/* * sonic.c * * (C) 2005 Finn Thain * * Converted to DMA API, added zero-copy buffer handling, and * (from the mac68k project) introduced dhd's support for 16-bit cards. * * (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de) * * This driver is based on work from Andreas Busse, but most of * the code is rewritten. * * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de) * * Core code included by system sonic drivers * * And... partially rewritten again by David Huggins-Daines in order * to cope with screwed up Macintosh NICs that may or may not use * 16-bit DMA. * * (C) 1999 David Huggins-Daines * */ /* * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook, * National Semiconductors data sheet for the DP83932B Sonic Ethernet * controller, and the files "8390.c" and "skeleton.c" in this directory. * * Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi * Application Note AN-746, the files "lance.c" and "ibmlana.c". See also * the NetBSD file "sys/arch/mac68k/dev/if_sn.c". */ /* * Open/initialize the SONIC controller. * * This routine should set everything up anew at each open, even * registers that "should" only need to be set once at boot, so that * there is non-reboot way to recover if something goes wrong. */ static int sonic_open(struct net_device *dev) { struct sonic_local *lp = netdev_priv(dev); int i; if (sonic_debug > 2) printk("sonic_open: initializing sonic driver.\n"); for (i = 0; i < SONIC_NUM_RRS; i++) { struct sk_buff *skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2); if (skb == NULL) { while(i > 0) { /* free any that were allocated successfully */ i--; dev_kfree_skb(lp->rx_skb[i]); lp->rx_skb[i] = NULL; } printk(KERN_ERR "%s: couldn't allocate receive buffers\n", dev->name); return -ENOMEM; } /* align IP header unless DMA requires otherwise */ if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2) skb_reserve(skb, 2); lp->rx_skb[i] = skb; } for (i = 0; i < SONIC_NUM_RRS; i++) { dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE), SONIC_RBSIZE, DMA_FROM_DEVICE); if (!laddr) { while(i > 0) { /* free any that were mapped successfully */ i--; dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE); lp->rx_laddr[i] = (dma_addr_t)0; } for (i = 0; i < SONIC_NUM_RRS; i++) { dev_kfree_skb(lp->rx_skb[i]); lp->rx_skb[i] = NULL; } printk(KERN_ERR "%s: couldn't map rx DMA buffers\n", dev->name); return -ENOMEM; } lp->rx_laddr[i] = laddr; } /* * Initialize the SONIC */ sonic_init(dev); netif_start_queue(dev); if (sonic_debug > 2) printk("sonic_open: Initialization done.\n"); return 0; } /* * Close the SONIC device */ static int sonic_close(struct net_device *dev) { struct sonic_local *lp = netdev_priv(dev); int i; if (sonic_debug > 2) printk("sonic_close\n"); netif_stop_queue(dev); /* * stop the SONIC, disable interrupts */ SONIC_WRITE(SONIC_IMR, 0); SONIC_WRITE(SONIC_ISR, 0x7fff); SONIC_WRITE(SONIC_CMD, SONIC_CR_RST); /* unmap and free skbs that haven't been transmitted */ for (i = 0; i < SONIC_NUM_TDS; i++) { if(lp->tx_laddr[i]) { dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE); lp->tx_laddr[i] = (dma_addr_t)0; } if(lp->tx_skb[i]) { dev_kfree_skb(lp->tx_skb[i]); lp->tx_skb[i] = NULL; } } /* unmap and free the receive buffers */ for (i = 0; i < SONIC_NUM_RRS; i++) { if(lp->rx_laddr[i]) { dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE); lp->rx_laddr[i] = (dma_addr_t)0; } if(lp->rx_skb[i]) { dev_kfree_skb(lp->rx_skb[i]); lp->rx_skb[i] = NULL; } } return 0; } static void sonic_tx_timeout(struct net_device *dev) { struct sonic_local *lp = netdev_priv(dev); int i; /* * put the Sonic into software-reset mode and * disable all interrupts before releasing DMA buffers */ SONIC_WRITE(SONIC_IMR, 0); SONIC_WRITE(SONIC_ISR, 0x7fff); SONIC_WRITE(SONIC_CMD, SONIC_CR_RST); /* We could resend the original skbs. Easier to re-initialise. */ for (i = 0; i < SONIC_NUM_TDS; i++) { if(lp->tx_laddr[i]) { dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE); lp->tx_laddr[i] = (dma_addr_t)0; } if(lp->tx_skb[i]) { dev_kfree_skb(lp->tx_skb[i]); lp->tx_skb[i] = NULL; } } /* Try