// SPDX-License-Identifier: GPL-2.0+ // Copyright (c) 2016-2017 Hisilicon Limited. #include #include #include #ifdef CONFIG_RFS_ACCEL #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hnae3.h" #include "hns3_enet.h" /* All hns3 tracepoints are defined by the include below, which * must be included exactly once across the whole kernel with * CREATE_TRACE_POINTS defined */ #define CREATE_TRACE_POINTS #include "hns3_trace.h" #define hns3_set_field(origin, shift, val) ((origin) |= (val) << (shift)) #define hns3_tx_bd_count(S) DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE) #define hns3_rl_err(fmt, ...) \ do { \ if (net_ratelimit()) \ netdev_err(fmt, ##__VA_ARGS__); \ } while (0) static void hns3_clear_all_ring(struct hnae3_handle *h, bool force); static const char hns3_driver_name[] = "hns3"; static const char hns3_driver_string[] = "Hisilicon Ethernet Network Driver for Hip08 Family"; static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation."; static struct hnae3_client client; static int debug = -1; module_param(debug, int, 0); MODULE_PARM_DESC(debug, " Network interface message level setting"); static unsigned int tx_sgl = 1; module_param(tx_sgl, uint, 0600); MODULE_PARM_DESC(tx_sgl, "Minimum number of frags when using dma_map_sg() to optimize the IOMMU mapping"); static bool page_pool_enabled = true; module_param(page_pool_enabled, bool, 0400); #define HNS3_SGL_SIZE(nfrag) (sizeof(struct scatterlist) * (nfrag) + \ sizeof(struct sg_table)) #define HNS3_MAX_SGL_SIZE ALIGN(HNS3_SGL_SIZE(HNS3_MAX_TSO_BD_NUM), \ dma_get_cache_alignment()) #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \ NETIF_MSG_IFDOWN | NETIF_MSG_IFUP) #define HNS3_INNER_VLAN_TAG 1 #define HNS3_OUTER_VLAN_TAG 2 #define HNS3_MIN_TX_LEN 33U #define HNS3_MIN_TUN_PKT_LEN 65U /* hns3_pci_tbl - PCI Device ID Table * * Last entry must be all 0s * * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, * Class, Class Mask, private data (not used) } */ static const struct pci_device_id hns3_pci_tbl[] = { {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA), HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC), HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA), HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC), HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC), HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA), HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF), HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, /* required last entry */ {0,} }; MODULE_DEVICE_TABLE(pci, hns3_pci_tbl); #define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t, h) \ { ptype, \ l, \ CHECKSUM_##s, \ HNS3_L3_TYPE_##t, \ 1, \ h} #define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \ { ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0, \ PKT_HASH_TYPE_NONE } static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = { HNS3_RX_PTYPE_UNUSED_ENTRY(0), HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP, PKT_HASH_TYPE_NONE), HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP, PKT_HASH_TYPE_NONE), HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP, PKT_HASH_TYPE_NONE), HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM, PKT_HASH_TYPE_NONE), HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL, PKT_HASH_TYPE_NONE), HNS3_RX_PTYPE_UNUSED_ENTRY(9), HNS3_RX_PTYPE_UNUSED_ENTRY(10), HNS3_RX_PTYPE_UNUSED_ENTRY(11), HNS3_RX_PTYPE_UNUSED_ENTRY(12), HNS3_RX_PTYPE_UNUSED_ENTRY(13), HNS3_RX_PTYPE_UNUSED_ENTRY(14), HNS3_RX_PTYPE_UNUSED_ENTRY(15), HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE), HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE), HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4, PKT_HASH_TYPE_NONE), HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_UNUSED_ENTRY(26), HNS3_RX_PTYPE_UNUSED_ENTRY(27), HNS3_RX_PTYPE_UNUSED_ENTRY(28), HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_UNUSED_ENTRY(38), HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_UNUSED_ENTRY(46), HNS3_RX_PTYPE_UNUSED_ENTRY(47), HNS3_RX_PTYPE_UNUSED_ENTRY(48), HNS3_RX_PTYPE_UNUSED_ENTRY(49), HNS3_RX_PTYPE_UNUSED_ENTRY(50), HNS3_RX_PTYPE_UNUSED_ENTRY(51), HNS3_RX_PTYPE_UNUSED_ENTRY(52), HNS3_RX_PTYPE_UNUSED_ENTRY(53), HNS3_RX_PTYPE_UNUSED_ENTRY(54), HNS3_RX_PTYPE_UNUSED_ENTRY(55), HNS3_RX_PTYPE_UNUSED_ENTRY(56), HNS3_RX_PTYPE_UNUSED_ENTRY(57), HNS3_RX_PTYPE_UNUSED_ENTRY(58), HNS3_RX_PTYPE_UNUSED_ENTRY(59), HNS3_RX_PTYPE_UNUSED_ENTRY(60), HNS3_RX_PTYPE_UNUSED_ENTRY(61), HNS3_RX_PTYPE_UNUSED_ENTRY(62), HNS3_RX_PTYPE_UNUSED_ENTRY(63), HNS3_RX_PTYPE_UNUSED_ENTRY(64), HNS3_RX_PTYPE_UNUSED_ENTRY(65), HNS3_RX_PTYPE_UNUSED_ENTRY(66), HNS3_RX_PTYPE_UNUSED_ENTRY(67), HNS3_RX_PTYPE_UNUSED_ENTRY(68), HNS3_RX_PTYPE_UNUSED_ENTRY(69), HNS3_RX_PTYPE_UNUSED_ENTRY(70), HNS3_RX_PTYPE_UNUSED_ENTRY(71), HNS3_RX_PTYPE_UNUSED_ENTRY(72), HNS3_RX_PTYPE_UNUSED_ENTRY(73), HNS3_RX_PTYPE_UNUSED_ENTRY(74), HNS3_RX_PTYPE_UNUSED_ENTRY(75), HNS3_RX_PTYPE_UNUSED_ENTRY(76), HNS3_RX_PTYPE_UNUSED_ENTRY(77), HNS3_RX_PTYPE_UNUSED_ENTRY(78), HNS3_RX_PTYPE_UNUSED_ENTRY(79), HNS3_RX_PTYPE_UNUSED_ENTRY(80), HNS3_RX_PTYPE_UNUSED_ENTRY(81), HNS3_RX_PTYPE_UNUSED_ENTRY(82), HNS3_RX_PTYPE_UNUSED_ENTRY(83), HNS3_RX_PTYPE_UNUSED_ENTRY(84), HNS3_RX_PTYPE_UNUSED_ENTRY(85), HNS3_RX_PTYPE_UNUSED_ENTRY(86), HNS3_RX_PTYPE_UNUSED_ENTRY(87), HNS3_RX_PTYPE_UNUSED_ENTRY(88), HNS3_RX_PTYPE_UNUSED_ENTRY(89), HNS3_RX_PTYPE_UNUSED_ENTRY(90), HNS3_RX_PTYPE_UNUSED_ENTRY(91), HNS3_RX_PTYPE_UNUSED_ENTRY(92), HNS3_RX_PTYPE_UNUSED_ENTRY(93), HNS3_RX_PTYPE_UNUSED_ENTRY(94), HNS3_RX_PTYPE_UNUSED_ENTRY(95), HNS3_RX_PTYPE_UNUSED_ENTRY(96), HNS3_RX_PTYPE_UNUSED_ENTRY(97), HNS3_RX_PTYPE_UNUSED_ENTRY(98), HNS3_RX_PTYPE_UNUSED_ENTRY(99), HNS3_RX_PTYPE_UNUSED_ENTRY(100), HNS3_RX_PTYPE_UNUSED_ENTRY(101), HNS3_RX_PTYPE_UNUSED_ENTRY(102), HNS3_RX_PTYPE_UNUSED_ENTRY(103), HNS3_RX_PTYPE_UNUSED_ENTRY(104), HNS3_RX_PTYPE_UNUSED_ENTRY(105), HNS3_RX_PTYPE_UNUSED_ENTRY(106), HNS3_RX_PTYPE_UNUSED_ENTRY(107), HNS3_RX_PTYPE_UNUSED_ENTRY(108), HNS3_RX_PTYPE_UNUSED_ENTRY(109), HNS3_RX_PTYPE_UNUSED_ENTRY(110), HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_UNUSED_ENTRY(120), HNS3_RX_PTYPE_UNUSED_ENTRY(121), HNS3_RX_PTYPE_UNUSED_ENTRY(122), HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_UNUSED_ENTRY(132), HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), HNS3_RX_PTYPE_UNUSED_ENTRY(140), HNS3_RX_PTYPE_UNUSED_ENTRY(141), HNS3_RX_PTYPE_UNUSED_ENTRY(142), HNS3_RX_PTYPE_UNUSED_ENTRY(143), HNS3_RX_PTYPE_UNUSED_ENTRY(144), HNS3_RX_PTYPE_UNUSED_ENTRY(145), HNS3_RX_PTYPE_UNUSED_ENTRY(146), HNS3_RX_PTYPE_UNUSED_ENTRY(147), HNS3_RX_PTYPE_UNUSED_ENTRY(148), HNS3_RX_PTYPE_UNUSED_ENTRY(149), HNS3_RX_PTYPE_UNUSED_ENTRY(150), HNS3_RX_PTYPE_UNUSED_ENTRY(151), HNS3_RX_PTYPE_UNUSED_ENTRY(152), HNS3_RX_PTYPE_UNUSED_ENTRY(153), HNS3_RX_PTYPE_UNUSED_ENTRY(154), HNS3_RX_PTYPE_UNUSED_ENTRY(155), HNS3_RX_PTYPE_UNUSED_ENTRY(156), HNS3_RX_PTYPE_UNUSED_ENTRY(157), HNS3_RX_PTYPE_UNUSED_ENTRY(158), HNS3_RX_PTYPE_UNUSED_ENTRY(159), HNS3_RX_PTYPE_UNUSED_ENTRY(160), HNS3_RX_PTYPE_UNUSED_ENTRY(161), HNS3_RX_PTYPE_UNUSED_ENTRY(162), HNS3_RX_PTYPE_UNUSED_ENTRY(163), HNS3_RX_PTYPE_UNUSED_ENTRY(164), HNS3_RX_PTYPE_UNUSED_ENTRY(165), HNS3_RX_PTYPE_UNUSED_ENTRY(166), HNS3_RX_PTYPE_UNUSED_ENTRY(167), HNS3_RX_PTYPE_UNUSED_ENTRY(168), HNS3_RX_PTYPE_UNUSED_ENTRY(169), HNS3_RX_PTYPE_UNUSED_ENTRY(170), HNS3_RX_PTYPE_UNUSED_ENTRY(171), HNS3_RX_PTYPE_UNUSED_ENTRY(172), HNS3_RX_PTYPE_UNUSED_ENTRY(173), HNS3_RX_PTYPE_UNUSED_ENTRY(174), HNS3_RX_PTYPE_UNUSED_ENTRY(175), HNS3_RX_PTYPE_UNUSED_ENTRY(176), HNS3_RX_PTYPE_UNUSED_ENTRY(177), HNS3_RX_PTYPE_UNUSED_ENTRY(178), HNS3_RX_PTYPE_UNUSED_ENTRY(179), HNS3_RX_PTYPE_UNUSED_ENTRY(180), HNS3_RX_PTYPE_UNUSED_ENTRY(181), HNS3_RX_PTYPE_UNUSED_ENTRY(182), HNS3_RX_PTYPE_UNUSED_ENTRY(183), HNS3_RX_PTYPE_UNUSED_ENTRY(184), HNS3_RX_PTYPE_UNUSED_ENTRY(185), HNS3_RX_PTYPE_UNUSED_ENTRY(186), HNS3_RX_PTYPE_UNUSED_ENTRY(187), HNS3_RX_PTYPE_UNUSED_ENTRY(188), HNS3_RX_PTYPE_UNUSED_ENTRY(189), HNS3_RX_PTYPE_UNUSED_ENTRY(190), HNS3_RX_PTYPE_UNUSED_ENTRY(191), HNS3_RX_PTYPE_UNUSED_ENTRY(192), HNS3_RX_PTYPE_UNUSED_ENTRY(193), HNS3_RX_PTYPE_UNUSED_ENTRY(194), HNS3_RX_PTYPE_UNUSED_ENTRY(195), HNS3_RX_PTYPE_UNUSED_ENTRY(196), HNS3_RX_PTYPE_UNUSED_ENTRY(197), HNS3_RX_PTYPE_UNUSED_ENTRY(198), HNS3_RX_PTYPE_UNUSED_ENTRY(199), HNS3_RX_PTYPE_UNUSED_ENTRY(200), HNS3_RX_PTYPE_UNUSED_ENTRY(201), HNS3_RX_PTYPE_UNUSED_ENTRY(202), HNS3_RX_PTYPE_UNUSED_ENTRY(203), HNS3_RX_PTYPE_UNUSED_ENTRY(204), HNS3_RX_PTYPE_UNUSED_ENTRY(205), HNS3_RX_PTYPE_UNUSED_ENTRY(206), HNS3_RX_PTYPE_UNUSED_ENTRY(207), HNS3_RX_PTYPE_UNUSED_ENTRY(208), HNS3_RX_PTYPE_UNUSED_ENTRY(209), HNS3_RX_PTYPE_UNUSED_ENTRY(210), HNS3_RX_PTYPE_UNUSED_ENTRY(211), HNS3_RX_PTYPE_UNUSED_ENTRY(212), HNS3_RX_PTYPE_UNUSED_ENTRY(213), HNS3_RX_PTYPE_UNUSED_ENTRY(214), HNS3_RX_PTYPE_UNUSED_ENTRY(215), HNS3_RX_PTYPE_UNUSED_ENTRY(216), HNS3_RX_PTYPE_UNUSED_ENTRY(217), HNS3_RX_PTYPE_UNUSED_ENTRY(218), HNS3_RX_PTYPE_UNUSED_ENTRY(219), HNS3_RX_PTYPE_UNUSED_ENTRY(220), HNS3_RX_PTYPE_UNUSED_ENTRY(221), HNS3_RX_PTYPE_UNUSED_ENTRY(222), HNS3_RX_PTYPE_UNUSED_ENTRY(223), HNS3_RX_PTYPE_UNUSED_ENTRY(224), HNS3_RX_PTYPE_UNUSED_ENTRY(225), HNS3_RX_PTYPE_UNUSED_ENTRY(226), HNS3_RX_PTYPE_UNUSED_ENTRY(227), HNS3_RX_PTYPE_UNUSED_ENTRY(228), HNS3_RX_PTYPE_UNUSED_ENTRY(229), HNS3_RX_PTYPE_UNUSED_ENTRY(230), HNS3_RX_PTYPE_UNUSED_ENTRY(231), HNS3_RX_PTYPE_UNUSED_ENTRY(232), HNS3_RX_PTYPE_UNUSED_ENTRY(233), HNS3_RX_PTYPE_UNUSED_ENTRY(234), HNS3_RX_PTYPE_UNUSED_ENTRY(235), HNS3_RX_PTYPE_UNUSED_ENTRY(236), HNS3_RX_PTYPE_UNUSED_ENTRY(237), HNS3_RX_PTYPE_UNUSED_ENTRY(238), HNS3_RX_PTYPE_UNUSED_ENTRY(239), HNS3_RX_PTYPE_UNUSED_ENTRY(240), HNS3_RX_PTYPE_UNUSED_ENTRY(241), HNS3_RX_PTYPE_UNUSED_ENTRY(242), HNS3_RX_PTYPE_UNUSED_ENTRY(243), HNS3_RX_PTYPE_UNUSED_ENTRY(244), HNS3_RX_PTYPE_UNUSED_ENTRY(245), HNS3_RX_PTYPE_UNUSED_ENTRY(246), HNS3_RX_PTYPE_UNUSED_ENTRY(247), HNS3_RX_PTYPE_UNUSED_ENTRY(248), HNS3_RX_PTYPE_UNUSED_ENTRY(249), HNS3_RX_PTYPE_UNUSED_ENTRY(250), HNS3_RX_PTYPE_UNUSED_ENTRY(251), HNS3_RX_PTYPE_UNUSED_ENTRY(252), HNS3_RX_PTYPE_UNUSED_ENTRY(253), HNS3_RX_PTYPE_UNUSED_ENTRY(254), HNS3_RX_PTYPE_UNUSED_ENTRY(255), }; #define HNS3_INVALID_PTYPE \ ARRAY_SIZE(hns3_rx_ptype_tbl) static irqreturn_t hns3_irq_handle(int irq, void *vector) { struct hns3_enet_tqp_vector *tqp_vector = vector; napi_schedule_irqoff(&tqp_vector->napi); tqp_vector->event_cnt++; return IRQ_HANDLED; } static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv) { struct hns3_enet_tqp_vector *tqp_vectors; unsigned int i; for (i = 0; i < priv->vector_num; i++) { tqp_vectors = &priv->tqp_vector[i]; if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED) continue; /* clear the affinity mask */ irq_set_affinity_hint(tqp_vectors->vector_irq, NULL); /* release the irq resource */ free_irq(tqp_vectors->vector_irq, tqp_vectors); tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED; } } static int hns3_nic_init_irq(struct hns3_nic_priv *priv) { struct hns3_enet_tqp_vector *tqp_vectors; int txrx_int_idx = 0; int rx_int_idx = 0; int tx_int_idx = 0; unsigned int i; int ret; for (i = 0; i < priv->vector_num; i++) { tqp_vectors = &priv->tqp_vector[i]; if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED) continue; if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) { snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN, "%s-%s-%s-%d", hns3_driver_name, pci_name(priv->ae_handle->pdev), "TxRx", txrx_int_idx++); txrx_int_idx++; } else if (tqp_vectors->rx_group.ring) { snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN, "%s-%s-%s-%d", hns3_driver_name, pci_name(priv->ae_handle->pdev), "Rx", rx_int_idx++); } else if (tqp_vectors->tx_group.ring) { snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN, "%s-%s-%s-%d", hns3_driver_name, pci_name(priv->ae_handle->pdev), "Tx", tx_int_idx++); } else { /* Skip this unused q_vector */ continue; } tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0'; irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN); ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0, tqp_vectors->name, tqp_vectors); if (ret) { netdev_err(priv->netdev, "request irq(%d) fail\n", tqp_vectors->vector_irq); hns3_nic_uninit_irq(priv); return ret; } irq_set_affinity_hint(tqp_vectors->vector_irq, &tqp_vectors->affinity_mask); tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED; } return 0; } static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector, u32 mask_en) { writel(mask_en, tqp_vector->mask_addr); } static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector) { napi_enable(&tqp_vector->napi); enable_irq(tqp_vector->vector_irq); /* enable vector */ hns3_mask_vector_irq(tqp_vector, 1); } static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector) { /* disable vector */ hns3_mask_vector_irq(tqp_vector, 0); disable_irq(tqp_vector->vector_irq); napi_disable(&tqp_vector->napi); cancel_work_sync(&tqp_vector->rx_group.dim.work); cancel_work_sync(&tqp_vector->tx_group.dim.work); } void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector, u32 rl_value) { u32 rl_reg = hns3_rl_usec_to_reg(rl_value); /* this defines the configuration for RL (Interrupt Rate Limiter). * Rl defines rate of interrupts i.e. number of interrupts-per-second * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing */ if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable && !tqp_vector->rx_group.coal.adapt_enable) /* According to the hardware, the range of rl_reg is * 0-59 and the unit is 4. */ rl_reg |= HNS3_INT_RL_ENABLE_MASK; writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET); } void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector, u32 gl_value) { u32 new_val; if (tqp_vector->rx_group.coal.unit_1us) new_val = gl_value | HNS3_INT_GL_1US; else new_val = hns3_gl_usec_to_reg(gl_value); writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET); } void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector, u32 gl_value) { u32 new_val; if (tqp_vector->tx_group.coal.unit_1us) new_val = gl_value | HNS3_INT_GL_1US; else new_val = hns3_gl_usec_to_reg(gl_value); writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET); } void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector, u32 ql_value) { writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET); } void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector, u32 ql_value) { writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET); } static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector, struct hns3_nic_priv *priv) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal; struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal; struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal; struct hns3_enet_coalesce *prx_coal = &priv->rx_coal; tx_coal->adapt_enable = ptx_coal->adapt_enable; rx_coal->adapt_enable = prx_coal->adapt_enable; tx_coal->int_gl = ptx_coal->int_gl; rx_coal->int_gl = prx_coal->int_gl; rx_coal->flow_level = prx_coal->flow_level; tx_coal->flow_level = ptx_coal->flow_level; /* device version above V3(include V3), GL can configure 1us * unit, so uses 1us unit. */ if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) { tx_coal->unit_1us = 1; rx_coal->unit_1us = 1; } if (ae_dev->dev_specs.int_ql_max) { tx_coal->ql_enable = 1; rx_coal->ql_enable = 1; tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max; rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max; tx_coal->int_ql = ptx_coal->int_ql; rx_coal->int_ql = prx_coal->int_ql; } } static void hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector, struct hns3_nic_priv *priv) { struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal; struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal; struct hnae3_handle *h = priv->ae_handle; hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl); hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl); hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting); if (tx_coal->ql_enable) hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql); if (rx_coal->ql_enable) hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql); } static int hns3_nic_set_real_num_queue(struct net_device *netdev) { struct hnae3_handle *h = hns3_get_handle(netdev); struct hnae3_knic_private_info *kinfo = &h->kinfo; struct hnae3_tc_info *tc_info = &kinfo->tc_info; unsigned int queue_size = kinfo->num_tqps; int i, ret; if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) { netdev_reset_tc(netdev); } else { ret = netdev_set_num_tc(netdev, tc_info->num_tc); if (ret) { netdev_err(netdev, "netdev_set_num_tc fail, ret=%d!\n", ret); return ret; } for (i = 0; i < tc_info->num_tc; i++) netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i], tc_info->tqp_offset[i]); } ret = netif_set_real_num_tx_queues(netdev, queue_size); if (ret) { netdev_err(netdev, "netif_set_real_num_tx_queues fail, ret=%d!