/********************************************************************* * * vlsi_ir.c: VLSI82C147 PCI IrDA controller driver for Linux * * Copyright (c) 2001-2003 Martin Diehl * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * ********************************************************************/ #include <linux/module.h> #define DRIVER_NAME "vlsi_ir" #define DRIVER_VERSION "v0.5" #define DRIVER_DESCRIPTION "IrDA SIR/MIR/FIR driver for VLSI 82C147" #define DRIVER_AUTHOR "Martin Diehl <info@mdiehl.de>" MODULE_DESCRIPTION(DRIVER_DESCRIPTION); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_LICENSE("GPL"); /********************************************************/ #include <linux/kernel.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/delay.h> #include <linux/time.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/mutex.h> #include <asm/uaccess.h> #include <asm/byteorder.h> #include <net/irda/irda.h> #include <net/irda/irda_device.h> #include <net/irda/wrapper.h> #include <net/irda/crc.h> #include "vlsi_ir.h" /********************************************************/ static /* const */ char drivername[] = DRIVER_NAME; static struct pci_device_id vlsi_irda_table [] = { { .class = PCI_CLASS_WIRELESS_IRDA << 8, .class_mask = PCI_CLASS_SUBCLASS_MASK << 8, .vendor = PCI_VENDOR_ID_VLSI, .device = PCI_DEVICE_ID_VLSI_82C147, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, }, { /* all zeroes */ } }; MODULE_DEVICE_TABLE(pci, vlsi_irda_table); /********************************************************/ /* clksrc: which clock source to be used * 0: auto - try PLL, fallback to 40MHz XCLK * 1: on-chip 48MHz PLL * 2: external 48MHz XCLK * 3: external 40MHz XCLK (HP OB-800) */ static int clksrc = 0; /* default is 0(auto) */ module_param(clksrc, int, 0); MODULE_PARM_DESC(clksrc, "clock input source selection"); /* ringsize: size of the tx and rx descriptor rings * independent for tx and rx * specify as ringsize=tx[,rx] * allowed values: 4, 8, 16, 32, 64 * Due to the IrDA 1.x max. allowed window size=7, * there should be no gain when using rings larger than 8 */ static int ringsize[] = {8,8}; /* default is tx=8 / rx=8 */ module_param_array(ringsize, int, NULL, 0); MODULE_PARM_DESC(ringsize, "TX, RX ring descriptor size"); /* sirpulse: tuning of the SIR pulse width within IrPHY 1.3 limits * 0: very short, 1.5us (exception: 6us at 2.4 kbaud) * 1: nominal 3/16 bittime width * note: IrDA compliant peer devices should be happy regardless * which one is used. Primary goal is to save some power * on the sender's side - at 9.6kbaud for example the short * pulse width saves more than 90% of the transmitted IR power. */ static int sirpulse = 1; /* default is 3/16 bittime */ module_param(sirpulse, int, 0); MODULE_PARM_DESC(sirpulse, "SIR pulse width tuning"); /* qos_mtt_bits: encoded min-turn-time value we require the peer device * to use before transmitting to us. "Type 1" (per-station) * bitfield