TABLE(tg3_write_reorder_chipsets) = { { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_FE_GATE_700C) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_8131_BRIDGE) }, { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_8385_0) }, { }, }; static struct pci_dev *tg3_find_peer(struct tg3 *tp) { struct pci_dev *peer; unsigned int func, devnr = tp->pdev->devfn & ~7; for (func = 0; func < 8; func++) { peer = pci_get_slot(tp->pdev->bus, devnr | func); if (peer && peer != tp->pdev) break; pci_dev_put(peer); } /* 5704 can be configured in single-port mode, set peer to * tp->pdev in that case. */ if (!peer) { peer = tp->pdev; return peer; } /* * We don't need to keep the refcount elevated; there's no way * to remove one half of this device without removing the other */ pci_dev_put(peer); return peer; } static void tg3_detect_asic_rev(struct tg3 *tp, u32 misc_ctrl_reg) { tp->pci_chip_rev_id = misc_ctrl_reg >> MISC_HOST_CTRL_CHIPREV_SHIFT; if (tg3_asic_rev(tp) == ASIC_REV_USE_PROD_ID_REG) { u32 reg; /* All devices that use the alternate * ASIC REV location have a CPMU. */ tg3_flag_set(tp, CPMU_PRESENT); if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717_C || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5718 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5719 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5720 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5762 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5725 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5727) reg = TG3PCI_GEN2_PRODID_ASICREV; else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57781 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_57785 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_57761 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_57765 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_57791 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_57795 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_57762 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_57766 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_57782 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_57786) reg = TG3PCI_GEN15_PRODID_ASICREV; else reg = TG3PCI_PRODID_ASICREV; pci_read_config_dword(tp->pdev, reg, &tp->pci_chip_rev_id); } /* Wrong chip ID in 5752 A0. This code can be removed later * as A0 is not in production. */ if (tg3_chip_rev_id(tp) == CHIPREV_ID_5752_A0_HW) tp->pci_chip_rev_id = CHIPREV_ID_5752_A0; if (tg3_chip_rev_id(tp) == CHIPREV_ID_5717_C0) tp->pci_chip_rev_id = CHIPREV_ID_5720_A0; if (tg3_asic_rev(tp) == ASIC_REV_5717 || tg3_asic_rev(tp) == ASIC_REV_5719 || tg3_asic_rev(tp) == ASIC_REV_5720) tg3_flag_set(tp, 5717_PLUS); if (tg3_asic_rev(tp) == ASIC_REV_57765 || tg3_asic_rev(tp) == ASIC_REV_57766) tg3_flag_set(tp, 57765_CLASS); if (tg3_flag(tp, 57765_CLASS) || tg3_flag(tp, 5717_PLUS) || tg3_asic_rev(tp) == ASIC_REV_5762) tg3_flag_set(tp, 57765_PLUS); /* Intentionally exclude ASIC_REV_5906 */ if (tg3_asic_rev(tp) == ASIC_REV_5755 || tg3_asic_rev(tp) == ASIC_REV_5787 || tg3_asic_rev(tp) == ASIC_REV_5784 || tg3_asic_rev(tp) == ASIC_REV_5761 || tg3_asic_rev(tp) == ASIC_REV_5785 || tg3_asic_rev(tp) == ASIC_REV_57780 || tg3_flag(tp, 57765_PLUS)) tg3_flag_set(tp, 5755_PLUS); if (tg3_asic_rev(tp) == ASIC_REV_5780 || tg3_asic_rev(tp) == ASIC_REV_5714) tg3_flag_set(tp, 5780_CLASS); if (tg3_asic_rev(tp) == ASIC_REV_5750 || tg3_asic_rev(tp) == ASIC_REV_5752 || tg3_asic_rev(tp) == ASIC_REV_5906 || tg3_flag(tp, 5755_PLUS) || tg3_flag(tp, 5780_CLASS)) tg3_flag_set(tp, 5750_PLUS); if (tg3_asic_rev(tp) == ASIC_REV_5705 || tg3_flag(tp, 5750_PLUS)) tg3_flag_set(tp, 5705_PLUS); } static bool tg3_10_100_only_device(struct tg3 *tp, const struct pci_device_id *ent) { u32 grc_misc_cfg = tr32(GRC_MISC_CFG) & GRC_MISC_CFG_BOARD_ID_MASK; if ((tg3_asic_rev(tp) == ASIC_REV_5703 && (grc_misc_cfg == 0x8000 || grc_misc_cfg == 0x4000)) || (tp->phy_flags & TG3_PHYFLG_IS_FET)) return true; if (ent->driver_data & TG3_DRV_DATA_FLAG_10_100_ONLY) { if (tg3_asic_rev(tp) == ASIC_REV_5705) { if (ent->driver_data & TG3_DRV_DATA_FLAG_5705_10_100) return true; } else { return true; } } return false; } static int tg3_get_invariants(struct tg3 *tp, const struct pci_device_id *ent) { u32 misc_ctrl_reg; u32 pci_state_reg, grc_misc_cfg; u32 val; u16 pci_cmd; int err; /* Force memory write invalidate off. If we leave it on, * then on 5700_BX chips we have to enable a workaround. * The workaround is to set the TG3PCI_DMA_RW_CTRL boundary * to match the cacheline size. The Broadcom driver have this * workaround but turns MWI off all the times so never uses * it. This seems to suggest that the workaround is insufficient. */ pci_read_config_word(tp->pdev, PCI_COMMAND, &pci_cmd); pci_cmd &= ~PCI_COMMAND_INVALIDATE; pci_write_config_word(tp->pdev, PCI_COMMAND, pci_cmd); /* Important! -- Make sure register accesses are byteswapped * correctly. Also, for those chips that require it, make * sure that indirect register accesses are enabled before * the first operation. */ pci_read_config_dword(tp->pdev, TG3PCI_MISC_HOST_CTRL, &misc_ctrl_reg); tp->misc_host_ctrl |= (misc_ctrl_reg & MISC_HOST_CTRL_CHIPREV); pci_write_config_dword(tp->pdev, TG3PCI_MISC_HOST_CTRL, tp->misc_host_ctrl); tg3_detect_asic_rev(tp, misc_ctrl_reg); /* If we have 5702/03 A1 or A2 on certain ICH chipsets, * we need to disable memory and use config. cycles * only to access all registers. The 5702/03 chips * can mistakenly decode the special cycles from the * ICH chipsets as memory write cycles, causing corruption * of register and memory space. Only certain ICH bridges * will drive special cycles with non-zero data during the * address phase which can fall within the 5703's address * range. This is not an ICH bug as the PCI spec allows * non-zero address during special cycles. However, only * these ICH bridges are known to drive non-zero addresses * during special cycles. * * Since special cycles do not cross PCI bridges, we only * enable this workaround if the 5703 is on the secondary * bus of these ICH bridges. */ if ((tg3_chip_rev_id(tp) == CHIPREV_ID_5703_A1) || (tg3_chip_rev_id(tp) == CHIPREV_ID_5703_A2)) { static struct tg3_dev_id { u32 vendor; u32 device; u32 rev; } ich_chipsets[] = { { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801AA_8, PCI_ANY_ID }, { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801AB_8, PCI_ANY_ID }, { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801BA_11, 0xa }, { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801BA_6, PCI_ANY_ID }, { }, }; struct tg3_dev_id *pci_id = &ich_chipsets[0]; struct pci_dev *bridge = NULL; while (pci_id->vendor != 0) { bridge = pci_get_device(pci_id->vendor, pci_id->device, bridge); if (!bridge) { pci_id++; continue; } if (pci_id->rev != PCI_ANY_ID) { if (bridge->revision > pci_id->rev) continue; } if (bridge->subordinate && (bridge->subordinate->number == tp->pdev->bus->number)) { tg3_flag_set(tp, ICH_WORKAROUND); pci_dev_put(bridge); break; } } } if (tg3_asic_rev(tp) == ASIC_REV_5701) { static struct tg3_dev_id { u32 vendor; u32 device; } bridge_chipsets[] = { { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_PXH_0 }, { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_PXH_1 }, { }, }; struct tg3_dev_id *pci_id = &bridge_chipsets[0]; struct pci_dev *bridge = NULL; while (pci_id->vendor != 