// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2018 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include "net_driver.h" #include "efx.h" #include "nic_common.h" #include "tx_common.h" #include static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue) { return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EFX_TX_CB_ORDER); } int efx_probe_tx_queue(struct efx_tx_queue *tx_queue) { struct efx_nic *efx = tx_queue->efx; unsigned int entries; int rc; /* Create the smallest power-of-two aligned ring */ entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE); EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); tx_queue->ptr_mask = entries - 1; netif_dbg(efx, probe, efx->net_dev, "creating TX queue %d size %#x mask %#x\n", tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask); /* Allocate software ring */ tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer), GFP_KERNEL); if (!tx_queue->buffer) return -ENOMEM; tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue), sizeof(tx_queue->cb_page[0]), GFP_KERNEL); if (!tx_queue->cb_page) { rc = -ENOMEM; goto fail1; } /* Allocate hardware ring, determine TXQ type */ rc = efx_nic_probe_tx(tx_queue); if (rc) goto fail2; tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue; return 0; fail2: kfree(tx_queue->cb_page); tx_queue->cb_page = NULL; fail1: kfree(tx_queue->buffer); tx_queue->buffer = NULL; return rc; } void efx_init_tx_queue(struct efx_tx_queue *tx_queue) { struct efx_nic *efx = tx_queue->efx; netif_dbg(efx, drv, efx->net_dev, "initialising TX queue %d\n", tx_queue->queue); tx_queue->insert_count = 0; tx_queue->notify_count = 0; tx_queue->write_count = 0; tx_queue->packet_write_count = 0; tx_queue->old_write_count = 0; tx_queue->read_count = 0; tx_queue->old_read_count = 0; tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID; tx_queue->xmit_pending = false; tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) && tx_queue->channel == efx_ptp_channel(efx)); tx_queue->completed_timestamp_major = 0; tx_queue->completed_timestamp_minor = 0; tx_queue->old_complete_packets = tx_queue->complete_packets; tx_queue->old_complete_bytes = tx_queue->complete_bytes; tx_queue->old_tso_bursts = tx_queue->tso_bursts; tx_queue->old_tso_packets = tx_queue->tso_packets; tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel); tx_queue->tso_version = 0; /* Set up TX descriptor ring */ efx_nic_init_tx(tx_queue); tx_queue->initialised = true; } void efx_fini_tx_queue(struct efx_tx_queue *tx_queue) { struct efx_tx_buffer *buffer; netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, "shutting down TX queue %d\n", tx_queue->queue); tx_queue->initialised = false; if (!tx_queue->buffer) return; /* Free any buffers left in the ring */ while (tx_queue->read_count != tx_queue->write_count) { unsigned int xdp_pkts_compl = 0, xdp_bytes_compl = 0; unsigned int pkts_compl = 0, bytes_compl = 0; unsigned int efv_pkts_compl = 0; buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask]; efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl, &efv_pkts_compl, &xdp_pkts_compl, &xdp_bytes_compl); ++tx_queue->read_count; } tx_queue->xmit_pending = false; netdev_tx_reset_queue(tx_queue->core_txq); } void efx_remove_tx_queue(struct efx_tx_queue *tx_queue) { int i; if (!tx_queue->buffer) return; netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, "destroying TX queue %d\n", tx_queue->queue); efx_nic_remove_tx(tx_queue); if (tx_queue->cb_page) { for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++) efx_nic_free_buffer(tx_queue->efx, &tx_queue->cb_page[i]); kfree(tx_queue->cb_page); tx_queue->cb_page = NULL; } kfree(tx_queue->buffer); tx_queue->buffer = NULL; tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL; } void efx_dequeue_buffer(struct efx_tx_queue *tx_queue, struct efx_tx_buffer *buffer, unsigned int *pkts_compl, unsigned int *bytes_compl, unsigned int *efv_pkts_compl, unsigned int *xdp_pkts, unsigned int *xdp_bytes) { if (buffer->unmap_len) { struct device *dma_dev = &tx_queue->efx->pci_dev->dev; dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset; if (buffer->flags & EFX_TX_BUF_MAP_SINGLE) dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len, DMA_TO_DEVICE); else dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len, DMA_TO_DEVICE); buffer->unmap_len = 0; } if (buffer->flags & EFX_TX_BUF_SKB) { struct sk_buff *skb = (struct sk_buff *)buffer->skb; if (unlikely(buffer->flags & EFX_TX_BUF_EFV)) { EFX_WARN_ON_PARANOID(!efv_pkts_compl); (*efv_pkts_compl)++; } else { EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl); (*pkts_compl)++; (*bytes_compl) += skb->len; } if (tx_queue->timestamping && (tx_queue->completed_timestamp_major || tx_queue->completed_timestamp_minor)) { struct skb_shared_hwtstamps hwtstamp; hwtstamp.hwtstamp = efx_ptp_nic_to_kernel_time(tx_queue); skb_tstamp_tx(skb, &hwtstamp); tx_queue->completed_timestamp_major = 0; tx_queue->completed_timestamp_minor = 0; } dev_consume_skb_any((struct sk_buff *)buffer->skb); netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev, "TX queue %d transmission id %x complete\n", tx_queue->queue, tx_queue->read_count); } else if (buffer->flags & EFX_TX_BUF_XDP) { xdp_return_frame_rx_napi(buffer->xdpf); if (xdp_pkts) (*xdp_pkts)++; if (xdp_bytes) (*xdp_bytes) += buffer->xdpf->len; } buffer->len = 0; buffer->flags = 0; } /* Remove packets from the TX queue * * This removes packets from the TX queue, up to and including the * specified index. */ static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue, unsigned int index, unsigned int *pkts_compl, unsigned int *bytes_compl, unsigned int *efv_pkts_compl, unsigned int *xdp_pkts, unsigned int *xdp_bytes) { struct efx_nic *efx = tx_queue->efx; unsigned int stop_index, read_ptr; stop_index = (index + 1) & tx_queue->ptr_mask; read_ptr = tx_queue->read_count & tx_queue->ptr_mask; while (read_ptr != stop_index) { struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; if (!efx_tx_buffer_in_use(buffer)) { netif_err(efx, tx_err, efx->net_dev, "TX queue %d spurious TX completion id %d\n", tx_queue->queue, read_ptr); efx_schedule_reset(efx, RESET_TYPE_TX_SKIP); return; } efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl, efv_pkts_compl, xdp_pkts, xdp_bytes); ++tx_queue->read_count; read_ptr = tx_queue->read_count & tx_queue->ptr_mask; } } void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue) { if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { tx_queue->old_write_count = READ_ONCE(tx_queue->write_count); if (tx_queue->read_count == tx_queue->old_write_count) { /* Ensure that read_count is flushed. */ smp_mb(); tx_queue->empty_read_count = tx_queue->read_count | EFX_EMPTY_COUNT_VALID; } } } int efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index) { unsigned int fill_level, pkts_compl = 0, bytes_compl = 0; unsigned int xdp_pkts_compl = 0, xdp_bytes_compl = 0; unsigned int efv_pkts_compl = 0; struct efx_nic *efx = tx_queue->efx; EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask); efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl, &efv_pkts_compl, &xdp_pkts_compl, &xdp_bytes_compl); tx_queue->pkts_compl += pkts_compl; tx_queue->bytes_compl += bytes_compl; tx_queue->complete_xdp_packets += xdp_pkts_compl; tx_queue->complete_xdp_bytes += xdp_bytes_compl; if (pkts_compl + efv_pkts_compl > 1) ++tx_queue->merge_events; /* See if we need to restart the netif queue. This memory * barrier ensures that we write read_count (inside * efx_dequeue_buffers()) before reading the queue status. */ smp_mb(); if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) && likely(efx->port_enabled) && likely(netif_device_present(efx->net_dev))) { fill_level = efx_channel_tx_fill_level(tx_queue->channel); if (fill_level <= efx->txq_wake_thresh) netif_tx_wake_queue(tx_queue->core_txq); } efx_xmit_done_check_empty(tx_queue); return pkts_compl + efv_pkts_compl; } /* Remove buffers put into a tx_queue for the current packet. * None of the buffers must have an skb attached. */ void efx_enqueue_unwind(struct efx_tx_queue *tx_queue, unsigned int insert_count) { unsigned int xdp_bytes_compl = 0; unsigned int xdp_pkts_compl = 0; unsigned int efv_pkts_compl = 0; struct efx_tx_buffer *buffer; unsigned int bytes_compl = 0; unsigned int pkts_compl = 0; /* Work backwards until we hit the original insert pointer value */ while (tx_queue->insert_count != insert_count) { --tx_queue->insert_count; buffer = __efx_tx_queue_get_insert_buffer(tx_queue); efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl, &efv_pkts_compl, &xdp_pkts_compl, &xdp_bytes_compl); } } struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue, dma_addr_t dma_addr, size_t len) { const struct efx_nic_type *nic_type = tx_queue->efx->type; struct efx_tx_buffer *buffer; unsigned int dma_len; /* Map the fragment taking account of NIC-dependent DMA limits. */ do { buffer = efx_tx_queue_get_insert_buffer(tx_queue); if (nic_type->tx_limit_len) dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len); else dma_len = len; buffer->len = dma_len; buffer->dma_addr = dma_addr; buffer->flags = EFX_TX_BUF_CONT; len -= dma_len; dma_addr += dma_len; ++tx_queue->insert_count; } while (len); return buffer; } int efx_tx_tso_header_length(struct sk_buff *skb) { size_t header_len; if (skb->encapsulation) header_len = skb_inner_transport_offset(skb) + (inner_tcp_hdr(skb)->doff << 2u); else header_len = skb_transport_offset(skb) + (tcp_hdr(skb)->doff << 2u); return header_len; } /* Map all data from an SKB for DMA and create descriptors on the queue. */ int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb, unsigned int segment_count) { struct efx_nic *efx = tx_queue->efx; struct device *dma_dev = &efx->pci_dev->dev; unsigned int frag_index, nr_frags; dma_addr_t dma_addr, unmap_addr; unsigned short dma_flags; size_t len, unmap_len; nr_frags = skb_shinfo(skb)->nr_frags; frag_index = 0; /* Map header data. */ len = skb_headlen(skb); dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE); dma_flags = EFX_TX_BUF_MAP_SINGLE; unmap_len = len; unmap_addr = dma_addr; if (unlikely(dma_mapping_error(dma_dev, dma_addr))) return -EIO; if (segment_count) { /* For TSO we need to put the header in to a separate * descriptor. Map this separately if necessary. */ size_t header_len = efx_tx_tso_header_length(skb); if (header_len != len) { tx_queue->tso_long_headers++; efx_tx_map_chunk(tx_queue, dma_addr, header_len); len -= header_len; dma_addr += header_len; } } /* Add descriptors for each fragment. */ do { struct efx_tx_buffer *buffer; skb_frag_t *fragment; buffer = efx_tx_map_chunk(tx_queue, dma_addr, len); /* The final descriptor for a fragment is responsible for * unmapping the whole fragment. */ buffer->flags = EFX_TX_BUF_CONT | dma_flags; buffer->unmap_len = unmap_len; buffer->dma_offset = buffer->dma_addr - unmap_addr; if (frag_index >= nr_frags) { /* Store SKB details with the final buffer for * the completion. */ buffer->skb = skb; buffer->flags = EFX_TX_BUF_SKB | dma_flags; return 0; } /* Move on to the next fragment. */ fragment = &skb_shinfo(skb)->frags[frag_index++]; len = skb_frag_size(fragment); dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len, DMA_TO_DEVICE); dma_flags = 0; unmap_len = len; unmap_addr = dma_addr; if (unlikely(dma_mapping_error(dma_dev, dma_addr))) return -EIO; } while (1); } unsigned int efx_tx_max_skb_descs(struct efx_nic *efx) { /* Header and payload descriptor for each output segment, plus * one for every input fragment boundary within a segment */ unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS; /* Possibly one more per segment for option descriptors */ if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) max_descs += EFX_TSO_MAX_SEGS; /* Possibly more for PCIe page boundaries within input fragments */ if (PAGE_SIZE > EFX_PAGE_SIZE) max_descs += max_t(unsigned int, MAX_SKB_FRAGS, DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE, EFX_PAGE_SIZE)); return max_descs; } /* * Fallback to software TSO. * * This is used if we are unable to send a GSO packet through hardware TSO. * This should only ever happen due to per-queue restrictions - unsupported * packets should first be filtered by the feature flags. * * Returns 0 on success, error code otherwise. */ int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, struct sk_buff *skb) { struct sk_buff *segments, *next; segments = skb_gso_segment(skb, 0); if (IS_ERR(segments)) return PTR_ERR(segments); dev_consume_skb_any(skb); skb_list_walk_safe(segments, skb, next) { skb_mark_not_on_list(skb); efx_enqueue_skb(tx_queue, skb); } return 0; }