according to IrLAP definition (section 6.6.8) * Don't know which transceiver is used by my OB800 - the * pretty common HP HDLS-1100 requires 1 msec - so lets use this. */ static int qos_mtt_bits = 0x07; /* default is 1 ms or more */ module_param(qos_mtt_bits, int, 0); MODULE_PARM_DESC(qos_mtt_bits, "IrLAP bitfield representing min-turn-time"); /********************************************************/ static void vlsi_reg_debug(unsigned iobase, const char *s) { int i; printk(KERN_DEBUG "%s: ", s); for (i = 0; i < 0x20; i++) printk("%02x", (unsigned)inb((iobase+i))); printk("\n"); } static void vlsi_ring_debug(struct vlsi_ring *r) { struct ring_descr *rd; unsigned i; printk(KERN_DEBUG "%s - ring %p / size %u / mask 0x%04x / len %u / dir %d / hw %p\n", __func__, r, r->size, r->mask, r->len, r->dir, r->rd[0].hw); printk(KERN_DEBUG "%s - head = %d / tail = %d\n", __func__, atomic_read(&r->head) & r->mask, atomic_read(&r->tail) & r->mask); for (i = 0; i < r->size; i++) { rd = &r->rd[i]; printk(KERN_DEBUG "%s - ring descr %u: ", __func__, i); printk("skb=%p data=%p hw=%p\n", rd->skb, rd->buf, rd->hw); printk(KERN_DEBUG "%s - hw: status=%02x count=%u addr=0x%08x\n", __func__, (unsigned) rd_get_status(rd), (unsigned) rd_get_count(rd), (unsigned) rd_get_addr(rd)); } } /********************************************************/ /* needed regardless of CONFIG_PROC_FS */ static struct proc_dir_entry *vlsi_proc_root = NULL; #ifdef CONFIG_PROC_FS static void vlsi_proc_pdev(struct seq_file *seq, struct pci_dev *pdev) { unsigned iobase = pci_resource_start(pdev, 0); unsigned i; seq_printf(seq, "\n%s (vid/did: [%04x:%04x])\n", pci_name(pdev), (int)pdev->vendor, (int)pdev->device); seq_printf(seq, "pci-power-state: %u\n", (unsigned) pdev->current_state); seq_printf(seq, "resources: irq=%u / io=0x%04x / dma_mask=0x%016Lx\n", pdev->irq, (unsigned)pci_resource_start(pdev, 0), (unsigned long long)pdev->dma_mask); seq_printf(seq, "hw registers: "); for (i = 0; i < 0x20; i++) seq_printf(seq, "%02x", (unsigned)inb((iobase+i))); seq_printf(seq, "\n"); } static void vlsi_proc_ndev(struct seq_file *seq, struct net_device *ndev) { vlsi_irda_dev_t *idev = netdev_priv(ndev); u8 byte; u16 word; unsigned delta1, delta2; struct timeval now; unsigned iobase = ndev->base_addr; seq_printf(seq, "\n%s link state: %s / %s / %s / %s\n", ndev->name, netif_device_present(ndev) ? "attached" : "detached", netif_running(ndev) ? "running" : "not running", netif_carrier_ok(ndev) ? "carrier ok" : "no carrier", netif_queue_stopped(ndev) ? "queue stopped" : "queue running"); if (!netif_running(ndev)) return; seq_printf(seq, "\nhw-state:\n"); pci_read_config_byte(idev->pdev, VLSI_PCI_IRMISC, &byte); seq_printf(seq, "IRMISC:%s%s%s uart%s", (byte&IRMISC_IRRAIL) ? " irrail" : "", (byte&IRMISC_IRPD) ? " irpd" : "", (byte&IRMISC_UARTTST) ? " uarttest" : "", (byte&IRMISC_UARTEN) ? "@" : " disabled\n"); if (byte&IRMISC_UARTEN) { seq_printf(seq, "0x%s\n", (byte&2) ? ((byte&1) ? "3e8" : "2e8") : ((byte&1) ? "3f8" : "2f8")); } pci_read_config_byte(idev->pdev, VLSI_PCI_CLKCTL, &byte); seq_printf(seq, "CLKCTL: PLL %s%s%s / clock %s / wakeup %s\n", (byte&CLKCTL_PD_INV) ? "powered" : "down", (byte&CLKCTL_LOCK) ? " locked" : "", (byte&CLKCTL_EXTCLK) ? ((byte&CLKCTL_XCKSEL)?" / 40 MHz XCLK":" / 48 MHz XCLK") : "", (byte&CLKCTL_CLKSTP) ? "stopped" : "running", (byte&CLKCTL_WAKE) ? "enabled" : "disabled"); pci_read_config_byte(idev->pdev, VLSI_PCI_MSTRPAGE, &byte); seq_printf(seq, "MSTRPAGE: 0x%02x\n", (unsigned)byte); byte = inb(iobase+VLSI_PIO_IRINTR); seq_printf(seq, "IRINTR:%s%s%s%s%s%s%s%s\n", (byte&IRINTR_ACTEN) ? " ACTEN" : "", (byte&IRINTR_RPKTEN) ? " RPKTEN" : "", (byte&IRINTR_TPKTEN) ? " TPKTEN" : "", (byte&IRINTR_OE_EN) ? " OE_EN" : "", (byte&IRINTR_ACTIVITY) ? " ACTIVITY" : "", (byte&IRINTR_RPKTINT) ? " RPKTINT" : "", (byte&IRINTR_TPKTINT) ? " TPKTINT" : "", (byte&IRINTR_OE_INT) ? " OE_INT" : ""); word = inw(iobase+VLSI_PIO_RINGPTR); seq_printf(seq, "RINGPTR: rx=%u / tx=%u\n", RINGPTR_GET_RX(word), RINGPTR_GET_TX(word)); word = inw(iobase+VLSI_PIO_RINGBASE); seq_printf(seq, "RINGBASE: busmap=0x%08x\n", ((unsigned)word << 10)|(MSTRPAGE_VALUE<<24)); word = inw(iobase+VLSI_PIO_RINGSIZE); seq_printf(seq, "RINGSIZE: rx=%u / tx=%u\n", RINGSIZE_TO_RXSIZE(word), RINGSIZE_TO_TXSIZE(word)); word = inw(iobase+VLSI_PIO_IRCFG); seq_printf(seq, "IRCFG:%s%s%s%s%s%s%s%s%s%s%s%s%s\n", (word&IRCFG_LOOP) ? " LOOP" : "", (word&IRCFG_ENTX) ? " ENTX" : "", (word&IRCFG_ENRX) ? " ENRX" : "", (word&IRCFG_MSTR) ? " MSTR" : "", (word&IRCFG_RXANY) ? " RXANY" : "", (word&IRCFG_CRC16) ? " CRC16" : "", (word&IRCFG_FIR) ? " FIR" : "", (word&IRCFG_MIR) ? " MIR" : "", (word&IRCFG_SIR) ? " SIR" : "", (word&IRCFG_SIRFILT) ? " SIRFILT" : "", (word&IRCFG_SIRTEST) ? " SIRTEST" : "", (word&IRCFG_TXPOL) ? " TXPOL" : "", (word&IRCFG_RXPOL) ? " RXPOL" : ""); word = inw(iobase+VLSI_PIO_IRENABLE); seq_printf(seq, "IRENABLE:%s%s%s%s%s%s%s%s\n", (word&IRENABLE_PHYANDCLOCK) ? " PHYANDCLOCK" : "", (word&IRENABLE_CFGER) ? " CFGERR" : "", (word&IRENABLE_FIR_ON) ? " FIR_ON" : "", (word&IRENABLE_MIR_ON) ? " MIR_ON" : "", (word&IRENABLE_SIR_ON) ? " SIR_ON" : "", (word&IRENABLE_ENTXST) ? " ENTXST" : "", (word&IRENABLE_ENRXST) ? " ENRXST" : "", (word&IRENABLE_CRC16_ON) ? " CRC16_ON" : ""); word = inw(iobase+VLSI_PIO_PHYCTL); seq_printf(seq, "PHYCTL: baud-divisor=%u / pulsewidth=%u / preamble=%u\n", (unsigned)PHYCTL_TO_BAUD(word), (unsigned)PHYCTL_TO_PLSWID(word), (unsigned)PHYCTL_TO_PREAMB(word)); word = inw(iobase+VLSI_PIO_NPHYCTL); seq_printf(seq, "NPHYCTL: baud-divisor=%u / pulsewidth=%u / preamble=%u\n", (unsigned)PHYCTL_TO_BAUD(word), (unsigned)PHYCTL_TO_PLSWID(word), (unsigned)PHYCTL_TO_PREAMB(word)); word = inw(iobase+VLSI_PIO_MAXPKT); seq_printf(seq, "MAXPKT: max. rx packet size = %u\n", word); word = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK; seq_printf(seq, "RCVBCNT: rx-fifo filling level = %u\n", word); seq_printf(seq, "\nsw-state:\n"); seq_printf(seq, "IrPHY setup: %d baud - %s encoding\n", idev->baud, (idev->mode==IFF_SIR)?"SIR":((idev->mode==IFF_MIR)?"MIR":"FIR")); do_gettimeofday(&now); if (now.tv_usec >= idev->last_rx.tv_usec) { delta2 = now.tv_usec - idev->last_rx.tv_usec; delta1 = 0; } else { delta2 = 1000000 + now.tv_usec - idev->last_rx.tv_usec; delta1 = 1; } seq_printf(seq, "last rx: %lu.