0) { bridge = pci_get_device(pci_id->vendor, pci_id->device, bridge); if (!bridge) { pci_id++; continue; } if (bridge->subordinate && (bridge->subordinate->number <= tp->pdev->bus->number) && (bridge->subordinate->busn_res.end >= tp->pdev->bus->number)) { tg3_flag_set(tp, 5701_DMA_BUG); pci_dev_put(bridge); break; } } } /* The EPB bridge inside 5714, 5715, and 5780 cannot support * DMA addresses > 40-bit. This bridge may have other additional * 57xx devices behind it in some 4-port NIC designs for example. * Any tg3 device found behind the bridge will also need the 40-bit * DMA workaround. */ if (tg3_flag(tp, 5780_CLASS)) { tg3_flag_set(tp, 40BIT_DMA_BUG); tp->msi_cap = pci_find_capability(tp->pdev, PCI_CAP_ID_MSI); } else { struct pci_dev *bridge = NULL; do { bridge = pci_get_device(PCI_VENDOR_ID_SERVERWORKS, PCI_DEVICE_ID_SERVERWORKS_EPB, bridge); if (bridge && bridge->subordinate && (bridge->subordinate->number <= tp->pdev->bus->number) && (bridge->subordinate->busn_res.end >= tp->pdev->bus->number)) { tg3_flag_set(tp, 40BIT_DMA_BUG); pci_dev_put(bridge); break; } } while (bridge); } if (tg3_asic_rev(tp) == ASIC_REV_5704 || tg3_asic_rev(tp) == ASIC_REV_5714) tp->pdev_peer = tg3_find_peer(tp); /* Determine TSO capabilities */ if (tg3_chip_rev_id(tp) == CHIPREV_ID_5719_A0) ; /* Do nothing. HW bug. */ else if (tg3_flag(tp, 57765_PLUS)) tg3_flag_set(tp, HW_TSO_3); else if (tg3_flag(tp, 5755_PLUS) || tg3_asic_rev(tp) == ASIC_REV_5906) tg3_flag_set(tp, HW_TSO_2); else if (tg3_flag(tp, 5750_PLUS)) { tg3_flag_set(tp, HW_TSO_1); tg3_flag_set(tp, TSO_BUG); if (tg3_asic_rev(tp) == ASIC_REV_5750 && tg3_chip_rev_id(tp) >= CHIPREV_ID_5750_C2) tg3_flag_clear(tp, TSO_BUG); } else if (tg3_asic_rev(tp) != ASIC_REV_5700 && tg3_asic_rev(tp) != ASIC_REV_5701 && tg3_chip_rev_id(tp) != CHIPREV_ID_5705_A0) { tg3_flag_set(tp, FW_TSO); tg3_flag_set(tp, TSO_BUG); if (tg3_asic_rev(tp) == ASIC_REV_5705) tp->fw_needed = FIRMWARE_TG3TSO5; else tp->fw_needed = FIRMWARE_TG3TSO; } /* Selectively allow TSO based on operating conditions */ if (tg3_flag(tp, HW_TSO_1) || tg3_flag(tp, HW_TSO_2) || tg3_flag(tp, HW_TSO_3) || tg3_flag(tp, FW_TSO)) { /* For firmware TSO, assume ASF is disabled. * We'll disable TSO later if we discover ASF * is enabled in tg3_get_eeprom_hw_cfg(). */ tg3_flag_set(tp, TSO_CAPABLE); } else { tg3_flag_clear(tp, TSO_CAPABLE); tg3_flag_clear(tp, TSO_BUG); tp->fw_needed = NULL; } if (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0) tp->fw_needed = FIRMWARE_TG3; if (tg3_asic_rev(tp) == ASIC_REV_57766) tp->fw_needed = FIRMWARE_TG357766; tp->irq_max = 1; if (tg3_flag(tp, 5750_PLUS)) { tg3_flag_set(tp, SUPPORT_MSI); if (tg3_chip_rev(tp) == CHIPREV_5750_AX || tg3_chip_rev(tp) == CHIPREV_5750_BX || (tg3_asic_rev(tp) == ASIC_REV_5714 && tg3_chip_rev_id(tp) <= CHIPREV_ID_5714_A2 && tp->pdev_peer == tp->pdev)) tg3_flag_clear(tp, SUPPORT_MSI); if (tg3_flag(tp, 5755_PLUS) || tg3_asic_rev(tp) == ASIC_REV_5906) { tg3_flag_set(tp, 1SHOT_MSI); } if (tg3_flag(tp, 57765_PLUS)) { tg3_flag_set(tp, SUPPORT_MSIX); tp->irq_max = TG3_IRQ_MAX_VECS; } } tp->txq_max = 1; tp->rxq_max = 1; if (tp->irq_max > 1) { tp->rxq_max = TG3_RSS_MAX_NUM_QS; tg3_rss_init_dflt_indir_tbl(tp, TG3_RSS_MAX_NUM_QS); if (tg3_asic_rev(tp) == ASIC_REV_5719 || tg3_asic_rev(tp) == ASIC_REV_5720) tp->txq_max = tp->irq_max - 1; } if (tg3_flag(tp, 5755_PLUS) || tg3_asic_rev(tp) == ASIC_REV_5906) tg3_flag_set(tp, SHORT_DMA_BUG); if (tg3_asic_rev(tp) == ASIC_REV_5719) tp->dma_limit = TG3_TX_BD_DMA_MAX_4K; if (tg3_asic_rev(tp) == ASIC_REV_5717 || tg3_asic_rev(tp) == ASIC_REV_5719 || tg3_asic_rev(tp) == ASIC_REV_5720 || tg3_asic_rev(tp) == ASIC_REV_5762) tg3_flag_set(tp, LRG_PROD_RING_CAP); if (tg3_flag(tp, 57765_PLUS) && tg3_chip_rev_id(tp) != CHIPREV_ID_5719_A0) tg3_flag_set(tp, USE_JUMBO_BDFLAG); if (!tg3_flag(tp, 5705_PLUS) || tg3_flag(tp, 5780_CLASS) || tg3_flag(tp, USE_JUMBO_BDFLAG)) tg3_flag_set(tp, JUMBO_CAPABLE); pci_read_config_dword(tp->pdev, TG3PCI_PCISTATE, &pci_state_reg); if (pci_is_pcie(tp->pdev)) { u16 lnkctl; tg3_flag_set(tp, PCI_EXPRESS); pcie_capability_read_word(tp->pdev, PCI_EXP_LNKCTL, &lnkctl); if (lnkctl & PCI_EXP_LNKCTL_CLKREQ_EN) { if (tg3_asic_rev(tp) == ASIC_REV_5906) { tg3_flag_clear(tp, HW_TSO_2); tg3_flag_clear(tp, TSO_CAPABLE); } if (tg3_asic_rev(tp) == ASIC_REV_5784 || tg3_asic_rev(tp) == ASIC_REV_5761 || tg3_chip_rev_id(tp) == CHIPREV_ID_57780_A0 || tg3_chip_rev_id(tp) == CHIPREV_ID_57780_A1) tg3_flag_set(tp, CLKREQ_BUG); } else if (tg3_chip_rev_id(tp) == CHIPREV_ID_5717_A0) { tg3_flag_set(tp, L1PLLPD_EN); } } else if (tg3_asic_rev(tp) == ASIC_REV_5785) { /* BCM5785 devices are effectively PCIe devices, and should * follow PCIe codepaths, but do not have a PCIe capabilities * section. */ tg3_flag_set(tp, PCI_EXPRESS); } else if (!tg3_flag(tp, 5705_PLUS) || tg3_flag(tp, 5780_CLASS)) { tp->pcix_cap = pci_find_capability(tp->pdev, PCI_CAP_ID_PCIX); if (!tp->pcix_cap) { dev_err(&tp->pdev->dev, "Cannot find PCI-X capability, aborting\n"); return -EIO; } if (!(pci_state_reg & PCISTATE_CONV_PCI_MODE)) tg3_flag_set(tp, PCIX_MODE); } /* If we have an AMD 762 or VIA K8T800 chipset, write * reordering to the mailbox registers done by the host * controller can cause major troubles. We read back from * every mailbox register write to force the writes to be * posted to the chip in order. */ if (pci_dev_present(tg3_write_reorder_chipsets) && !tg3_flag(tp, PCI_EXPRESS)) tg3_flag_set(tp, MBOX_WRITE_REORDER); pci_read_config_byte(tp->pdev, PCI_CACHE_LINE_SIZE, &tp->pci_cacheline_sz); pci_read_config_byte(tp->pdev, PCI_LATENCY_TIMER, &tp->pci_lat_timer); if (tg3_asic_rev(tp) == ASIC_REV_5703 && tp->pci_lat_timer < 64) { tp->pci_lat_timer = 64; pci_write_config_byte(tp->pdev, PCI_LATENCY_TIMER, tp->pci_lat_timer); } /* Important! -- It is critical that the PCI-X hw workaround * situation is decided before the first MMIO register access. */ if (tg3_chip_rev(tp) == CHIPREV_5700_BX) { /* 5700 BX chips need to have their TX producer index * mailboxes written twice to workaround a bug. */ tg3_flag_set(tp, TXD_MBOX_HWBUG); /* If we are in PCI-X mode, enable register write workaround. * * The workaround is to use indirect register accesses * for all chip writes not to mailbox registers. */ if (tg3_flag(tp, PCIX_MODE)) { u32 pm_reg; tg3_flag_set(tp, PCIX_TARGET_HWBUG); /* The chip can have it's power management PCI config * space registers clobbered due to this bug. * So explicitly force the chip into D0 here. */ pci_read_config_dword(tp->pdev, tp->pm_cap + PCI_PM_CTRL, &pm_reg); pm_reg &= ~PCI_PM_CTRL_STATE_MASK; pm_reg |= PCI_PM_CTRL_PME_ENABLE | 0 /* D0 */; pci_write_config_dword(tp->pdev, tp->pm_cap + PCI_PM_CTRL, pm_reg); /* Also, force SERR#/PERR# in PCI command. */ pci_read_config_word(tp->pdev, PCI_COMMAND, &pci_cmd); pci_cmd |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR; pci_write_config_word(tp->pdev, PCI_COMMAND, pci_cmd); } } if ((pci_state_reg & PCISTATE_BUS_SPEED_HIGH) != 0) tg3_flag_set(tp, PCI_HIGH_SPEED); if ((pci_state_reg & PCISTATE_BUS_32BIT) != 0) tg3_flag_set(tp, PCI_32BIT); /* Chip-specific fixup from Broadcom driver */ if ((tg3_chip_rev_id(tp) == CHIPREV_ID_5704_A0) && (!