\n", ret); return ret; } ret = netif_set_real_num_rx_queues(netdev, queue_size); if (ret) { netdev_err(netdev, "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); return ret; } return 0; } u16 hns3_get_max_available_channels(struct hnae3_handle *h) { u16 alloc_tqps, max_rss_size, rss_size; h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size); rss_size = alloc_tqps / h->kinfo.tc_info.num_tc; return min_t(u16, rss_size, max_rss_size); } static void hns3_tqp_enable(struct hnae3_queue *tqp) { u32 rcb_reg; rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG); rcb_reg |= BIT(HNS3_RING_EN_B); hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg); } static void hns3_tqp_disable(struct hnae3_queue *tqp) { u32 rcb_reg; rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG); rcb_reg &= ~BIT(HNS3_RING_EN_B); hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg); } static void hns3_free_rx_cpu_rmap(struct net_device *netdev) { #ifdef CONFIG_RFS_ACCEL free_irq_cpu_rmap(netdev->rx_cpu_rmap); netdev->rx_cpu_rmap = NULL; #endif } static int hns3_set_rx_cpu_rmap(struct net_device *netdev) { #ifdef CONFIG_RFS_ACCEL struct hns3_nic_priv *priv = netdev_priv(netdev); struct hns3_enet_tqp_vector *tqp_vector; int i, ret; if (!netdev->rx_cpu_rmap) { netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num); if (!netdev->rx_cpu_rmap) return -ENOMEM; } for (i = 0; i < priv->vector_num; i++) { tqp_vector = &priv->tqp_vector[i]; ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap, tqp_vector->vector_irq); if (ret) { hns3_free_rx_cpu_rmap(netdev); return ret; } } #endif return 0; } static int hns3_nic_net_up(struct net_device *netdev) { struct hns3_nic_priv *priv = netdev_priv(netdev); struct hnae3_handle *h = priv->ae_handle; int i, j; int ret; ret = hns3_nic_reset_all_ring(h); if (ret) return ret; clear_bit(HNS3_NIC_STATE_DOWN, &priv->state); /* enable the vectors */ for (i = 0; i < priv->vector_num; i++) hns3_vector_enable(&priv->tqp_vector[i]); /* enable rcb */ for (j = 0; j < h->kinfo.num_tqps; j++) hns3_tqp_enable(h->kinfo.tqp[j]); /* start the ae_dev */ ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0; if (ret) { set_bit(HNS3_NIC_STATE_DOWN, &priv->state); while (j--) hns3_tqp_disable(h->kinfo.tqp[j]); for (j = i - 1; j >= 0; j--) hns3_vector_disable(&priv->tqp_vector[j]); } return ret; } static void hns3_config_xps(struct hns3_nic_priv *priv) { int i; for (i = 0; i < priv->vector_num; i++) { struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i]; struct hns3_enet_ring *ring = tqp_vector->tx_group.ring; while (ring) { int ret; ret = netif_set_xps_queue(priv->netdev, &tqp_vector->affinity_mask, ring->tqp->tqp_index); if (ret) netdev_warn(priv->netdev, "set xps queue failed: %d", ret); ring = ring->next; } } } static int hns3_nic_net_open(struct net_device *netdev) { struct hns3_nic_priv *priv = netdev_priv(netdev); struct hnae3_handle *h = hns3_get_handle(netdev); struct hnae3_knic_private_info *kinfo; int i, ret; if (hns3_nic_resetting(netdev)) return -EBUSY; if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) { netdev_warn(netdev, "net open repeatedly!\n"); return 0; } netif_carrier_off(netdev); ret = hns3_nic_set_real_num_queue(netdev); if (ret) return ret; ret = hns3_nic_net_up(netdev); if (ret) { netdev_err(netdev, "net up fail, ret=%d!\n", ret); return ret; } kinfo = &h->kinfo; for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]); if (h->ae_algo->ops->set_timer_task) h->ae_algo->ops->set_timer_task(priv->ae_handle, true); hns3_config_xps(priv); netif_dbg(h, drv, netdev, "net open\n"); return 0; } static void hns3_reset_tx_queue(struct hnae3_handle *h) { struct net_device *ndev = h->kinfo.netdev; struct hns3_nic_priv *priv = netdev_priv(ndev); struct netdev_queue *dev_queue; u32 i; for (i = 0; i < h->kinfo.num_tqps; i++) { dev_queue = netdev_get_tx_queue(ndev, priv->ring[i].queue_index); netdev_tx_reset_queue(dev_queue); } } static void hns3_nic_net_down(struct net_device *netdev) { struct hns3_nic_priv *priv = netdev_priv(netdev); struct hnae3_handle *h = hns3_get_handle(netdev); const struct hnae3_ae_ops *ops; int i; /* disable vectors */ for (i = 0; i < priv->vector_num; i++) hns3_vector_disable(&priv->tqp_vector[i]); /* disable rcb */ for (i = 0; i < h->kinfo.num_tqps; i++) hns3_tqp_disable(h->kinfo.tqp[i]); /* stop ae_dev */ ops = priv->ae_handle->ae_algo->ops; if (ops->stop) ops->stop(priv->ae_handle); /* delay ring buffer clearing to hns3_reset_notify_uninit_enet * during reset process, because driver may not be able * to disable the ring through firmware when downing the netdev. */ if (!hns3_nic_resetting(netdev)) hns3_clear_all_ring(priv->ae_handle, false); hns3_reset_tx_queue(priv->ae_handle); } static int hns3_nic_net_stop(struct net_device *netdev) { struct hns3_nic_priv *priv = netdev_priv(netdev); struct hnae3_handle *h = hns3_get_handle(netdev); if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state)) return 0; netif_dbg(h, drv, netdev, "net stop\n"); if (h->ae_algo->ops->set_timer_task) h->ae_algo->ops->set_timer_task(priv->ae_handle, false); netif_carrier_off(netdev); netif_tx_disable(netdev); hns3_nic_net_down(netdev); return 0; } static int hns3_nic_uc_sync(struct net_device *netdev, const unsigned char *addr) { struct hnae3_handle *h = hns3_get_handle(netdev); if (h->ae_algo->ops->add_uc_addr) return h->ae_algo->ops->add_uc_addr(h, addr); return 0; } static int hns3_nic_uc_unsync(struct net_device *netdev, const unsigned char *addr) { struct hnae3_handle *h = hns3_get_handle(netdev); /* need ignore the request of removing device address, because * we store the device address and other addresses of uc list * in the function's mac filter list. */ if (ether_addr_equal(addr, netdev->dev_addr)) return 0; if (h->ae_algo->ops->rm_uc_addr) return h->ae_algo->ops->rm_uc_addr(h, addr); return 0; } static int hns3_nic_mc_sync(struct net_device *netdev, const unsigned char *addr) { struct hnae3_handle *h = hns3_get_handle(netdev); if (h->ae_algo->ops->add_mc_addr) return h->ae_algo->ops->add_mc_addr(h, addr); return 0; } static int hns3_nic_mc_unsync(struct net_device *netdev, const unsigned char *addr) { struct hnae3_handle *h = hns3_get_handle(netdev); if (h->ae_algo->ops->rm_mc_addr) return h->ae_algo->ops->rm_mc_addr(h, addr); return 0; } static u8 hns3_get_netdev_flags(struct net_device *netdev) { u8 flags = 0; if (netdev->flags & IFF_PROMISC) flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE; else if (netdev->flags & IFF_ALLMULTI) flags = HNAE3_USER_MPE; return flags; } static void hns3_nic_set_rx_mode(struct net_device *netdev) { struct hnae3_handle *h = hns3_get_handle(netdev); u8 new_flags; new_flags = hns3_get_netdev_flags(netdev); __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync); __dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync); /* User mode Promisc mode enable and vlan filtering is disabled to * let all packets in. */ h->netdev_flags = new_flags; hns3_request_update_promisc_mode(h); } void hns3_request_update_promisc_mode(struct hnae3_handle *handle) { const struct hnae3_ae_ops *ops = handle->ae_algo->ops; if (ops->request_update_promisc_mode) ops->request_update_promisc_mode(handle); } static u32 hns3_tx_spare_space(struct hns3_enet_ring *ring) { struct hns3_tx_spare *tx_spare = ring->tx_spare; u32 ntc, ntu; /* This smp_load_acquire() pairs with smp_store_release() in * hns3_tx_spare_update() called in tx desc cleaning process. */ ntc = smp_load_acquire(&tx_spare->last_to_clean); ntu = tx_spare->next_to_use; if (ntc > ntu) return ntc - ntu - 1; /* The free tx buffer is divided into two part, so pick the * larger one. */ return max(ntc, tx_spare->len - ntu) - 1; } static void hns3_tx_spare_update(struct hns3_enet_ring *ring) { struct hns3_tx_spare *tx_spare = ring->tx_spare; if (!tx_spare || tx_spare->last_to_clean == tx_spare->next_to_clean) return; /* This smp_store_release() pairs with smp_load_acquire() in * hns3_tx_spare_space() called in xmit process. */ smp_store_release(&tx_spare->last_to_clean, tx_spare->next_to_clean); } static bool hns3_can_use_tx_bounce(struct hns3_enet_ring *ring, struct sk_buff *skb, u32 space) { u32 len = skb->len <= ring->tx_copybreak ? skb->len : skb_headlen(skb); if (len > ring->tx_copybreak) return false; if (ALIGN(len, dma_get_cache_alignment()) > space) { hns3_ring_stats_update(ring, tx_spare_full); return false; } return true; } static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring, struct sk_buff *skb, u32 space) { if (skb->len <= ring->tx_copybreak || !tx_sgl || (!skb_has_frag_list(skb) && skb_shinfo(skb)->nr_frags < tx_sgl)) return false; if (space < HNS3_MAX_SGL_SIZE) { hns3_ring_stats_update(ring, tx_spare_full); return false; } return true; } static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring) { u32 alloc_size = ring->tqp->handle->kinfo.tx_spare_buf_size; struct hns3_tx_spare *tx_spare; struct page *page; dma_addr_t dma; int order; if (!alloc_size) return; order = get_order(alloc_size); if (order > MAX_PAGE_ORDER) { if (net_ratelimit()) dev_warn(ring_to_dev(ring), "failed to allocate tx spare buffer, exceed to max order\n"); return; } tx_spare = devm_kzalloc(ring_to_dev(ring), sizeof(*tx_spare), GFP_KERNEL); if (!tx_spare) { /* The driver still work without the tx spare buffer */ dev_warn(ring_to_dev(ring), "failed to allocate hns3_tx_spare\n"); goto devm_kzalloc_error; } page = alloc_pages_node(dev_to_node(ring_to_dev(ring)), GFP_KERNEL, order); if (!page) { dev_warn(ring_to_dev(ring), "failed to allocate tx spare pages\n"); goto alloc_pages_error; } dma = dma_map_page(ring_to_dev(ring), page, 0, PAGE_SIZE << order, DMA_TO_DEVICE); if (dma_mapping_error(ring_to_dev(ring), dma)) { dev_warn(ring_to_dev(ring), "failed to map pages for tx spare\n"); goto dma_mapping_error; } tx_spare->dma = dma; tx_spare->buf = page_address(page); tx_spare->len = PAGE_SIZE << order; ring->tx_spare = tx_spare; return; dma_mapping_error: put_page(page); alloc_pages_error: devm_kfree(ring_to_dev(ring), tx_spare); devm_kzalloc_error: ring->tqp->handle->kinfo.tx_spare_buf_size = 0; } /* Use hns3_tx_spare_space() to make sure there is enough buffer * before calling below function to allocate tx buffer. */ static void *hns3_tx_spare_alloc(struct hns3_enet_ring *ring, unsigned int size, dma_addr_t *dma, u32 *cb_len) { struct hns3_tx_spare *tx_spare = ring->tx_spare; u32 ntu = tx_spare->next_to_use; size = ALIGN(size, dma_get_cache_alignment()); *cb_len = size; /* Tx spare buffer wraps back here because the end of * freed tx buffer is not enough. */ if (ntu + size > tx_spare->len) { *cb_len += (tx_spare->len - ntu); ntu = 0; } tx_spare->next_to_use = ntu + size; if (tx_spare->next_to_use == tx_spare->len) tx_spare->next_to_use = 0; *dma = tx_spare->dma + ntu; return tx_spare->buf + ntu; } static void hns3_tx_spare_rollback(struct hns3_enet_ring *ring, u32 len) { struct hns3_tx_spare *tx_spare = ring->tx_spare; if (len > tx_spare->next_to_use) { len -= tx_spare->next_to_use; tx_spare->next_to_use = tx_spare->len - len; } else { tx_spare->next_to_use -= len; } } static void hns3_tx_spare_reclaim_cb(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb) { struct hns3_tx_spare *tx_spare = ring->tx_spare; u32 ntc = tx_spare->next_to_clean; u32 len = cb->length; tx_spare->next_to_clean += len; if (tx_spare->next_to_clean >= tx_spare->len) { tx_spare->next_to_clean -= tx_spare->len; if (tx_spare->next_to_clean) { ntc = 0; len = tx_spare->next_to_clean; } } /* This tx spare buffer is only really reclaimed after calling * hns3_tx_spare_update(), so it is still safe to use the info in * the tx buffer to do the dma sync or sg unmapping after * tx_spare->next_to_clean is moved forword. */ if (cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) { dma_addr_t dma = tx_spare->dma + ntc; dma_sync_single_for_cpu(ring_to_dev(ring), dma, len, DMA_TO_DEVICE); } else { struct sg_table *sgt = tx_spare->buf + ntc; dma_unmap_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents, DMA_TO_DEVICE); } } static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs, u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes) { u32 l4_offset, hdr_len; union l3_hdr_info l3; union l4_hdr_info l4; u32 l4_paylen; int ret; if (!skb_is_gso(skb)) return 0; ret = skb_cow_head(skb, 0); if (unlikely(ret < 0)) return ret; l3.hdr = skb_network_header(skb); l4.hdr = skb_transport_header(skb); /* Software should clear the IPv4's checksum field when tso is * needed. */ if (l3.v4->version == 4) l3.v4->check = 0; /* tunnel packet */ if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | SKB_GSO_GRE_CSUM | SKB_GSO_UDP_TUNNEL | SKB_GSO_UDP_TUNNEL_CSUM)) { /* reset l3&l4 pointers from outer to inner headers */ l3.hdr = skb_inner_network_header(skb); l4.hdr = skb_inner_transport_header(skb); /* Software should clear the IPv4's checksum field when * tso is needed. */ if (l3.v4->version == 4) l3.v4->check = 0; } /* normal or tunnel packet */ l4_offset = l4.hdr - skb->data; /* remove payload length from inner pseudo checksum when tso */ l4_paylen = skb->len - l4_offset; if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { hdr_len = sizeof(*l4.udp) + l4_offset; csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(l4_paylen)); } else { hdr_len = (l4.tcp->doff << 2) + l4_offset; csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(l4_paylen)); } *send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len; /* find the txbd field values */ *paylen_fdop_ol4cs = skb->len - hdr_len; hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1); /* offload outer UDP header checksum */ if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1); /* get MSS for TSO */ *mss = skb_shinfo(skb)->gso_size; trace_hns3_tso(skb); return 0; } static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto, u8 *il4_proto) { union l3_hdr_info l3; unsigned char *l4_hdr; unsigned char *exthdr; u8 l4_proto_tmp; __be16 frag_off; /* find outer header point */ l3.hdr = skb_network_header(skb); l4_hdr = skb_transport_header(skb); if (skb->protocol == htons(ETH_P_IPV6)) { exthdr = l3.hdr + sizeof(*l3.v6); l4_proto_tmp = l3.v6->nexthdr; if (l4_hdr != exthdr) ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto_tmp, &frag_off); } else if (skb->protocol == htons(ETH_P_IP)) { l4_proto_tmp = l3.v4->protocol; } else { return -EINVAL; } *ol4_proto = l4_proto_tmp; /* tunnel packet */ if (!skb->encapsulation) { *il4_proto = 0; return 0; } /* find inner header point */ l3.hdr = skb_inner_network_header(skb); l4_hdr = skb_inner_transport_header(skb); if (l3.v6->version == 6) { exthdr = l3.hdr + sizeof(*l3.v6); l4_proto_tmp = l3.v6->nexthdr; if (l4_hdr != exthdr) ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto_tmp, &frag_off); } else if (l3.v4->version == 4) { l4_proto_tmp = l3.v4->protocol; } *il4_proto = l4_proto_tmp; return 0; } /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL * and it is udp packet, which has a dest port as the IANA assigned. * the hardware is expected to do the checksum offload, but the * hardware will not do the checksum offload when udp dest port is * 4789, 4790 or 6081. */ static bool hns3_tunnel_csum_bug(struct sk_buff *skb) { struct hns3_nic_priv *priv = netdev_priv(skb->dev); struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); union l4_hdr_info l4; /* device version above V3(include V3), the hardware can * do this checksum offload. */ if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) return false; l4.hdr = skb_transport_header(skb); if (!(!skb->encapsulation && (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) || l4.udp->dest == htons(GENEVE_UDP_PORT) || l4.udp->dest == htons(IANA_VXLAN_GPE_UDP_PORT)))) return false; return true; } static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto, u32 *ol_type_vlan_len_msec) { u32 l2_len, l3_len, l4_len; unsigned char *il2_hdr; union l3_hdr_info l3; union l4_hdr_info l4; l3.hdr = skb_network_header(skb); l4.hdr = skb_transport_header(skb); /* compute OL2 header size, defined in 2 Bytes */ l2_len = l3.hdr - skb->data; hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1); /* compute OL3 header size, defined in 4 Bytes */ l3_len = l4.hdr - l3.hdr; hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2); il2_hdr = skb_inner_mac_header(skb); /* compute OL4 header size, defined in 4 Bytes */ l4_len = il2_hdr - l4.hdr; hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2); /* define outer network header type */ if (skb->protocol == htons(ETH_P_IP)) { if (skb_is_gso(skb)) hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_CSUM); else hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_NO_CSUM); } else if (skb->protocol == htons(ETH_P_IPV6)) { hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S, HNS3_OL3T_IPV6); } if (ol4_proto == IPPROTO_UDP) hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S, HNS3_TUN_MAC_IN_UDP); else if (ol4_proto == IPPROTO_GRE) hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S, HNS3_TUN_NVGRE); } static void hns3_set_l3_type(struct sk_buff *skb, union l3_hdr_info l3, u32 *type_cs_vlan_tso) { if (l3.v4->version == 4) { hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S, HNS3_L3T_IPV4); /* the stack computes the IP header already, the only time we * need the hardware to recompute it is in the case of TSO. */ if (skb_is_gso(skb)) hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1); } else if (l3.v6->version == 6) { hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S, HNS3_L3T_IPV6); } } static int hns3_set_l4_csum_length(struct sk_buff *skb, union l4_hdr_info l4, u32 l4_proto, u32 *type_cs_vlan_tso) { /* compute inner(/normal) L4 header size, defined in 4 Bytes */ switch (l4_proto) { case IPPROTO_TCP: hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, HNS3_L4T_TCP); hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, l4.tcp->doff); break; case IPPROTO_UDP: if (hns3_tunnel_csum_bug(skb)) { int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN); return ret ? ret : skb_checksum_help(skb); } hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, HNS3_L4T_UDP); hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, (sizeof(struct udphdr) >> 2)); break; case IPPROTO_SCTP: hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, HNS3_L4T_SCTP); hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, (sizeof(struct sctphdr) >> 2)); break; default: /* drop the skb tunnel packet if hardware don't support, * because hardware can't calculate csum when TSO. */ if (skb_is_gso(skb)) return -EDOM; /* the stack computes the IP header already, * driver calculate l4 checksum when not TSO. */ return skb_checksum_help(skb); } return 0; } static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto, u8 il4_proto, u32 *type_cs_vlan_tso, u32 *ol_type_vlan_len_msec) { unsigned char *l2_hdr = skb->data; u32 l4_proto = ol4_proto; union l4_hdr_info l4; union l3_hdr_info l3; u32 l2_len, l3_len; l4.hdr = skb_transport_header(skb); l3.hdr = skb_network_header(skb); /* handle encapsulation skb */ if (skb->encapsulation) { /* If this is a not UDP/GRE encapsulation skb */ if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) { /* drop the skb tunnel packet if hardware don't support, * because hardware can't calculate csum when TSO. */ if (skb_is_gso(skb)) return -EDOM; /* the stack computes the IP header already, * driver calculate l4 checksum when not TSO. */ return skb_checksum_help(skb); } hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec); /* switch to inner header */ l2_hdr = skb_inner_mac_header(skb); l3.hdr = skb_inner_network_header(skb); l4.hdr = skb_inner_transport_header(skb); l4_proto = il4_proto; } hns3_set_l3_type(skb, l3, type_cs_vlan_tso); /* compute inner(/normal) L2 header size, defined in 2 Bytes */ l2_len = l3.hdr - l2_hdr; hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1); /* compute inner(/normal) L3 header size, defined in 4 Bytes */ l3_len = l4.hdr - l3.hdr; hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2); return hns3_set_l4_csum_length(skb, l4, l4_proto, type_cs_vlan_tso); } static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring, struct sk_buff *skb) { struct hnae3_handle *handle = tx_ring->tqp->handle; struct hnae3_ae_dev *ae_dev; struct vlan_ethhdr *vhdr; int rc; if (!