/* * drivers/net/ethernet/freescale/gianfar_ethtool.c * * Gianfar Ethernet Driver * Ethtool support for Gianfar Enet * Based on e1000 ethtool support * * Author: Andy Fleming * Maintainer: Kumar Gala * Modifier: Sandeep Gopalpet * * Copyright 2003-2006, 2008-2009, 2011 Freescale Semiconductor, Inc. * * This software may be used and distributed according to * the terms of the GNU Public License, Version 2, incorporated herein * by reference. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "gianfar.h" #define GFAR_MAX_COAL_USECS 0xffff #define GFAR_MAX_COAL_FRAMES 0xff static void gfar_fill_stats(struct net_device *dev, struct ethtool_stats *dummy, u64 *buf); static void gfar_gstrings(struct net_device *dev, u32 stringset, u8 * buf); static int gfar_gcoalesce(struct net_device *dev, struct ethtool_coalesce *cvals); static int gfar_scoalesce(struct net_device *dev, struct ethtool_coalesce *cvals); static void gfar_gringparam(struct net_device *dev, struct ethtool_ringparam *rvals); static int gfar_sringparam(struct net_device *dev, struct ethtool_ringparam *rvals); static void gfar_gdrvinfo(struct net_device *dev, struct ethtool_drvinfo *drvinfo); static const char stat_gstrings[][ETH_GSTRING_LEN] = { "rx-large-frame-errors", "rx-short-frame-errors", "rx-non-octet-errors", "rx-crc-errors", "rx-overrun-errors", "rx-busy-errors", "rx-babbling-errors", "rx-truncated-frames", "ethernet-bus-error", "tx-babbling-errors", "tx-underrun-errors", "rx-skb-missing-errors", "tx-timeout-errors", "tx-rx-64-frames", "tx-rx-65-127-frames", "tx-rx-128-255-frames", "tx-rx-256-511-frames", "tx-rx-512-1023-frames", "tx-rx-1024-1518-frames", "tx-rx-1519-1522-good-vlan", "rx-bytes", "rx-packets", "rx-fcs-errors", "receive-multicast-packet", "receive-broadcast-packet", "rx-control-frame-packets", "rx-pause-frame-packets", "rx-unknown-op-code", "rx-alignment-error", "rx-frame-length-error", "rx-code-error", "rx-carrier-sense-error", "rx-undersize-packets", "rx-oversize-packets", "rx-fragmented-frames", "rx-jabber-frames", "rx-dropped-frames", "tx-byte-counter", "tx-packets", "tx-multicast-packets", "tx-broadcast-packets", "tx-pause-control-frames", "tx-deferral-packets", "tx-excessive-deferral-packets", "tx-single-collision-packets", "tx-multiple-collision-packets", "tx-late-collision-packets", "tx-excessive-collision-packets", "tx-total-collision", "reserved", "tx-dropped-frames", "tx-jabber-frames", "tx-fcs-errors", "tx-control-frames", "tx-oversize-frames", "tx-undersize-frames", "tx-fragmented-frames", }; /* Fill in a buffer with the strings which correspond to the * stats */ static void gfar_gstrings(struct net_device *dev, u32 stringset, u8 * buf) { struct gfar_private *priv = netdev_priv(dev); if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) memcpy(buf, stat_gstrings, GFAR_STATS_LEN * ETH_GSTRING_LEN); else memcpy(buf, stat_gstrings, GFAR_EXTRA_STATS_LEN * ETH_GSTRING_LEN); } /* Fill in an array of 64-bit statistics from various sources. * This array will be appended to the end of the ethtool_stats * structure, and returned to user space */ static void gfar_fill_stats(struct net_device *dev, struct ethtool_stats *dummy, u64 *buf) { int i; struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = priv->gfargrp[0].regs; atomic64_t *extra = (atomic64_t *)&priv->extra_stats; for (i = 0; i < GFAR_EXTRA_STATS_LEN; i++) buf[i] = atomic64_read(&extra[i]); if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { u32 __iomem *rmon = (u32 __iomem *) ®s->rmon; for (; i < GFAR_STATS_LEN; i++, rmon++) buf[i] = (u64) gfar_read(rmon); } } static int gfar_sset_count(struct net_device *dev, int sset) { struct gfar_private *priv = netdev_priv(dev); switch (sset) { case ETH_SS_STATS: if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) return GFAR_STATS_LEN; else return GFAR_EXTRA_STATS_LEN; default: return -EOPNOTSUPP; } } /* Fills in the drvinfo structure with some basic info */ static void gfar_gdrvinfo(struct net_device *dev, struct ethtool_drvinfo *drvinfo) { strlcpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver)); strlcpy(drvinfo->version, gfar_driver_version, sizeof(drvinfo->version)); strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version)); strlcpy(drvinfo->bus_info, "N/A", sizeof(drvinfo->bus_info)); drvinfo->regdump_len = 0; drvinfo->eedump_len = 0; } static int gfar_ssettings(struct net_device *dev, struct ethtool_cmd *cmd) { struct gfar_private *priv = netdev_priv(dev); struct phy_device *phydev = priv->phydev; if (NULL == phydev) return -ENODEV; return phy_ethtool_sset(phydev, cmd); } /* Return the current settings in the ethtool_cmd structure */ static int gfar_gsettings(struct net_device *dev, struct ethtool_cmd *cmd) { struct gfar_private *priv = netdev_priv(dev); struct phy_device *phydev = priv->phydev; struct gfar_priv_rx_q *rx_queue = NULL; struct gfar_priv_tx_q *tx_queue = NULL; if (NULL == phydev) return -ENODEV; tx_queue = priv->tx_queue[0]; rx_queue = priv->rx_queue[0]; /* etsec-1.7 and older versions have only one txic * and rxic regs although they support multiple queues */ cmd->maxtxpkt = get_icft_value(tx_queue->txic); cmd->maxrxpkt = get_icft_value(rx_queue->rxic); return phy_ethtool_gset(phydev, cmd); } /* Return the length of the register structure */ static int gfar_reglen(struct net_device *dev) { return sizeof (struct gfar); } /* Return a dump of the GFAR register space */ static void gfar_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *regbuf) { int i; struct gfar_private *priv = netdev_priv(dev); u32 __iomem *theregs = (u32 __iomem *) priv->gfargrp[0].regs; u32 *buf = (u32 *) regbuf; for (i = 0; i < sizeof (struct gfar) / sizeof (u32); i++) buf[i] = gfar_read(&theregs[i]); } /* Convert microseconds to ethernet clock ticks, which changes * depending on what speed the controller is running at */ static unsigned int gfar_usecs2ticks(struct gfar_private *priv, unsigned int usecs) { unsigned int count; /* The timer is different, depending on the interface speed */ switch (priv->phydev->speed) { case SPEED_1000: count = GFAR_GBIT_TIME; break; case SPEED_100: count = GFAR_100_TIME; break; case SPEED_10: default: count = GFAR_10_TIME; break; } /* Make sure we return a number greater than 0 * if usecs > 0 */ return (usecs * 1000 + count - 1) / count; } /* Convert ethernet clock ticks to microseconds */ static unsigned int gfar_ticks2usecs(struct gfar_private *priv, unsigned int ticks) { unsigned int count; /* The timer is different, depending on the interface speed */ switch (priv->phydev->speed) { case SPEED_1000: count = GFAR_GBIT_TIME; break; case SPEED_100: count = GFAR_100_TIME; break; case SPEED_10: default: count = GFAR_10_TIME; break; } /* Make sure we return a number greater than 0 */ /* if ticks is > 0 */ return (ticks * count) / 1000; } /* Get the coalescing parameters, and put them in the cvals * structure. */ static int gfar_gcoalesce(struct net_device *dev, struct ethtool_coalesce *cvals) { struct gfar_private *priv = netdev_priv(dev); struct gfar_priv_rx_q *rx_queue = NULL; struct gfar_priv_tx_q *tx_queue = NULL; unsigned long rxtime; unsigned long rxcount; unsigned long txtime; unsigned long txcount; if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_COALESCE)) return -EOPNOTSUPP; if (NULL == priv->phydev) return -ENODEV; rx_queue = priv->rx_queue[0]; tx_queue = priv->tx_queue[0]; rxtime = get_ictt_value(rx_queue->rxic); rxcount = get_icft_value(rx_queue->rxic); txtime = get_ictt_value(tx_queue->txic); txcount = get_icft_value(tx_queue->txic); cvals->rx_coalesce_usecs = gfar_ticks2usecs(priv, rxtime); cvals->rx_max_coalesced_frames = rxcount; cvals->tx_coalesce_usecs = gfar_ticks2usecs(priv, txtime); cvals->tx_max_coalesced_frames = txcount; cvals->use_adaptive_rx_coalesce = 0; cvals->use_adaptive_tx_coalesce = 0; cvals->pkt_rate_low = 0; cvals->rx_coalesce_usecs_low = 0; cvals->rx_max_coalesced_frames_low = 0; cvals->tx_coalesce_usecs_low = 0; cvals->tx_max_coalesced_frames_low = 0; /* When the packet rate is below pkt_rate_high but above * pkt_rate_low (both measured in packets per second) the * normal {rx,tx}_* coalescing parameters are used. */ /* When the packet rate is (measured in packets per second) * is above pkt_rate_high, the {rx,tx}_*_high parameters are * used. */ cvals->pkt_rate_high = 0; cvals->rx_coalesce_usecs_high = 0; cvals->rx_max_coalesced_frames_high = 0; cvals->tx_coalesce_usecs_high = 0; cvals->tx_max_coalesced_frames_high = 0; /* How often to do adaptive coalescing packet rate sampling, * measured in seconds. Must not be zero. */ cvals->rate_sample_interval = 0; return 0; } /* Change the coalescing values. * Both cvals->*_usecs and cvals->*_frames have to be > 0 * in order for coalescing to be active */ static int gfar_scoalesce(struct net_device *dev, struct ethtool_coalesce *cvals) { struct gfar_private *priv = netdev_priv(dev); int i, err = 0; if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_COALESCE)) return -EOPNOTSUPP; if (NULL == priv->phydev) return -ENODEV; /* Check the bounds of the values */ if (cvals->rx_coalesce_usecs > GFAR_MAX_COAL_USECS) { netdev_info(dev, "Coalescing is limited to %d microseconds\n", GFAR_MAX_COAL_USECS); return -EINVAL; } if (cvals->rx_max_coalesced_frames > GFAR_MAX_COAL_FRAMES) { netdev_info(dev, "Coalescing is limited to %d frames\n", GFAR_MAX_COAL_FRAMES); return -EINVAL; } /* Check the bounds of the values */ if (cvals->tx_coalesce_usecs > GFAR_MAX_COAL_USECS) { netdev_info(dev, "Coalescing is limited to %d microseconds\n", GFAR_MAX_COAL_USECS); return -EINVAL; } if (cvals->tx_max_coalesced_frames > GFAR_MAX_COAL_FRAMES) { netdev_info(dev, "Coalescing is limited to %d frames\n", GFAR_MAX_COAL_FRAMES); return -EINVAL; } while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) cpu_relax(); /* Set up rx coalescing */ if ((cvals->rx_coalesce_usecs == 0) || (cvals->rx_max_coalesced_frames == 0)) { for (i = 0; i < priv->num_rx_queues; i++) priv->rx_queue[i]->rxcoalescing = 0; } else { for (i = 0; i < priv->num_rx_queues; i++) priv->rx_queue[i]->rxcoalescing = 1; } for (i = 0; i < priv->num_rx_queues; i++) { priv->rx_queue[i]->rxic = mk_ic_value( cvals->rx_max_coalesced_frames, gfar_usecs2ticks(priv, cvals->rx_coalesce_usecs)); } /* Set up tx coalescing */ if ((cvals->tx_coalesce_usecs == 0) || (cvals->tx_max_coalesced_frames == 0)) { for (i = 0; i < priv->num_tx_queues; i++) priv->tx_queue[i]->txcoalescing = 0; } else { for (i = 0; i < priv->num_tx_queues; i++) priv->tx_queue[i]->txcoalescing = 1; } for (i = 0; i < priv->num_tx_queues; i++) { priv->tx_queue[i]->txic = mk_ic_value( cvals->tx_max_coalesced_frames, gfar_usecs2ticks(priv, cvals->tx_coalesce_usecs)); } if (dev->flags & IFF_UP) { stop_gfar(dev); err = startup_gfar(dev); } else { gfar_mac_reset(priv); } clear_bit_unlock(GFAR_RESETTING, &priv->state); return err; } /* Fills in rvals with the current ring parameters. Currently, * rx, rx_mini, and rx_jumbo rings are the same size, as mini and * jumbo are ignored by the driver */ static void gfar_gringparam(struct net_device *dev, struct ethtool_ringparam *rvals) { struct gfar_private *priv = netdev_priv(dev); struct gfar_priv_tx_q *tx_queue = NULL; struct gfar_priv_rx_q *rx_queue = NULL; tx_queue = priv->tx_queue[0]; rx_queue = priv->rx_queue[0]; rvals->rx_max_pending = GFAR_RX_MAX_RING_SIZE; rvals->rx_mini_max_pending = GFAR_RX_MAX_RING_SIZE; rvals->rx_jumbo_max_pending = GFAR_RX_MAX_RING_SIZE; rvals->tx_max_pending = GFAR_TX_MAX_RING_SIZE; /* Values changeable by the user. The valid values are * in the range 1 to the "*_max_pending" counterpart above. */ rvals->rx_pending = rx_queue->rx_ring_size; rvals->rx_mini_pending = rx_queue->rx_ring_size; rvals->rx_jumbo_pending = rx_queue->rx_ring_size; rvals->tx_pending = tx_queue->tx_ring_size; } /* Change the current ring parameters, stopping the controller if * necessary so that we don't mess things up while we're in motion. */ static int gfar_sringparam(struct net_device *dev, struct ethtool_ringparam *rvals) { struct gfar_private *priv = netdev_priv(dev); int err = 0, i; if (rvals->rx_pending > GFAR_RX_MAX_RING_SIZE) return -EINVAL; if (!is_power_of_2(rvals->rx_pending)) { netdev_err(dev, "Ring sizes must be a power of 2\n"); return -EINVAL; } if (rvals->tx_pending > GFAR_TX_MAX_RING_SIZE) return -EINVAL; if (!is_power_of_2(rvals->tx_pending)) { netdev_err(dev, "Ring sizes must be a power of 2\n"); return -EINVAL; } while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) cpu_relax(); if (dev->flags & IFF_UP) stop_gfar(dev); /* Change the sizes */ for (i = 0; i < priv->num_rx_queues; i++) priv->rx_queue[i]->rx_ring_size = rvals->rx_pending; for (i = 0; i < priv->num_tx_queues; i++) priv->tx_queue[i]->tx_ring_size = rvals->tx_pending; /* Rebuild the rings with the new size */ if (dev->flags & IFF_UP) err = startup_gfar(dev); clear_bit_unlock(GFAR_RESETTING, &priv->state); return err; } static void gfar_gpauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) { struct gfar_private *priv = netdev_priv(dev); epause->autoneg = !!priv->pause_aneg_en; epause->rx_pause = !!priv->rx_pause_en; epause->tx_pause = !!priv->tx_pause_en; } static int gfar_spauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) { struct gfar_private *priv = netdev_priv(dev); struct phy_device *phydev = priv->phydev; struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 oldadv, newadv; if (!phydev) return -ENODEV; if (!(phydev->supported & SUPPORTED_Pause) || (!(phydev->supported & SUPPORTED_Asym_Pause) && (epause->rx_pause != epause->tx_pause))) return -EINVAL; priv->rx_pause_en = priv->tx_pause_en = 0; if (epause->rx_pause) { priv->rx_pause_en = 1; if (epause->tx_pause) { priv->tx_pause_en = 1; /* FLOW_CTRL_RX & TX */ newadv = ADVERTISED_Pause; } else /* FLOW_CTLR_RX */ newadv = ADVERTISED_Pause | ADVERTISED_Asym_Pause; } else if (epause->tx_pause) { priv->tx_pause_en = 1; /* FLOW_CTLR_TX */ newadv = ADVERTISED_Asym_Pause; } else newadv = 0; if (epause->autoneg) priv->pause_aneg_en = 1; else priv->pause_aneg_en = 0; oldadv = phydev->advertising & (ADVERTISED_Pause | ADVERTISED_Asym_Pause); if (oldadv != newadv) { phydev->advertising &= ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause); phydev->advertising |= newadv; if (phydev->autoneg) /* inform link partner of our * new flow ctrl settings */ return phy_start_aneg(phydev); if (!epause->autoneg) { u32 tempval; tempval = gfar_read(®s->maccfg1); tempval &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); priv->tx_actual_en = 0; if (priv->tx_pause_en) { priv->tx_actual_en = 1; tempval |= MACCFG1_TX_FLOW; } if (priv->rx_pause_en) tempval |= MACCFG1_RX_FLOW; gfar_write(®s->maccfg1, tempval); } } return 0; } int gfar_set_features(struct net_device *dev, netdev_features_t features) { netdev_features_t changed = dev->features ^ features; struct gfar_private *priv = netdev_priv(dev); int err = 0; if (!(changed & (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM))) return 0; while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) cpu_relax(); dev->features = features; if (dev->flags & IFF_UP) { /* Now we take down the rings to rebuild them */ stop_gfar(dev); err = startup_gfar(dev); } else { gfar_mac_reset(priv); } clear_bit_unlock(GFAR_RESETTING, &priv->state); return err; } static uint32_t gfar_get_msglevel(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); return priv->msg_enable; } static void gfar_set_msglevel(struct net_device *dev, uint32_t data) { struct gfar_private *priv = netdev_priv(dev); priv->msg_enable = data; } #ifdef CONFIG_PM static void gfar_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct gfar_private *priv = netdev_priv(dev); if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) { wol->supported = WAKE_MAGIC; wol->wolopts = priv->wol_en ? WAKE_MAGIC : 0; } else { wol->supported = wol->wolopts = 0; } } static int gfar_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct gfar_private *priv = netdev_priv(dev); if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && wol->wolopts != 0) return -EINVAL; if (wol->wolopts & ~WAKE_MAGIC) return -EINVAL; device_set_wakeup_enable(&dev->dev, wol->wolopts & WAKE_MAGIC); priv->wol_en = !!device_may_wakeup(&dev->dev); return 0; } #endif static void ethflow_to_filer_rules (struct gfar_private *priv, u64 ethflow) { u32 fcr = 0x0, fpr = FPR_FILER_MASK; if (ethflow & RXH_L2DA) { fcr = RQFCR_PID_DAH |RQFCR_CMP_NOMATCH | RQFCR_HASH | RQFCR_AND | RQFCR_HASHTBL_0; priv->ftp_rqfpr[priv->cur_filer_idx] = fpr; priv->ftp_rqfcr[priv->cur_filer_idx] = fcr; gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr); priv->cur_filer_idx = priv->cur_filer_idx - 1; fcr = RQFCR_PID_DAL | RQFCR_AND | RQFCR_CMP_NOMATCH | RQFCR_HASH | RQFCR_AND | RQFCR_HASHTBL_0; priv->ftp_rqfpr[priv->cur_filer_idx] = fpr; priv->ftp_rqfcr[priv->cur_filer_idx] = fcr; gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr); priv->cur_filer_idx = priv->cur_filer_idx - 1; } if (ethflow & RXH_VLAN) { fcr = RQFCR_PID_VID | RQFCR_CMP_NOMATCH | RQFCR_HASH | RQFCR_AND | RQFCR_HASHTBL_0; gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr); priv->ftp_rqfpr[priv->cur_filer_idx] = fpr; priv->ftp_rqfcr[priv->cur_filer_idx] = fcr; priv->cur_filer_idx = priv->cur_filer_idx - 1; } if (ethflow & RXH_IP_SRC) { fcr = RQFCR_PID_SIA | RQFCR_CMP_NOMATCH | RQFCR_HASH | RQFCR_AND | RQFCR_HASHTBL_0; priv->ftp_rqfpr[priv->cur_filer_idx] = fpr; priv->ftp_rqfcr[priv->cur_filer_idx] = fcr; gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr); priv->cur_filer_idx = priv->cur_filer_idx - 1; } if (ethflow & (RXH_IP_DST)) { fcr = RQFCR_PID_DIA | RQFCR_CMP_NOMATCH | RQFCR_HASH | RQFCR_AND | RQFCR_HASHTBL_0; priv->ftp_rqfpr[priv->cur_filer_idx] = fpr; priv->ftp_rqfcr[priv->cur_filer_idx] = fcr; gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr); priv->cur_filer_idx = priv->cur_filer_idx - 1; } if (ethflow & RXH_L3_PROTO) { fcr = RQFCR_PID_L4P | RQFCR_CMP_NOMATCH | RQFCR_HASH | RQFCR_AND | RQFCR_HASHTBL_0; priv->ftp_rqfpr[priv->cur_filer_idx] = fpr; priv->ftp_rqfcr[priv->cur_filer_idx] = fcr; gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr); priv->cur_filer_idx = priv->cur_filer_idx - 1; } if (ethflow & RXH_L4_B_0_1) { fcr = RQFCR_PID_SPT | RQFCR_CMP_NOMATCH | RQFCR_HASH | RQFCR_AND | RQFCR_HASHTBL_0; priv->ftp_rqfpr[priv->cur_filer_idx] = fpr; priv->ftp_rqfcr[priv->cur_filer_idx] = fcr; gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr); priv->cur_filer_idx = priv->cur_filer_idx - 1; } if (ethflow & RXH_L4_B_2_3) { fcr = RQFCR_PID_DPT | RQFCR_CMP_NOMATCH | RQFCR_HASH | RQFCR_AND | RQFCR_HASHTBL_0; priv->ftp_rqfpr[priv->cur_filer_idx] = fpr; priv->ftp_rqfcr[priv->cur_filer_idx] = fcr; gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr); priv->cur_filer_idx = priv->cur_filer_idx - 1; } } static int gfar_ethflow_to_filer_table(struct gfar_private *priv, u64 ethflow, u64 class) { unsigned int last_rule_idx = priv->cur_filer_idx; unsigned int cmp_rqfpr; unsigned int *local_rqfpr; unsigned int *local_rqfcr; int i = 0x0, k = 0x0; int j = MAX_FILER_IDX, l = 0x0; int ret = 1; local_rqfpr = kmalloc_array(MAX_FILER_IDX + 1, sizeof(unsigned int), GFP_KERNEL); local_rqfcr = kmalloc_array(MAX_FILER_IDX + 1, sizeof(unsigned int), GFP_KERNEL); if (!local_rqfpr || !local_rqfcr) { ret = 0; goto err; } switch (class) { case TCP_V4_FLOW: cmp_rqfpr = RQFPR_IPV4 |RQFPR_TCP; break; case UDP_V4_FLOW: cmp_rqfpr = RQFPR_IPV4 |RQFPR_UDP; break; case TCP_V6_FLOW: cmp_rqfpr = RQFPR_IPV6 |RQFPR_TCP; break; case UDP_V6_FLOW: cmp_rqfpr = RQFPR_IPV6 |RQFPR_UDP; break; default: netdev_err(priv->ndev, "Right now this class is not supported\n"); ret = 0; goto err; } for (i = 0; i < MAX_FILER_IDX + 1; i++) { local_rqfpr[j] = priv->ftp_rqfpr[i]; local_rqfcr[j] = priv->ftp_rqfcr[i]; j--; if ((priv->ftp_rqfcr[i] == (RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND)) && (priv->ftp_rqfpr[i] == cmp_rqfpr)) break; } if (i == MAX_FILER_IDX + 1) { netdev_err(priv->ndev, "No parse rule found, can't create hash rules\n"); ret = 0; goto err; } /* If a match was found, then it begins the starting of a cluster rule * if it was already programmed, we need to overwrite these rules */ for (l = i+1; l < MAX_FILER_IDX; l++) { if ((priv->ftp_rqfcr[l] & RQFCR_CLE) && !(priv->ftp_rqfcr[l] & RQFCR_AND)) { priv->ftp_rqfcr[l] = RQFCR_CLE | RQFCR_CMP_EXACT | RQFCR_HASHTBL_0 | RQFCR_PID_MASK; priv->ftp_rqfpr[l] = FPR_FILER_MASK; gfar_write_filer(priv, l, priv->ftp_rqfcr[l], priv->ftp_rqfpr[l]); break; } if (!(priv->ftp_rqfcr[l] & RQFCR_CLE) && (priv->ftp_rqfcr[l] & RQFCR_AND)) continue; else { local_rqfpr[j] = priv->ftp_rqfpr[l]; local_rqfcr[j] = priv->ftp_rqfcr[l]; j--; } } priv->cur_filer_idx = l - 1; last_rule_idx = l; /* hash rules */ ethflow_to_filer_rules(priv, ethflow); /* Write back the popped out rules again */ for (k = j+1; k < MAX_FILER_IDX; k++) { priv->ftp_rqfpr[priv->cur_filer_idx] = local_rqfpr[k]; priv->ftp_rqfcr[priv->cur_filer_idx] = local_rqfcr[k]; gfar_write_filer(priv, priv->cur_filer_idx, local_rqfcr[k], local_rqfpr[k]); if (!priv->cur_filer_idx) break; priv->cur_filer_idx = priv->cur_filer_idx - 1; } err: kfree(local_rqfcr); kfree(local_rqfpr); return ret; } static int gfar_set_hash_opts(struct gfar_private *priv, struct ethtool_rxnfc *cmd) { /* write the filer rules here */ if (!gfar_ethflow_to_filer_table(priv, cmd->data, cmd->flow_type)) return -EINVAL; return 0; } static int gfar_check_filer_hardware(struct gfar_private *priv) { struct gfar __iomem *regs = priv->gfargrp[0].regs; u32 i; /* Check if we are in FIFO mode */ i = gfar_read(®s->ecntrl); i &= ECNTRL_FIFM; if (i == ECNTRL_FIFM) { netdev_notice(priv->ndev, "Interface in FIFO mode\n"); i = gfar_read(®s->rctrl); i &= RCTRL_PRSDEP_MASK | RCTRL_PRSFM; if (i == (RCTRL_PRSDEP_MASK | RCTRL_PRSFM)) { netdev_info(priv->ndev, "Receive Queue Filtering enabled\n"); } else { netdev_warn(priv->ndev, "Receive Queue Filtering disabled\n"); return -EOPNOTSUPP; } } /* Or in standard mode */ else { i = gfar_read(®s->rctrl); i &= RCTRL_PRSDEP_MASK; if (i == RCTRL_PRSDEP_MASK) { netdev_info(priv->ndev, "Receive Queue Filtering enabled\n"); } else { netdev_warn(priv->ndev, "Receive Queue Filtering disabled\n"); return -EOPNOTSUPP; } } /* Sets the properties for arbitrary filer rule * to the first 4 Layer 4 Bytes */ gfar_write(®s->rbifx, 0xC0C1C2C3); return 0; } static int gfar_comp_asc(const void *a, const void *b) { return memcmp(a, b, 4); } static int gfar_comp_desc(const void *a, const void *b) { return -memcmp(a, b, 4); } static void gfar_swap(void *a, void *b, int size) { u32 *_a = a; u32 *_b = b; swap(_a[0], _b[0]); swap(_a[1], _b[1]); swap(_a[2], _b[2]); swap(_a[3], _b[3]); } /* Write a mask to filer cache */ static void gfar_set_mask(u32 mask, struct filer_table *tab) { tab->fe[tab->index].ctrl = RQFCR_AND | RQFCR_PID_MASK | RQFCR_CMP_EXACT; tab->fe[tab->index].prop = mask; tab->index++; } /* Sets parse bits (e.g. IP or TCP) */ static void gfar_set_parse_bits(u32 value, u32 mask, struct filer_table *tab) { gfar_set_mask(mask, tab); tab->fe[tab->index].ctrl = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_AND; tab->fe[tab->index].prop = value; tab->index++; } static void gfar_set_general_attribute(u32 value, u32 mask, u32 flag, struct filer_table *tab) { gfar_set_mask(mask, tab); tab->fe[tab->index].ctrl = RQFCR_CMP_EXACT | RQFCR_AND | flag; tab->fe[tab->index].prop = value; tab->index++; } /* For setting a tuple of value and mask of type flag * Example: * IP-Src = 10.0.0.0/255.0.0.0 * value: 0x0A000000 mask: FF000000 flag: RQFPR_IPV4 * * Ethtool gives us a value=0 and mask=~0 for don't care a tuple * For a don't care mask it gives us a 0 * * The check if don't care and the mask adjustment if mask=0 is done for VLAN * and MAC stuff on an upper level (due to missing information on this level). * For these guys we can discard them if they are value=0 and mask=0. * * Further the all masks are one-padded for better hardware efficiency. */ static void gfar_set_attribute(u32 value, u32 mask, u32 flag, struct filer_table *tab) { switch (flag) { /* 3bit */ case RQFCR_PID_PRI: if (!(value | mask)) return; mask |= RQFCR_PID_PRI_MASK; break; /* 8bit */ case RQFCR_PID_L4P: case RQFCR_PID_TOS: if (!~(mask | RQFCR_PID_L4P_MASK)) return; if (!mask) mask = ~0; else mask |= RQFCR_PID_L4P_MASK; break; /* 12bit */ case RQFCR_PID_VID: if (!(value | mask)) return; mask |= RQFCR_PID_VID_MASK; break; /* 16bit */ case RQFCR_PID_DPT: case RQFCR_PID_SPT: case RQFCR_PID_ETY: if (!~(mask | RQFCR_PID_PORT_MASK)) return; if (!mask) mask = ~0; else mask |= RQFCR_PID_PORT_MASK; break; /* 24bit */ case RQFCR_PID_DAH: case RQFCR_PID_DAL: case RQFCR_PID_SAH: case RQFCR_PID_SAL: if (!(value | mask)) return; mask |= RQFCR_PID_MAC_MASK; break; /* for all real 32bit masks */ default: if (!~mask) return; if (!mask) mask = ~0; break; } gfar_set_general_attribute(value, mask, flag, tab); } /* Translates value and mask for UDP, TCP or SCTP */ static void gfar_set_basic_ip(struct ethtool_tcpip4_spec *value, struct ethtool_tcpip4_spec *mask, struct filer_table *tab) { gfar_set_attribute(be32_to_cpu(value->ip4src), be32_to_cpu(mask->ip4src), RQFCR_PID_SIA, tab); gfar_set_attribute(be32_to_cpu(value->ip4dst), be32_to_cpu(mask->ip4dst), RQFCR_PID_DIA, tab); gfar_set_attribute(be16_to_cpu(value->pdst), be16_to_cpu(mask->pdst), RQFCR_PID_DPT, tab); gfar_set_attribute(be16_to_cpu(value->psrc), be16_to_cpu(mask->psrc), RQFCR_PID_SPT, tab); gfar_set_attribute(value->tos, mask->tos, RQFCR_PID_TOS, tab); } /* Translates value and mask for RAW-IP4 */ static void gfar_set_user_ip(struct ethtool_usrip4_spec *value, struct ethtool_usrip4_spec *mask, struct filer_table *tab) { gfar_set_attribute(be32_to_cpu(value->ip4src), be32_to_cpu(mask->ip4src), RQFCR_PID_SIA, tab); gfar_set_attribute(be32_to_cpu(value->ip4dst), be32_to_cpu(mask->ip4dst), RQFCR_PID_DIA, tab); gfar_set_attribute(value->tos, mask->tos, RQFCR_PID_TOS, tab); gfar_set_attribute(value->proto, mask->proto, RQFCR_PID_L4P, tab); gfar_set_attribute(be32_to_cpu(value->l4_4_bytes), be32_to_cpu(mask->l4_4_bytes), RQFCR_PID_ARB, tab); } /* Translates value and mask for ETHER spec */ static void gfar_set_ether(struct ethhdr *value, struct ethhdr *mask, struct filer_table *tab) { u32 upper_temp_mask = 0; u32 lower_temp_mask = 0; /* Source address */ if (!is_broadcast_ether_addr(mask->h_source)) { if (is_zero_ether_addr(mask->h_source)) { upper_temp_mask = 0xFFFFFFFF; lower_temp_mask = 0xFFFFFFFF; } else { upper_temp_mask = mask->h_source[0] << 16 | mask->h_source[1] << 8 | mask->h_source[2]; lower_temp_mask = mask->h_source[3] << 16 | mask->h_source[4] << 8 | mask->h_source[5]; } /* Upper 24bit */ gfar_set_attribute(value->h_source[0] << 16 | value->h_source[1] << 8 | value->h_source[2], upper_temp_mask, RQFCR_PID_SAH, tab); /* And the same for the lower part */ gfar_set_attribute(value->h_source[3] << 16 | value->h_source[4] << 8 | value->h_source[5], lower_temp_mask, RQFCR_PID_SAL, tab); } /* Destination address */ if (!is_broadcast_ether_addr(mask->h_dest)) { /* Special for destination is limited broadcast */ if ((is_broadcast_ether_addr(value->h_dest) && is_zero_ether_addr(mask->h_dest))) { gfar_set_parse_bits(RQFPR_EBC, RQFPR_EBC, tab); } else { if (is_zero_ether_addr(mask->h_dest)) { upper_temp_mask = 0xFFFFFFFF; lower_temp_mask = 0xFFFFFFFF; } else { upper_temp_mask = mask->h_dest[0] << 16 | mask->h_dest[1] << 8 | mask->h_dest[2]; lower_temp_mask = mask->h_dest[3] << 16 | mask->h_dest[4] << 8 | mask->h_dest[5]; } /* Upper 24bit */ gfar_set_attribute(value->h_dest[0] << 16 | value->h_dest[1] << 8 | value->h_dest[2], upper_temp_mask, RQFCR_PID_DAH, tab); /* And the same for the lower part */ gfar_set_attribute(value->h_dest[3] << 16 | value->h_dest[4] << 8 | value->h_dest[5], lower_temp_mask, RQFCR_PID_DAL, tab); } } gfar_set_attribute(be16_to_cpu(value->h_proto), be16_to_cpu(mask->h_proto), RQFCR_PID_ETY, tab); } static inline u32 vlan_tci_vid(struct ethtool_rx_flow_spec *rule) { return be16_to_cpu(rule->h_ext.vlan_tci) & VLAN_VID_MASK; } static inline u32 vlan_tci_vidm(struct ethtool_rx_flow_spec *rule) { return be16_to_cpu(rule->m_ext.vlan_tci) & VLAN_VID_MASK; } static inline u32 vlan_tci_cfi(struct ethtool_rx_flow_spec *rule) { return be16_to_cpu(rule->h_ext.vlan_tci) & VLAN_CFI_MASK; } static inline u32 vlan_tci_cfim(struct ethtool_rx_flow_spec *rule) { return be16_to_cpu(rule->m_ext.vlan_tci) & VLAN_CFI_MASK; } static inline u32 vlan_tci_prio(struct ethtool_rx_flow_spec *rule) { return (be16_to_cpu(rule->h_ext.vlan_tci) & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; } static inline u32 vlan_tci_priom(struct ethtool_rx_flow_spec *rule) { return (be16_to_cpu(rule->m_ext.vlan_tci) & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; } /* Convert a rule to binary filter format of gianfar */ static int gfar_convert_to_filer(struct ethtool_rx_flow_spec *rule, struct filer_table *tab) { u32 