(pci_state_reg & PCISTATE_RETRY_SAME_DMA))) { pci_state_reg |= PCISTATE_RETRY_SAME_DMA; pci_write_config_dword(tp->pdev, TG3PCI_PCISTATE, pci_state_reg); } /* Default fast path register access methods */ tp->read32 = tg3_read32; tp->write32 = tg3_write32; tp->read32_mbox = tg3_read32; tp->write32_mbox = tg3_write32; tp->write32_tx_mbox = tg3_write32; tp->write32_rx_mbox = tg3_write32; /* Various workaround register access methods */ if (tg3_flag(tp, PCIX_TARGET_HWBUG)) tp->write32 = tg3_write_indirect_reg32; else if (tg3_asic_rev(tp) == ASIC_REV_5701 || (tg3_flag(tp, PCI_EXPRESS) && tg3_chip_rev_id(tp) == CHIPREV_ID_5750_A0)) { /* * Back to back register writes can cause problems on these * chips, the workaround is to read back all reg writes * except those to mailbox regs. * * See tg3_write_indirect_reg32(). */ tp->write32 = tg3_write_flush_reg32; } if (tg3_flag(tp, TXD_MBOX_HWBUG) || tg3_flag(tp, MBOX_WRITE_REORDER)) { tp->write32_tx_mbox = tg3_write32_tx_mbox; if (tg3_flag(tp, MBOX_WRITE_REORDER)) tp->write32_rx_mbox = tg3_write_flush_reg32; } if (tg3_flag(tp, ICH_WORKAROUND)) { tp->read32 = tg3_read_indirect_reg32; tp->write32 = tg3_write_indirect_reg32; tp->read32_mbox = tg3_read_indirect_mbox; tp->write32_mbox = tg3_write_indirect_mbox; tp->write32_tx_mbox = tg3_write_indirect_mbox; tp->write32_rx_mbox = tg3_write_indirect_mbox; iounmap(tp->regs); tp->regs = NULL; pci_read_config_word(tp->pdev, PCI_COMMAND, &pci_cmd); pci_cmd &= ~PCI_COMMAND_MEMORY; pci_write_config_word(tp->pdev, PCI_COMMAND, pci_cmd); } if (tg3_asic_rev(tp) == ASIC_REV_5906) { tp->read32_mbox = tg3_read32_mbox_5906; tp->write32_mbox = tg3_write32_mbox_5906; tp->write32_tx_mbox = tg3_write32_mbox_5906; tp->write32_rx_mbox = tg3_write32_mbox_5906; } if (tp->write32 == tg3_write_indirect_reg32 || (tg3_flag(tp, PCIX_MODE) && (tg3_asic_rev(tp) == ASIC_REV_5700 || tg3_asic_rev(tp) == ASIC_REV_5701))) tg3_flag_set(tp, SRAM_USE_CONFIG); /* The memory arbiter has to be enabled in order for SRAM accesses * to succeed. Normally on powerup the tg3 chip firmware will make * sure it is enabled, but other entities such as system netboot * code might disable it. */ val = tr32(MEMARB_MODE); tw32(MEMARB_MODE, val | MEMARB_MODE_ENABLE); tp->pci_fn = PCI_FUNC(tp->pdev->devfn) & 3; if (tg3_asic_rev(tp) == ASIC_REV_5704 || tg3_flag(tp, 5780_CLASS)) { if (tg3_flag(tp, PCIX_MODE)) { pci_read_config_dword(tp->pdev, tp->pcix_cap + PCI_X_STATUS, &val); tp->pci_fn = val & 0x7; } } else if (tg3_asic_rev(tp) == ASIC_REV_5717 || tg3_asic_rev(tp) == ASIC_REV_5719 || tg3_asic_rev(tp) == ASIC_REV_5720) { tg3_read_mem(tp, NIC_SRAM_CPMU_STATUS, &val); if ((val & NIC_SRAM_CPMUSTAT_SIG_MSK) != NIC_SRAM_CPMUSTAT_SIG) val = tr32(TG3_CPMU_STATUS); if (tg3_asic_rev(tp) == ASIC_REV_5717) tp->pci_fn = (val & TG3_CPMU_STATUS_FMSK_5717) ? 1 : 0; else tp->pci_fn = (val & TG3_CPMU_STATUS_FMSK_5719) >> TG3_CPMU_STATUS_FSHFT_5719; } if (tg3_flag(tp, FLUSH_POSTED_WRITES)) { tp->write32_tx_mbox = tg3_write_flush_reg32; tp->write32_rx_mbox = tg3_write_flush_reg32; } /* Get eeprom hw config before calling tg3_set_power_state(). * In particular, the TG3_FLAG_IS_NIC flag must be * determined before calling tg3_set_power_state() so that * we know whether or not to switch out of Vaux power. * When the flag is set, it means that GPIO1 is used for eeprom * write protect and also implies that it is a LOM where GPIOs * are not used to switch power. */ tg3_get_eeprom_hw_cfg(tp); if (tg3_flag(tp, FW_TSO) && tg3_flag(tp, ENABLE_ASF)) { tg3_flag_clear(tp, TSO_CAPABLE); tg3_flag_clear(tp, TSO_BUG); tp->fw_needed = NULL; } if (tg3_flag(tp, ENABLE_APE)) { /* Allow reads and writes to the * APE register and memory space. */ pci_state_reg |= PCISTATE_ALLOW_APE_CTLSPC_WR | PCISTATE_ALLOW_APE_SHMEM_WR | PCISTATE_ALLOW_APE_PSPACE_WR; pci_write_config_dword(tp->pdev, TG3PCI_PCISTATE, pci_state_reg); tg3_ape_lock_init(tp); } /* Set up tp->grc_local_ctrl before calling * tg3_pwrsrc_switch_to_vmain(). GPIO1 driven high * will bring 5700's external PHY out of reset. * It is also used as eeprom write protect on LOMs. */ tp->grc_local_ctrl = GRC_LCLCTRL_INT_ON_ATTN | GRC_LCLCTRL_AUTO_SEEPROM; if (tg3_asic_rev(tp) == ASIC_REV_5700 || tg3_flag(tp, EEPROM_WRITE_PROT)) tp->grc_local_ctrl |= (GRC_LCLCTRL_GPIO_OE1 | GRC_LCLCTRL_GPIO_OUTPUT1); /* Unused GPIO3 must be driven as output on 5752 because there * are no pull-up resistors on unused GPIO pins. */ else if (tg3_asic_rev(tp) == ASIC_REV_5752) tp->grc_local_ctrl |= GRC_LCLCTRL_GPIO_OE3; if (tg3_asic_rev(tp) == ASIC_REV_5755 || tg3_asic_rev(tp) == ASIC_REV_57780 || tg3_flag(tp, 57765_CLASS)) tp->grc_local_ctrl |= GRC_LCLCTRL_GPIO_UART_SEL; if (tp->pdev->device == PCI_DEVICE_ID_TIGON3_5761 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5761S) { /* Turn off the debug UART. */ tp->grc_local_ctrl |= GRC_LCLCTRL_GPIO_UART_SEL; if (tg3_flag(tp, IS_NIC)) /* Keep VMain power. */ tp->grc_local_ctrl |= GRC_LCLCTRL_GPIO_OE0 | GRC_LCLCTRL_GPIO_OUTPUT0; } if (tg3_asic_rev(tp) == ASIC_REV_5762) tp->grc_local_ctrl |= tr32(GRC_LOCAL_CTRL) & GRC_LCLCTRL_GPIO_UART_SEL; /* Switch out of Vaux if it is a NIC */ tg3_pwrsrc_switch_to_vmain(tp); /* Derive initial jumbo mode from MTU assigned in * ether_setup() via the alloc_etherdev() call */ if (tp->dev->mtu > ETH_DATA_LEN && !tg3_flag(tp, 5780_CLASS)) tg3_flag_set(tp, JUMBO_RING_ENABLE); /* Determine WakeOnLan speed to use. */ if (tg3_asic_rev(tp) == ASIC_REV_5700 || tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0 || tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B0 || tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B2) { tg3_flag_clear(tp, WOL_SPEED_100MB); } else { tg3_flag_set(tp, WOL_SPEED_100MB); } if (tg3_asic_rev(tp) == ASIC_REV_5906) tp->phy_flags |= TG3_PHYFLG_IS_FET; /* A few boards don't want Ethernet@WireSpeed phy feature */ if (tg3_asic_rev(tp) == ASIC_REV_5700 || (tg3_asic_rev(tp) == ASIC_REV_5705 && (tg3_chip_rev_id(tp) != CHIPREV_ID_5705_A0) && (tg3_chip_rev_id(tp) != CHIPREV_ID_5705_A1)) || (tp->phy_flags & TG3_PHYFLG_IS_FET) || (tp->phy_flags & TG3_PHYFLG_ANY_SERDES)) tp->phy_flags |= TG3_PHYFLG_NO_ETH_WIRE_SPEED; if (tg3_chip_rev(tp) == CHIPREV_5703_AX || tg3_chip_rev(tp) == CHIPREV_5704_AX) tp->phy_flags |= TG3_PHYFLG_ADC_BUG; if (tg3_chip_rev_id(tp) == CHIPREV_ID_5704_A0) tp->phy_flags |= TG3_PHYFLG_5704_A0_BUG; if (tg3_flag(tp, 5705_PLUS) && !(tp->phy_flags & TG3_PHYFLG_IS_FET) && tg3_asic_rev(tp) != ASIC_REV_5785 && tg3_asic_rev(tp) != ASIC_REV_57780 && !tg3_flag(tp, 57765_PLUS)) { if (tg3_asic_rev(tp) == ASIC_REV_5755 || tg3_asic_rev(tp) == ASIC_REV_5787 || tg3_asic_rev(tp) == ASIC_REV_5784 || tg3_asic_rev(tp) == ASIC_REV_5761) { if (tp->pdev->device != PCI_DEVICE_ID_TIGON3_5756 && tp->pdev->device != PCI_DEVICE_ID_TIGON3_5722) tp->phy_flags |= TG3_PHYFLG_JITTER_BUG; if (tp->pdev->device == PCI_DEVICE_ID_TIGON3_5755M) tp->phy_flags |= TG3_PHYFLG_ADJUST_TRIM; } else tp->phy_flags |= TG3_PHYFLG_BER_BUG; } if (tg3_asic_rev(tp) == ASIC_REV_5784 && tg3_chip_rev(tp) != CHIPREV_5784_AX) { tp->phy_otp = tg3_read_otp_phycfg(tp); if (tp->phy_otp == 0) tp->phy_otp = TG3_OTP_DEFAULT; } if (tg3_flag(tp, CPMU_PRESENT)) tp->mi_mode = MAC_MI_MODE_500KHZ_CONST; else tp->mi_mode = MAC_MI_MODE_BASE; tp->coalesce_mode = 0; if (tg3_chip_rev(tp) != CHIPREV_5700_AX && tg3_chip_rev(tp) != CHIPREV_5700_BX) tp->coalesce_mode |= HOSTCC_MODE_32BYTE; /* Set these bits to enable statistics workaround. */ if (tg3_asic_rev(tp) == ASIC_REV_5717 || tg3_chip_rev_id(tp) == CHIPREV_ID_5719_A0 || tg3_chip_rev_id(tp) == CHIPREV_ID_5720_A0) { tp->coalesce_mode |= HOSTCC_MODE_ATTN; tp->grc_mode |= GRC_MODE_IRQ_ON_FLOW_ATTN; } if (tg3_asic_rev(tp) == ASIC_REV_5785 || tg3_asic_rev(tp) == ASIC_REV_57780) tg3_flag_set(tp, USE_PHYLIB); err = tg3_mdio_init(tp); if (err) return err; /* Initialize data/descriptor byte/word swapping. */ val = tr32(GRC_MODE); if (tg3_asic_rev(tp) == ASIC_REV_5720 || tg3_asic_rev(tp) == ASIC_REV_5762) val &= (GRC_MODE_BYTE_SWAP_B2HRX_DATA | GRC_MODE_WORD_SWAP_B2HRX_DATA | GRC_MODE_B2HRX_ENABLE | GRC_MODE_HTX2B_ENABLE | GRC_MODE_HOST_STACKUP); else val &= GRC_MODE_HOST_STACKUP; tw32(GRC_MODE, val | tp->grc_mode); tg3_switch_clocks(tp); /* Clear this out for sanity. */ tw32(TG3PCI_MEM_WIN_BASE_ADDR, 0); pci_read_config_dword(tp->pdev, TG3PCI_PCISTATE, &pci_state_reg); if ((pci_state_reg & PCISTATE_CONV_PCI_MODE) == 0 && !tg3_flag(tp, PCIX_TARGET_HWBUG)) { if (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0 || tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B0 || tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B2 || tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B5) { void __iomem *sram_base; /* Write some dummy words into the SRAM status block * area, see if it reads back correctly. If the return * value is bad, force enable the PCIX workaround. */ sram_base = tp->regs + NIC_SRAM_WIN_BASE + NIC_SRAM_STATS_BLK; writel(0x00000000, sram_base); writel(0x00000000, sram_base + 4); writel(0xffffffff, sram_base + 4); if (readl(sram_base) != 0x00000000) tg3_flag_set(tp, PCIX_TARGET_HWBUG); } } udelay(50); tg3_nvram_init(tp); /* If the device has an NVRAM, no need to load patch firmware */ if (tg3_asic_rev(tp) == ASIC_REV_57766 && !tg3_flag(tp, NO_NVRAM)) tp->fw_needed = NULL; grc_misc_cfg = tr32(GRC_MISC_CFG); grc_misc_cfg &= GRC_MISC_CFG_BOARD_ID_MASK; if (tg3_asic_rev(tp) == ASIC_REV_5705 && (grc_misc_cfg == GRC_MISC_CFG_BOARD_ID_5788 || grc_misc_cfg == GRC_MISC_CFG_BOARD_ID_5788M)) tg3_flag_set(tp, IS_5788); if (!tg3_flag(tp, IS_5788) && tg3_asic_rev(tp) != ASIC_REV_5700) tg3_flag_set(tp, TAGGED_STATUS); if (tg3_flag(tp, TAGGED_STATUS)) { tp->coalesce_mode |= (HOSTCC_MODE_CLRTICK_RXBD | HOSTCC_MODE_CLRTICK_TXBD); tp->misc_host_ctrl |= MISC_HOST_CTRL_TAGGED_STATUS; pci_write_config_dword(tp->pdev, TG3PCI_MISC_HOST_CTRL, tp->misc_host_ctrl); } /* Preserve the APE MAC_MODE bits */ if (tg3_flag(tp, ENABLE_APE)) tp->mac_mode = MAC_MODE_APE_TX_EN | MAC_MODE_APE_RX_EN; else tp->mac_mode = 0; if (tg3_10_100_only_device(tp, ent)) tp->phy_flags |= TG3_PHYFLG_10_100_ONLY; err = tg3_phy_probe(tp); if (err) { dev_err(&tp->pdev->dev, "phy probe failed, err %d\n", err); /* ... but do not return immediately ... */ tg3_mdio_fini(tp); } tg3_read_vpd(tp); tg3_read_fw_ver(tp); if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) { tp->phy_flags &= ~TG3_PHYFLG_USE_MI_INTERRUPT; } else { if (tg3_asic_rev(tp) == ASIC_REV_5700) tp->phy_flags |= TG3_PHYFLG_USE_MI_INTERRUPT; else tp->phy_flags &= ~TG3_PHYFLG_USE_MI_INTERRUPT; } /* 5700 {AX,BX} chips have a broken status block link * change bit implementation, so we must use the * status register in those cases. */ if (tg3_asic_rev(tp) == ASIC_REV_5700) tg3_flag_set(tp, USE_LINKCHG_REG); else tg3_flag_clear(tp, USE_LINKCHG_REG); /* The led_ctrl is set during tg3_phy_probe, here we might * have to force the link status polling mechanism based * upon subsystem IDs. */ if (tp->pdev->subsystem_vendor == PCI_VENDOR_ID_DELL && tg3_asic_rev(tp) == ASIC_REV_5701 && !(tp->phy_flags & TG3_PHYFLG_PHY_SERDES)) { tp->phy_flags |= TG3_PHYFLG_USE_MI_INTERRUPT; tg3_flag_set(tp, USE_LINKCHG_REG); } /* For all SERDES we poll the MAC status register. */ if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) tg3_flag_set(tp, POLL_SERDES); else tg3_flag_clear(tp, POLL_SERDES); tp->rx_offset = NET_SKB_PAD + NET_IP_ALIGN; tp->rx_copy_thresh = TG3_RX_COPY_THRESHOLD; if (tg3_asic_rev(tp) == ASIC_REV_5701 && tg3_flag(tp, PCIX_MODE)) { tp->rx_offset = NET_SKB_PAD; #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS tp->rx_copy_thresh = ~(u16)0; #endif } tp->rx_std_ring_mask = TG3_RX_STD_RING_SIZE(tp) - 1; tp->rx_jmb_ring_mask = TG3_RX_JMB_RING_SIZE(tp) - 1; tp->rx_ret_ring_mask = tg3_rx_ret_ring_size(tp) - 1; tp->rx_std_max_post = tp->rx_std_ring_mask + 1; /* Increment the rx prod index on the rx std ring by at most * 8 for these chips to workaround hw errata. */ if (tg3_asic_rev(tp) == ASIC_REV_5750 || tg3_asic_rev(tp) == ASIC_REV_5752 || tg3_asic_rev(tp) == ASIC_REV_5755) tp->rx_std_max_post = 8; if (tg3_flag(tp, ASPM_WORKAROUND)) tp->pwrmgmt_thresh = tr32(PCIE_PWR_MGMT_THRESH) & PCIE_PWR_MGMT_L1_THRESH_MSK; return err; } #ifdef CONFIG_SPARC static int tg3_get_macaddr_sparc(struct tg3 *tp) { struct net_device *dev = tp->dev; struct pci_dev *pdev = tp->pdev; struct device_node *dp = pci_device_to_OF_node(pdev); const unsigned char *addr; int len; addr = of_get_property(dp, "local-mac-address", &len); if (addr && len == 6) { memcpy(dev->dev_addr, addr, 6); return 0; } return -ENODEV; } static int tg3_get_default_macaddr_sparc(struct tg3 *tp) { struct net_device *dev = tp->dev; memcpy(dev->dev_addr, idprom->id_ethaddr, 6); return 0; } #endif static int tg3_get_device_address(struct tg3 *tp) { struct net_device *dev = tp->dev; u32 hi, lo, mac_offset; int addr_ok = 0; int err; #ifdef CONFIG_SPARC if (!tg3_get_macaddr_sparc(tp)) return 0; #endif if (tg3_flag(tp, IS_SSB_CORE)) { err = ssb_gige_get_macaddr(tp->pdev, &dev->dev_addr[0]); if (!err && is_valid_ether_addr(&dev->dev_addr[0])) return 0; } mac_offset = 0x7c; if (tg3_asic_rev(tp) == ASIC_REV_5704 || tg3_flag(tp, 5780_CLASS)) { if (tr32(TG3PCI_DUAL_MAC_CTRL) & DUAL_MAC_CTRL_ID) mac_offset = 0xcc; if (tg3_nvram_lock(tp)) tw32_f(NVRAM_CMD, NVRAM_CMD_RESET); else tg3_nvram_unlock(tp); } else if (tg3_flag(tp, 5717_PLUS)) { if (tp->pci_fn & 1) mac_offset = 0xcc; if (tp->pci_fn > 1) mac_offset += 0x18c; } else if (tg3_asic_rev(tp) == ASIC_REV_5906) mac_offset = 0x10; /* First try to get it from MAC address mailbox. */ tg3_read_mem(tp, NIC_SRAM_MAC_ADDR_HIGH_MBOX, &hi); if ((hi >> 16) == 0x484b) { dev->dev_addr[0] = (hi >> 8) & 0xff; dev->dev_addr[1] = (hi >> 0) & 0xff; tg3_read_mem(tp, NIC_SRAM_MAC_ADDR_LOW_MBOX, &lo); dev->dev_addr[2] = (lo >> 24) & 0xff; dev->dev_addr[3] = (lo >> 16) & 0xff; dev->dev_addr[4] = (lo >> 8) & 0xff; dev->dev_addr[5] = (lo >> 0) & 0xff; /* Some old bootcode may report a 0 MAC address in SRAM */ addr_ok = is_valid_ether_addr(&dev->dev_addr[0]); } if (!addr_ok) { /* Next, try NVRAM. */ if (!tg3_flag(tp, NO_NVRAM) && !tg3_nvram_read_be32(tp, mac_offset + 0, &hi) && !tg3_nvram_read_be32(tp, mac_offset + 4, &lo)) { memcpy(&dev->dev_addr[0], ((char *)&hi) + 2, 2); memcpy(&dev->dev_addr[2], (char *)&lo, sizeof(lo)); } /* Finally just fetch it out of the MAC control regs. */ else { hi = tr32(MAC_ADDR_0_HIGH); lo = tr32(MAC_ADDR_0_LOW); dev->dev_addr[5] = lo & 0xff; dev->dev_addr[4] = (lo >> 8) & 0xff; dev->dev_addr[3] = (lo >> 16) & 0xff; dev->dev_addr[2] = (lo >> 24) & 0xff; dev->dev_addr[1] = hi & 0xff; dev->dev_addr[0] = (hi >> 8) & 0xff; } } if (!is_valid_ether_addr(&dev->dev_addr[0])) { #ifdef CONFIG_SPARC if (!tg3_get_default_macaddr_sparc(tp)) return 0; #endif return -EINVAL; } return 0; } #define BOUNDARY_SINGLE_CACHELINE 1 #define BOUNDARY_MULTI_CACHELINE 2 static u32 tg3_calc_dma_bndry(struct tg3 *tp, u32 val) { int cacheline_size; u8 byte; int goal; pci_read_config_byte(tp->pdev, PCI_CACHE_LINE_SIZE, &byte); if (byte == 0) cacheline_size = 1024; else cacheline_size = (int) byte * 4; /* On 5703 and later chips, the boundary bits have no * effect. */ if (tg3_asic_rev(tp) != ASIC_REV_5700 && tg3_asic_rev(tp) != ASIC_REV_5701 && !tg3_flag(tp, PCI_EXPRESS)) goto out; #if defined(CONFIG_PPC64) || defined(CONFIG_IA64) || defined(CONFIG_PARISC) goal = BOUNDARY_MULTI_CACHELINE; #else #if defined(CONFIG_SPARC64) || defined(CONFIG_ALPHA) goal = BOUNDARY_SINGLE_CACHELINE; #else goal = 0; #endif #endif if (tg3_flag(tp, 57765_PLUS)) { val = goal ? 