%06u sec\n", now.tv_sec - idev->last_rx.tv_sec - delta1, delta2); seq_printf(seq, "RX: packets=%lu / bytes=%lu / errors=%lu / dropped=%lu", ndev->stats.rx_packets, ndev->stats.rx_bytes, ndev->stats.rx_errors, ndev->stats.rx_dropped); seq_printf(seq, " / overrun=%lu / length=%lu / frame=%lu / crc=%lu\n", ndev->stats.rx_over_errors, ndev->stats.rx_length_errors, ndev->stats.rx_frame_errors, ndev->stats.rx_crc_errors); seq_printf(seq, "TX: packets=%lu / bytes=%lu / errors=%lu / dropped=%lu / fifo=%lu\n", ndev->stats.tx_packets, ndev->stats.tx_bytes, ndev->stats.tx_errors, ndev->stats.tx_dropped, ndev->stats.tx_fifo_errors); } static void vlsi_proc_ring(struct seq_file *seq, struct vlsi_ring *r) { struct ring_descr *rd; unsigned i, j; int h, t; seq_printf(seq, "size %u / mask 0x%04x / len %u / dir %d / hw %p\n", r->size, r->mask, r->len, r->dir, r->rd[0].hw); h = atomic_read(&r->head) & r->mask; t = atomic_read(&r->tail) & r->mask; seq_printf(seq, "head = %d / tail = %d ", h, t); if (h == t) seq_printf(seq, "(empty)\n"); else { if (((t+1)&r->mask) == h) seq_printf(seq, "(full)\n"); else seq_printf(seq, "(level = %d)\n", ((unsigned)(t-h) & r->mask)); rd = &r->rd[h]; j = (unsigned) rd_get_count(rd); seq_printf(seq, "current: rd = %d / status = %02x / len = %u\n", h, (unsigned)rd_get_status(rd), j); if (j > 0) { seq_printf(seq, " data:"); if (j > 20) j = 20; for (i = 0; i < j; i++) seq_printf(seq, " %02x", (unsigned)((unsigned char *)rd->buf)[i]); seq_printf(seq, "\n"); } } for (i = 0; i < r->size; i++) { rd = &r->rd[i]; seq_printf(seq, "> ring descr %u: ", i); seq_printf(seq, "skb=%p data=%p hw=%p\n", rd->skb, rd->buf, rd->hw); seq_printf(seq, " hw: status=%02x count=%u busaddr=0x%08x\n", (unsigned) rd_get_status(rd), (unsigned) rd_get_count(rd), (unsigned) rd_get_addr(rd)); } } static int vlsi_seq_show(struct seq_file *seq, void *v) { struct net_device *ndev = seq->private; vlsi_irda_dev_t *idev = netdev_priv(ndev); unsigned long flags; seq_printf(seq, "\n%s %s\n\n", DRIVER_NAME, DRIVER_VERSION); seq_printf(seq, "clksrc: %s\n", (clksrc>=2) ? ((clksrc==3)?"40MHz XCLK":"48MHz XCLK") : ((clksrc==1)?"48MHz PLL":"autodetect")); seq_printf(seq, "ringsize: tx=%d / rx=%d\n", ringsize[0], ringsize[1]); seq_printf(seq, "sirpulse: %s\n", (sirpulse)?"3/16 bittime":"short"); seq_printf(seq, "qos_mtt_bits: 0x%02x\n", (unsigned)qos_mtt_bits); spin_lock_irqsave(&idev->lock, flags); if (idev->pdev != NULL) { vlsi_proc_pdev(seq, idev->pdev); if (idev->pdev->current_state == 