vlan = 0, vlan_mask = 0; u32 id = 0, id_mask = 0; u32 cfi = 0, cfi_mask = 0; u32 prio = 0, prio_mask = 0; u32 old_index = tab->index; /* Check if vlan is wanted */ if ((rule->flow_type & FLOW_EXT) && (rule->m_ext.vlan_tci != cpu_to_be16(0xFFFF))) { if (!rule->m_ext.vlan_tci) rule->m_ext.vlan_tci = cpu_to_be16(0xFFFF); vlan = RQFPR_VLN; vlan_mask = RQFPR_VLN; /* Separate the fields */ id = vlan_tci_vid(rule); id_mask = vlan_tci_vidm(rule); cfi = vlan_tci_cfi(rule); cfi_mask = vlan_tci_cfim(rule); prio = vlan_tci_prio(rule); prio_mask = vlan_tci_priom(rule); if (cfi == VLAN_TAG_PRESENT && cfi_mask == VLAN_TAG_PRESENT) { vlan |= RQFPR_CFI; vlan_mask |= RQFPR_CFI; } else if (cfi != VLAN_TAG_PRESENT && cfi_mask == VLAN_TAG_PRESENT) { vlan_mask |= RQFPR_CFI; } } switch (rule->flow_type & ~FLOW_EXT) { case TCP_V4_FLOW: gfar_set_parse_bits(RQFPR_IPV4 | RQFPR_TCP | vlan, RQFPR_IPV4 | RQFPR_TCP | vlan_mask, tab); gfar_set_basic_ip(&rule->h_u.tcp_ip4_spec, &rule->m_u.tcp_ip4_spec, tab); break; case UDP_V4_FLOW: gfar_set_parse_bits(RQFPR_IPV4 | RQFPR_UDP | vlan, RQFPR_IPV4 | RQFPR_UDP | vlan_mask, tab); gfar_set_basic_ip(&rule->h_u.udp_ip4_spec, &rule->m_u.udp_ip4_spec, tab); break; case SCTP_V4_FLOW: gfar_set_parse_bits(RQFPR_IPV4 | vlan, RQFPR_IPV4 | vlan_mask, tab); gfar_set_attribute(132, 0, RQFCR_PID_L4P, tab); gfar_set_basic_ip((struct ethtool_tcpip4_spec *)&rule->h_u, (struct ethtool_tcpip4_spec *)&rule->m_u, tab); break; case IP_USER_FLOW: gfar_set_parse_bits(RQFPR_IPV4 | vlan, RQFPR_IPV4 | vlan_mask, tab); gfar_set_user_ip((struct ethtool_usrip4_spec *) &rule->h_u, (struct ethtool_usrip4_spec *) &rule->m_u, tab); break; case ETHER_FLOW: if (vlan) gfar_set_parse_bits(vlan, vlan_mask, tab); gfar_set_ether((struct ethhdr *) &rule->h_u, (struct ethhdr *) &rule->m_u, tab); break; default: return -1; } /* Set the vlan attributes in the end */ if (vlan) { gfar_set_attribute(id, id_mask, RQFCR_PID_VID, tab); gfar_set_attribute(prio, prio_mask, RQFCR_PID_PRI, tab); } /* If there has been nothing written till now, it must be a default */ if (tab->index == old_index) { gfar_set_mask(0xFFFFFFFF, tab); tab->fe[tab->index].ctrl = 0x20; tab->fe[tab->index].prop = 0x0; tab->index++; } /* Remove last AND */ tab->fe[tab->index - 1].ctrl &= (~RQFCR_AND); /* Specify which queue to use or to drop */ if (rule->ring_cookie == RX_CLS_FLOW_DISC) tab->fe[tab->index - 1].ctrl |= RQFCR_RJE; else tab->fe[tab->index - 1].ctrl |= (rule->ring_cookie << 10); /* Only big enough entries can be clustered */ if (tab->index > (old_index + 2)) { tab->fe[old_index + 1].ctrl |= RQFCR_CLE; tab->fe[tab->index - 1].ctrl |= RQFCR_CLE; } /* In rare cases the cache can be full while there is * free space in hw */ if (tab->index > MAX_FILER_CACHE_IDX - 1) return -EBUSY; return 0; } /* Copy size filer entries */ static void gfar_copy_filer_entries(struct gfar_filer_entry dst[0], struct gfar_filer_entry src[0], s32 size) { while (size > 0) { size--; dst[size].ctrl = src[size].ctrl; dst[size].prop = src[size].prop; } } /* Delete the contents of the filer-table between start and end * and collapse them */ static int gfar_trim_filer_entries(u32 begin, u32 end, struct filer_table *tab) { int length; if (end > MAX_FILER_CACHE_IDX || end < begin) return -EINVAL; end++; length = end - begin; /* Copy */ while (end < tab->index) { tab->fe[begin].ctrl = tab->fe[end].ctrl; tab->fe[begin++].prop = tab->fe[end++].prop; } /* Fill up with don't cares */ while (begin < tab->index) { tab->fe[begin].ctrl = 0x60; tab->fe[begin].prop = 0xFFFFFFFF; begin++; } tab->index -= length; return 0; } /* Make space on the wanted location */ static int gfar_expand_filer_entries(u32 begin, u32 length, struct filer_table *tab) { if (length == 0 || length + tab->index > MAX_FILER_CACHE_IDX || begin > MAX_FILER_CACHE_IDX) return -EINVAL; gfar_copy_filer_entries(&(tab->fe[begin + length]), &(tab->fe[begin]), tab->index - length + 1); tab->index += length; return 0; } static int gfar_get_next_cluster_start(int start, struct filer_table *tab) { for (; (start < tab->index) && (start < MAX_FILER_CACHE_IDX - 1); start++) { if ((tab->fe[start].ctrl & (RQFCR_AND | RQFCR_CLE)) == (RQFCR_AND | RQFCR_CLE)) return start; } return -1; } static int gfar_get_next_cluster_end(int start, struct filer_table *tab) { for (; (start < tab->index) && (start < MAX_FILER_CACHE_IDX - 1); start++) { if ((tab->fe[start].ctrl & (RQFCR_AND | RQFCR_CLE)) == (RQFCR_CLE)) return start; } return -1; } /* Uses hardwares clustering option to reduce * the number of filer table entries */ static void gfar_cluster_filer(struct filer_table *tab) { s32 i = -1, j, iend, jend; while ((i = gfar_get_next_cluster_start(++i, tab)) != -1) { j = i; while ((j = gfar_get_next_cluster_start(++j, tab)) != -1) { /* The cluster entries self and the previous one * (a mask) must be identical! */ if (tab->fe[i].ctrl != tab->fe[j].ctrl) break; if (tab->fe[i].prop != tab->fe[j].prop) break; if (tab->fe[i - 1].ctrl != tab->fe[j - 1].ctrl) break; if (tab->fe[i - 1].prop != tab->fe[j - 1].prop) break; iend = gfar_get_next_cluster_end(i, tab); jend = gfar_get_next_cluster_end(j, tab); if (jend == -1 || iend == -1) break; /* First we make some free space, where our cluster * element should be. Then we copy it there and finally * delete in from its old location. */ if (gfar_expand_filer_entries(iend, (jend - j), tab) == -EINVAL) break; gfar_copy_filer_entries(&(tab->fe[iend + 1]), &(tab->fe[jend + 1]), jend - j); if (gfar_trim_filer_entries(jend - 1, jend + (jend - j), tab) == -EINVAL) return; /* Mask out cluster bit */ tab->fe[iend].ctrl &= ~(RQFCR_CLE); } } } /* Swaps the masked bits of a1<>a2 and b1<>b2 */ static void gfar_swap_bits(struct gfar_filer_entry *a1, struct gfar_filer_entry *a2, struct gfar_filer_entry *b1, struct gfar_filer_entry *b2, u32 mask) { u32 temp[4]; temp[0] = a1->ctrl & mask; temp[1] = a2->ctrl & mask; temp[2] = b1->ctrl & mask; temp[3] = b2->ctrl & mask; a1->ctrl &= ~mask; a2->ctrl &= ~mask; b1->ctrl &= ~mask; b2->ctrl &= ~mask; a1->ctrl |= temp[1]; a2->ctrl |= temp[0]; b1->ctrl |= temp[3]; b2->ctrl |= temp[2]; } /* Generate a list consisting of masks values with their start and * end of validity and block as indicator for parts belonging * together (glued by ANDs) in mask_table */ static u32 gfar_generate_mask_table(struct gfar_mask_entry *mask_table, struct filer_table *tab) { u32 i, and_index = 0, block_index = 1; for (i = 0; i < tab->index; i++) { /* LSByte of control = 0 sets a mask */ if (!