(skb->protocol == htons(ETH_P_8021Q) || skb_vlan_tag_present(skb))) return 0; /* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert * VLAN enabled, only one VLAN header is allowed in skb, otherwise it * will cause RAS error. */ ae_dev = pci_get_drvdata(handle->pdev); if (unlikely(skb_vlan_tagged_multi(skb) && ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 && handle->port_base_vlan_state == HNAE3_PORT_BASE_VLAN_ENABLE)) return -EINVAL; if (skb->protocol == htons(ETH_P_8021Q) && !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { /* When HW VLAN acceleration is turned off, and the stack * sets the protocol to 802.1q, the driver just need to * set the protocol to the encapsulated ethertype. */ skb->protocol = vlan_get_protocol(skb); return 0; } if (skb_vlan_tag_present(skb)) { /* Based on hw strategy, use out_vtag in two layer tag case, * and use inner_vtag in one tag case. */ if (skb->protocol == htons(ETH_P_8021Q) && handle->port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) rc = HNS3_OUTER_VLAN_TAG; else rc = HNS3_INNER_VLAN_TAG; skb->protocol = vlan_get_protocol(skb); return rc; } rc = skb_cow_head(skb, 0); if (unlikely(rc < 0)) return rc; vhdr = skb_vlan_eth_hdr(skb); vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT) & VLAN_PRIO_MASK); skb->protocol = vlan_get_protocol(skb); return 0; } /* check if the hardware is capable of checksum offloading */ static bool hns3_check_hw_tx_csum(struct sk_buff *skb) { struct hns3_nic_priv *priv = netdev_priv(skb->dev); /* Kindly note, due to backward compatibility of the TX descriptor, * HW checksum of the non-IP packets and GSO packets is handled at * different place in the following code */ if (skb_csum_is_sctp(skb) || skb_is_gso(skb) || !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state)) return false; return true; } struct hns3_desc_param { u32 paylen_ol4cs; u32 ol_type_vlan_len_msec; u32 type_cs_vlan_tso; u16 mss_hw_csum; u16 inner_vtag; u16 out_vtag; }; static void hns3_init_desc_data(struct sk_buff *skb, struct hns3_desc_param *pa) { pa->paylen_ol4cs = skb->len; pa->ol_type_vlan_len_msec = 0; pa->type_cs_vlan_tso = 0; pa->mss_hw_csum = 0; pa->inner_vtag = 0; pa->out_vtag = 0; } static int hns3_handle_vlan_info(struct hns3_enet_ring *ring, struct sk_buff *skb, struct hns3_desc_param *param) { int ret; ret = hns3_handle_vtags(ring, skb); if (unlikely(ret < 0)) { hns3_ring_stats_update(ring, tx_vlan_err); return ret; } else if (ret == HNS3_INNER_VLAN_TAG) { param->inner_vtag = skb_vlan_tag_get(skb); param->inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) & VLAN_PRIO_MASK; hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1); } else if (ret == HNS3_OUTER_VLAN_TAG) { param->out_vtag = skb_vlan_tag_get(skb); param->out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) & VLAN_PRIO_MASK; hns3_set_field(param->ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B, 1); } return 0; } static int hns3_handle_csum_partial(struct hns3_enet_ring *ring, struct sk_buff *skb, struct hns3_desc_cb *desc_cb, struct hns3_desc_param *param) { u8 ol4_proto, il4_proto; int ret; if (hns3_check_hw_tx_csum(skb)) { /* set checksum start and offset, defined in 2 Bytes */ hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_CSUM_START_S, skb_checksum_start_offset(skb) >> 1); hns3_set_field(param->ol_type_vlan_len_msec, HNS3_TXD_CSUM_OFFSET_S, skb->csum_offset >> 1); param->mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B); return 0; } skb_reset_mac_len(skb); ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto); if (unlikely(ret < 0)) { hns3_ring_stats_update(ring, tx_l4_proto_err); return ret; } ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto, ¶m->type_cs_vlan_tso, ¶m->ol_type_vlan_len_msec); if (unlikely(ret < 0)) { hns3_ring_stats_update(ring, tx_l2l3l4_err); return ret; } ret = hns3_set_tso(skb, ¶m->paylen_ol4cs, ¶m->mss_hw_csum, ¶m->type_cs_vlan_tso, &desc_cb->send_bytes); if (unlikely(ret < 0)) { hns3_ring_stats_update(ring, tx_tso_err); return ret; } return 0; } static int hns3_fill_skb_desc(struct hns3_enet_ring *ring, struct sk_buff *skb, struct hns3_desc *desc, struct hns3_desc_cb *desc_cb) { struct hns3_desc_param param; int ret; hns3_init_desc_data(skb, ¶m); ret = hns3_handle_vlan_info(ring, skb, ¶m); if (unlikely(ret < 0)) return ret; desc_cb->send_bytes = skb->len; if (skb->ip_summed == CHECKSUM_PARTIAL) { ret = hns3_handle_csum_partial(ring, skb, desc_cb, ¶m); if (ret) return ret; } /* Set txbd */ desc->tx.ol_type_vlan_len_msec = cpu_to_le32(param.ol_type_vlan_len_msec); desc->tx.type_cs_vlan_tso_len = cpu_to_le32(param.type_cs_vlan_tso); desc->tx.paylen_ol4cs = cpu_to_le32(param.paylen_ol4cs); desc->tx.mss_hw_csum = cpu_to_le16(param.mss_hw_csum); desc->tx.vlan_tag = cpu_to_le16(param.inner_vtag); desc->tx.outer_vlan_tag = cpu_to_le16(param.out_vtag); return 0; } static int hns3_fill_desc(struct hns3_enet_ring *ring, dma_addr_t dma, unsigned int size) { #define HNS3_LIKELY_BD_NUM 1 struct hns3_desc *desc = &ring->desc[ring->next_to_use]; unsigned int frag_buf_num; int k, sizeoflast; if (likely(size <= HNS3_MAX_BD_SIZE)) { desc->addr = cpu_to_le64(dma); desc->tx.send_size = cpu_to_le16(size); desc->tx.bdtp_fe_sc_vld_ra_ri = cpu_to_le16(BIT(HNS3_TXD_VLD_B)); trace_hns3_tx_desc(ring, ring->next_to_use); ring_ptr_move_fw(ring, next_to_use); return HNS3_LIKELY_BD_NUM; } frag_buf_num = hns3_tx_bd_count(size); sizeoflast = size % HNS3_MAX_BD_SIZE; sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE; /* When frag size is bigger than hardware limit, split this frag */ for (k = 0; k < frag_buf_num; k++) { /* now, fill the descriptor */ desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k); desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ? (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE); desc->tx.bdtp_fe_sc_vld_ra_ri = cpu_to_le16(BIT(HNS3_TXD_VLD_B)); trace_hns3_tx_desc(ring, ring->next_to_use); /* move ring pointer to next */ ring_ptr_move_fw(ring, next_to_use); desc = &ring->desc[ring->next_to_use]; } return frag_buf_num; } static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv, unsigned int type) { struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; struct device *dev = ring_to_dev(ring); unsigned int size; dma_addr_t dma; if (type & (DESC_TYPE_FRAGLIST_SKB | DESC_TYPE_SKB)) { struct sk_buff *skb = (struct sk_buff *)priv; size = skb_headlen(skb); if (!size) return 0; dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); } else if (type & DESC_TYPE_BOUNCE_HEAD) { /* Head data has been filled in hns3_handle_tx_bounce(), * just return 0 here. */ return 0; } else { skb_frag_t *frag = (skb_frag_t *)priv; size = skb_frag_size(frag); if (!size) return 0; dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); } if (unlikely(dma_mapping_error(dev, dma))) { hns3_ring_stats_update(ring, sw_err_cnt); return -ENOMEM; } desc_cb->priv = priv; desc_cb->length = size; desc_cb->dma = dma; desc_cb->type = type; return hns3_fill_desc(ring, dma, size); } static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size, unsigned int bd_num) { unsigned int size; int i; size = skb_headlen(skb); while (size > HNS3_MAX_BD_SIZE) { bd_size[bd_num++] = HNS3_MAX_BD_SIZE; size -= HNS3_MAX_BD_SIZE; if (bd_num > HNS3_MAX_TSO_BD_NUM) return bd_num; } if (size) { bd_size[bd_num++] = size; if (bd_num > HNS3_MAX_TSO_BD_NUM) return bd_num; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; size = skb_frag_size(frag); if (!size) continue; while (size > HNS3_MAX_BD_SIZE) { bd_size[bd_num++] = HNS3_MAX_BD_SIZE; size -= HNS3_MAX_BD_SIZE; if (bd_num > HNS3_MAX_TSO_BD_NUM) return bd_num; } bd_size[bd_num++] = size; if (bd_num > HNS3_MAX_TSO_BD_NUM) return bd_num; } return bd_num; } static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size, u8 max_non_tso_bd_num, unsigned int bd_num, unsigned int recursion_level) { #define HNS3_MAX_RECURSION_LEVEL 24 struct sk_buff *frag_skb; /* If the total len is within the max bd limit */ if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level && !skb_has_frag_list(skb) && skb_shinfo(skb)->nr_frags < max_non_tso_bd_num)) return skb_shinfo(skb)->nr_frags + 1U; if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL)) return UINT_MAX; bd_num = hns3_skb_bd_num(skb, bd_size, bd_num); if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM) return bd_num; skb_walk_frags(skb, frag_skb) { bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num, bd_num, recursion_level + 1); if (bd_num > HNS3_MAX_TSO_BD_NUM) return bd_num; } return bd_num; } static unsigned int hns3_gso_hdr_len(struct sk_buff *skb) { if (!skb->encapsulation) return skb_tcp_all_headers(skb); return skb_inner_tcp_all_headers(skb); } /* HW need every continuous max_non_tso_bd_num buffer data to be larger * than MSS, we simplify it by ensuring skb_headlen + the first continuous * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss, * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger * than MSS except the last max_non_tso_bd_num - 1 frags. */ static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size, unsigned int bd_num, u8 max_non_tso_bd_num) { unsigned int tot_len = 0; int i; for (i = 0; i < max_non_tso_bd_num - 1U; i++) tot_len += bd_size[i]; /* ensure the first max_non_tso_bd_num frags is greater than * mss + header */ if (tot_len + bd_size[max_non_tso_bd_num - 1U] < skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb)) return true; /* ensure every continuous max_non_tso_bd_num - 1 buffer is greater * than mss except the last one. */ for (i = 0; i < bd_num - max_non_tso_bd_num; i++) { tot_len -= bd_size[i]; tot_len += bd_size[i + max_non_tso_bd_num - 1U]; if (tot_len < skb_shinfo(skb)->gso_size) return true; } return false; } void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size) { int i; for (i = 0; i < MAX_SKB_FRAGS; i++) size[i] = skb_frag_size(&shinfo->frags[i]); } static int hns3_skb_linearize(struct hns3_enet_ring *ring, struct sk_buff *skb, unsigned int bd_num) { /* 'bd_num == UINT_MAX' means the skb' fraglist has a * recursion level of over HNS3_MAX_RECURSION_LEVEL. */ if (bd_num == UINT_MAX) { hns3_ring_stats_update(ring, over_max_recursion); return -ENOMEM; } /* The skb->len has exceeded the hw limitation, linearization * will not help. */ if (skb->len > HNS3_MAX_TSO_SIZE || (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)) { hns3_ring_stats_update(ring, hw_limitation); return -ENOMEM; } if (__skb_linearize(skb)) { hns3_ring_stats_update(ring, sw_err_cnt); return -ENOMEM; } return 0; } static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring, struct net_device *netdev, struct sk_buff *skb) { struct hns3_nic_priv *priv = netdev_priv(netdev); u8 max_non_tso_bd_num = priv->max_non_tso_bd_num; unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U]; unsigned int bd_num; bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0); if (unlikely(bd_num > max_non_tso_bd_num)) { if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) && !hns3_skb_need_linearized(skb, bd_size, bd_num, max_non_tso_bd_num)) { trace_hns3_over_max_bd(skb); goto out; } if (hns3_skb_linearize(ring, skb, bd_num)) return -ENOMEM; bd_num = hns3_tx_bd_count(skb->len); hns3_ring_stats_update(ring, tx_copy); } out: if (likely(ring_space(ring) >= bd_num)) return bd_num; netif_stop_subqueue(netdev, ring->queue_index); smp_mb(); /* Memory barrier before checking ring_space */ /* Start queue in case hns3_clean_tx_ring has just made room * available and has not seen the queue stopped state performed * by netif_stop_subqueue above. */ if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) && !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) { netif_start_subqueue(netdev, ring->queue_index); return bd_num; } hns3_ring_stats_update(ring, tx_busy); return -EBUSY; } static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig) { struct device *dev = ring_to_dev(ring); unsigned int i; for (i = 0; i < ring->desc_num; i++) { struct hns3_desc *desc = &ring->desc[ring->next_to_use]; struct hns3_desc_cb *desc_cb; memset(desc, 0, sizeof(*desc)); /* check if this is where we started */ if (ring->next_to_use == next_to_use_orig) break; /* rollback one */ ring_ptr_move_bw(ring, next_to_use); desc_cb = &ring->desc_cb[ring->next_to_use]; if (!desc_cb->dma) continue; /* unmap the descriptor dma address */ if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB)) dma_unmap_single(dev, desc_cb->dma, desc_cb->length, DMA_TO_DEVICE); else if (desc_cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) hns3_tx_spare_rollback(ring, desc_cb->length); else if (desc_cb->length) dma_unmap_page(dev, desc_cb->dma, desc_cb->length, DMA_TO_DEVICE); desc_cb->length = 0; desc_cb->dma = 0; desc_cb->type = DESC_TYPE_UNKNOWN; } } static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring, struct sk_buff *skb, unsigned int type) { struct sk_buff *frag_skb; int i, ret, bd_num = 0; ret = hns3_map_and_fill_desc(ring, skb, type); if (unlikely(ret < 0)) return ret; bd_num += ret; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; ret = hns3_map_and_fill_desc(ring, frag, DESC_TYPE_PAGE); if (unlikely(ret < 0)) return ret; bd_num += ret; } skb_walk_frags(skb, frag_skb) { ret = hns3_fill_skb_to_desc(ring, frag_skb, DESC_TYPE_FRAGLIST_SKB); if (unlikely(ret < 0)) return ret; bd_num += ret; } return bd_num; } static void hns3_tx_push_bd(struct hns3_enet_ring *ring, int num) { #define HNS3_BYTES_PER_64BIT 8 struct hns3_desc desc[HNS3_MAX_PUSH_BD_NUM] = {}; int offset = 0; /* make sure everything is visible to device before * excuting tx push or updating doorbell */ dma_wmb(); do { int idx = (ring->next_to_use - num + ring->desc_num) % ring->desc_num; u64_stats_update_begin(&ring->syncp); ring->stats.tx_push++; u64_stats_update_end(&ring->syncp); memcpy(&desc[offset], &ring->desc[idx], sizeof(struct hns3_desc)); offset++; } while (--num); __iowrite64_copy(ring->tqp->mem_base, desc, (sizeof(struct hns3_desc) * HNS3_MAX_PUSH_BD_NUM) / HNS3_BYTES_PER_64BIT); } static void hns3_tx_mem_doorbell(struct hns3_enet_ring *ring) { #define HNS3_MEM_DOORBELL_OFFSET 64 __le64 bd_num = cpu_to_le64((u64)ring->pending_buf); /* make sure everything is visible to device before * excuting tx push or updating doorbell */ dma_wmb(); __iowrite64_copy(ring->tqp->mem_base + HNS3_MEM_DOORBELL_OFFSET, &bd_num, 1); u64_stats_update_begin(&ring->syncp); ring->stats.tx_mem_doorbell += ring->pending_buf; u64_stats_update_end(&ring->syncp); } static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num, bool doorbell) { struct net_device *netdev = ring_to_netdev(ring); struct hns3_nic_priv *priv = netdev_priv(netdev); /* when tx push is enabled, the packet whose number of BD below * HNS3_MAX_PUSH_BD_NUM can be pushed directly. */ if (test_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state) && num && !ring->pending_buf && num <= HNS3_MAX_PUSH_BD_NUM && doorbell) { /* This smp_store_release() pairs with smp_load_aquire() in * hns3_nic_reclaim_desc(). Ensure that the BD valid bit * is updated. */ smp_store_release(&ring->last_to_use, ring->next_to_use); hns3_tx_push_bd(ring, num); return; } ring->pending_buf += num; if (!doorbell) { hns3_ring_stats_update(ring, tx_more); return; } /* This smp_store_release() pairs with smp_load_aquire() in * hns3_nic_reclaim_desc(). Ensure that the BD valid bit is updated. */ smp_store_release(&ring->last_to_use, ring->next_to_use); if (ring->tqp->mem_base) hns3_tx_mem_doorbell(ring); else writel(ring->pending_buf, ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG); ring->pending_buf = 0; } static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb, struct hns3_desc *desc) { struct hnae3_handle *h = hns3_get_handle(netdev); if (!(h->ae_algo->ops->set_tx_hwts_info && h->ae_algo->ops->set_tx_hwts_info(h, skb))) return; desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B)); } static int hns3_handle_tx_bounce(struct hns3_enet_ring *ring, struct sk_buff *skb) { struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; unsigned int type = DESC_TYPE_BOUNCE_HEAD; unsigned int size = skb_headlen(skb); dma_addr_t dma; int bd_num = 0; u32 cb_len; void *buf; int ret; if (skb->len <= ring->tx_copybreak) { size = skb->len; type = DESC_TYPE_BOUNCE_ALL; } /* hns3_can_use_tx_bounce() is called to ensure the below * function can always return the tx buffer. */ buf = hns3_tx_spare_alloc(ring, size, &dma, &cb_len); ret = skb_copy_bits(skb, 0, buf, size); if (unlikely(ret < 0)) { hns3_tx_spare_rollback(ring, cb_len); hns3_ring_stats_update(ring, copy_bits_err); return ret; } desc_cb->priv = skb; desc_cb->length = cb_len; desc_cb->dma = dma; desc_cb->type = type; bd_num += hns3_fill_desc(ring, dma, size); if (type == DESC_TYPE_BOUNCE_HEAD) { ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_BOUNCE_HEAD); if (unlikely(ret < 0)) return ret; bd_num += ret; } dma_sync_single_for_device(ring_to_dev(ring), dma, size, DMA_TO_DEVICE); hns3_ring_stats_update(ring, tx_bounce); return bd_num; } static int hns3_handle_tx_sgl(struct hns3_enet_ring *ring, struct sk_buff *skb) { struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; u32 nfrag = skb_shinfo(skb)->nr_frags + 1; struct sg_table *sgt; int i, bd_num = 0; dma_addr_t dma; u32 cb_len; int nents; if (skb_has_frag_list(skb)) nfrag = HNS3_MAX_TSO_BD_NUM; /* hns3_can_use_tx_sgl() is called to ensure the below * function can always return the tx buffer. */ sgt = hns3_tx_spare_alloc(ring, HNS3_SGL_SIZE(nfrag), &dma, &cb_len); /* scatterlist follows by the sg table */ sgt->sgl = (struct scatterlist *)(sgt + 1); sg_init_table(sgt->sgl, nfrag); nents = skb_to_sgvec(skb, sgt->sgl, 0, skb->len); if (unlikely(nents < 0)) { hns3_tx_spare_rollback(ring, cb_len); hns3_ring_stats_update(ring, skb2sgl_err); return -ENOMEM; } sgt->orig_nents = nents; sgt->nents = dma_map_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents, DMA_TO_DEVICE); if (unlikely(!sgt->nents)) { hns3_tx_spare_rollback(ring, cb_len); hns3_ring_stats_update(ring, map_sg_err); return -ENOMEM; } desc_cb->priv = skb; desc_cb->length = cb_len; desc_cb->dma = dma; desc_cb->type = DESC_TYPE_SGL_SKB; for (i = 0; i < sgt->nents; i++) bd_num += hns3_fill_desc(ring, sg_dma_address(sgt->sgl + i), sg_dma_len(sgt->sgl + i)); hns3_ring_stats_update(ring, tx_sgl); return bd_num; } static int hns3_handle_desc_filling(struct hns3_enet_ring *ring, struct sk_buff *skb) { u32 space; if (!ring->tx_spare) goto out; space = hns3_tx_spare_space(ring); if (hns3_can_use_tx_sgl(ring, skb, space)) return hns3_handle_tx_sgl(ring, skb); if (hns3_can_use_tx_bounce(ring, skb, space)) return hns3_handle_tx_bounce(ring, skb); out: return hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB); } static int hns3_handle_skb_desc(struct hns3_enet_ring *ring, struct sk_buff *skb, struct hns3_desc_cb *desc_cb, int next_to_use_head) { int ret; ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use], desc_cb); if (unlikely(ret < 0)) goto fill_err; /* 'ret < 0' means filling error, 'ret == 0' means skb->len is * zero, which is unlikely, and 'ret > 0' means how many tx desc * need to be notified to the hw. */ ret = hns3_handle_desc_filling(ring, skb); if (likely(ret > 0)) return ret; fill_err: hns3_clear_desc(ring, next_to_use_head); return ret; } netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev) { struct hns3_nic_priv *priv = netdev_priv(netdev); struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping]; struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; struct netdev_queue *dev_queue; int pre_ntu, ret; bool doorbell; /* Hardware can only handle short frames above 32 bytes */ if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) { hns3_tx_doorbell(ring, 0, !netdev_xmit_more()); hns3_ring_stats_update(ring, sw_err_cnt); return NETDEV_TX_OK; } /* Prefetch the data used later */ prefetch(skb->data); ret = hns3_nic_maybe_stop_tx(ring, netdev, skb); if (unlikely(ret <= 0)) { if (ret == -EBUSY) { hns3_tx_doorbell(ring, 0, true); return NETDEV_TX_BUSY; } hns3_rl_err(netdev, "xmit error: %d!