to restart the adaptor. */ sonic_init(dev); lp->stats.tx_errors++; dev->trans_start = jiffies; /* prevent tx timeout */ netif_wake_queue(dev); } /* * transmit packet * * Appends new TD during transmission thus avoiding any TX interrupts * until we run out of TDs. * This routine interacts closely with the ISR in that it may, * set tx_skb[i] * reset the status flags of the new TD * set and reset EOL flags * stop the tx queue * The ISR interacts with this routine in various ways. It may, * reset tx_skb[i] * test the EOL and status flags of the TDs * wake the tx queue * Concurrently with all of this, the SONIC is potentially writing to * the status flags of the TDs. * Until some mutual exclusion is added, this code will not work with SMP. However, * MIPS Jazz machines and m68k Macs were all uni-processor machines. */ static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev) { struct sonic_local *lp = netdev_priv(dev); dma_addr_t laddr; int length; int entry = lp->next_tx; if (sonic_debug > 2) printk("sonic_send_packet: skb=%p, dev=%p\n", skb, dev); length = skb->len; if (length < ETH_ZLEN) { if (skb_padto(skb, ETH_ZLEN)) return NETDEV_TX_OK; length = ETH_ZLEN; } /* * Map the packet data into the logical DMA address space */ laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE); if (!laddr) { printk(KERN_ERR "%s: failed to map tx DMA buffer.\n", dev->name); dev_kfree_skb(skb); return NETDEV_TX_BUSY; } sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0); /* clear status */ sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1); /* single fragment */ sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */ sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff); sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16); sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length); sonic_tda_put(dev, entry, SONIC_TD_LINK, sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL); /* * Must set tx_skb[entry] only after clearing status, and * before clearing EOL and before stopping queue */ wmb(); lp->tx_len[entry] = length; lp->tx_laddr[entry] = laddr; lp->tx_skb[entry] = skb; wmb(); sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK, sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK) & ~SONIC_EOL); lp->eol_tx = entry; lp->next_tx = (entry + 1) & SONIC_TDS_MASK; if (lp->tx_skb[lp->next_tx] != NULL) { /* The ring is full, the ISR has yet to process the next TD. */ if (sonic_debug > 3) printk("%s: stopping queue\n", dev->name); netif_stop_queue(dev); /* after this packet, wait for ISR to free up some TDAs */ } else netif_start_queue(dev); if (sonic_debug > 2) printk("sonic_send_packet: issuing Tx command\n"); SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP); return NETDEV_TX_OK; } /* * The typical workload of the driver: * Handle the network interface interrupts. */ static irqreturn_t sonic_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct sonic_local *lp = netdev_priv(dev); int status; if (!(status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT)) return IRQ_NONE; do { if (status & SONIC_INT_PKTRX) { if (sonic_debug > 2) printk("%s: packet rx\n", dev->name); sonic_rx(dev); /* got packet(s) */ SONIC_WRITE(SONIC_ISR, SONIC_INT_PKTRX); /* clear the interrupt */ } if (status & SONIC_INT_TXDN) { int entry = lp->cur_tx; int td_status; int freed_some = 0; /* At this point, cur_tx is the index of a TD that is one of: * unallocated/freed (status set & tx_skb[entry] clear) * allocated and sent (status set & tx_skb[entry] set ) * allocated and not yet sent (status clear & tx_skb[entry] set ) * still being allocated by sonic_send_packet (status clear & tx_skb[entry] clear) */ if (sonic_debug > 2) printk("%s: tx done\n", dev->name); while (lp->tx_skb[entry] != NULL) { if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0) break; if (td_status & 0x0001) { lp->stats.tx_packets++; lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE); } else { lp->stats.tx_errors++; if (td_status & 0x0642) lp->stats.tx_aborted_errors++; if (td_status & 