0 : DMA_RWCTRL_DIS_CACHE_ALIGNMENT; goto out; } if (!goal) goto out; /* PCI controllers on most RISC systems tend to disconnect * when a device tries to burst across a cache-line boundary. * Therefore, letting tg3 do so just wastes PCI bandwidth. * * Unfortunately, for PCI-E there are only limited * write-side controls for this, and thus for reads * we will still get the disconnects. We'll also waste * these PCI cycles for both read and write for chips * other than 5700 and 5701 which do not implement the * boundary bits. */ if (tg3_flag(tp, PCIX_MODE) && !tg3_flag(tp, PCI_EXPRESS)) { switch (cacheline_size) { case 16: case 32: case 64: case 128: if (goal == BOUNDARY_SINGLE_CACHELINE) { val |= (DMA_RWCTRL_READ_BNDRY_128_PCIX | DMA_RWCTRL_WRITE_BNDRY_128_PCIX); } else { val |= (DMA_RWCTRL_READ_BNDRY_384_PCIX | DMA_RWCTRL_WRITE_BNDRY_384_PCIX); } break; case 256: val |= (DMA_RWCTRL_READ_BNDRY_256_PCIX | DMA_RWCTRL_WRITE_BNDRY_256_PCIX); break; default: val |= (DMA_RWCTRL_READ_BNDRY_384_PCIX | DMA_RWCTRL_WRITE_BNDRY_384_PCIX); break; } } else if (tg3_flag(tp, PCI_EXPRESS)) { switch (cacheline_size) { case 16: case 32: case 64: if (goal == BOUNDARY_SINGLE_CACHELINE) { val &= ~DMA_RWCTRL_WRITE_BNDRY_DISAB_PCIE; val |= DMA_RWCTRL_WRITE_BNDRY_64_PCIE; break; } /* fallthrough */ case 128: default: val &= ~DMA_RWCTRL_WRITE_BNDRY_DISAB_PCIE; val |= DMA_RWCTRL_WRITE_BNDRY_128_PCIE; break; } } else { switch (cacheline_size) { case 16: if (goal == BOUNDARY_SINGLE_CACHELINE) { val |= (DMA_RWCTRL_READ_BNDRY_16 | DMA_RWCTRL_WRITE_BNDRY_16); break; } /* fallthrough */ case 32: if (goal == BOUNDARY_SINGLE_CACHELINE) { val |= (DMA_RWCTRL_READ_BNDRY_32 | DMA_RWCTRL_WRITE_BNDRY_32); break; } /* fallthrough */ case 64: if (goal == BOUNDARY_SINGLE_CACHELINE) { val |= (DMA_RWCTRL_READ_BNDRY_64 | DMA_RWCTRL_WRITE_BNDRY_64); break; } /* fallthrough */ case 128: if (goal == BOUNDARY_SINGLE_CACHELINE) { val |= (DMA_RWCTRL_READ_BNDRY_128 | DMA_RWCTRL_WRITE_BNDRY_128); break; } /* fallthrough */ case 256: val |= (DMA_RWCTRL_READ_BNDRY_256 | DMA_RWCTRL_WRITE_BNDRY_256); break; case 512: val |= (DMA_RWCTRL_READ_BNDRY_512 | DMA_RWCTRL_WRITE_BNDRY_512); break; case 1024: default: val |= (DMA_RWCTRL_READ_BNDRY_1024 | DMA_RWCTRL_WRITE_BNDRY_1024); break; } } out: return val; } static int tg3_do_test_dma(struct tg3 *tp, u32 *buf, dma_addr_t buf_dma, int size, bool to_device) { struct tg3_internal_buffer_desc test_desc; u32 sram_dma_descs; int i, ret; sram_dma_descs = NIC_SRAM_DMA_DESC_POOL_BASE; tw32(FTQ_RCVBD_COMP_FIFO_ENQDEQ, 0); tw32(FTQ_RCVDATA_COMP_FIFO_ENQDEQ, 0); tw32(RDMAC_STATUS, 0); tw32(WDMAC_STATUS, 0); tw32(BUFMGR_MODE, 0); tw32(FTQ_RESET, 0); test_desc.addr_hi = ((u64) buf_dma) >> 32; test_desc.addr_lo = buf_dma & 0xffffffff; test_desc.nic_mbuf = 0x00002100; test_desc.len = size; /* * HP ZX1 was seeing test failures for 5701 cards running at 33Mhz * the *second* time the tg3 driver was getting loaded after an * initial scan. * * Broadcom tells me: * ...the DMA engine is connected to the GRC block and a DMA * reset may affect the GRC block in some unpredictable way... * The behavior of resets to individual blocks has not been tested. * * Broadcom noted the GRC reset will also reset all sub-components. */ if (to_device) { test_desc.cqid_sqid = (13 << 8) | 2; tw32_f(RDMAC_MODE, RDMAC_MODE_ENABLE); udelay(40); } else { test_desc.cqid_sqid = (16 << 8) | 7; tw32_f(WDMAC_MODE, WDMAC_MODE_ENABLE); udelay(40); } test_desc.flags = 0x00000005; for (i = 0; i < (sizeof(test_desc) / sizeof(u32)); i++) { u32 val; val = *(((u32 *)&test_desc) + i); pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, sram_dma_descs + (i * sizeof(u32))); pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_DATA, val); } pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, 0); if (to_device) tw32(FTQ_DMA_HIGH_READ_FIFO_ENQDEQ, sram_dma_descs); else tw32(FTQ_DMA_HIGH_WRITE_FIFO_ENQDEQ, sram_dma_descs); ret = -ENODEV; for (i = 0; i < 40; i++) { u32 val; if (to_device) val = tr32(FTQ_RCVBD_COMP_FIFO_ENQDEQ); else val = tr32(FTQ_RCVDATA_COMP_FIFO_ENQDEQ); if ((val & 0xffff) == sram_dma_descs) { ret = 0; break; } udelay(100); } return ret; } #define TEST_BUFFER_SIZE 0x2000 static DEFINE_PCI_DEVICE_TABLE(tg3_dma_wait_state_chipsets) = { { PCI_DEVICE(PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_PCI15) }, { }, }; static int tg3_test_dma(struct tg3 *tp) { dma_addr_t buf_dma; u32 *buf, saved_dma_rwctrl; int ret = 0; buf = dma_alloc_coherent(&tp->pdev->dev, TEST_BUFFER_SIZE, &buf_dma, GFP_KERNEL); if (!buf) { ret = -ENOMEM; goto out_nofree; } tp->dma_rwctrl = ((0x7 << DMA_RWCTRL_PCI_WRITE_CMD_SHIFT) | (0x6 << DMA_RWCTRL_PCI_READ_CMD_SHIFT)); tp->dma_rwctrl = tg3_calc_dma_bndry(tp, tp->dma_rwctrl); if (tg3_flag(tp, 57765_PLUS)) goto out; if (tg3_flag(tp, PCI_EXPRESS)) { /* DMA read watermark not used on PCIE */ tp->dma_rwctrl |= 0x00180000; } else if (!tg3_flag(tp, PCIX_MODE)) { if (tg3_asic_rev(tp) == ASIC_REV_5705 || tg3_asic_rev(tp) == ASIC_REV_5750) tp->dma_rwctrl |= 0x003f0000; else tp->dma_rwctrl |= 0x003f000f; } else { if (tg3_asic_rev(tp) == ASIC_REV_5703 || tg3_asic_rev(tp) == ASIC_REV_5704) { u32 ccval = (tr32(TG3PCI_CLOCK_CTRL) & 0x1f); u32 read_water = 0x7; /* If the 5704 is behind the EPB bridge, we can * do the less restrictive ONE_DMA workaround for * better performance. */ if (tg3_flag(tp, 40BIT_DMA_BUG) && tg3_asic_rev(tp) == ASIC_REV_5704) tp->dma_rwctrl |= 0x8000; else if (ccval == 0x6 || ccval == 0x7) tp->dma_rwctrl |= DMA_RWCTRL_ONE_DMA; if (tg3_asic_rev(tp) == ASIC_REV_5703) read_water = 4; /* Set bit 23 to enable PCIX hw bug fix */ tp->dma_rwctrl |= (read_water << DMA_RWCTRL_READ_WATER_SHIFT) | (0x3 << DMA_RWCTRL_WRITE_WATER_SHIFT) | (1 << 23); } else if (tg3_asic_rev(tp) == ASIC_REV_5780) { /* 5780 always in PCIX mode */ tp->dma_rwctrl |= 0x00144000; } else if (tg3_asic_rev(tp) == ASIC_REV_5714) { /* 5714 always in PCIX mode */ tp->dma_rwctrl |= 0x00148000; } else { tp->dma_rwctrl |= 0x001b000f; } } if (tg3_flag(tp, ONE_DMA_AT_ONCE)) tp->dma_rwctrl |= DMA_RWCTRL_ONE_DMA; if (tg3_asic_rev(tp) == ASIC_REV_5703 || tg3_asic_rev(tp) == ASIC_REV_5704) tp->dma_rwctrl &= 0xfffffff0; if (tg3_asic_rev(tp) == ASIC_REV_5700 || tg3_asic_rev(tp) == ASIC_REV_5701) { /* Remove this if it causes problems for some boards. */ tp->dma_rwctrl |= DMA_RWCTRL_USE_MEM_READ_MULT; /* On 5700/5701 chips, we need to set this bit. * Otherwise the chip will issue cacheline transactions * to streamable DMA memory with not all the byte * enables turned on. This is an error on several * RISC PCI controllers, in particular sparc64. * * On 5703/5704 chips, this bit has been reassigned * a different meaning. In particular, it is used * on those chips to enable a PCI-X workaround. */ tp->dma_rwctrl |= DMA_RWCTRL_ASSERT_ALL_BE; } tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl); #if 0 /* Unneeded, already done by tg3_get_invariants. */ tg3_switch_clocks(tp); #endif if (tg3_asic_rev(tp) != ASIC_REV_5700 && tg3_asic_rev(tp) != ASIC_REV_5701) goto out; /* It is best to perform DMA test with maximum write burst size * to expose the 5700/5701 write DMA bug. */ saved_dma_rwctrl = tp->dma_rwctrl; tp->dma_rwctrl &= ~DMA_RWCTRL_WRITE_BNDRY_MASK; tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl); while (1) { u32 *p = buf, i; for (i = 0; i < TEST_BUFFER_SIZE / sizeof(u32); i++) p[i] = i; /* Send the buffer to the chip. */ ret = tg3_do_test_dma(tp, buf, buf_dma, TEST_BUFFER_SIZE, true); if (ret) { dev_err(&tp->pdev->dev, "%s: Buffer write failed. err = %d\n", __func__, ret); break; } #if 0 /* validate data reached card RAM correctly. */ for (i = 0; i < TEST_BUFFER_SIZE / sizeof(u32); i++) { u32 val; tg3_read_mem(tp, 0x2100 + (i*4), &val); if (le32_to_cpu(val) != p[i]) { dev_err(&tp->pdev->dev, "%s: Buffer corrupted on device! " "(%d != %d)\n", __func__, val, i); /* ret = -ENODEV here? */ } p[i] = 0; } #endif /* Now read it back. */ ret = tg3_do_test_dma(tp, buf, buf_dma, TEST_BUFFER_SIZE, false); if (ret) { dev_err(&tp->pdev->dev, "%s: Buffer read failed. " "err = %d\n", __func__, ret); break; } /* Verify it. */ for (i = 0; i < TEST_BUFFER_SIZE / sizeof(u32); i++) { if (p[i] == i) continue; if ((tp->dma_rwctrl & DMA_RWCTRL_WRITE_BNDRY_MASK) != DMA_RWCTRL_WRITE_BNDRY_16) { tp->dma_rwctrl &= ~DMA_RWCTRL_WRITE_BNDRY_MASK; tp->dma_rwctrl |= DMA_RWCTRL_WRITE_BNDRY_16; tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl); break; } else { dev_err(&tp->pdev->dev, "%s: Buffer corrupted on read back! " "(%d != %d)\n", __func__, p[i], i); ret = -ENODEV; goto out; } } if (i == (TEST_BUFFER_SIZE / sizeof(u32))) { /* Success. */ ret = 0; break; } } if ((tp->dma_rwctrl & DMA_RWCTRL_WRITE_BNDRY_MASK) != DMA_RWCTRL_WRITE_BNDRY_16) { /* DMA test passed without adjusting DMA boundary, * now look for chipsets that are known to expose the * DMA bug without failing the test. */ if (pci_dev_present(tg3_dma_wait_state_chipsets)) { tp->dma_rwctrl &= ~DMA_RWCTRL_WRITE_BNDRY_MASK; tp->dma_rwctrl |= DMA_RWCTRL_WRITE_BNDRY_16; } else { /* Safe to use the calculated DMA boundary. */ tp->dma_rwctrl = saved_dma_rwctrl; } tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl); } out: dma_free_coherent(&tp->pdev->dev, TEST_BUFFER_SIZE, buf, buf_dma); out_nofree: return ret; } static void tg3_init_bufmgr_config(struct tg3 *tp) { if (tg3_flag(tp, 57765_PLUS)) { tp->bufmgr_config.mbuf_read_dma_low_water = DEFAULT_MB_RDMA_LOW_WATER_5705; tp->bufmgr_config.mbuf_mac_rx_low_water = DEFAULT_MB_MACRX_LOW_WATER_57765; tp->bufmgr_config.mbuf_high_water = DEFAULT_MB_HIGH_WATER_57765; tp->bufmgr_config.mbuf_read_dma_low_water_jumbo = DEFAULT_MB_RDMA_LOW_WATER_5705; tp->bufmgr_config.mbuf_mac_rx_low_water_jumbo = DEFAULT_MB_MACRX_LOW_WATER_JUMBO_57765; tp->bufmgr_config.mbuf_high_water_jumbo = DEFAULT_MB_HIGH_WATER_JUMBO_57765; } else if (tg3_flag(tp, 5705_PLUS)) { tp->bufmgr_config.mbuf_read_dma_low_water = DEFAULT_MB_RDMA_LOW_WATER_5705; tp->bufmgr_config.mbuf_mac_rx_low_water = DEFAULT_MB_MACRX_LOW_WATER_5705; tp->bufmgr_config.mbuf_high_water = DEFAULT_MB_HIGH_WATER_5705; if (tg3_asic_rev(tp) == ASIC_REV_5906) { tp->bufmgr_config.mbuf_mac_rx_low_water = DEFAULT_MB_MACRX_LOW_WATER_5906; tp->bufmgr_config.mbuf_high_water = DEFAULT_MB_HIGH_WATER_5906; } tp->bufmgr_config.mbuf_read_dma_low_water_jumbo = DEFAULT_MB_RDMA_LOW_WATER_JUMBO_5780; tp->bufmgr_config.mbuf_mac_rx_low_water_jumbo = DEFAULT_MB_MACRX_LOW_WATER_JUMBO_5780; tp->bufmgr_config.mbuf_high_water_jumbo = DEFAULT_MB_HIGH_WATER_JUMBO_5780; } else { tp->bufmgr_config.mbuf_read_dma_low_water = DEFAULT_MB_RDMA_LOW_WATER; tp->bufmgr_config.mbuf_mac_rx_low_water = DEFAULT_MB_MACRX_LOW_WATER; tp->bufmgr_config.mbuf_high_water = DEFAULT_MB_HIGH_WATER; tp->bufmgr_config.mbuf_read_dma_low_water_jumbo = DEFAULT_MB_RDMA_LOW_WATER_JUMBO; tp->bufmgr_config.mbuf_mac_rx_low_water_jumbo = DEFAULT_MB_MACRX_LOW_WATER_JUMBO; tp->bufmgr_config.mbuf_high_water_jumbo = DEFAULT_MB_HIGH_WATER_JUMBO; } tp->bufmgr_config.dma_low_water = DEFAULT_DMA_LOW_WATER; tp->bufmgr_config.dma_high_water = DEFAULT_DMA_HIGH_WATER; } static char *tg3_phy_string(struct tg3 *tp) { switch (tp->phy_id & TG3_PHY_ID_MASK) { case TG3_PHY_ID_BCM5400: return "5400"; case TG3_PHY_ID_BCM5401: return "5401"; case TG3_PHY_ID_BCM5411: return "5411"; case TG3_PHY_ID_BCM5701: return "5701"; case TG3_PHY_ID_BCM5703: return "5703"; case TG3_PHY_ID_BCM5704: return "5704"; case TG3_PHY_ID_BCM5705: return "5705"; case TG3_PHY_ID_BCM5750: return "5750"; case TG3_PHY_ID_BCM5752: return "5752"; case TG3_PHY_ID_BCM5714: return "5714"; case TG3_PHY_ID_BCM5780: return "5780"; case TG3_PHY_ID_BCM5755: return "5755"; case TG3_PHY_ID_BCM5787: return "5787"; case TG3_PHY_ID_BCM5784: return "5784"; case TG3_PHY_ID_BCM5756: return "5722/5756"; case TG3_PHY_ID_BCM5906: return "5906"; case TG3_PHY_ID_BCM5761: return "5761"; case TG3_PHY_ID_BCM5718C: return "5718C"; case TG3_PHY_ID_BCM5718S: return "5718S"; case TG3_PHY_ID_BCM57765: return "57765"; case TG3_PHY_ID_BCM5719C: return "5719C"; case TG3_PHY_ID_BCM5720C: return "5720C"; case TG3_PHY_ID_BCM5762: return "5762C"; case TG3_PHY_ID_BCM8002: return "8002/serdes"; case 0: return "serdes"; default: return "unknown"; } } static char *tg3_bus_string(struct tg3 *tp, char *str) { if (tg3_flag(tp, PCI_EXPRESS)) { strcpy(str, "PCI Express"); return str; } else if (tg3_flag(tp, PCIX_MODE)) { u32 clock_ctrl = tr32(TG3PCI_CLOCK_CTRL) & 0x1f; strcpy(str, "PCIX:"); if ((clock_ctrl == 7) || ((tr32(GRC_MISC_CFG) & GRC_MISC_CFG_BOARD_ID_MASK) == GRC_MISC_CFG_BOARD_ID_5704CIOBE)) strcat(str, "133MHz"); else if (clock_ctrl == 0) strcat(str, "33MHz"); else if (clock_ctrl == 2) strcat(str, "50MHz"); else if (clock_ctrl == 4) strcat(str, "66MHz"); else if (clock_ctrl == 6) strcat(str, "100MHz"); } else { strcpy(str, "PCI:"); if (tg3_flag(tp, PCI_HIGH_SPEED)) strcat(str, "66MHz"); else strcat(str, "33MHz"); } if (tg3_flag(tp, PCI_32BIT)) strcat(str, ":32-bit"); else strcat(str, ":64-bit"); return str; } static void tg3_init_coal(struct tg3 *tp) { struct ethtool_coalesce *ec = &tp->coal; memset(ec, 0, sizeof(*ec)); ec->cmd = ETHTOOL_GCOALESCE; ec->rx_coalesce_usecs = LOW_RXCOL_TICKS; ec->tx_coalesce_usecs = LOW_TXCOL_TICKS; ec->rx_max_coalesced_frames = LOW_RXMAX_FRAMES; ec->tx_max_coalesced_frames = LOW_TXMAX_FRAMES; ec->rx_coalesce_usecs_irq = DEFAULT_RXCOAL_TICK_INT; ec->tx_coalesce_usecs_irq = DEFAULT_TXCOAL_TICK_INT; ec->rx_max_coalesced_frames_irq = DEFAULT_RXCOAL_MAXF_INT; ec->tx_max_coalesced_frames_irq = DEFAULT_TXCOAL_MAXF_INT; ec->stats_block_coalesce_usecs = DEFAULT_STAT_COAL_TICKS; if (tp->coalesce_mode & (HOSTCC_MODE_CLRTICK_RXBD | HOSTCC_MODE_CLRTICK_TXBD)) { ec->rx_coalesce_usecs = LOW_RXCOL_TICKS_CLRTCKS; ec->rx_coalesce_usecs_irq = DEFAULT_RXCOAL_TICK_INT_CLRTCKS; ec->tx_coalesce_usecs = LOW_TXCOL_TICKS_CLRTCKS; ec->tx_coalesce_usecs_irq = DEFAULT_TXCOAL_TICK_INT_CLRTCKS; } if (tg3_flag(tp, 5705_PLUS)) { ec->rx_coalesce_usecs_irq = 0; ec->tx_coalesce_usecs_irq = 0; ec->stats_block_coalesce_usecs = 0; } } static int tg3_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev; struct tg3 *tp; int i, err; u32 sndmbx, rcvmbx, intmbx; char str[40]; u64 dma_mask, persist_dma_mask; netdev_features_t