\n", ret); goto out_err_tx_ok; } ret = hns3_handle_skb_desc(ring, skb, desc_cb, ring->next_to_use); if (unlikely(ret <= 0)) goto out_err_tx_ok; pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) : (ring->desc_num - 1); if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]); ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_FE_B)); trace_hns3_tx_desc(ring, pre_ntu); skb_tx_timestamp(skb); /* Complete translate all packets */ dev_queue = netdev_get_tx_queue(netdev, ring->queue_index); doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes, netdev_xmit_more()); hns3_tx_doorbell(ring, ret, doorbell); return NETDEV_TX_OK; out_err_tx_ok: dev_kfree_skb_any(skb); hns3_tx_doorbell(ring, 0, !netdev_xmit_more()); return NETDEV_TX_OK; } static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p) { char format_mac_addr_perm[HNAE3_FORMAT_MAC_ADDR_LEN]; char format_mac_addr_sa[HNAE3_FORMAT_MAC_ADDR_LEN]; struct hnae3_handle *h = hns3_get_handle(netdev); struct sockaddr *mac_addr = p; int ret; if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) return -EADDRNOTAVAIL; if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) { hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data); netdev_info(netdev, "already using mac address %s\n", format_mac_addr_sa); return 0; } /* For VF device, if there is a perm_addr, then the user will not * be allowed to change the address. */ if (!hns3_is_phys_func(h->pdev) && !is_zero_ether_addr(netdev->perm_addr)) { hnae3_format_mac_addr(format_mac_addr_perm, netdev->perm_addr); hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data); netdev_err(netdev, "has permanent MAC %s, user MAC %s not allow\n", format_mac_addr_perm, format_mac_addr_sa); return -EPERM; } ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false); if (ret) { netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret); return ret; } eth_hw_addr_set(netdev, mac_addr->sa_data); return 0; } static int hns3_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct hnae3_handle *h = hns3_get_handle(netdev); if (!netif_running(netdev)) return -EINVAL; if (!h->ae_algo->ops->do_ioctl) return -EOPNOTSUPP; return h->ae_algo->ops->do_ioctl(h, ifr, cmd); } static int hns3_nic_set_features(struct net_device *netdev, netdev_features_t features) { netdev_features_t changed = netdev->features ^ features; struct hns3_nic_priv *priv = netdev_priv(netdev); struct hnae3_handle *h = priv->ae_handle; bool enable; int ret; if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) { enable = !!(features & NETIF_F_GRO_HW); ret = h->ae_algo->ops->set_gro_en(h, enable); if (ret) return ret; } if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && h->ae_algo->ops->enable_hw_strip_rxvtag) { enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable); if (ret) return ret; } if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) { enable = !!(features & NETIF_F_NTUPLE); h->ae_algo->ops->enable_fd(h, enable); } if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) && h->ae_algo->ops->cls_flower_active(h)) { netdev_err(netdev, "there are offloaded TC filters active, cannot disable HW TC offload"); return -EINVAL; } if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) && h->ae_algo->ops->enable_vlan_filter) { enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER); ret = h->ae_algo->ops->enable_vlan_filter(h, enable); if (ret) return ret; } netdev->features = features; return 0; } static netdev_features_t hns3_features_check(struct sk_buff *skb, struct net_device *dev, netdev_features_t features) { #define HNS3_MAX_HDR_LEN 480U #define HNS3_MAX_L4_HDR_LEN 60U size_t len; if (skb->ip_summed != CHECKSUM_PARTIAL) return features; if (skb->encapsulation) len = skb_inner_transport_offset(skb); else len = skb_transport_offset(skb); /* Assume L4 is 60 byte as TCP is the only protocol with a * a flexible value, and it's max len is 60 bytes. */ len += HNS3_MAX_L4_HDR_LEN; /* Hardware only supports checksum on the skb with a max header * len of 480 bytes. */ if (len > HNS3_MAX_HDR_LEN) features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); return features; } static void hns3_fetch_stats(struct rtnl_link_stats64 *stats, struct hns3_enet_ring *ring, bool is_tx) { unsigned int start; do { start = u64_stats_fetch_begin(&ring->syncp); if (is_tx) { stats->tx_bytes += ring->stats.tx_bytes; stats->tx_packets += ring->stats.tx_pkts; stats->tx_dropped += ring->stats.sw_err_cnt; stats->tx_dropped += ring->stats.tx_vlan_err; stats->tx_dropped += ring->stats.tx_l4_proto_err; stats->tx_dropped += ring->stats.tx_l2l3l4_err; stats->tx_dropped += ring->stats.tx_tso_err; stats->tx_dropped += ring->stats.over_max_recursion; stats->tx_dropped += ring->stats.hw_limitation; stats->tx_dropped += ring->stats.copy_bits_err; stats->tx_dropped += ring->stats.skb2sgl_err; stats->tx_dropped += ring->stats.map_sg_err; stats->tx_errors += ring->stats.sw_err_cnt; stats->tx_errors += ring->stats.tx_vlan_err; stats->tx_errors += ring->stats.tx_l4_proto_err; stats->tx_errors += ring->stats.tx_l2l3l4_err; stats->tx_errors += ring->stats.tx_tso_err; stats->tx_errors += ring->stats.over_max_recursion; stats->tx_errors += ring->stats.hw_limitation; stats->tx_errors += ring->stats.copy_bits_err; stats->tx_errors += ring->stats.skb2sgl_err; stats->tx_errors += ring->stats.map_sg_err; } else { stats->rx_bytes += ring->stats.rx_bytes; stats->rx_packets += ring->stats.rx_pkts; stats->rx_dropped += ring->stats.l2_err; stats->rx_errors += ring->stats.l2_err; stats->rx_errors += ring->stats.l3l4_csum_err; stats->rx_crc_errors += ring->stats.l2_err; stats->multicast += ring->stats.rx_multicast; stats->rx_length_errors += ring->stats.err_pkt_len; } } while (u64_stats_fetch_retry(&ring->syncp, start)); } static void hns3_nic_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct hns3_nic_priv *priv = netdev_priv(netdev); int queue_num = priv->ae_handle->kinfo.num_tqps; struct hnae3_handle *handle = priv->ae_handle; struct rtnl_link_stats64 ring_total_stats; struct hns3_enet_ring *ring; unsigned int idx; if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) return; handle->ae_algo->ops->update_stats(handle); memset(&ring_total_stats, 0, sizeof(ring_total_stats)); for (idx = 0; idx < queue_num; idx++) { /* fetch the tx stats */ ring = &priv->ring[idx]; hns3_fetch_stats(&ring_total_stats, ring, true); /* fetch the rx stats */ ring = &priv->ring[idx + queue_num]; hns3_fetch_stats(&ring_total_stats, ring, false); } stats->tx_bytes = ring_total_stats.tx_bytes; stats->tx_packets = ring_total_stats.tx_packets; stats->rx_bytes = ring_total_stats.rx_bytes; stats->rx_packets = ring_total_stats.rx_packets; stats->rx_errors = ring_total_stats.rx_errors; stats->multicast = ring_total_stats.multicast; stats->rx_length_errors = ring_total_stats.rx_length_errors; stats->rx_crc_errors = ring_total_stats.rx_crc_errors; stats->rx_missed_errors = netdev->stats.rx_missed_errors; stats->tx_errors = ring_total_stats.tx_errors; stats->rx_dropped = ring_total_stats.rx_dropped; stats->tx_dropped = ring_total_stats.tx_dropped; stats->collisions = netdev->stats.collisions; stats->rx_over_errors = netdev->stats.rx_over_errors; stats->rx_frame_errors = netdev->stats.rx_frame_errors; stats->rx_fifo_errors = netdev->stats.rx_fifo_errors; stats->tx_aborted_errors = netdev->stats.tx_aborted_errors; stats->tx_carrier_errors = netdev->stats.tx_carrier_errors; stats->tx_fifo_errors = netdev->stats.tx_fifo_errors; stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors; stats->tx_window_errors = netdev->stats.tx_window_errors; stats->rx_compressed = netdev->stats.rx_compressed; stats->tx_compressed = netdev->stats.tx_compressed; } static int hns3_setup_tc(struct net_device *netdev, void *type_data) { struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; struct hnae3_knic_private_info *kinfo; u8 tc = mqprio_qopt->qopt.num_tc; u16 mode = mqprio_qopt->mode; u8 hw = mqprio_qopt->qopt.hw; struct hnae3_handle *h; if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS && mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0))) return -EOPNOTSUPP; if (tc > HNAE3_MAX_TC) return -EINVAL; if (!netdev) return -EINVAL; h = hns3_get_handle(netdev); kinfo = &h->kinfo; netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc); return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ? kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP; } static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv, struct flow_cls_offload *flow) { int tc = tc_classid_to_hwtc(priv->netdev, flow->classid); struct hnae3_handle *h = hns3_get_handle(priv->netdev); switch (flow->command) { case FLOW_CLS_REPLACE: if (h->ae_algo->ops->add_cls_flower) return h->ae_algo->ops->add_cls_flower(h, flow, tc); break; case FLOW_CLS_DESTROY: if (h->ae_algo->ops->del_cls_flower) return h->ae_algo->ops->del_cls_flower(h, flow); break; default: break; } return -EOPNOTSUPP; } static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) { struct hns3_nic_priv *priv = cb_priv; if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data)) return -EOPNOTSUPP; switch (type) { case TC_SETUP_CLSFLOWER: return hns3_setup_tc_cls_flower(priv, type_data); default: return -EOPNOTSUPP; } } static LIST_HEAD(hns3_block_cb_list); static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type, void *type_data) { struct hns3_nic_priv *priv = netdev_priv(dev); int ret; switch (type) { case TC_SETUP_QDISC_MQPRIO: ret = hns3_setup_tc(dev, type_data); break; case TC_SETUP_BLOCK: ret = flow_block_cb_setup_simple(type_data, &hns3_block_cb_list, hns3_setup_tc_block_cb, priv, priv, true); break; default: return -EOPNOTSUPP; } return ret; } static int hns3_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) { struct hnae3_handle *h = hns3_get_handle(netdev); int ret = -EIO; if (h->ae_algo->ops->set_vlan_filter) ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false); return ret; } static int hns3_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) { struct hnae3_handle *h = hns3_get_handle(netdev); int ret = -EIO; if (h->ae_algo->ops->set_vlan_filter) ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true); return ret; } static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan, u8 qos, __be16 vlan_proto) { struct hnae3_handle *h = hns3_get_handle(netdev); int ret = -EIO; netif_dbg(h, drv, netdev, "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n", vf, vlan, qos, ntohs(vlan_proto)); if (h->ae_algo->ops->set_vf_vlan_filter) ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan, qos, vlan_proto); return ret; } static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable) { struct hnae3_handle *handle = hns3_get_handle(netdev); if (hns3_nic_resetting(netdev)) return -EBUSY; if (!handle->ae_algo->ops->set_vf_spoofchk) return -EOPNOTSUPP; return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable); } static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable) { struct hnae3_handle *handle = hns3_get_handle(netdev); if (!handle->ae_algo->ops->set_vf_trust) return -EOPNOTSUPP; return handle->ae_algo->ops->set_vf_trust(handle, vf, enable); } static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu) { struct hnae3_handle *h = hns3_get_handle(netdev); int ret; if (hns3_nic_resetting(netdev)) return -EBUSY; if (!h->ae_algo->ops->set_mtu) return -EOPNOTSUPP; netif_dbg(h, drv, netdev, "change mtu from %u to %d\n", netdev->mtu, new_mtu); ret = h->ae_algo->ops->set_mtu(h, new_mtu); if (ret) netdev_err(netdev, "failed to change MTU in hardware %d\n", ret); else WRITE_ONCE(netdev->mtu, new_mtu); return ret; } static int hns3_get_timeout_queue(struct net_device *ndev) { int i; /* Find the stopped queue the same way the stack does */ for (i = 0; i < ndev->num_tx_queues; i++) { struct netdev_queue *q; unsigned long trans_start; q = netdev_get_tx_queue(ndev, i); trans_start = READ_ONCE(q->trans_start); if (netif_xmit_stopped(q) && time_after(jiffies, (trans_start + ndev->watchdog_timeo))) { #ifdef CONFIG_BQL struct dql *dql = &q->dql; netdev_info(ndev, "DQL info last_cnt: %u, queued: %u, adj_limit: %u, completed: %u\n", dql->last_obj_cnt, dql->num_queued, dql->adj_limit, dql->num_completed); #endif netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n", q->state, jiffies_to_msecs(jiffies - trans_start)); break; } } return i; } static void hns3_dump_queue_stats(struct net_device *ndev, struct hns3_enet_ring *tx_ring, int timeout_queue) { struct napi_struct *napi = &tx_ring->tqp_vector->napi; struct hns3_nic_priv *priv = netdev_priv(ndev); netdev_info(ndev, "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n", priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use, tx_ring->next_to_clean, napi->state); netdev_info(ndev, "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n", tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes, tx_ring->stats.sw_err_cnt, tx_ring->pending_buf); netdev_info(ndev, "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n", tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more, tx_ring->stats.restart_queue, tx_ring->stats.tx_busy); netdev_info(ndev, "tx_push: %llu, tx_mem_doorbell: %llu\n", tx_ring->stats.tx_push, tx_ring->stats.tx_mem_doorbell); } static void hns3_dump_queue_reg(struct net_device *ndev, struct hns3_enet_ring *tx_ring) { netdev_info(ndev, "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n", hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_NUM_REG), hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_HEAD_REG), hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TAIL_REG), hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_ERR_REG), readl(tx_ring->tqp_vector->mask_addr)); netdev_info(ndev, "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n", hns3_tqp_read_reg(tx_ring, HNS3_RING_EN_REG), hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TC_REG), hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_FBDNUM_REG), hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_OFFSET_REG), hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_EBDNUM_REG), hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_EBD_OFFSET_REG)); } static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev) { struct hns3_nic_priv *priv = netdev_priv(ndev); struct hnae3_handle *h = hns3_get_handle(ndev); struct hns3_enet_ring *tx_ring; int timeout_queue; timeout_queue = hns3_get_timeout_queue(ndev); if (timeout_queue >= ndev->num_tx_queues) { netdev_info(ndev, "no netdev TX timeout queue found, timeout count: %llu\n", priv->tx_timeout_count); return false; } priv->tx_timeout_count++; tx_ring = &priv->ring[timeout_queue]; hns3_dump_queue_stats(ndev, tx_ring, timeout_queue); /* When mac received many pause frames continuous, it's unable to send * packets, which may cause tx timeout */ if (h->ae_algo->ops->get_mac_stats) { struct hns3_mac_stats mac_stats; h->ae_algo->ops->get_mac_stats(h, &mac_stats); netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n", mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt); } hns3_dump_queue_reg(ndev, tx_ring); return true; } static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue) { struct hns3_nic_priv *priv = netdev_priv(ndev); struct hnae3_handle *h = priv->ae_handle; if (!hns3_get_tx_timeo_queue_info(ndev)) return; /* request the reset, and let the hclge to determine * which reset level should be done */ if (h->ae_algo->ops->reset_event) h->ae_algo->ops->reset_event(h->pdev, h); } #ifdef CONFIG_RFS_ACCEL static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, u16 rxq_index, u32 flow_id) { struct hnae3_handle *h = hns3_get_handle(dev); struct flow_keys fkeys; if (!h->ae_algo->ops->add_arfs_entry) return -EOPNOTSUPP; if (skb->encapsulation) return -EPROTONOSUPPORT; if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0)) return -EPROTONOSUPPORT; if ((fkeys.basic.n_proto != htons(ETH_P_IP) && fkeys.basic.n_proto != htons(ETH_P_IPV6)) || (fkeys.basic.ip_proto != IPPROTO_TCP && fkeys.basic.ip_proto != IPPROTO_UDP)) return -EPROTONOSUPPORT; return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys); } #endif static int hns3_nic_get_vf_config(struct net_device *ndev, int vf, struct ifla_vf_info *ivf) { struct hnae3_handle *h = hns3_get_handle(ndev); if (!h->ae_algo->ops->get_vf_config) return -EOPNOTSUPP; return h->ae_algo->ops->get_vf_config(h, vf, ivf); } static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf, int link_state) { struct hnae3_handle *h = hns3_get_handle(ndev); if (!h->ae_algo->ops->set_vf_link_state) return -EOPNOTSUPP; return h->ae_algo->ops->set_vf_link_state(h, vf, link_state); } static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf, int min_tx_rate, int max_tx_rate) { struct hnae3_handle *h = hns3_get_handle(ndev); if (!h->ae_algo->ops->set_vf_rate) return -EOPNOTSUPP; return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate, false); } static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) { struct hnae3_handle *h = hns3_get_handle(netdev); char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; if (!h->ae_algo->ops->set_vf_mac) return -EOPNOTSUPP; if (is_multicast_ether_addr(mac)) { hnae3_format_mac_addr(format_mac_addr, mac); netdev_err(netdev, "Invalid MAC:%s specified. Could not set MAC\n", format_mac_addr); return -EINVAL; } return h->ae_algo->ops->set_vf_mac(h, vf_id, mac); } #define HNS3_INVALID_DSCP 0xff #define HNS3_DSCP_SHIFT 2 static u8 hns3_get_skb_dscp(struct sk_buff *skb) { __be16 protocol = skb->protocol; u8 dscp = HNS3_INVALID_DSCP; if (protocol == htons(ETH_P_8021Q)) protocol = vlan_get_protocol(skb); if (protocol == htons(ETH_P_IP)) dscp = ipv4_get_dsfield(ip_hdr(skb)) >> HNS3_DSCP_SHIFT; else if (protocol == htons(ETH_P_IPV6)) dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> HNS3_DSCP_SHIFT; return dscp; } static u16 hns3_nic_select_queue(struct net_device *netdev, struct sk_buff *skb, struct net_device *sb_dev) { struct hnae3_handle *h = hns3_get_handle(netdev); u8 dscp; if (h->kinfo.tc_map_mode != HNAE3_TC_MAP_MODE_DSCP || !h->ae_algo->ops->get_dscp_prio) goto out; dscp = hns3_get_skb_dscp(skb); if (unlikely(dscp >= HNAE3_MAX_DSCP)) goto out; skb->priority = h->kinfo.dscp_prio[dscp]; if (skb->priority == HNAE3_PRIO_ID_INVALID) skb->priority = 0; out: return netdev_pick_tx(netdev, skb, sb_dev); } static const struct net_device_ops hns3_nic_netdev_ops = { .ndo_open = hns3_nic_net_open, .ndo_stop = hns3_nic_net_stop, .ndo_start_xmit = hns3_nic_net_xmit, .ndo_tx_timeout = hns3_nic_net_timeout, .ndo_set_mac_address = hns3_nic_net_set_mac_address, .ndo_eth_ioctl = hns3_nic_do_ioctl, .ndo_change_mtu = hns3_nic_change_mtu, .ndo_set_features = hns3_nic_set_features, .ndo_features_check = hns3_features_check, .ndo_get_stats64 = hns3_nic_get_stats64, .ndo_setup_tc = hns3_nic_setup_tc, .ndo_set_rx_mode = hns3_nic_set_rx_mode, .ndo_vlan_rx_add_vid = hns3_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = hns3_vlan_rx_kill_vid, .ndo_set_vf_vlan = hns3_ndo_set_vf_vlan, .ndo_set_vf_spoofchk = hns3_set_vf_spoofchk, .ndo_set_vf_trust = hns3_set_vf_trust, #ifdef CONFIG_RFS_ACCEL .ndo_rx_flow_steer = hns3_rx_flow_steer, #endif .ndo_get_vf_config = hns3_nic_get_vf_config, .ndo_set_vf_link_state = hns3_nic_set_vf_link_state, .ndo_set_vf_rate = hns3_nic_set_vf_rate, .ndo_set_vf_mac = hns3_nic_set_vf_mac, .ndo_select_queue = hns3_nic_select_queue, }; bool hns3_is_phys_func(struct pci_dev *pdev) { u32 dev_id = pdev->device; switch (dev_id) { case HNAE3_DEV_ID_GE: case HNAE3_DEV_ID_25GE: case HNAE3_DEV_ID_25GE_RDMA: case HNAE3_DEV_ID_25GE_RDMA_MACSEC: case HNAE3_DEV_ID_50GE_RDMA: case HNAE3_DEV_ID_50GE_RDMA_MACSEC: case HNAE3_DEV_ID_100G_RDMA_MACSEC: case HNAE3_DEV_ID_200G_RDMA: return true; case HNAE3_DEV_ID_VF: case HNAE3_DEV_ID_RDMA_DCB_PFC_VF: return false; default: dev_warn(&pdev->dev, "un-recognized pci device-id %u", dev_id); } return false; } static void hns3_disable_sriov(struct pci_dev *pdev) { /* If our VFs are assigned we cannot shut down SR-IOV * without causing issues, so just leave the hardware * available but disabled */ if (pci_vfs_assigned(pdev)) { dev_warn(&pdev->dev, "disabling driver while VFs are assigned\n"); return; } pci_disable_sriov(pdev); } /* hns3_probe - Device initialization routine * @pdev: PCI device information struct * @ent: entry in hns3_pci_tbl * * hns3_probe initializes a PF identified by a pci_dev structure. * The OS initialization, configuring of the PF private structure, * and a hardware reset occur. * * Returns 0 on success, negative on failure */ static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct hnae3_ae_dev *ae_dev; int ret; ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL); if (!ae_dev) return -ENOMEM; ae_dev->pdev = pdev; ae_dev->flag = ent->driver_data; pci_set_drvdata(pdev, ae_dev); ret = hnae3_register_ae_dev(ae_dev); if (ret) pci_set_drvdata(pdev, NULL); return ret; } /** * hns3_clean_vf_config * @pdev: pointer to a pci_dev structure * @num_vfs: number of VFs allocated * * Clean residual vf config after disable sriov **/ static void hns3_clean_vf_config(struct pci_dev *pdev, int num_vfs) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); if (ae_dev->ops->clean_vf_config) ae_dev->ops->clean_vf_config(ae_dev, num_vfs); } /* hns3_remove - Device removal routine * @pdev: PCI device information struct */ static void hns3_remove(struct pci_dev *pdev) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV)) hns3_disable_sriov(pdev); hnae3_unregister_ae_dev(ae_dev); pci_set_drvdata(pdev, NULL); } /** * hns3_pci_sriov_configure * @pdev: pointer to a pci_dev structure * @num_vfs: number of VFs to allocate * * Enable or change the number of VFs. Called when the user updates the number * of VFs in sysfs. **/ static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs) { int ret; if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) { dev_warn(&pdev->dev, "Can not config SRIOV\n"); return -EINVAL; } if (num_vfs) { ret = pci_enable_sriov(pdev, num_vfs); if (ret) dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret); else return num_vfs; } else if (!pci_vfs_assigned(pdev)) { int num_vfs_pre = pci_num_vf(pdev); pci_disable_sriov(pdev); hns3_clean_vf_config(pdev, num_vfs_pre); } else { dev_warn(&pdev->dev, "Unable to free VFs because some are assigned to VMs.\n"); } return 0; } static void hns3_shutdown(struct pci_dev *pdev) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); hnae3_unregister_ae_dev(ae_dev); pci_set_drvdata(pdev, NULL); if (system_state == SYSTEM_POWER_OFF) pci_set_power_state(pdev, PCI_D3hot); } static int __maybe_unused hns3_suspend(struct device *dev) { struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev); if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) { dev_info(dev, "Begin to suspend.\n"); if (ae_dev->ops && ae_dev->ops->reset_prepare) ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET); } return 0; } static int __maybe_unused hns3_resume(struct device *dev) { struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev); if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) { dev_info(dev, "Begin to resume.\n"); if (ae_dev->ops && ae_dev->ops->reset_done) ae_dev->ops->reset_done(ae_dev); } return 0; } static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); pci_ers_result_t ret; dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; if (!ae_dev || !ae_dev->ops) { dev_err(&pdev->dev, "Can't recover - error happened before device initialized\n"); return PCI_ERS_RESULT_NONE; } if (ae_dev->ops->handle_hw_ras_error) ret = ae_dev->ops->handle_hw_ras_error(ae_dev); else return PCI_ERS_RESULT_NONE; return ret; } static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); const struct hnae3_ae_ops *ops; enum hnae3_reset_type reset_type; struct device *dev = &pdev->dev; if (!ae_dev || !ae_dev->ops) return PCI_ERS_RESULT_NONE; ops = ae_dev->ops; /* request the reset */ if (ops->reset_event && ops->get_reset_level && ops->set_default_reset_request) { if (ae_dev->hw_err_reset_req) { reset_type = ops->get_reset_level(ae_dev, &ae_dev->hw_err_reset_req); ops->set_default_reset_request(ae_dev, reset_type); dev_info(dev, "requesting reset due to PCI error\n"); ops->reset_event(pdev, NULL); } return PCI_ERS_RESULT_RECOVERED; } return PCI_ERS_RESULT_DISCONNECT; } static void hns3_reset_prepare(struct pci_dev *pdev) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); dev_info(&pdev->dev, "FLR prepare\n"); if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare) ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET); } static void hns3_reset_done(struct pci_dev *pdev) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); dev_info(&pdev->dev, "FLR done\n"); if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done) ae_dev->ops->reset_done(ae_dev); } static const struct pci_error_handlers hns3_err_handler = { .error_detected = hns3_error_detected, .slot_reset = hns3_slot_reset, .reset_prepare = hns3_reset_prepare, .reset_done = hns3_reset_done, }; static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume); static struct pci_driver hns3_driver = { .name = hns3_driver_name, .id_table = hns3_pci_tbl, .probe = hns3_probe, .remove = hns3_remove, .shutdown = hns3_shutdown, .driver.pm = &hns3_pm_ops, .sriov_configure = hns3_pci_sriov_configure, .err_handler = &hns3_err_handler, }; /* set default feature to hns3 */ static void hns3_set_default_feature(struct net_device *netdev) { struct hnae3_handle *h = hns3_get_handle(netdev); struct pci_dev *pdev = h->pdev; struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); netdev->priv_flags |= IFF_UNICAST_FLT; netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL | NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST; if (hnae3_ae_dev_gro_supported(ae_dev)) netdev->features |= NETIF_F_GRO_HW; if (hnae3_ae_dev_fd_supported(ae_dev)) netdev->features |= NETIF_F_NTUPLE; if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps)) netdev->features |= NETIF_F_GSO_UDP_L4; if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) netdev->features |= NETIF_F_HW_CSUM; else netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps)) netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) netdev->features |= NETIF_F_HW_TC; netdev->hw_features |= netdev->features; if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps)) netdev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; netdev->vlan_features |= netdev->features & ~(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_GRO_HW | NETIF_F_NTUPLE | NETIF_F_HW_TC); netdev->hw_enc_features |= netdev->vlan_features | NETIF_F_TSO_MANGLEID; /* The device_version V3 hardware can't offload the checksum for IP in * GRE packets, but can do it for NvGRE. So default to disable the * checksum and GSO offload for GRE. */ if (ae_dev->dev_version > HNAE3_DEVICE_VERSION_V2) { netdev->features &= ~NETIF_F_GSO_GRE; netdev->features &= ~NETIF_F_GSO_GRE_CSUM; } } static int hns3_alloc_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb) { unsigned int order = hns3_page_order(ring); struct page *p; if (ring->page_pool) { p = page_pool_dev_alloc_frag(ring->page_pool, &cb->page_offset, hns3_buf_size(ring)); if (unlikely(!p)) return -ENOMEM; cb->priv = p; cb->buf = page_address(p); cb->dma = page_pool_get_dma_addr(p); cb->type = DESC_TYPE_PP_FRAG; cb->reuse_flag = 0; return 0; } p = dev_alloc_pages(order); if (!p) return -ENOMEM; cb->priv = p; cb->page_offset = 0; cb->reuse_flag = 0; cb->buf = page_address(p); cb->length = hns3_page_size(ring); cb->type = DESC_TYPE_PAGE; page_ref_add(p, USHRT_MAX - 1); cb->pagecnt_bias = USHRT_MAX; return 0; } static void hns3_free_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb, int budget) { if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL | DESC_TYPE_SGL_SKB)) napi_consume_skb(cb->priv, budget); else if (!HNAE3_IS_TX_RING(ring)) { if (cb->type & DESC_TYPE_PAGE && cb->pagecnt_bias) __page_frag_cache_drain(cb->priv, cb->pagecnt_bias); else if (cb->type & DESC_TYPE_PP_FRAG) page_pool_put_full_page(ring->page_pool, cb->priv, false); } memset(cb, 0, sizeof(*cb)); } static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb) { cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0, cb->length, ring_to_dma_dir(ring)); if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma))) return -EIO; return 0; } static void hns3_unmap_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb) { if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB)) dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length, ring_to_dma_dir(ring)); else if ((cb->type & DESC_TYPE_PAGE) && cb->length) dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length, ring_to_dma_dir(ring)); else if (cb->type & (DESC_TYPE_BOUNCE_ALL | DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_SGL_SKB)) hns3_tx_spare_reclaim_cb(ring, cb); } static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i) { hns3_unmap_buffer(ring, &ring->desc_cb[i]); ring->desc[i].addr = 0; ring->desc_cb[i].refill = 0; } static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i, int budget) { struct hns3_desc_cb *cb = &ring->desc_cb[i]; if (!ring->desc_cb[i].dma) return; hns3_buffer_detach(ring, i); hns3_free_buffer(ring, cb, budget); } static void hns3_free_buffers(struct hns3_enet_ring *ring) { int i; for (i = 0; i < ring->desc_num; i++) hns3_free_buffer_detach(ring, i, 0); } /* free desc along with its attached buffer */ static void hns3_free_desc(struct hns3_enet_ring *ring) { int size = ring->desc_num * sizeof(ring->desc[0]); hns3_free_buffers(ring); if (ring->desc) { dma_free_coherent(ring_to_dev(ring), size, ring->desc, ring->desc_dma_addr); ring->desc = NULL; } } static int hns3_alloc_desc(struct hns3_enet_ring *ring) { int size = ring->desc_num * sizeof(ring->desc[0]); ring->desc = dma_alloc_coherent(ring_to_dev(ring), size, &ring->desc_dma_addr, GFP_KERNEL); if (!ring->desc) return -ENOMEM; return 0; } static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb) { int ret; ret = hns3_alloc_buffer(ring, cb); if (ret || ring->page_pool) goto out; ret = hns3_map_buffer(ring, cb); if (ret) goto out_with_buf; return 0; out_with_buf: hns3_free_buffer(ring, cb, 0); out: return ret; } static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i) { int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]); if (ret) return ret; ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma + ring->desc_cb[i].page_offset); ring->desc_cb[i].refill = 1; return 0; } /* Allocate memory for raw pkg, and map with dma */ static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring) { int i, j, ret; for (i = 0; i < ring->desc_num; i++) { ret = hns3_alloc_and_attach_buffer(ring, i); if (ret) goto out_buffer_fail; if (!(i % HNS3_RESCHED_BD_NUM)) cond_resched(); } return 0; out_buffer_fail: for (j = i - 1; j >= 0; j--) hns3_free_buffer_detach(ring, j, 0); return ret; } /* detach a in-used buffer and replace with a reserved one */ static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i, struct hns3_desc_cb *res_cb) { hns3_unmap_buffer(ring, &ring->desc_cb[i]); ring->desc_cb[i] = *res_cb; ring->desc_cb[i].refill = 1; ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma + ring->desc_cb[i].page_offset); ring->desc[i].rx.bd_base_info = 0; } static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i) { ring->desc_cb[i].reuse_flag = 0; ring->desc_cb[i].refill = 1; ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma + ring->desc_cb[i].page_offset); ring->desc[i].rx.bd_base_info = 0; dma_sync_single_for_device(ring_to_dev(ring), ring->desc_cb[i].dma + ring->desc_cb[i].page_offset, hns3_buf_size(ring), DMA_FROM_DEVICE); } static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, int *bytes, int *pkts, int budget) { /* This smp_load_acquire() pairs with smp_store_release() in * hns3_tx_doorbell(). */ int ltu = smp_load_acquire(&ring->last_to_use); int ntc = ring->next_to_clean; struct hns3_desc_cb *desc_cb; bool reclaimed = false; struct hns3_desc *desc; while (ltu != ntc) { desc = &ring->desc[ntc]; if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) & BIT(HNS3_TXD_VLD_B)) break; desc_cb = &ring->desc_cb[ntc]; if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_ALL | DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_SGL_SKB)) { (*pkts)++; (*bytes) += desc_cb->send_bytes; } /* desc_cb will be cleaned, after hnae3_free_buffer_detach */ hns3_free_buffer_detach(ring, ntc, budget); if (++ntc == ring->desc_num) ntc = 0; /* Issue prefetch for next Tx descriptor */ prefetch(&ring->desc_cb[ntc]); reclaimed = true; } if (unlikely(!reclaimed)) return false; /* This smp_store_release() pairs with smp_load_acquire() in * ring_space called by hns3_nic_net_xmit. */ smp_store_release(&ring->next_to_clean, ntc); hns3_tx_spare_update(ring); return true; } void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget) { struct net_device *netdev = ring_to_netdev(ring); struct hns3_nic_priv *priv = netdev_priv(netdev); struct netdev_queue *dev_queue; int bytes, pkts; bytes = 0; pkts = 0; if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget))) return; ring->tqp_vector->tx_group.total_bytes += bytes; ring->tqp_vector->tx_group.total_packets += pkts; u64_stats_update_begin(&ring->syncp); ring->stats.tx_bytes += bytes; ring->stats.tx_pkts += pkts; u64_stats_update_end(&ring->syncp); dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index); netdev_tx_completed_queue(dev_queue, pkts, bytes); if (unlikely(netif_carrier_ok(netdev) && ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) { /* Make sure that anybody stopping the queue after this * sees the new next_to_clean. */ smp_mb(); if (netif_tx_queue_stopped(dev_queue) && !