0x0180) lp->stats.tx_carrier_errors++; if (td_status & 0x0020) lp->stats.tx_window_errors++; if (td_status & 0x0004) lp->stats.tx_fifo_errors++; } /* We must free the original skb */ dev_kfree_skb_irq(lp->tx_skb[entry]); lp->tx_skb[entry] = NULL; /* and unmap DMA buffer */ dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE); lp->tx_laddr[entry] = (dma_addr_t)0; freed_some = 1; if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) { entry = (entry + 1) & SONIC_TDS_MASK; break; } entry = (entry + 1) & SONIC_TDS_MASK; } if (freed_some || lp->tx_skb[entry] == NULL) netif_wake_queue(dev); /* The ring is no longer full */ lp->cur_tx = entry; SONIC_WRITE(SONIC_ISR, SONIC_INT_TXDN); /* clear the interrupt */ } /* * check error conditions */ if (status & SONIC_INT_RFO) { if (sonic_debug > 1) printk("%s: rx fifo overrun\n", dev->name); lp->stats.rx_fifo_errors++; SONIC_WRITE(SONIC_ISR, SONIC_INT_RFO); /* clear the interrupt */ } if (status & SONIC_INT_RDE) { if (sonic_debug > 1) printk("%s: rx descriptors exhausted\n", dev->name); lp->stats.rx_dropped++; SONIC_WRITE(SONIC_ISR, SONIC_INT_RDE); /* clear the interrupt */ } if (status & SONIC_INT_RBAE) { if (sonic_debug > 1) printk("%s: rx buffer area exceeded\n", dev->name); lp->stats.rx_dropped++; SONIC_WRITE(SONIC_ISR, SONIC_INT_RBAE); /* clear the interrupt */ } /* counter overruns; all counters are 16bit wide */ if (status & SONIC_INT_FAE) { lp->stats.rx_frame_errors += 65536; SONIC_WRITE(SONIC_ISR, SONIC_INT_FAE); /* clear the interrupt */ } if (status & SONIC_INT_CRC) { lp->stats.rx_crc_errors += 65536; SONIC_WRITE(SONIC_ISR, SONIC_INT_CRC); /* clear the interrupt */ } if (status & SONIC_INT_MP) { lp->stats.rx_missed_errors += 65536; SONIC_WRITE(SONIC_ISR, SONIC_INT_MP); /* clear the interrupt */ } /* transmit error */ if (status & SONIC_INT_TXER) { if ((SONIC_READ(SONIC_TCR) & SONIC_TCR_FU) && (sonic_debug > 2)) printk(KERN_ERR "%s: tx fifo underrun\n", dev->name); SONIC_WRITE(SONIC_ISR, SONIC_INT_TXER); /* clear the interrupt */ } /* bus retry */ if (status & SONIC_INT_BR) { printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n", dev->name); /* ... to help debug DMA problems causing endless interrupts. */ /* Bounce the eth interface to turn on the interrupt again. */ SONIC_WRITE(SONIC_IMR, 0); SONIC_WRITE(SONIC_ISR, SONIC_INT_BR); /* clear the interrupt */ } /* load CAM done */ if (status & SONIC_INT_LCD) SONIC_WRITE(SONIC_ISR, SONIC_INT_LCD); /* clear the interrupt */ } while((status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT)); return IRQ_HANDLED; } /* * We have a good packet(s), pass it/them up the network stack. */ static void sonic_rx(struct net_device *dev) { struct sonic_local *lp = netdev_priv(dev); int status; int entry = lp->cur_rx; while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) { struct sk_buff *used_skb; struct sk_buff *new_skb; dma_addr_t new_laddr; u16 bufadr_l; u16 bufadr_h; int pkt_len; status = sonic_rda_get(dev, entry, SONIC_RD_STATUS); if (status & SONIC_RCR_PRX) { /* Malloc up new buffer. */ new_skb = netdev_alloc_skb(SONIC_RBSIZE + 2); if (new_skb == NULL) { printk(KERN_ERR "%s: Memory squeeze, dropping packet.\n", dev->name); lp->stats.rx_dropped++; break; } /* provide 16 byte IP header alignment unless DMA requires otherwise */ if(SONIC_BUS_SCALE(lp->dma_bitmode) == 2) skb_reserve(new_skb, 2); new_laddr = dma_map_single(lp->device, skb_put(new_skb, SONIC_RBSIZE), SONIC_RBSIZE, DMA_FROM_DEVICE); if (!new_laddr) { dev_kfree_skb(new_skb); printk(KERN_ERR "%s: Failed to map rx buffer, dropping packet.