features = 0; printk_once(KERN_INFO "%s\n", version); err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); return err; } err = pci_request_regions(pdev, DRV_MODULE_NAME); if (err) { dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); goto err_out_disable_pdev; } pci_set_master(pdev); dev = alloc_etherdev_mq(sizeof(*tp), TG3_IRQ_MAX_VECS); if (!dev) { err = -ENOMEM; goto err_out_free_res; } SET_NETDEV_DEV(dev, &pdev->dev); tp = netdev_priv(dev); tp->pdev = pdev; tp->dev = dev; tp->pm_cap = pdev->pm_cap; tp->rx_mode = TG3_DEF_RX_MODE; tp->tx_mode = TG3_DEF_TX_MODE; tp->irq_sync = 1; if (tg3_debug > 0) tp->msg_enable = tg3_debug; else tp->msg_enable = TG3_DEF_MSG_ENABLE; if (pdev_is_ssb_gige_core(pdev)) { tg3_flag_set(tp, IS_SSB_CORE); if (ssb_gige_must_flush_posted_writes(pdev)) tg3_flag_set(tp, FLUSH_POSTED_WRITES); if (ssb_gige_one_dma_at_once(pdev)) tg3_flag_set(tp, ONE_DMA_AT_ONCE); if (ssb_gige_have_roboswitch(pdev)) tg3_flag_set(tp, ROBOSWITCH); if (ssb_gige_is_rgmii(pdev)) tg3_flag_set(tp, RGMII_MODE); } /* The word/byte swap controls here control register access byte * swapping. DMA data byte swapping is controlled in the GRC_MODE * setting below. */ tp->misc_host_ctrl = MISC_HOST_CTRL_MASK_PCI_INT | MISC_HOST_CTRL_WORD_SWAP | MISC_HOST_CTRL_INDIR_ACCESS | MISC_HOST_CTRL_PCISTATE_RW; /* The NONFRM (non-frame) byte/word swap controls take effect * on descriptor entries, anything which isn't packet data. * * The StrongARM chips on the board (one for tx, one for rx) * are running in big-endian mode. */ tp->grc_mode = (GRC_MODE_WSWAP_DATA | GRC_MODE_BSWAP_DATA | GRC_MODE_WSWAP_NONFRM_DATA); #ifdef __BIG_ENDIAN tp->grc_mode |= GRC_MODE_BSWAP_NONFRM_DATA; #endif spin_lock_init(&tp->lock); spin_lock_init(&tp->indirect_lock); INIT_WORK(&tp->reset_task, tg3_reset_task); tp->regs = pci_ioremap_bar(pdev, BAR_0); if (!tp->regs) { dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); err = -ENOMEM; goto err_out_free_dev; } if (tp->pdev->device == PCI_DEVICE_ID_TIGON3_5761 || tp->pdev->device == PCI_DEVICE_ID_TIGON3_5761E || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5761S || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5761SE || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717_C || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5718 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5719 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5720 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5762 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5725 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5727) { tg3_flag_set(tp, ENABLE_APE); tp->aperegs = pci_ioremap_bar(pdev, BAR_2); if (!tp->aperegs) { dev_err(&pdev->dev, "Cannot map APE registers, aborting\n"); err = -ENOMEM; goto err_out_iounmap; } } tp->rx_pending = TG3_DEF_RX_RING_PENDING; tp->rx_jumbo_pending = TG3_DEF_RX_JUMBO_RING_PENDING; dev->ethtool_ops = &tg3_ethtool_ops; dev->watchdog_timeo = TG3_TX_TIMEOUT; dev->netdev_ops = &tg3_netdev_ops; dev->irq = pdev->irq; err = tg3_get_invariants(tp, ent); if (err) { dev_err(&pdev->dev, "Problem fetching invariants of chip, aborting\n"); goto err_out_apeunmap; } /* The EPB bridge inside 5714, 5715, and 5780 and any * device behind the EPB cannot support DMA addresses > 40-bit. * On 64-bit systems with IOMMU, use 40-bit dma_mask. * On 64-bit systems without IOMMU, use 64-bit dma_mask and * do DMA address check in tg3_start_xmit(). */ if (tg3_flag(tp, IS_5788)) persist_dma_mask = dma_mask = DMA_BIT_MASK(32); else if (tg3_flag(tp, 40BIT_DMA_BUG)) { persist_dma_mask = dma_mask = DMA_BIT_MASK(40); #ifdef CONFIG_HIGHMEM dma_mask = DMA_BIT_MASK(64); #endif } else persist_dma_mask = dma_mask = DMA_BIT_MASK(64); /* Configure DMA attributes. */ if (dma_mask > DMA_BIT_MASK(32)) { err = pci_set_dma_mask(pdev, dma_mask); if (!err) { features |= NETIF_F_HIGHDMA; err = pci_set_consistent_dma_mask(pdev, persist_dma_mask); if (err < 0) { dev_err(&pdev->dev, "Unable to obtain 64 bit " "DMA for consistent allocations\n"); goto err_out_apeunmap; } } } if (err || dma_mask == DMA_BIT_MASK(32)) { err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); goto err_out_apeunmap; } } tg3_init_bufmgr_config(tp); features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; /* 5700 B0 chips do not support checksumming correctly due * to hardware bugs. */ if (tg3_chip_rev_id(tp) != CHIPREV_ID_5700_B0) { features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_RXCSUM; if (tg3_flag(tp, 5755_PLUS)) features |= NETIF_F_IPV6_CSUM; } /* TSO is on by default on chips that support hardware TSO. * Firmware TSO on older chips gives lower performance, so it * is off by default, but can be enabled using ethtool. */ if ((tg3_flag(tp, HW_TSO_1) || tg3_flag(tp, HW_TSO_2) || tg3_flag(tp, HW_TSO_3)) && (features & NETIF_F_IP_CSUM)) features |= NETIF_F_TSO; if (tg3_flag(tp, HW_TSO_2) || tg3_flag(tp, HW_TSO_3)) { if (features & NETIF_F_IPV6_CSUM) features |= NETIF_F_TSO6; if (tg3_flag(tp, HW_TSO_3) || tg3_asic_rev(tp) == ASIC_REV_5761 || (tg3_asic_rev(tp) == ASIC_REV_5784 && tg3_chip_rev(tp) != CHIPREV_5784_AX) || tg3_asic_rev(tp) == ASIC_REV_5785 || tg3_asic_rev(tp) == ASIC_REV_57780) features |= NETIF_F_TSO_ECN; } dev->features |= features; dev->vlan_features |= features; /* * Add loopback capability only for a subset of devices that support * MAC-LOOPBACK. Eventually this need to be enhanced to allow INT-PHY * loopback for the remaining devices. */ if (tg3_asic_rev(tp) != ASIC_REV_5780 && !tg3_flag(tp, CPMU_PRESENT)) /* Add the loopback capability */ features |= NETIF_F_LOOPBACK; dev->hw_features |= features; if (tg3_chip_rev_id(tp) == CHIPREV_ID_5705_A1 && !tg3_flag(tp, TSO_CAPABLE) && !(tr32(TG3PCI_PCISTATE) & PCISTATE_BUS_SPEED_HIGH)) { tg3_flag_set(tp, MAX_RXPEND_64); tp->rx_pending = 63; } err = tg3_get_device_address(tp); if (err) { dev_err(&pdev->dev, "Could not obtain valid ethernet address, aborting\n"); goto err_out_apeunmap; } /* * Reset chip in case UNDI or EFI driver did not shutdown * DMA self test will enable WDMAC and we'll see (spurious) * pending DMA on the PCI bus at that point. */ if ((tr32(HOSTCC_MODE) & HOSTCC_MODE_ENABLE) || (tr32(WDMAC_MODE) & WDMAC_MODE_ENABLE)) { tw32(MEMARB_MODE, MEMARB_MODE_ENABLE); tg3_halt(tp, RESET_KIND_SHUTDOWN, 1); } err = tg3_test_dma(tp); if (err) { dev_err(&pdev->dev, "DMA engine test failed, aborting\n"); goto err_out_apeunmap; } intmbx = MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW; rcvmbx = MAILBOX_RCVRET_CON_IDX_0 + TG3_64BIT_REG_LOW; sndmbx = MAILBOX_SNDHOST_PROD_IDX_0 + TG3_64BIT_REG_LOW; for (i = 0; i < tp->irq_max; i++) { struct tg3_napi *tnapi = &tp->napi[i]; tnapi->tp = tp; tnapi->tx_pending = TG3_DEF_TX_RING_PENDING; tnapi->int_mbox = intmbx; if (i <= 4) intmbx += 0x8; else intmbx += 0x4; tnapi->consmbox = rcvmbx; tnapi->prodmbox = sndmbx; if (i) tnapi->coal_now = HOSTCC_MODE_COAL_VEC1_NOW << (i - 1); else tnapi->coal_now = HOSTCC_MODE_NOW; if (!tg3_flag(tp, SUPPORT_MSIX)) break; /* * If we support MSIX, we'll be using RSS. If we're using * RSS, the first vector only handles link interrupts and the * remaining vectors handle rx and tx interrupts. Reuse the * mailbox values for the next iteration. The values we setup * above are still useful for the single vectored mode. */ if (!i) continue; rcvmbx += 0x8; if (sndmbx & 0x4) sndmbx -= 0x4; else