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) { netif_tx_wake_queue(dev_queue); ring->stats.restart_queue++; } } } static int hns3_desc_unused(struct hns3_enet_ring *ring) { int ntc = ring->next_to_clean; int ntu = ring->next_to_use; if (unlikely(ntc == ntu && !ring->desc_cb[ntc].refill)) return ring->desc_num; return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; } /* Return true if there is any allocation failure */ static bool hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count) { struct hns3_desc_cb *desc_cb; struct hns3_desc_cb res_cbs; int i, ret; for (i = 0; i < cleand_count; i++) { desc_cb = &ring->desc_cb[ring->next_to_use]; if (desc_cb->reuse_flag) { hns3_ring_stats_update(ring, reuse_pg_cnt); hns3_reuse_buffer(ring, ring->next_to_use); } else { ret = hns3_alloc_and_map_buffer(ring, &res_cbs); if (ret) { hns3_ring_stats_update(ring, sw_err_cnt); hns3_rl_err(ring_to_netdev(ring), "alloc rx buffer failed: %d\n", ret); writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG); return true; } hns3_replace_buffer(ring, ring->next_to_use, &res_cbs); hns3_ring_stats_update(ring, non_reuse_pg); } ring_ptr_move_fw(ring, next_to_use); } writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG); return false; } static bool hns3_can_reuse_page(struct hns3_desc_cb *cb) { return page_count(cb->priv) == cb->pagecnt_bias; } static int hns3_handle_rx_copybreak(struct sk_buff *skb, int i, struct hns3_enet_ring *ring, int pull_len, struct hns3_desc_cb *desc_cb) { struct hns3_desc *desc = &ring->desc[ring->next_to_clean]; u32 frag_offset = desc_cb->page_offset + pull_len; int size = le16_to_cpu(desc->rx.size); u32 frag_size = size - pull_len; void *frag = napi_alloc_frag(frag_size); if (unlikely(!frag)) { hns3_ring_stats_update(ring, frag_alloc_err); hns3_rl_err(ring_to_netdev(ring), "failed to allocate rx frag\n"); return -ENOMEM; } desc_cb->reuse_flag = 1; memcpy(frag, desc_cb->buf + frag_offset, frag_size); skb_add_rx_frag(skb, i, virt_to_page(frag), offset_in_page(frag), frag_size, frag_size); hns3_ring_stats_update(ring, frag_alloc); return 0; } static void hns3_nic_reuse_page(struct sk_buff *skb, int i, struct hns3_enet_ring *ring, int pull_len, struct hns3_desc_cb *desc_cb) { struct hns3_desc *desc = &ring->desc[ring->next_to_clean]; u32 frag_offset = desc_cb->page_offset + pull_len; int size = le16_to_cpu(desc->rx.size); u32 truesize = hns3_buf_size(ring); u32 frag_size = size - pull_len; int ret = 0; bool reused; if (ring->page_pool) { skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset, frag_size, truesize); return; } /* Avoid re-using remote or pfmem page */ if (unlikely(!dev_page_is_reusable(desc_cb->priv))) goto out; reused = hns3_can_reuse_page(desc_cb); /* Rx page can be reused when: * 1. Rx page is only owned by the driver when page_offset * is zero, which means 0 @ truesize will be used by * stack after skb_add_rx_frag() is called, and the rest * of rx page can be reused by driver. * Or * 2. Rx page is only owned by the driver when page_offset * is non-zero, which means page_offset @ truesize will * be used by stack after skb_add_rx_frag() is called, * and 0 @ truesize can be reused by driver. */ if ((!desc_cb->page_offset && reused) || ((desc_cb->page_offset + truesize + truesize) <= hns3_page_size(ring) && desc_cb->page_offset)) { desc_cb->page_offset += truesize; desc_cb->reuse_flag = 1; } else if (desc_cb->page_offset && reused) { desc_cb->page_offset = 0; desc_cb->reuse_flag = 1; } else if (frag_size <= ring->rx_copybreak) { ret = hns3_handle_rx_copybreak(skb, i, ring, pull_len, desc_cb); if (!ret) return; } out: desc_cb->pagecnt_bias--; if (unlikely(!desc_cb->pagecnt_bias)) { page_ref_add(desc_cb->priv, USHRT_MAX); desc_cb->pagecnt_bias = USHRT_MAX; } skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset, frag_size, truesize); if (unlikely(!desc_cb->reuse_flag)) __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias); } static int hns3_gro_complete(struct sk_buff *skb, u32 l234info) { __be16 type = skb->protocol; struct tcphdr *th; int depth = 0; while (eth_type_vlan(type)) { struct vlan_hdr *vh; if ((depth + VLAN_HLEN) > skb_headlen(skb)) return -EFAULT; vh = (struct vlan_hdr *)(skb->data + depth); type = vh->h_vlan_encapsulated_proto; depth += VLAN_HLEN; } skb_set_network_header(skb, depth); if (type == htons(ETH_P_IP)) { const struct iphdr *iph = ip_hdr(skb); depth += sizeof(struct iphdr); skb_set_transport_header(skb, depth); th = tcp_hdr(skb); th->check = ~tcp_v4_check(skb->len - depth, iph->saddr, iph->daddr, 0); } else if (type == htons(ETH_P_IPV6)) { const struct ipv6hdr *iph = ipv6_hdr(skb); depth += sizeof(struct ipv6hdr); skb_set_transport_header(skb, depth); th = tcp_hdr(skb); th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr, &iph->daddr, 0); } else { hns3_rl_err(skb->dev, "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n", be16_to_cpu(type), depth); return -EFAULT; } skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; if (th->cwr) skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; if (l234info & BIT(HNS3_RXD_GRO_FIXID_B)) skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID; skb->csum_start = (unsigned char *)th - skb->head; skb->csum_offset = offsetof(struct tcphdr, check); skb->ip_summed = CHECKSUM_PARTIAL; trace_hns3_gro(skb); return 0; } static void hns3_checksum_complete(struct hns3_enet_ring *ring, struct sk_buff *skb, u32 ptype, u16 csum) { if (ptype == HNS3_INVALID_PTYPE || hns3_rx_ptype_tbl[ptype].ip_summed != CHECKSUM_COMPLETE) return; hns3_ring_stats_update(ring, csum_complete); skb->ip_summed = CHECKSUM_COMPLETE; skb->csum = csum_unfold((__force __sum16)csum); } static void hns3_rx_handle_csum(struct sk_buff *skb, u32 l234info, u32 ol_info, u32 ptype) { int l3_type, l4_type; int ol4_type; if (ptype != HNS3_INVALID_PTYPE) { skb->csum_level = hns3_rx_ptype_tbl[ptype].csum_level; skb->ip_summed = hns3_rx_ptype_tbl[ptype].ip_summed; return; } ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M, HNS3_RXD_OL4ID_S); switch (ol4_type) { case HNS3_OL4_TYPE_MAC_IN_UDP: case HNS3_OL4_TYPE_NVGRE: skb->csum_level = 1; fallthrough; case HNS3_OL4_TYPE_NO_TUN: l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S); l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M, HNS3_RXD_L4ID_S); /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */ if ((l3_type == HNS3_L3_TYPE_IPV4 || l3_type == HNS3_L3_TYPE_IPV6) && (l4_type == HNS3_L4_TYPE_UDP || l4_type == HNS3_L4_TYPE_TCP || l4_type == HNS3_L4_TYPE_SCTP)) skb->ip_summed = CHECKSUM_UNNECESSARY; break; default: break; } } static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb, u32 l234info, u32 bd_base_info, u32 ol_info, u16 csum) { struct net_device *netdev = ring_to_netdev(ring); struct hns3_nic_priv *priv = netdev_priv(netdev); u32 ptype = HNS3_INVALID_PTYPE; skb->ip_summed = CHECKSUM_NONE; skb_checksum_none_assert(skb); if (!(netdev->features & NETIF_F_RXCSUM)) return; if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M, HNS3_RXD_PTYPE_S); hns3_checksum_complete(ring, skb, ptype, csum); /* check if hardware has done checksum */ if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B))) return; if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) | BIT(HNS3_RXD_OL3E_B) | BIT(HNS3_RXD_OL4E_B)))) { skb->ip_summed = CHECKSUM_NONE; hns3_ring_stats_update(ring, l3l4_csum_err); return; } hns3_rx_handle_csum(skb, l234info, ol_info, ptype); } static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb) { if (skb_has_frag_list(skb)) napi_gro_flush(&ring->tqp_vector->napi, false); napi_gro_receive(&ring->tqp_vector->napi, skb); } static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring, struct hns3_desc *desc, u32 l234info, u16 *vlan_tag) { struct hnae3_handle *handle = ring->tqp->handle; struct pci_dev *pdev = ring->tqp->handle->pdev; struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) { *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag); if (!(*vlan_tag & VLAN_VID_MASK)) *vlan_tag = le16_to_cpu(desc->rx.vlan_tag); return (*vlan_tag != 0); } #define HNS3_STRP_OUTER_VLAN 0x1 #define HNS3_STRP_INNER_VLAN 0x2 #define HNS3_STRP_BOTH 0x3 /* Hardware always insert VLAN tag into RX descriptor when * remove the tag from packet, driver needs to determine * reporting which tag to stack. */ switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M, HNS3_RXD_STRP_TAGP_S)) { case HNS3_STRP_OUTER_VLAN: if (handle->port_base_vlan_state != HNAE3_PORT_BASE_VLAN_DISABLE) return false; *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag); return true; case HNS3_STRP_INNER_VLAN: if (handle->port_base_vlan_state != HNAE3_PORT_BASE_VLAN_DISABLE) return false; *vlan_tag = le16_to_cpu(desc->rx.vlan_tag); return true; case HNS3_STRP_BOTH: if (handle->port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag); else *vlan_tag = le16_to_cpu(desc->rx.vlan_tag); return true; default: return false; } } static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring) { ring->desc[ring->next_to_clean].rx.bd_base_info &= cpu_to_le32(~BIT(HNS3_RXD_VLD_B)); ring->desc_cb[ring->next_to_clean].refill = 0; ring->next_to_clean += 1; if (unlikely(ring->next_to_clean == ring->desc_num)) ring->next_to_clean = 0; } static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length, unsigned char *va) { struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; struct net_device *netdev = ring_to_netdev(ring); struct sk_buff *skb; ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE); skb = ring->skb; if (unlikely(!skb)) { hns3_rl_err(netdev, "alloc rx skb fail\n"); hns3_ring_stats_update(ring, sw_err_cnt); return -ENOMEM; } trace_hns3_rx_desc(ring); prefetchw(skb->data); ring->pending_buf = 1; ring->frag_num = 0; ring->tail_skb = NULL; if (length <= HNS3_RX_HEAD_SIZE) { memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); /* We can reuse buffer as-is, just make sure it is reusable */ if (dev_page_is_reusable(desc_cb->priv)) desc_cb->reuse_flag = 1; else if (desc_cb->type & DESC_TYPE_PP_FRAG) page_pool_put_full_page(ring->page_pool, desc_cb->priv, false); else /* This page cannot be reused so discard it */ __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias); hns3_rx_ring_move_fw(ring); return 0; } if (ring->page_pool) skb_mark_for_recycle(skb); hns3_ring_stats_update(ring, seg_pkt_cnt); ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE); __skb_put(skb, ring->pull_len); hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len, desc_cb); hns3_rx_ring_move_fw(ring); return 0; } static int hns3_add_frag(struct hns3_enet_ring *ring) { struct sk_buff *skb = ring->skb; struct sk_buff *head_skb = skb; struct sk_buff *new_skb; struct hns3_desc_cb *desc_cb; struct hns3_desc *desc; u32 bd_base_info; do { desc = &ring->desc[ring->next_to_clean]; desc_cb = &ring->desc_cb[ring->next_to_clean]; bd_base_info = le32_to_cpu(desc->rx.bd_base_info); /* make sure HW write desc complete */ dma_rmb(); if (!(bd_base_info & BIT(HNS3_RXD_VLD_B))) return -ENXIO; if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) { new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0); if (unlikely(!new_skb)) { hns3_rl_err(ring_to_netdev(ring), "alloc rx fraglist skb fail\n"); return -ENXIO; } if (ring->page_pool) skb_mark_for_recycle(new_skb); ring->frag_num = 0; if (ring->tail_skb) { ring->tail_skb->next = new_skb; ring->tail_skb = new_skb; } else { skb_shinfo(skb)->frag_list = new_skb; ring->tail_skb = new_skb; } } if (ring->tail_skb) { head_skb->truesize += hns3_buf_size(ring); head_skb->data_len += le16_to_cpu(desc->rx.size); head_skb->len += le16_to_cpu(desc->rx.size); skb = ring->tail_skb; } dma_sync_single_for_cpu(ring_to_dev(ring), desc_cb->dma + desc_cb->page_offset, hns3_buf_size(ring), DMA_FROM_DEVICE); hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb); trace_hns3_rx_desc(ring); hns3_rx_ring_move_fw(ring); ring->pending_buf++; } while (!(bd_base_info & BIT(HNS3_RXD_FE_B))); return 0; } static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb, u32 l234info, u32 bd_base_info, u32 ol_info, u16 csum) { struct net_device *netdev = ring_to_netdev(ring); struct hns3_nic_priv *priv = netdev_priv(netdev); u32 l3_type; skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info, HNS3_RXD_GRO_SIZE_M, HNS3_RXD_GRO_SIZE_S); /* if there is no HW GRO, do not set gro params */ if (!skb_shinfo(skb)->gso_size) { hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info, csum); return 0; } NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info, HNS3_RXD_GRO_COUNT_M, HNS3_RXD_GRO_COUNT_S); if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) { u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M, HNS3_RXD_PTYPE_S); l3_type = hns3_rx_ptype_tbl[ptype].l3_type; } else { l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S); } if (l3_type == HNS3_L3_TYPE_IPV4) skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; else if (l3_type == HNS3_L3_TYPE_IPV6) skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; else return -EFAULT; return hns3_gro_complete(skb, l234info); } static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring, struct sk_buff *skb, u32 rss_hash, u32 l234info, u32 ol_info) { enum pkt_hash_types rss_type = PKT_HASH_TYPE_NONE; struct net_device *netdev = ring_to_netdev(ring); struct hns3_nic_priv *priv = netdev_priv(netdev); if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) { u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M, HNS3_RXD_PTYPE_S); rss_type = hns3_rx_ptype_tbl[ptype].hash_type; } else { int l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S); int l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M, HNS3_RXD_L4ID_S); if (l3_type == HNS3_L3_TYPE_IPV4 || l3_type == HNS3_L3_TYPE_IPV6) { if (l4_type == HNS3_L4_TYPE_UDP || l4_type == HNS3_L4_TYPE_TCP || l4_type == HNS3_L4_TYPE_SCTP) rss_type = PKT_HASH_TYPE_L4; else if (l4_type == HNS3_L4_TYPE_IGMP || l4_type == HNS3_L4_TYPE_ICMP) rss_type = PKT_HASH_TYPE_L3; } } skb_set_hash(skb, rss_hash, rss_type); } static void hns3_handle_rx_ts_info(struct net_device *netdev, struct hns3_desc *desc, struct sk_buff *skb, u32 bd_base_info) { if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) { struct hnae3_handle *h = hns3_get_handle(netdev); u32 nsec = le32_to_cpu(desc->ts_nsec); u32 sec = le32_to_cpu(desc->ts_sec); if (h->ae_algo->ops->get_rx_hwts) h->ae_algo->ops->get_rx_hwts(h, skb, nsec, sec); } } static void hns3_handle_rx_vlan_tag(struct hns3_enet_ring *ring, struct hns3_desc *desc, struct sk_buff *skb, u32 l234info) { struct net_device *netdev = ring_to_netdev(ring); /* Based on hw strategy, the tag offloaded will be stored at * ot_vlan_tag in two layer tag case, and stored at vlan_tag * in one layer tag case. */ if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) { u16 vlan_tag; if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag)) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); } } static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb) { struct net_device *netdev = ring_to_netdev(ring); enum hns3_pkt_l2t_type l2_frame_type; u32 bd_base_info, l234info, ol_info; struct hns3_desc *desc; unsigned int len; int pre_ntc, ret; u16 csum; /* bdinfo handled below is only valid on the last BD of the * current packet, and ring->next_to_clean indicates the first * descriptor of next packet, so need - 1 below. */ pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) : (ring->desc_num - 1); desc = &ring->desc[pre_ntc]; bd_base_info = le32_to_cpu(desc->rx.bd_base_info); l234info = le32_to_cpu(desc->rx.l234_info); ol_info = le32_to_cpu(desc->rx.ol_info); csum = le16_to_cpu(desc->csum); hns3_handle_rx_ts_info(netdev, desc, skb, bd_base_info); hns3_handle_rx_vlan_tag(ring, desc, skb, l234info); if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) | BIT(HNS3_RXD_L2E_B))))) { u64_stats_update_begin(&ring->syncp); if (l234info & BIT(HNS3_RXD_L2E_B)) ring->stats.l2_err++; else ring->stats.err_pkt_len++; u64_stats_update_end(&ring->syncp); return -EFAULT; } len = skb->len; /* Do update ip stack process */ skb->protocol = eth_type_trans(skb, netdev); /* This is needed in order to enable forwarding support */ ret = hns3_set_gro_and_checksum(ring, skb, l234info, bd_base_info, ol_info, csum); if (unlikely(ret)) { hns3_ring_stats_update(ring, rx_err_cnt); return ret; } l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M, HNS3_RXD_DMAC_S); u64_stats_update_begin(&ring->syncp); ring->stats.rx_pkts++; ring->stats.rx_bytes += len; if (l2_frame_type == HNS3_L2_TYPE_MULTICAST) ring->stats.rx_multicast++; u64_stats_update_end(&ring->syncp); ring->tqp_vector->rx_group.total_bytes += len; hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash), l234info, ol_info); return 0; } static int hns3_handle_rx_bd(struct hns3_enet_ring *ring) { struct sk_buff *skb = ring->skb; struct hns3_desc_cb *desc_cb; struct hns3_desc *desc; unsigned int length; u32 bd_base_info; int ret; desc = &ring->desc[ring->next_to_clean]; desc_cb = &ring->desc_cb[ring->next_to_clean]; prefetch(desc); if (!skb) { bd_base_info = le32_to_cpu(desc->rx.bd_base_info); /* Check valid BD */ if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) return -ENXIO; dma_rmb(); length = le16_to_cpu(desc->rx.size); ring->va = desc_cb->buf + desc_cb->page_offset; dma_sync_single_for_cpu(ring_to_dev(ring), desc_cb->dma + desc_cb->page_offset, hns3_buf_size(ring), DMA_FROM_DEVICE); /* Prefetch first cache line of first page. * Idea is to cache few bytes of the header of the packet. * Our L1 Cache line size is 64B so need to prefetch twice to make * it 128B. But in actual we can have greater size of caches with * 128B Level 1 cache lines. In such a case, single fetch would * suffice to cache in the relevant part of the header. */ net_prefetch(ring->va); ret = hns3_alloc_skb(ring, length, ring->va); skb = ring->skb; if (ret < 0) /* alloc buffer fail */ return ret; if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */ ret = hns3_add_frag(ring); if (ret) return ret; } } else { ret = hns3_add_frag(ring); if (ret) return ret; } /* As the head data may be changed when GRO enable, copy * the head data in after other data rx completed */ if (skb->len > HNS3_RX_HEAD_SIZE) memcpy(skb->data, ring->va, ALIGN(ring->pull_len, sizeof(long))); ret = hns3_handle_bdinfo(ring, skb); if (unlikely(ret)) { dev_kfree_skb_any(skb); return ret; } skb_record_rx_queue(skb, ring->tqp->tqp_index); return 0; } int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget, void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *)) { #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 int unused_count = hns3_desc_unused(ring); bool failure = false; int recv_pkts = 0; int err; unused_count -= ring->pending_buf; while (recv_pkts < budget) { /* Reuse or realloc buffers */ if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { failure = failure || hns3_nic_alloc_rx_buffers(ring, unused_count); unused_count = 0; } /* Poll one pkt */ err = hns3_handle_rx_bd(ring); /* Do not get FE for the packet or failed to alloc skb */ if (unlikely(!ring->skb || err == -ENXIO)) { goto out; } else if (likely(!err)) { rx_fn(ring, ring->skb); recv_pkts++; } unused_count += ring->pending_buf; ring->skb = NULL; ring->pending_buf = 0; } out: /* sync head pointer before exiting, since hardware will calculate * FBD number with head pointer */ if (unused_count > 0) failure = failure || hns3_nic_alloc_rx_buffers(ring, unused_count); return failure ? budget : recv_pkts; } static void hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector) { struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group; struct dim_sample sample = {}; if (!rx_group->coal.adapt_enable) return; dim_update_sample(tqp_vector->event_cnt, rx_group->total_packets, rx_group->total_bytes, &sample); net_dim(&rx_group->dim, &sample); } static void hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector) { struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group; struct dim_sample sample = {}; if (!tx_group->coal.adapt_enable) return; dim_update_sample(tqp_vector->event_cnt, tx_group->total_packets, tx_group->total_bytes, &sample); net_dim(&tx_group->dim, &sample); } static int hns3_nic_common_poll(struct napi_struct *napi, int budget) { struct hns3_nic_priv *priv = netdev_priv(napi->dev); struct hns3_enet_ring *ring; int rx_pkt_total = 0; struct hns3_enet_tqp_vector *tqp_vector = container_of(napi, struct hns3_enet_tqp_vector, napi); bool clean_complete = true; int rx_budget = budget; if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) { napi_complete(napi); return 0; } /* Since the actual Tx work is minimal, we can give the Tx a larger * budget and be more aggressive about cleaning up the Tx descriptors. */ hns3_for_each_ring(ring, tqp_vector->tx_group) hns3_clean_tx_ring(ring, budget); /* make sure rx ring budget not smaller than 1 */ if (tqp_vector->num_tqps > 1) rx_budget = max(budget / tqp_vector->num_tqps, 1); hns3_for_each_ring(ring, tqp_vector->rx_group) { int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget, hns3_rx_skb); if (rx_cleaned >= rx_budget) clean_complete = false; rx_pkt_total += rx_cleaned; } tqp_vector->rx_group.total_packets += rx_pkt_total; if (!clean_complete) return budget; if (napi_complete(napi) && likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) { hns3_update_rx_int_coalesce(tqp_vector); hns3_update_tx_int_coalesce(tqp_vector); hns3_mask_vector_irq(tqp_vector, 1); } return rx_pkt_total; } static int hns3_create_ring_chain(struct hns3_enet_tqp_vector *tqp_vector, struct hnae3_ring_chain_node **head, bool is_tx) { u32 bit_value = is_tx ? HNAE3_RING_TYPE_TX : HNAE3_RING_TYPE_RX; u32 field_value = is_tx ? HNAE3_RING_GL_TX : HNAE3_RING_GL_RX; struct hnae3_ring_chain_node *cur_chain = *head; struct pci_dev *pdev = tqp_vector->handle->pdev; struct hnae3_ring_chain_node *chain; struct hns3_enet_ring *ring; ring = is_tx ? tqp_vector->tx_group.ring : tqp_vector->rx_group.ring; if (cur_chain) { while (cur_chain->next) cur_chain = cur_chain->next; } while (ring) { chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL); if (!chain) return -ENOMEM; if (cur_chain) cur_chain->next = chain; else *head = chain; chain->tqp_index = ring->tqp->tqp_index; hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B, bit_value); hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M, HNAE3_RING_GL_IDX_S, field_value); cur_chain = chain; ring = ring->next; } return 0; } static struct hnae3_ring_chain_node * hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector) { struct pci_dev *pdev = tqp_vector->handle->pdev; struct hnae3_ring_chain_node *cur_chain = NULL; struct hnae3_ring_chain_node *chain; if (hns3_create_ring_chain(tqp_vector, &cur_chain, true)) goto err_free_chain; if (hns3_create_ring_chain(tqp_vector, &cur_chain, false)) goto err_free_chain; return cur_chain; err_free_chain: while (cur_chain) { chain = cur_chain->next; devm_kfree(&pdev->dev, cur_chain); cur_chain = chain; } return NULL; } static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector, struct hnae3_ring_chain_node *head) { struct pci_dev *pdev = tqp_vector->handle->pdev; struct hnae3_ring_chain_node *chain_tmp, *chain; chain = head; while (chain) { chain_tmp = chain->next; devm_kfree(&pdev->dev, chain); chain = chain_tmp; } } static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group, struct hns3_enet_ring *ring) { ring->next = group->ring; group->ring = ring; group->count++; } static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv) { struct pci_dev *pdev = priv->ae_handle->pdev; struct hns3_enet_tqp_vector *tqp_vector; int num_vectors = priv->vector_num; int numa_node; int vector_i; numa_node = dev_to_node(&pdev->dev); for (vector_i = 0; vector_i < num_vectors; vector_i++) { tqp_vector = &priv->tqp_vector[vector_i]; cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node), &tqp_vector->affinity_mask); } } static void hns3_rx_dim_work(struct work_struct *work) { struct dim *dim = container_of(work, struct dim, work); struct hns3_enet_ring_group *group = container_of(dim, struct hns3_enet_ring_group, dim); struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector; struct dim_cq_moder cur_moder = net_dim_get_rx_moderation(dim->mode, dim->profile_ix); hns3_set_vector_coalesce_rx_gl(group->ring->tqp_vector, cur_moder.usec); tqp_vector->rx_group.coal.int_gl = cur_moder.usec; if (cur_moder.pkts < tqp_vector->rx_group.coal.int_ql_max) { hns3_set_vector_coalesce_rx_ql(tqp_vector, cur_moder.pkts); tqp_vector->rx_group.coal.int_ql = cur_moder.pkts; } dim->state = DIM_START_MEASURE; } static void hns3_tx_dim_work(struct work_struct *work) { struct dim *dim = container_of(work, struct dim, work); struct hns3_enet_ring_group *group = container_of(dim, struct hns3_enet_ring_group, dim); struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector; struct dim_cq_moder cur_moder = net_dim_get_tx_moderation(dim->mode, dim->profile_ix); hns3_set_vector_coalesce_tx_gl(tqp_vector, cur_moder.usec); tqp_vector->tx_group.coal.int_gl = cur_moder.usec; if (cur_moder.pkts < tqp_vector->tx_group.coal.int_ql_max) { hns3_set_vector_coalesce_tx_ql(tqp_vector, cur_moder.pkts); tqp_vector->tx_group.coal.int_ql = cur_moder.pkts; } dim->state = DIM_START_MEASURE; } static void hns3_nic_init_dim(struct hns3_enet_tqp_vector *tqp_vector) { INIT_WORK(&tqp_vector->rx_group.dim.work, hns3_rx_dim_work); INIT_WORK(&tqp_vector->tx_group.dim.work, hns3_tx_dim_work); } static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv) { struct hnae3_handle *h = priv->ae_handle; struct hns3_enet_tqp_vector *tqp_vector; int ret; int i; hns3_nic_set_cpumask(priv); for (i = 0; i < priv->vector_num; i++) { tqp_vector = &priv->tqp_vector[i]; hns3_vector_coalesce_init_hw(tqp_vector, priv); tqp_vector->num_tqps = 0; hns3_nic_init_dim(tqp_vector); } for (i = 0; i < h->kinfo.num_tqps; i++) { u16 vector_i = i % priv->vector_num; u16 tqp_num = h->kinfo.num_tqps; tqp_vector = &priv->tqp_vector[vector_i]; hns3_add_ring_to_group(&tqp_vector->tx_group, &priv->ring[i]); hns3_add_ring_to_group(&tqp_vector->rx_group, &priv->ring[i + tqp_num]); priv->ring[i].tqp_vector = tqp_vector; priv->ring[i + tqp_num].tqp_vector = tqp_vector; tqp_vector->num_tqps++; } for (i = 0; i < priv->vector_num; i++) { struct hnae3_ring_chain_node *vector_ring_chain; tqp_vector = &priv->tqp_vector[i]; tqp_vector->rx_group.total_bytes = 0; tqp_vector->rx_group.total_packets = 0; tqp_vector->tx_group.total_bytes = 0; tqp_vector->tx_group.total_packets = 0; tqp_vector->handle = h; vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector); if (!vector_ring_chain) { ret = -ENOMEM; goto map_ring_fail; } ret = h->ae_algo->ops->map_ring_to_vector(h, tqp_vector->vector_irq, vector_ring_chain); hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain); if (ret) goto map_ring_fail; netif_napi_add(priv->netdev, &tqp_vector->napi, hns3_nic_common_poll); } return 0; map_ring_fail: while (i--) netif_napi_del(&priv->tqp_vector[i].napi); return ret; } static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); struct hns3_enet_coalesce *tx_coal = &priv->tx_coal; struct hns3_enet_coalesce *rx_coal = &priv->rx_coal; /* initialize the configuration for interrupt coalescing. * 1. GL (Interrupt Gap Limiter) * 2. RL (Interrupt Rate Limiter) * 3. QL (Interrupt Quantity Limiter) * * Default: enable interrupt coalescing self-adaptive and GL */ tx_coal->adapt_enable = 1; rx_coal->adapt_enable = 1; tx_coal->int_gl = HNS3_INT_GL_50K; rx_coal->int_gl = HNS3_INT_GL_50K; rx_coal->flow_level = HNS3_FLOW_LOW; tx_coal->flow_level = HNS3_FLOW_LOW; if (ae_dev->dev_specs.int_ql_max) { tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG; rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG; } } static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv) { struct hnae3_handle *h = priv->ae_handle; struct hns3_enet_tqp_vector *tqp_vector; struct hnae3_vector_info *vector; struct pci_dev *pdev = h->pdev; u16 tqp_num = h->kinfo.num_tqps; u16 vector_num; int ret = 0; u16 i; /* RSS size, cpu online and vector_num should be the same */ /* Should consider 2p/4p later */ vector_num = min_t(u16, num_online_cpus(), tqp_num); vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector), GFP_KERNEL); if (!vector) return -ENOMEM; /* save the actual available vector number */ vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector); priv->vector_num = vector_num; priv->tqp_vector = (struct hns3_enet_tqp_vector *) devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector), GFP_KERNEL); if (!priv->tqp_vector) { ret = -ENOMEM; goto out; } for (i = 0; i < priv->vector_num; i++) { tqp_vector = &priv->tqp_vector[i]; tqp_vector->idx = i; tqp_vector->mask_addr = vector[i].io_addr; tqp_vector->vector_irq = vector[i].vector; hns3_vector_coalesce_init(tqp_vector, priv); } out: devm_kfree(&pdev->dev, vector); return ret; } static void hns3_clear_ring_group(struct hns3_enet_ring_group *group) { group->ring = NULL; group->count = 0; } static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv) { struct hnae3_ring_chain_node *vector_ring_chain; struct hnae3_handle *h = priv->ae_handle; struct hns3_enet_tqp_vector *tqp_vector; int i; for (i = 0; i < priv->vector_num; i++) { tqp_vector = &priv->tqp_vector[i]; if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring) continue; /* Since the mapping can be overwritten, when fail to get the * chain between vector and ring, we should go on to deal with * the remaining options. */ vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector); if (!vector_ring_chain) dev_warn(priv->dev, "failed to get ring chain\n"); h->ae_algo->ops->unmap_ring_from_vector(h, tqp_vector->vector_irq, vector_ring_chain); hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain); hns3_clear_ring_group(&tqp_vector->rx_group); hns3_clear_ring_group(&tqp_vector->tx_group); netif_napi_del(&priv->tqp_vector[i].napi); } } static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv) { struct hnae3_handle *h = priv->ae_handle; struct pci_dev *pdev = h->pdev; int i, ret; for (i = 0; i < priv->vector_num; i++) { struct hns3_enet_tqp_vector *tqp_vector; tqp_vector = &priv->tqp_vector[i]; ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq); if (ret) return; } devm_kfree(&pdev->dev, priv->tqp_vector); } static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv, unsigned int ring_type) { int queue_num = priv->ae_handle->kinfo.num_tqps; struct hns3_enet_ring *ring; int desc_num; if (ring_type == HNAE3_RING_TYPE_TX) { ring = &priv->ring[q->tqp_index]; desc_num = priv->ae_handle->kinfo.num_tx_desc; ring->queue_index = q->tqp_index; ring->tx_copybreak = priv->tx_copybreak; ring->last_to_use = 0; } else { ring = &priv->ring[q->tqp_index + queue_num]; desc_num = priv->ae_handle->kinfo.num_rx_desc; ring->queue_index = q->tqp_index; ring->rx_copybreak = priv->rx_copybreak; } hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type); ring->tqp = q; ring->desc = NULL; ring->desc_cb = NULL; ring->dev = priv->dev; ring->desc_dma_addr = 0; ring->buf_size = q->buf_size; ring->desc_num = desc_num; ring->next_to_use = 0; ring->next_to_clean = 0; } static void hns3_queue_to_ring(struct hnae3_queue *tqp, struct hns3_nic_priv *priv) { hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX); hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX); } static int hns3_get_ring_config(struct hns3_nic_priv *priv) { struct hnae3_handle *h = priv->ae_handle; struct pci_dev *pdev = h->pdev; int i; priv->ring = devm_kzalloc(&pdev->dev, array3_size(h->kinfo.num_tqps, sizeof(*priv->ring), 2), GFP_KERNEL); if (!priv->ring) return -ENOMEM; for (i = 0; i < h->kinfo.num_tqps; i++) hns3_queue_to_ring(h->kinfo.tqp[i], priv); return 0; } static void hns3_put_ring_config(struct hns3_nic_priv *priv) { if (!priv->ring) return; devm_kfree(priv->dev, priv->ring); priv->ring = NULL; } static void hns3_alloc_page_pool(struct hns3_enet_ring *ring) { struct page_pool_params pp_params = { .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, .order = hns3_page_order(ring), .pool_size = ring->desc_num * hns3_buf_size(ring) / (PAGE_SIZE << hns3_page_order(ring)), .nid = dev_to_node(ring_to_dev(ring)), .dev = ring_to_dev(ring), .dma_dir = DMA_FROM_DEVICE, .offset = 0, .max_len = PAGE_SIZE << hns3_page_order(ring), }; ring->page_pool = page_pool_create(&pp_params); if (IS_ERR(ring->page_pool)) { dev_warn(ring_to_dev(ring), "page pool creation failed: %ld\n", PTR_ERR(ring->page_pool)); ring->page_pool = NULL; } } static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring) { int ret; if (ring->desc_num <= 0 || ring->buf_size <= 0) return -EINVAL; ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num, sizeof(ring->desc_cb[0]), GFP_KERNEL); if (!ring->desc_cb) { ret = -ENOMEM; goto out; } ret = hns3_alloc_desc(ring); if (ret) goto out_with_desc_cb; if (!HNAE3_IS_TX_RING(ring)) { if (page_pool_enabled) hns3_alloc_page_pool(ring); ret = hns3_alloc_ring_buffers(ring); if (ret) goto out_with_desc; } else { hns3_init_tx_spare_buffer(ring); } return 0; out_with_desc: hns3_free_desc(ring); out_with_desc_cb: devm_kfree(ring_to_dev(ring), ring->desc_cb); ring->desc_cb = NULL; out: return ret; } void hns3_fini_ring(struct hns3_enet_ring *ring) { hns3_free_desc(ring); devm_kfree(ring_to_dev(ring), ring->desc_cb); ring->desc_cb = NULL; ring->next_to_clean = 0; ring->next_to_use = 0; ring->last_to_use = 0; ring->pending_buf = 0; if (!HNAE3_IS_TX_RING(ring) && ring->skb) { dev_kfree_skb_any(ring->skb); ring->skb = NULL; } else if (HNAE3_IS_TX_RING(ring) && ring->tx_spare) { struct hns3_tx_spare *tx_spare = ring->tx_spare; dma_unmap_page(ring_to_dev(ring), tx_spare->dma, tx_spare->len, DMA_TO_DEVICE); free_pages((unsigned long)tx_spare->buf, get_order(tx_spare->len)); devm_kfree(ring_to_dev(ring), tx_spare); ring->tx_spare = NULL; } if (!HNAE3_IS_TX_RING(ring) && ring->page_pool) { page_pool_destroy(ring->page_pool); ring->page_pool = NULL; } } static int hns3_buf_size2type(u32 buf_size) { int bd_size_type; switch (buf_size) { case 512: bd_size_type = HNS3_BD_SIZE_512_TYPE; break; case 1024: bd_size_type = HNS3_BD_SIZE_1024_TYPE; break; case 2048: bd_size_type = HNS3_BD_SIZE_2048_TYPE; break; case 4096: bd_size_type = HNS3_BD_SIZE_4096_TYPE; break; default: bd_size_type = HNS3_BD_SIZE_2048_TYPE; } return bd_size_type; } static void hns3_init_ring_hw(struct hns3_enet_ring *ring) { dma_addr_t dma = ring->desc_dma_addr; struct hnae3_queue *q = ring->tqp; if (!HNAE3_IS_TX_RING(ring)) { hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma); hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG, (u32)((dma >> 31) >> 1)); hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG, hns3_buf_size2type(ring->buf_size)); hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG, ring->desc_num / 8 - 1); } else { hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG, (u32)dma); hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG, (u32)((dma >> 31) >> 1)); hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG, ring->desc_num / 8 - 1); } } static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv) { struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo; struct hnae3_tc_info *tc_info = &kinfo->tc_info; int i; for (i = 0; i < tc_info->num_tc; i++) { int j; for (j = 0; j < tc_info->tqp_count[i]; j++) { struct hnae3_queue *q; q = priv->ring[tc_info->tqp_offset[i] + j].tqp; hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i); } } } int hns3_init_all_ring(struct hns3_nic_priv *priv) { struct hnae3_handle *h = priv->ae_handle; int ring_num = h->kinfo.num_tqps * 2; int i, j; int ret; for (i = 0; i < ring_num; i++) { ret = hns3_alloc_ring_memory(&priv->ring[i]); if (ret) { dev_err(priv->dev, "Alloc ring memory fail! ret=%d\n", ret); goto out_when_alloc_ring_memory; } u64_stats_init(&priv->ring[i].syncp); cond_resched(); } return 0; out_when_alloc_ring_memory: for (j = i - 1; j >= 0; j--) hns3_fini_ring(&priv->ring[j]); return -ENOMEM; } static void hns3_uninit_all_ring(struct hns3_nic_priv *priv) { struct hnae3_handle *h = priv->ae_handle; int i; for (i = 0; i < h->kinfo.num_tqps; i++) { hns3_fini_ring(&priv->ring[i]); hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]); } } /* Set mac addr if it is configured. or leave it to the AE driver */ static int hns3_init_mac_addr(struct net_device *netdev) { struct hns3_nic_priv *priv = netdev_priv(netdev); char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; struct hnae3_handle *h = priv->ae_handle; u8 mac_addr_temp[ETH_ALEN] = {0}; int ret = 0; if (h->ae_algo->ops->get_mac_addr) h->ae_algo->ops->get_mac_addr(h, mac_addr_temp); /* Check if the MAC address is valid, if not get a random one */ if (!is_valid_ether_addr(mac_addr_temp)) { eth_hw_addr_random(netdev); hnae3_format_mac_addr(format_mac_addr, netdev->dev_addr); dev_warn(priv->dev, "using random MAC address %s\n", format_mac_addr); } else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) { eth_hw_addr_set(netdev, mac_addr_temp); ether_addr_copy(netdev->perm_addr, mac_addr_temp); } else { return 0; } if (h->ae_algo->ops->set_mac_addr) ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true); return ret; } static int hns3_init_phy(struct net_device *netdev) { struct hnae3_handle *h = hns3_get_handle(netdev); int ret = 0; if (h->ae_algo->ops->mac_connect_phy) ret = h->ae_algo->ops->mac_connect_phy(h); return ret; } static void hns3_uninit_phy(struct net_device *netdev) { struct hnae3_handle *h = hns3_get_handle(netdev); if (h->ae_algo->ops->mac_disconnect_phy) h->ae_algo->ops->mac_disconnect_phy(h); } static int hns3_client_start(struct hnae3_handle *handle) { if (!handle->ae_algo->ops->client_start) return 0; return handle->ae_algo->ops->client_start(handle); } static void hns3_client_stop(struct hnae3_handle *handle) { if (!handle->ae_algo->ops->client_stop) return; handle->ae_algo->ops->client_stop(handle); } static void hns3_info_show(struct hns3_nic_priv *priv) { struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo; char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; hnae3_format_mac_addr(format_mac_addr, priv->netdev->dev_addr); dev_info(priv->dev, "MAC