\n", dev->name); lp->stats.rx_dropped++; break; } /* now we have a new skb to replace it, pass the used one up the stack */ dma_unmap_single(lp->device, lp->rx_laddr[entry], SONIC_RBSIZE, DMA_FROM_DEVICE); used_skb = lp->rx_skb[entry]; pkt_len = sonic_rda_get(dev, entry, SONIC_RD_PKTLEN); skb_trim(used_skb, pkt_len); used_skb->protocol = eth_type_trans(used_skb, dev); netif_rx(used_skb); lp->stats.rx_packets++; lp->stats.rx_bytes += pkt_len; /* and insert the new skb */ lp->rx_laddr[entry] = new_laddr; lp->rx_skb[entry] = new_skb; bufadr_l = (unsigned long)new_laddr & 0xffff; bufadr_h = (unsigned long)new_laddr >> 16; sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, bufadr_l); sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, bufadr_h); } else { /* This should only happen, if we enable accepting broken packets. */ lp->stats.rx_errors++; if (status & SONIC_RCR_FAER) lp->stats.rx_frame_errors++; if (status & SONIC_RCR_CRCR) lp->stats.rx_crc_errors++; } if (status & SONIC_RCR_LPKT) { /* * this was the last packet out of the current receive buffer * give the buffer back to the SONIC */ lp->cur_rwp += SIZEOF_SONIC_RR * SONIC_BUS_SCALE(lp->dma_bitmode); if (lp->cur_rwp >= lp->rra_end) lp->cur_rwp = lp->rra_laddr & 0xffff; SONIC_WRITE(SONIC_RWP, lp->cur_rwp); if (SONIC_READ(SONIC_ISR) & SONIC_INT_RBE) { if (sonic_debug > 2) printk("%s: rx buffer exhausted\n", dev->name); SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE); /* clear the flag */ } } else printk(KERN_ERR "%s: rx desc without RCR_LPKT. Shouldn't happen !?\n", dev->name); /* * give back the descriptor */ sonic_rda_put(dev, entry, SONIC_RD_LINK, sonic_rda_get(dev, entry, SONIC_RD_LINK) | SONIC_EOL); sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1); sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK, sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK) & ~SONIC_EOL); lp->eol_rx = entry; lp->cur_rx = entry = (entry + 1) & SONIC_RDS_MASK; } /* * If any worth-while packets have been received, netif_rx() * has done a mark_bh(NET_BH) for us and will work on them * when we get to the bottom-half routine. */ } /* * Get the current statistics. * This may be called with the device open or closed. */ static struct net_device_stats *sonic_get_stats(struct net_device *dev) { struct sonic_local *lp = netdev_priv(dev); /* read the tally counter from the SONIC and reset them */ lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT); SONIC_WRITE(SONIC_CRCT, 0xffff); lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET); SONIC_WRITE(SONIC_FAET, 0xffff); lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT); SONIC_WRITE(SONIC_MPT, 0xffff); return &lp->stats; } /* * Set or clear the multicast filter for this adaptor. */ static void sonic_multicast_list(struct net_device *dev) { struct sonic_local *lp = netdev_priv(dev); unsigned int rcr; struct netdev_hw_addr *ha; unsigned char *addr; int i; rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC); rcr |= SONIC_RCR_BRD; /* accept broadcast packets */ if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */ rcr |= SONIC_RCR_PRO; } else { if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 15)) { rcr |= SONIC_RCR_AMC; } else { if (sonic_debug > 2) printk("sonic_multicast_list: mc_count %d\n", netdev_mc_count(dev)); sonic_set_cam_enable(dev, 1); /* always enable our own address */ i = 1; netdev_for_each_mc_addr(ha, dev) { addr = ha->addr; sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]); sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]); sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]); sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i)); i++; } SONIC_WRITE(SONIC_CDC, 16); /* issue Load CAM command */ SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff); SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM); } } if (sonic_debug > 2) printk("sonic_multicast_list: setting RCR=%x\n", rcr); SONIC_WRITE(SONIC_RCR, rcr); } /* * Initialize the SONIC ethernet controller. */ static int sonic_init(struct net_device *dev) { unsigned int cmd; struct sonic_local *lp = netdev_priv(dev); int i; /* * put the Sonic into software-reset mode and * disable all interrupts */ SONIC_WRITE(SONIC_IMR, 0); SONIC_WRITE(SONIC_ISR, 0x7fff); SONIC_WRITE(SONIC_CMD, SONIC_CR_RST); /* * clear software reset flag, disable receiver, clear and * enable interrupts, then completely initialize the SONIC */ SONIC_WRITE(SONIC_CMD, 0); SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS); /* * initialize the receive resource area */ if (sonic_debug > 