sndmbx += 0xc; } tg3_init_coal(tp); pci_set_drvdata(pdev, dev); if (tg3_asic_rev(tp) == ASIC_REV_5719 || tg3_asic_rev(tp) == ASIC_REV_5720 || tg3_asic_rev(tp) == ASIC_REV_5762) tg3_flag_set(tp, PTP_CAPABLE); tg3_timer_init(tp); tg3_carrier_off(tp); err = register_netdev(dev); if (err) { dev_err(&pdev->dev, "Cannot register net device, aborting\n"); goto err_out_apeunmap; } netdev_info(dev, "Tigon3 [partno(%s) rev %04x] (%s) MAC address %pM\n", tp->board_part_number, tg3_chip_rev_id(tp), tg3_bus_string(tp, str), dev->dev_addr); if (tp->phy_flags & TG3_PHYFLG_IS_CONNECTED) { struct phy_device *phydev; phydev = tp->mdio_bus->phy_map[TG3_PHY_MII_ADDR]; netdev_info(dev, "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n", phydev->drv->name, dev_name(&phydev->dev)); } else { char *ethtype; if (tp->phy_flags & TG3_PHYFLG_10_100_ONLY) ethtype = "10/100Base-TX"; else if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES) ethtype = "1000Base-SX"; else ethtype = "10/100/1000Base-T"; netdev_info(dev, "attached PHY is %s (%s Ethernet) " "(WireSpeed[%d], EEE[%d])\n", tg3_phy_string(tp), ethtype, (tp->phy_flags & TG3_PHYFLG_NO_ETH_WIRE_SPEED) == 0, (tp->phy_flags & TG3_PHYFLG_EEE_CAP) != 0); } netdev_info(dev, "RXcsums[%d] LinkChgREG[%d] MIirq[%d] ASF[%d] TSOcap[%d]\n", (dev->features & NETIF_F_RXCSUM) != 0, tg3_flag(tp, USE_LINKCHG_REG) != 0, (tp->phy_flags & TG3_PHYFLG_USE_MI_INTERRUPT) != 0, tg3_flag(tp, ENABLE_ASF) != 0, tg3_flag(tp, TSO_CAPABLE) != 0); netdev_info(dev, "dma_rwctrl[%08x] dma_mask[%d-bit]\n", tp->dma_rwctrl, pdev->dma_mask == DMA_BIT_MASK(32) ? 32 : ((u64)pdev->dma_mask) == DMA_BIT_MASK(40) ? 40 : 64); pci_save_state(pdev); return 0; err_out_apeunmap: if (tp->aperegs) { iounmap(tp->aperegs); tp->aperegs = NULL; } err_out_iounmap: if (tp->regs) { iounmap(tp->regs); tp->regs = NULL; } err_out_free_dev: free_netdev(dev); err_out_free_res: pci_release_regions(pdev); err_out_disable_pdev: pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); return err; } static void tg3_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); if (dev) { struct tg3 *tp = netdev_priv(dev); release_firmware(tp->fw); tg3_reset_task_cancel(tp); if (tg3_flag(tp, USE_PHYLIB)) { tg3_phy_fini(tp); tg3_mdio_fini(tp); } unregister_netdev(dev); if (tp->aperegs) { iounmap(tp->aperegs); tp->aperegs = NULL; } if (tp->regs) { iounmap(tp->regs); tp->regs = NULL; } free_netdev(dev); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } } #ifdef CONFIG_PM_SLEEP static int tg3_suspend(struct device *device) { struct pci_dev *pdev = to_pci_dev(device); struct net_device *dev = pci_get_drvdata(pdev); struct tg3 *tp = netdev_priv(dev); int err; if (!netif_running(dev)) return 0; tg3_reset_task_cancel(tp); tg3_phy_stop(tp); tg3_netif_stop(tp); tg3_timer_stop(tp); tg3_full_lock(tp, 1); tg3_disable_ints(tp); tg3_full_unlock(tp); netif_device_detach(dev); tg3_full_lock(tp, 0); tg3_halt(tp, RESET_KIND_SHUTDOWN, 1); tg3_flag_clear(tp, INIT_COMPLETE); tg3_full_unlock(tp); err = tg3_power_down_prepare(tp); if (err) { int err2; tg3_full_lock(tp, 0); tg3_flag_set(tp, INIT_COMPLETE); err2 = tg3_restart_hw(tp, true); if (err2) goto out; tg3_timer_start(tp); netif_device_attach(dev); tg3_netif_start(tp); out: tg3_full_unlock(tp); if (!err2) tg3_phy_start(tp); } return err; } static int tg3_resume(struct device *device) { struct pci_dev *pdev = to_pci_dev(device); struct net_device *dev = pci_get_drvdata(pdev); struct tg3 *tp = netdev_priv(dev); int err; if (!netif_running(dev)) return 0; netif_device_attach(dev); tg3_full_lock(tp, 0); tg3_ape_driver_state_change(tp, RESET_KIND_INIT); tg3_flag_set(tp, INIT_COMPLETE); err = tg3_restart_hw(tp, !(tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN)); if (err) goto out; tg3_timer_start(tp); tg3_netif_start(tp); out: tg3_full_unlock(tp); if (!err) tg3_phy_start(tp); return err; } #endif /* CONFIG_PM_SLEEP */ static SIMPLE_DEV_PM_OPS(tg3_pm_ops, tg3_suspend, tg3_resume); static void tg3_shutdown(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct tg3 *tp = netdev_priv(dev); rtnl_lock(); netif_device_detach(dev); if (netif_running(dev)) dev_close(dev); if (system_state == SYSTEM_POWER_OFF) tg3_power_down(tp); rtnl_unlock(); } /** * tg3_io_error_detected - called when PCI error is detected * @pdev: Pointer to PCI device * @state: The current pci connection state * * This function is called after a PCI bus error affecting * this device has been detected. */ static pci_ers_result_t tg3_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct tg3 *tp = netdev_priv(netdev); pci_ers_result_t err = PCI_ERS_RESULT_NEED_RESET; netdev_info(netdev, "PCI I/O error detected\n"); rtnl_lock(); if (!netif_running(netdev)) goto done; tg3_phy_stop(tp); tg3_netif_stop(tp); tg3_timer_stop(tp); /* Want to make sure that the reset task doesn't run */ tg3_reset_task_cancel(tp); netif_device_detach(netdev); /* Clean up software state, even if MMIO is blocked */ tg3_full_lock(tp, 0); tg3_halt(tp, RESET_KIND_SHUTDOWN, 0); tg3_full_unlock(tp); done: if (state == pci_channel_io_perm_failure) { tg3_napi_enable(tp); dev_close(netdev); err = PCI_ERS_RESULT_DISCONNECT; } else { pci_disable_device(pdev); } rtnl_unlock(); return err; } /** * tg3_io_slot_reset - called after the pci bus has been reset. * @pdev: Pointer to PCI device * * Restart the card from scratch, as if from a cold-boot. * At this point, the card has exprienced a hard reset, * followed by fixups by BIOS, and has its config space * set up identically to what it was at cold boot. */ static pci_ers_result_t tg3_io_slot_reset(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct tg3 *tp = netdev_priv(netdev); pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; int err; rtnl_lock(); if (pci_enable_device(pdev)) { netdev_err(netdev, "Cannot re-enable PCI device after reset.\n"); goto done; } pci_set_master(pdev); pci_restore_state(pdev); pci_save_state(pdev); if (!netif_running(netdev)) { rc = PCI_ERS_RESULT_RECOVERED; goto done; } err = tg3_power_up(tp); if (err) goto done; rc = PCI_ERS_RESULT_RECOVERED; done: if (rc != PCI_ERS_RESULT_RECOVERED && netif_running(netdev)) { tg3_napi_enable(tp); dev_close(netdev); } rtnl_unlock(); return rc; } /** * tg3_io_resume - called when traffic can start flowing again. * @pdev: Pointer to PCI device * * This callback is called when the error recovery driver tells * us that its OK to resume normal operation. */ static void tg3_io_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct tg3 *tp = netdev_priv(netdev); int err; rtnl_lock(); if (!netif_running(netdev)) goto done; tg3_full_lock(tp, 0); tg3_ape_driver_state_change(tp, RESET_KIND_INIT); tg3_flag_set(tp, INIT_COMPLETE); err = tg3_restart_hw(tp, true); if (err) { tg3_full_unlock(tp); netdev_err(netdev, "Cannot restart hardware after reset.\n"); goto done; } netif_device_attach(netdev); tg3_timer_start(tp); tg3_netif_start(tp); tg3_full_unlock(tp); tg3_phy_start(tp); done: rtnl_unlock(); } static const struct pci_error_handlers tg3_err_handler = { .error_detected = tg3_io_error_detected, .slot_reset = tg3_io_slot_reset, .resume = tg3_io_resume }; static struct pci_driver tg3_driver = { .name = DRV_MODULE_NAME, .id_table = tg3_pci_tbl, .probe = tg3_init_one, .remove = tg3_remove_one, .err_handler = &tg3_err_handler, .driver.pm = &tg3_pm_ops, .shutdown = tg3_shutdown, }; module_pci_driver(tg3_driver);