(tab->fe[i].ctrl & 0xF)) { mask_table[and_index].mask = tab->fe[i].prop; mask_table[and_index].start = i; mask_table[and_index].block = block_index; if (and_index >= 1) mask_table[and_index - 1].end = i - 1; and_index++; } /* cluster starts and ends will be separated because they should * hold their position */ if (tab->fe[i].ctrl & RQFCR_CLE) block_index++; /* A not set AND indicates the end of a depended block */ if (!(tab->fe[i].ctrl & RQFCR_AND)) block_index++; } mask_table[and_index - 1].end = i - 1; return and_index; } /* Sorts the entries of mask_table by the values of the masks. * Important: The 0xFF80 flags of the first and last entry of a * block must hold their position (which queue, CLusterEnable, ReJEct, * AND) */ static void gfar_sort_mask_table(struct gfar_mask_entry *mask_table, struct filer_table *temp_table, u32 and_index) { /* Pointer to compare function (_asc or _desc) */ int (*gfar_comp)(const void *, const void *); u32 i, size = 0, start = 0, prev = 1; u32 old_first, old_last, new_first, new_last; gfar_comp = &gfar_comp_desc; for (i = 0; i < and_index; i++) { if (prev != mask_table[i].block) { old_first = mask_table[start].start + 1; old_last = mask_table[i - 1].end; sort(mask_table + start, size, sizeof(struct gfar_mask_entry), gfar_comp, &gfar_swap); /* Toggle order for every block. This makes the * thing more efficient! */ if (gfar_comp == gfar_comp_desc) gfar_comp = &gfar_comp_asc; else gfar_comp = &gfar_comp_desc; new_first = mask_table[start].start + 1; new_last = mask_table[i - 1].end; gfar_swap_bits(&temp_table->fe[new_first], &temp_table->fe[old_first], &temp_table->fe[new_last], &temp_table->fe[old_last], RQFCR_QUEUE | RQFCR_CLE | RQFCR_RJE | RQFCR_AND); start = i; size = 0; } size++; prev = mask_table[i].block; } } /* Reduces the number of masks needed in the filer table to save entries * This is done by sorting the masks of a depended block. A depended block is * identified by gluing ANDs or CLE. The sorting order toggles after every * block. Of course entries in scope of a mask must change their location with * it. */ static int gfar_optimize_filer_masks(struct filer_table *tab) { struct filer_table *temp_table; struct gfar_mask_entry *mask_table; u32 and_index = 0, previous_mask = 0, i = 0, j = 0, size = 0; s32 ret = 0; /* We need a copy of the filer table because * we want to change its order */ temp_table = kmemdup(tab, sizeof(*temp_table), GFP_KERNEL); if (temp_table == NULL) return -ENOMEM; mask_table = kcalloc(MAX_FILER_CACHE_IDX / 2 + 1, sizeof(struct gfar_mask_entry), GFP_KERNEL); if (mask_table == NULL) { ret = -ENOMEM; goto end; } and_index = gfar_generate_mask_table(mask_table, tab); gfar_sort_mask_table(mask_table, temp_table, and_index); /* Now we can copy the data from our duplicated filer table to * the real one in the order the mask table says */ for (i = 0; i < and_index; i++) { size = mask_table[i].end - mask_table[i].start + 1; gfar_copy_filer_entries(&(tab->fe[j]), &(temp_table->fe[mask_table[i].start]), size); j += size; } /* And finally we just have to check for duplicated masks and drop the * second ones */ for (i = 0; i < tab->index && i < MAX_FILER_CACHE_IDX; i++) { if (tab->fe[i].ctrl == 0x80) { previous_mask = i++; break; } } for (; i < tab->index && i < MAX_FILER_CACHE_IDX; i++) { if (tab->fe[i].ctrl == 0x80) { if (tab->fe[i].prop == tab->fe[previous_mask].prop) { /* Two identical ones found! * So drop the second one! */ gfar_trim_filer_entries(i, i, tab); } else /* Not identical! */ previous_mask = i; } } kfree(mask_table); end: kfree(temp_table); return ret; } /* Write the bit-pattern from software's buffer to hardware registers */ static int gfar_write_filer_table(struct gfar_private *priv, struct filer_table *tab) { u32 i = 0; if (tab->index > MAX_FILER_IDX - 1) return -EBUSY; /* Fill regular entries */ for (; i < MAX_FILER_IDX - 1 && (tab->fe[i].ctrl | tab->fe[i].prop); i++) gfar_write_filer(priv, i, tab->fe[i].ctrl, tab->fe[i].prop); /* Fill the rest with fall-troughs */ for (; i < MAX_FILER_IDX - 1; i++) gfar_write_filer(priv, i, 0x60, 0xFFFFFFFF); /* Last entry must be default accept * because that's what people expect */ gfar_write_filer(priv, i, 0x20, 0x0); return 0; } static int gfar_check_capability(struct ethtool_rx_flow_spec *flow, struct gfar_private *priv) { if (flow->flow_type & FLOW_EXT) { if (~flow->m_ext.data[0] || ~flow->m_ext.data[1]) netdev_warn(priv->ndev, "User-specific data not supported!\n"); if (~flow->m_ext.vlan_etype) netdev_warn(priv->ndev, "VLAN-etype not supported!\n"); } if (flow->flow_type == IP_USER_FLOW) if (flow->h_u.usr_ip4_spec.ip_ver != ETH_RX_NFC_IP4) netdev_warn(priv->ndev, "IP-Version differing from IPv4 not supported!\n"); return 0; } static int gfar_process_filer_changes(struct gfar_private *priv) { struct ethtool_flow_spec_container *j; struct filer_table *tab; s32 i = 0; s32 ret = 0; /* So index is set to zero, too! */ tab = kzalloc(sizeof(*tab), GFP_KERNEL); if (tab == NULL) return -ENOMEM; /* Now convert the existing filer data from flow_spec into * filer tables binary format */ list_for_each_entry(j, &priv->rx_list.list, list) { ret = gfar_convert_to_filer(&j->fs, tab); if (ret == -EBUSY) { netdev_err(priv->ndev, "Rule not added: No free space!