2) printk("sonic_init: initialize receive resource area\n"); for (i = 0; i < SONIC_NUM_RRS; i++) { u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff; u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16; sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l); sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h); sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1); sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0); } /* initialize all RRA registers */ lp->rra_end = (lp->rra_laddr + SONIC_NUM_RRS * SIZEOF_SONIC_RR * SONIC_BUS_SCALE(lp->dma_bitmode)) & 0xffff; lp->cur_rwp = (lp->rra_laddr + (SONIC_NUM_RRS - 1) * SIZEOF_SONIC_RR * SONIC_BUS_SCALE(lp->dma_bitmode)) & 0xffff; SONIC_WRITE(SONIC_RSA, lp->rra_laddr & 0xffff); SONIC_WRITE(SONIC_REA, lp->rra_end); SONIC_WRITE(SONIC_RRP, lp->rra_laddr & 0xffff); SONIC_WRITE(SONIC_RWP, lp->cur_rwp); SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16); SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1)); /* load the resource pointers */ if (sonic_debug > 3) printk("sonic_init: issuing RRRA command\n"); SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA); i = 0; while (i++ < 100) { if (SONIC_READ(SONIC_CMD) & SONIC_CR_RRRA) break; } if (sonic_debug > 2) printk("sonic_init: status=%x i=%d\n", SONIC_READ(SONIC_CMD), i); /* * Initialize the receive descriptors so that they * become a circular linked list, ie. let the last * descriptor point to the first again. */ if (sonic_debug > 2) printk("sonic_init: initialize receive descriptors\n"); for (i=0; irda_laddr + ((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode))); } /* fix last descriptor */ sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK, (lp->rda_laddr & 0xffff) | SONIC_EOL); lp->eol_rx = SONIC_NUM_RDS - 1; lp->cur_rx = 0; SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16); SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff); /* * initialize transmit descriptors */ if (sonic_debug > 2) printk("sonic_init: initialize transmit descriptors\n"); for (i = 0; i < SONIC_NUM_TDS; i++) { sonic_tda_put(dev, i, SONIC_TD_STATUS, 0); sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0); sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0); sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0); sonic_tda_put(dev, i, SONIC_TD_LINK, (lp->tda_laddr & 0xffff) + (i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode)); lp->tx_skb[i] = NULL; } /* fix last descriptor */ sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK, (lp->tda_laddr & 0xffff)); SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16); SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff); lp->cur_tx = lp->next_tx = 0; lp->eol_tx = SONIC_NUM_TDS - 1; /* * put our own address to CAM desc[0] */ sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]); sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]); sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]); sonic_set_cam_enable(dev, 1); for (i = 0; i < 16; i++) sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i); /* * initialize CAM registers */ SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff); SONIC_WRITE(SONIC_CDC, 16); /* * load the CAM */ SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM); i = 0; while (i++ < 100) { if (SONIC_READ(SONIC_ISR) & SONIC_INT_LCD) break; } if (sonic_debug > 2) { printk("sonic_init: CMD=%x, ISR=%x\n, i=%d", SONIC_READ(SONIC_CMD), SONIC_READ(SONIC_ISR), i); } /* * enable receiver, disable loopback * and enable all interrupts */ SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN | SONIC_CR_STP); SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT); SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT); SONIC_WRITE(SONIC_ISR, 0x7fff); SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT); cmd = SONIC_READ(SONIC_CMD); if ((cmd & SONIC_CR_RXEN) == 0 || (cmd & SONIC_CR_STP) == 0) printk(KERN_ERR "sonic_init: failed, status=%x\n", cmd); if (sonic_debug > 2) printk("sonic_init: new status=%x\n", SONIC_READ(SONIC_CMD)); return 0; } MODULE_LICENSE("GPL");