address: %s\n", format_mac_addr); dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps); dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size); dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size); dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len); dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc); dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc); dev_info(priv->dev, "Total number of enabled TCs: %u\n", kinfo->tc_info.num_tc); dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu); } static void hns3_set_cq_period_mode(struct hns3_nic_priv *priv, enum dim_cq_period_mode mode, bool is_tx) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); struct hnae3_handle *handle = priv->ae_handle; int i; if (is_tx) { priv->tx_cqe_mode = mode; for (i = 0; i < priv->vector_num; i++) priv->tqp_vector[i].tx_group.dim.mode = mode; } else { priv->rx_cqe_mode = mode; for (i = 0; i < priv->vector_num; i++) priv->tqp_vector[i].rx_group.dim.mode = mode; } if (hnae3_ae_dev_cq_supported(ae_dev)) { u32 new_mode; u64 reg; new_mode = (mode == DIM_CQ_PERIOD_MODE_START_FROM_CQE) ? HNS3_CQ_MODE_CQE : HNS3_CQ_MODE_EQE; reg = is_tx ? HNS3_GL1_CQ_MODE_REG : HNS3_GL0_CQ_MODE_REG; writel(new_mode, handle->kinfo.io_base + reg); } } void hns3_cq_period_mode_init(struct hns3_nic_priv *priv, enum dim_cq_period_mode tx_mode, enum dim_cq_period_mode rx_mode) { hns3_set_cq_period_mode(priv, tx_mode, true); hns3_set_cq_period_mode(priv, rx_mode, false); } static void hns3_state_init(struct hnae3_handle *handle) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev); struct net_device *netdev = handle->kinfo.netdev; struct hns3_nic_priv *priv = netdev_priv(netdev); set_bit(HNS3_NIC_STATE_INITED, &priv->state); if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps)) set_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state); if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags); if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state); if (hnae3_ae_dev_rxd_adv_layout_supported(ae_dev)) set_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state); } static void hns3_state_uninit(struct hnae3_handle *handle) { struct hns3_nic_priv *priv = handle->priv; clear_bit(HNS3_NIC_STATE_INITED, &priv->state); } static int hns3_client_init(struct hnae3_handle *handle) { struct pci_dev *pdev = handle->pdev; struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); u16 alloc_tqps, max_rss_size; struct hns3_nic_priv *priv; struct net_device *netdev; int ret; handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps, &max_rss_size); netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps); if (!netdev) return -ENOMEM; priv = netdev_priv(netdev); priv->dev = &pdev->dev; priv->netdev = netdev; priv->ae_handle = handle; priv->tx_timeout_count = 0; priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num; set_bit(HNS3_NIC_STATE_DOWN, &priv->state); handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL); handle->kinfo.netdev = netdev; handle->priv = (void *)priv; hns3_init_mac_addr(netdev); hns3_set_default_feature(netdev); netdev->watchdog_timeo = HNS3_TX_TIMEOUT; netdev->priv_flags |= IFF_UNICAST_FLT; netdev->netdev_ops = &hns3_nic_netdev_ops; SET_NETDEV_DEV(netdev, &pdev->dev); hns3_ethtool_set_ops(netdev); /* Carrier off reporting is important to ethtool even BEFORE open */ netif_carrier_off(netdev); ret = hns3_get_ring_config(priv); if (ret) { ret = -ENOMEM; goto out_get_ring_cfg; } hns3_nic_init_coal_cfg(priv); ret = hns3_nic_alloc_vector_data(priv); if (ret) { ret = -ENOMEM; goto out_alloc_vector_data; } ret = hns3_nic_init_vector_data(priv); if (ret) { ret = -ENOMEM; goto out_init_vector_data; } ret = hns3_init_all_ring(priv); if (ret) { ret = -ENOMEM; goto out_init_ring; } hns3_cq_period_mode_init(priv, DIM_CQ_PERIOD_MODE_START_FROM_EQE, DIM_CQ_PERIOD_MODE_START_FROM_EQE); ret = hns3_init_phy(netdev); if (ret) goto out_init_phy; /* the device can work without cpu rmap, only aRFS needs it */ ret = hns3_set_rx_cpu_rmap(netdev); if (ret) dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret); ret = hns3_nic_init_irq(priv); if (ret) { dev_err(priv->dev, "init irq failed! ret=%d\n", ret); hns3_free_rx_cpu_rmap(netdev); goto out_init_irq_fail; } ret = hns3_client_start(handle); if (ret) { dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret); goto out_client_start; } hns3_dcbnl_setup(handle); ret = hns3_dbg_init(handle); if (ret) { dev_err(priv->dev, "failed to init debugfs, ret = %d\n", ret); goto out_client_start; } netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size); hns3_state_init(handle); ret = register_netdev(netdev); if (ret) { dev_err(priv->dev, "probe register netdev fail!\n"); goto out_reg_netdev_fail; } if (netif_msg_drv(handle)) hns3_info_show(priv); return ret; out_reg_netdev_fail: hns3_state_uninit(handle); hns3_dbg_uninit(handle); hns3_client_stop(handle); out_client_start: hns3_free_rx_cpu_rmap(netdev); hns3_nic_uninit_irq(priv); out_init_irq_fail: hns3_uninit_phy(netdev); out_init_phy: hns3_uninit_all_ring(priv); out_init_ring: hns3_nic_uninit_vector_data(priv); out_init_vector_data: hns3_nic_dealloc_vector_data(priv); out_alloc_vector_data: priv->ring = NULL; out_get_ring_cfg: priv->ae_handle = NULL; free_netdev(netdev); return ret; } static void hns3_client_uninit(struct hnae3_handle *handle, bool reset) { struct net_device *netdev = handle->kinfo.netdev; struct hns3_nic_priv *priv = netdev_priv(netdev); if (netdev->reg_state != NETREG_UNINITIALIZED) unregister_netdev(netdev); hns3_client_stop(handle); hns3_uninit_phy(netdev); if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) { netdev_warn(netdev, "already uninitialized\n"); goto out_netdev_free; } hns3_free_rx_cpu_rmap(netdev); hns3_nic_uninit_irq(priv); hns3_clear_all_ring(handle, true); hns3_nic_uninit_vector_data(priv); hns3_nic_dealloc_vector_data(priv); hns3_uninit_all_ring(priv); hns3_put_ring_config(priv); out_netdev_free: hns3_dbg_uninit(handle); free_netdev(netdev); } static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup) { struct net_device *netdev = handle->kinfo.netdev; if (!netdev) return; if (linkup) { netif_tx_wake_all_queues(netdev); netif_carrier_on(netdev); if (netif_msg_link(handle)) netdev_info(netdev, "link up\n"); } else { netif_carrier_off(netdev); netif_tx_stop_all_queues(netdev); if (netif_msg_link(handle)) netdev_info(netdev, "link down\n"); } } static void hns3_clear_tx_ring(struct hns3_enet_ring *ring) { while (ring->next_to_clean != ring->next_to_use) { ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0; hns3_free_buffer_detach(ring, ring->next_to_clean, 0); ring_ptr_move_fw(ring, next_to_clean); } ring->pending_buf = 0; } static int hns3_clear_rx_ring(struct hns3_enet_ring *ring) { struct hns3_desc_cb res_cbs; int ret; while (ring->next_to_use != ring->next_to_clean) { /* When a buffer is not reused, it's memory has been * freed in hns3_handle_rx_bd or will be freed by * stack, so we need to replace the buffer here. */ if (!ring->desc_cb[ring->next_to_use].reuse_flag) { ret = hns3_alloc_and_map_buffer(ring, &res_cbs); if (ret) { hns3_ring_stats_update(ring, sw_err_cnt); /* if alloc new buffer fail, exit directly * and reclear in up flow. */ netdev_warn(ring_to_netdev(ring), "reserve buffer map failed, ret = %d\n", ret); return ret; } hns3_replace_buffer(ring, ring->next_to_use, &res_cbs); } ring_ptr_move_fw(ring, next_to_use); } /* Free the pending skb in rx ring */ if (ring->skb) { dev_kfree_skb_any(ring->skb); ring->skb = NULL; ring->pending_buf = 0; } return 0; } static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring) { while (ring->next_to_use != ring->next_to_clean) { /* When a buffer is not reused, it's memory has been * freed in hns3_handle_rx_bd or will be freed by * stack, so only need to unmap the buffer here. */ if (!ring->desc_cb[ring->next_to_use].reuse_flag) { hns3_unmap_buffer(ring, &ring->desc_cb[ring->next_to_use]); ring->desc_cb[ring->next_to_use].dma = 0; } ring_ptr_move_fw(ring, next_to_use); } } static void hns3_clear_all_ring(struct hnae3_handle *h, bool force) { struct net_device *ndev = h->kinfo.netdev; struct hns3_nic_priv *priv = netdev_priv(ndev); u32 i; for (i = 0; i < h->kinfo.num_tqps; i++) { struct hns3_enet_ring *ring; ring = &priv->ring[i]; hns3_clear_tx_ring(ring); ring = &priv->ring[i + h->kinfo.num_tqps]; /* Continue to clear other rings even if clearing some * rings failed. */ if (force) hns3_force_clear_rx_ring(ring); else hns3_clear_rx_ring(ring); } } int hns3_nic_reset_all_ring(struct hnae3_handle *h) { struct net_device *ndev = h->kinfo.netdev; struct hns3_nic_priv *priv = netdev_priv(ndev); struct hns3_enet_ring *rx_ring; int i, j; int ret; ret = h->ae_algo->ops->reset_queue(h); if (ret) return ret; for (i = 0; i < h->kinfo.num_tqps; i++) { hns3_init_ring_hw(&priv->ring[i]); /* We need to clear tx ring here because self test will * use the ring and will not run down before up */ hns3_clear_tx_ring(&priv->ring[i]); priv->ring[i].next_to_clean = 0; priv->ring[i].next_to_use = 0; priv->ring[i].last_to_use = 0; rx_ring = &priv->ring[i + h->kinfo.num_tqps]; hns3_init_ring_hw(rx_ring); ret = hns3_clear_rx_ring(rx_ring); if (ret) return ret; /* We can not know the hardware head and tail when this * function is called in reset flow, so we reuse all desc. */ for (j = 0; j < rx_ring->desc_num; j++) hns3_reuse_buffer(rx_ring, j); rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; } hns3_init_tx_ring_tc(priv); return 0; } static int hns3_reset_notify_down_enet(struct hnae3_handle *handle) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; struct net_device *ndev = kinfo->netdev; struct hns3_nic_priv *priv = netdev_priv(ndev); if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state)) return 0; if (!netif_running(ndev)) return 0; return hns3_nic_net_stop(ndev); } static int hns3_reset_notify_up_enet(struct hnae3_handle *handle) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev); int ret = 0; if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) { netdev_err(kinfo->netdev, "device is not initialized yet\n"); return -EFAULT; } clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state); if (netif_running(kinfo->netdev)) { ret = hns3_nic_net_open(kinfo->netdev); if (ret) { set_bit(HNS3_NIC_STATE_RESETTING, &priv->state); netdev_err(kinfo->netdev, "net up fail, ret=%d!\n", ret); return ret; } } return ret; } static int hns3_reset_notify_init_enet(struct hnae3_handle *handle) { struct net_device *netdev = handle->kinfo.netdev; struct hns3_nic_priv *priv = netdev_priv(netdev); int ret; /* Carrier off reporting is important to ethtool even BEFORE open */ netif_carrier_off(netdev); ret = hns3_get_ring_config(priv); if (ret) return ret; ret = hns3_nic_alloc_vector_data(priv); if (ret) goto err_put_ring; ret = hns3_nic_init_vector_data(priv); if (ret) goto err_dealloc_vector; ret = hns3_init_all_ring(priv); if (ret) goto err_uninit_vector; hns3_cq_period_mode_init(priv, priv->tx_cqe_mode, priv->rx_cqe_mode); /* the device can work without cpu rmap, only aRFS needs it */ ret = hns3_set_rx_cpu_rmap(netdev); if (ret) dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret); ret = hns3_nic_init_irq(priv); if (ret) { dev_err(priv->dev, "init irq failed! ret=%d\n", ret); hns3_free_rx_cpu_rmap(netdev); goto err_init_irq_fail; } if (!hns3_is_phys_func(handle->pdev)) hns3_init_mac_addr(netdev); ret = hns3_client_start(handle); if (ret) { dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret); goto err_client_start_fail; } set_bit(HNS3_NIC_STATE_INITED, &priv->state); return ret; err_client_start_fail: hns3_free_rx_cpu_rmap(netdev); hns3_nic_uninit_irq(priv); err_init_irq_fail: hns3_uninit_all_ring(priv); err_uninit_vector: hns3_nic_uninit_vector_data(priv); err_dealloc_vector: hns3_nic_dealloc_vector_data(priv); err_put_ring: hns3_put_ring_config(priv); return ret; } static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle) { struct net_device *netdev = handle->kinfo.netdev; struct hns3_nic_priv *priv = netdev_priv(netdev); if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) hns3_nic_net_stop(netdev); if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) { netdev_warn(netdev, "already uninitialized\n"); return 0; } hns3_free_rx_cpu_rmap(netdev); hns3_nic_uninit_irq(priv); hns3_clear_all_ring(handle, true); hns3_reset_tx_queue(priv->ae_handle); hns3_nic_uninit_vector_data(priv); hns3_nic_dealloc_vector_data(priv); hns3_uninit_all_ring(priv); hns3_put_ring_config(priv); return 0; } int hns3_reset_notify(struct hnae3_handle *handle, enum hnae3_reset_notify_type type) { int ret = 0; switch (type) { case HNAE3_UP_CLIENT: ret = hns3_reset_notify_up_enet(handle); break; case HNAE3_DOWN_CLIENT: ret = hns3_reset_notify_down_enet(handle); break; case HNAE3_INIT_CLIENT: ret = hns3_reset_notify_init_enet(handle); break; case HNAE3_UNINIT_CLIENT: ret = hns3_reset_notify_uninit_enet(handle); break; default: break; } return ret; } static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num, bool rxfh_configured) { int ret; ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num, rxfh_configured); if (ret) { dev_err(&handle->pdev->dev, "Change tqp num(%u) fail.\n", new_tqp_num); return ret; } ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT); if (ret) return ret; ret = hns3_reset_notify(handle, HNAE3_UP_CLIENT); if (ret) hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT); return ret; } int hns3_set_channels(struct net_device *netdev, struct ethtool_channels *ch) { struct hnae3_handle *h = hns3_get_handle(netdev); struct hnae3_knic_private_info *kinfo = &h->kinfo; bool rxfh_configured = netif_is_rxfh_configured(netdev); u32 new_tqp_num = ch->combined_count; u16 org_tqp_num; int ret; if (hns3_nic_resetting(netdev)) return -EBUSY; if (ch->rx_count || ch->tx_count) return -EINVAL; if (kinfo->tc_info.mqprio_active) { dev_err(&netdev->dev, "it's not allowed to set channels via ethtool when MQPRIO mode is on\n"); return -EINVAL; } if (new_tqp_num > hns3_get_max_available_channels(h) || new_tqp_num < 1) { dev_err(&netdev->dev, "Change tqps fail, the tqp range is from 1 to %u", hns3_get_max_available_channels(h)); return -EINVAL; } if (kinfo->rss_size == new_tqp_num) return 0; netif_dbg(h, drv, netdev, "set channels: tqp_num=%u, rxfh=%d\n", new_tqp_num, rxfh_configured); ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT); if (ret) return ret; ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT); if (ret) return ret; org_tqp_num = h->kinfo.num_tqps; ret = hns3_change_channels(h, new_tqp_num, rxfh_configured); if (ret) { int ret1; netdev_warn(netdev, "Change channels fail, revert to old value\n"); ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured); if (ret1) { netdev_err(netdev, "revert to old channel fail\n"); return ret1; } return ret; } return 0; } void hns3_external_lb_prepare(struct net_device *ndev, bool if_running) { struct hns3_nic_priv *priv = netdev_priv(ndev); struct hnae3_handle *h = priv->ae_handle; int i; if (!if_running) return; if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state)) return; netif_carrier_off(ndev); netif_tx_disable(ndev); for (i = 0; i < priv->vector_num; i++) hns3_vector_disable(&priv->tqp_vector[i]); for (i = 0; i < h->kinfo.num_tqps; i++) hns3_tqp_disable(h->kinfo.tqp[i]); /* delay ring buffer clearing to hns3_reset_notify_uninit_enet * during reset process, because driver may not be able * to disable the ring through firmware when downing the netdev. */ if (!hns3_nic_resetting(ndev)) hns3_nic_reset_all_ring(priv->ae_handle); hns3_reset_tx_queue(priv->ae_handle); } void hns3_external_lb_restore(struct net_device *ndev, bool if_running) { struct hns3_nic_priv *priv = netdev_priv(ndev); struct hnae3_handle *h = priv->ae_handle; int i; if (!if_running) return; if (hns3_nic_resetting(ndev)) return; if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) return; if (hns3_nic_reset_all_ring(priv->ae_handle)) return; clear_bit(HNS3_NIC_STATE_DOWN, &priv->state); for (i = 0; i < priv->vector_num; i++) hns3_vector_enable(&priv->tqp_vector[i]); for (i = 0; i < h->kinfo.num_tqps; i++) hns3_tqp_enable(h->kinfo.tqp[i]); netif_tx_wake_all_queues(ndev); if (h->ae_algo->ops->get_status(h)) netif_carrier_on(ndev); } static const struct hns3_hw_error_info hns3_hw_err[] = { { .type = HNAE3_PPU_POISON_ERROR, .msg = "PPU poison" }, { .type = HNAE3_CMDQ_ECC_ERROR, .msg = "IMP CMDQ error" }, { .type = HNAE3_IMP_RD_POISON_ERROR, .msg = "IMP RD poison" }, { .type = HNAE3_ROCEE_AXI_RESP_ERROR, .msg = "ROCEE AXI RESP error" }, }; static void hns3_process_hw_error(struct hnae3_handle *handle, enum hnae3_hw_error_type type) { int i; for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) { if (hns3_hw_err[i].type == type) { dev_err(&handle->pdev->dev, "Detected %s!\n", hns3_hw_err[i].msg); break; } } } static const struct hnae3_client_ops client_ops = { .init_instance = hns3_client_init, .uninit_instance = hns3_client_uninit, .link_status_change = hns3_link_status_change, .reset_notify = hns3_reset_notify, .process_hw_error = hns3_process_hw_error, }; /* hns3_init_module - Driver registration routine * hns3_init_module is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. */ static int __init hns3_init_module(void) { int ret; pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string); pr_info("%s: %s\n", hns3_driver_name, hns3_copyright); client.type = HNAE3_CLIENT_KNIC; snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s", hns3_driver_name); client.ops = &client_ops; INIT_LIST_HEAD(&client.node); hns3_dbg_register_debugfs(hns3_driver_name); ret = hnae3_register_client(&client); if (ret) goto err_reg_client; ret = pci_register_driver(&hns3_driver); if (ret) goto err_reg_driver; return ret; err_reg_driver: hnae3_unregister_client(&client); err_reg_client: hns3_dbg_unregister_debugfs(); return ret; } module_init(hns3_init_module); /* hns3_exit_module - Driver exit cleanup routine * hns3_exit_module is called just before the driver is removed * from memory. */ static void __exit hns3_exit_module(void) { pci_unregister_driver(&hns3_driver); hnae3_unregister_client(&client); hns3_dbg_unregister_debugfs(); } module_exit(hns3_exit_module); MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver"); MODULE_AUTHOR("Huawei Tech. Co., Ltd."); MODULE_LICENSE("GPL"); MODULE_ALIAS("pci:hns-nic");