\n"); goto end; } if (ret == -1) { netdev_err(priv->ndev, "Rule not added: Unsupported Flow-type!\n"); goto end; } } i = tab->index; /* Optimizations to save entries */ gfar_cluster_filer(tab); gfar_optimize_filer_masks(tab); pr_debug("\tSummary:\n" "\tData on hardware: %d\n" "\tCompression rate: %d%%\n", tab->index, 100 - (100 * tab->index) / i); /* Write everything to hardware */ ret = gfar_write_filer_table(priv, tab); if (ret == -EBUSY) { netdev_err(priv->ndev, "Rule not added: No free space!\n"); goto end; } end: kfree(tab); return ret; } static void gfar_invert_masks(struct ethtool_rx_flow_spec *flow) { u32 i = 0; for (i = 0; i < sizeof(flow->m_u); i++) flow->m_u.hdata[i] ^= 0xFF; flow->m_ext.vlan_etype ^= cpu_to_be16(0xFFFF); flow->m_ext.vlan_tci ^= cpu_to_be16(0xFFFF); flow->m_ext.data[0] ^= cpu_to_be32(~0); flow->m_ext.data[1] ^= cpu_to_be32(~0); } static int gfar_add_cls(struct gfar_private *priv, struct ethtool_rx_flow_spec *flow) { struct ethtool_flow_spec_container *temp, *comp; int ret = 0; temp = kmalloc(sizeof(*temp), GFP_KERNEL); if (temp == NULL) return -ENOMEM; memcpy(&temp->fs, flow, sizeof(temp->fs)); gfar_invert_masks(&temp->fs); ret = gfar_check_capability(&temp->fs, priv); if (ret) goto clean_mem; /* Link in the new element at the right @location */ if (list_empty(&priv->rx_list.list)) { ret = gfar_check_filer_hardware(priv); if (ret != 0) goto clean_mem; list_add(&temp->list, &priv->rx_list.list); goto process; } else { list_for_each_entry(comp, &priv->rx_list.list, list) { if (comp->fs.location > flow->location) { list_add_tail(&temp->list, &comp->list); goto process; } if (comp->fs.location == flow->location) { netdev_err(priv->ndev, "Rule not added: ID %d not free!\n", flow->location); ret = -EBUSY; goto clean_mem; } } list_add_tail(&temp->list, &priv->rx_list.list); } process: ret = gfar_process_filer_changes(priv); if (ret) goto clean_list; priv->rx_list.count++; return ret; clean_list: list_del(&temp->list); clean_mem: kfree(temp); return ret; } static int gfar_del_cls(struct gfar_private *priv, u32 loc) { struct ethtool_flow_spec_container *comp; u32 ret = -EINVAL; if (list_empty(&priv->rx_list.list)) return ret; list_for_each_entry(comp, &priv->rx_list.list, list) { if (comp->fs.location == loc) { list_del(&comp->list); kfree(comp); priv->rx_list.count--; gfar_process_filer_changes(priv); ret = 0; break; } } return ret; } static int gfar_get_cls(struct gfar_private *priv, struct ethtool_rxnfc *cmd) { struct ethtool_flow_spec_container *comp; u32 ret = -EINVAL; list_for_each_entry(comp, &priv->rx_list.list, list) { if (comp->fs.location == cmd->fs.location) { memcpy(&cmd->fs, &comp->fs, sizeof(cmd->fs)); gfar_invert_masks(&cmd->fs); ret = 0; break; } } return ret; } static int gfar_get_cls_all(struct gfar_private *priv, struct ethtool_rxnfc *cmd, u32 *rule_locs) { struct ethtool_flow_spec_container *comp; u32 i = 0; list_for_each_entry(comp, &priv->rx_list.list, list) { if (i == cmd->rule_cnt) return -EMSGSIZE; rule_locs[i] = comp->fs.location; i++; } cmd->data = MAX_FILER_IDX; cmd->rule_cnt = i; return 0; } static int gfar_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd) { struct gfar_private *priv = netdev_priv(dev); int ret = 0; if (test_bit(GFAR_RESETTING, &priv->state)) return -EBUSY; mutex_lock(&priv->rx_queue_access); switch (cmd->cmd) { case ETHTOOL_SRXFH: ret = gfar_set_hash_opts(priv, cmd); break; case ETHTOOL_SRXCLSRLINS: if ((cmd->fs.ring_cookie != RX_CLS_FLOW_DISC && cmd->fs.ring_cookie >= priv->num_rx_queues) || cmd->fs.location >= MAX_FILER_IDX) { ret = -EINVAL; break; } ret = gfar_add_cls(priv, &cmd->fs); break; case ETHTOOL_SRXCLSRLDEL: ret = gfar_del_cls(priv, cmd->fs.location); break; default: ret = -EINVAL; } mutex_unlock(&priv->rx_queue_access); return ret; } static int gfar_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd, u32 *rule_locs) { struct gfar_private *priv = netdev_priv(dev); int ret = 0; switch (cmd->cmd) { case ETHTOOL_GRXRINGS: cmd->data = priv->num_rx_queues; break; case ETHTOOL_GRXCLSRLCNT: cmd->rule_cnt = priv->rx_list.count; break; case ETHTOOL_GRXCLSRULE: ret = gfar_get_cls(priv, cmd); break; case ETHTOOL_GRXCLSRLALL: ret = gfar_get_cls_all(priv, cmd, rule_locs); break; default: ret = -EINVAL; break; } return ret; } int gfar_phc_index = -1; EXPORT_SYMBOL(gfar_phc_index); static int gfar_get_ts_info(struct net_device *dev, struct ethtool_ts_info *info) { struct gfar_private *priv = netdev_priv(dev); if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) { info->so_timestamping = SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_SOFTWARE; info->phc_index = -1; return 0; } info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; info->phc_index = gfar_phc_index; info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | (1 << HWTSTAMP_FILTER_ALL); return 0; } const struct ethtool_ops gfar_ethtool_ops = { .get_settings = gfar_gsettings, .set_settings = gfar_ssettings, .get_drvinfo = gfar_gdrvinfo, .get_regs_len = gfar_reglen, .get_regs = gfar_get_regs, .get_link = ethtool_op_get_link, .get_coalesce = gfar_gcoalesce, .set_coalesce = gfar_scoalesce, .get_ringparam = gfar_gringparam, .set_ringparam = gfar_sringparam, .get_pauseparam = gfar_gpauseparam, .set_pauseparam = gfar_spauseparam, .get_strings = gfar_gstrings, .get_sset_count = gfar_sset_count, .get_ethtool_stats = gfar_fill_stats, .get_msglevel = gfar_get_msglevel, .set_msglevel = gfar_set_msglevel, #ifdef CONFIG_PM .get_wol = gfar_get_wol, .set_wol = gfar_set_wol, #endif .set_rxnfc = gfar_set_nfc, .get_rxnfc = gfar_get_nfc, .get_ts_info = gfar_get_ts_info, };