0) vlsi_proc_ndev(seq, ndev); else seq_printf(seq, "\nPCI controller down - resume_ok = %d\n", idev->resume_ok); if (netif_running(ndev) && idev->rx_ring && idev->tx_ring) { seq_printf(seq, "\n--------- RX ring -----------\n\n"); vlsi_proc_ring(seq, idev->rx_ring); seq_printf(seq, "\n--------- TX ring -----------\n\n"); vlsi_proc_ring(seq, idev->tx_ring); } } seq_printf(seq, "\n"); spin_unlock_irqrestore(&idev->lock, flags); return 0; } static int vlsi_seq_open(struct inode *inode, struct file *file) { return single_open(file, vlsi_seq_show, PDE(inode)->data); } static const struct file_operations vlsi_proc_fops = { .owner = THIS_MODULE, .open = vlsi_seq_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; #define VLSI_PROC_FOPS (&vlsi_proc_fops) #else /* CONFIG_PROC_FS */ #define VLSI_PROC_FOPS NULL #endif /********************************************************/ static struct vlsi_ring *vlsi_alloc_ring(struct pci_dev *pdev, struct ring_descr_hw *hwmap, unsigned size, unsigned len, int dir) { struct vlsi_ring *r; struct ring_descr *rd; unsigned i, j; dma_addr_t busaddr; if (!size || ((size-1)&size)!=0) /* must be >0 and power of 2 */ return NULL; r = kmalloc(sizeof(*r) + size * sizeof(struct ring_descr), GFP_KERNEL); if (!r) return NULL; memset(r, 0, sizeof(*r)); r->pdev = pdev; r->dir = dir; r->len = len; r->rd = (struct ring_descr *)(r+1); r->mask = size - 1; r->size = size; atomic_set(&r->head, 0); atomic_set(&r->tail, 0); for (i = 0; i < size; i++) { rd = r->rd + i; memset(rd, 0, sizeof(*rd)); rd->hw = hwmap + i; rd->buf = kmalloc(len, GFP_KERNEL|GFP_DMA); if (rd->buf == NULL || !(busaddr = pci_map_single(pdev, rd->buf, len, dir))) { if (rd->buf) { IRDA_ERROR("%s: failed to create PCI-MAP for %p", __func__, rd->buf); kfree(rd->buf); rd->buf = NULL; } for (j = 0; j < i; j++) { rd = r->rd + j; busaddr = rd_get_addr(rd); rd_set_addr_status(rd, 0, 0); if (busaddr) pci_unmap_single(pdev, busaddr, len, dir); kfree(rd->buf); rd->buf = NULL; } kfree(r); return NULL; } rd_set_addr_status(rd, busaddr, 0); /* initially, the dma buffer is owned by the CPU */ rd->skb = NULL; } return r; } static int vlsi_free_ring(struct vlsi_ring *r) { struct ring_descr *rd; unsigned i; dma_addr_t busaddr; for (i = 0; i < r->size; i++) { rd = r->rd + i; if (rd->skb) dev_kfree_skb_any(rd->skb); busaddr = rd_get_addr(rd); rd_set_addr_status(rd, 0, 0); if (busaddr) pci_unmap_single(r->pdev, busaddr, r->len, r->dir); kfree(rd->buf); } kfree(r); return 0; } static int vlsi_create_hwif(vlsi_irda_dev_t *idev) { char *ringarea; struct ring_descr_hw *hwmap; idev->virtaddr = NULL; idev->busaddr = 0; ringarea = pci_alloc_consistent(idev->pdev, HW_RING_AREA_SIZE, &idev->busaddr); if (!ringarea) { IRDA_ERROR("%s: insufficient memory for descriptor rings\n", __func__); goto out; } memset(ringarea, 0, HW_RING_AREA_SIZE); hwmap = (struct ring_descr_hw *)ringarea; idev->rx_ring = vlsi_alloc_ring(idev->pdev, hwmap, ringsize[1], XFER_BUF_SIZE, PCI_DMA_FROMDEVICE); if (idev->rx_ring == NULL) goto out_unmap; hwmap += MAX_RING_DESCR; idev->tx_ring = vlsi_alloc_ring(idev->pdev, hwmap, ringsize[0], XFER_BUF_SIZE, PCI_DMA_TODEVICE); if (idev->tx_ring == NULL) goto out_free_rx; idev->virtaddr = ringarea; return 0; out_free_rx: vlsi_free_ring(idev->rx_ring); out_unmap: idev->rx_ring = idev->tx_ring = NULL; pci_free_consistent(idev->pdev, HW_RING_AREA_SIZE, ringarea, idev->busaddr); idev->busaddr = 0; out: return -ENOMEM; } static int vlsi_destroy_hwif(vlsi_irda_dev_t *idev) { vlsi_free_ring(idev->rx_ring); vlsi_free_ring(idev->tx_ring); idev->rx_ring = idev->tx_ring = NULL; if (idev->busaddr) pci_free_consistent(idev->pdev,HW_RING_AREA_SIZE,idev->virtaddr,idev->busaddr); idev->virtaddr = NULL; idev->busaddr = 0; return 0; } /********************************************************/ static int vlsi_process_rx(struct vlsi_ring *r, struct ring_descr *rd) { u16 status; int crclen, len = 0; struct sk_buff *skb; int ret = 0; struct net_device *ndev = (struct net_device *)pci_get_drvdata(r->pdev); vlsi_irda_dev_t *idev = netdev_priv(ndev); pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir); /* dma buffer now owned by the CPU */ status = rd_get_status(rd); if (status & RD_RX_ERROR) { if (status & RD_RX_OVER) ret |= VLSI_RX_OVER; if (status & RD_RX_LENGTH) ret |= VLSI_RX_LENGTH; if (status & RD_RX_PHYERR) ret |= VLSI_RX_FRAME; if (status & RD_RX_CRCERR) ret |= VLSI_RX_CRC; goto done; } len = rd_get_count(rd); crclen = (idev->mode==IFF_FIR) ? sizeof(u32) : sizeof(u16); len -= crclen; /* remove trailing CRC */ if (len <= 0) { IRDA_DEBUG(0, "%s: strange frame (len=%d)\n", __func__, len); ret |= VLSI_RX_DROP; goto done; } if (idev->mode == IFF_SIR) { /* hw checks CRC in MIR, FIR mode */ /* rd->buf is a streaming PCI_DMA_FROMDEVICE map. Doing the * endian-adjustment there just in place will dirty a cache line * which belongs to the map and thus we must be sure it will * get flushed before giving the buffer back to hardware. * vlsi_fill_rx() will do this anyway - but here we rely on. */ le16_to_cpus(rd->buf+len); if (irda_calc_crc16(INIT_FCS,rd->buf,len+crclen) != GOOD_FCS) { IRDA_DEBUG(0, "%s: crc error\n", __func__); ret |= VLSI_RX_CRC; goto done; } } if (!rd->skb) { IRDA_WARNING("%s: rx packet lost\n", __func__); ret |= VLSI_RX_DROP; goto done; } skb = rd->skb; rd->skb = NULL; skb->dev = ndev; memcpy(skb_put(skb,len), rd->buf, len); skb_reset_mac_header(skb); if (in_interrupt()) netif_rx(skb); else netif_rx_ni(skb); done: rd_set_status(rd, 0); rd_set_count(rd, 0); /* buffer still owned by CPU */ return (ret) ? -ret : len; } static void vlsi_fill_rx(struct vlsi_ring *r) { struct ring_descr *rd; for (rd = ring_last(r); rd != NULL; rd = ring_put(r)) { if (rd_is_active(rd)) { IRDA_WARNING("%s: driver bug: rx descr race with hw\n", __func__); vlsi_ring_debug(r); break; } if (!rd->skb) { rd->skb = dev_alloc_skb(IRLAP_SKB_ALLOCSIZE); if (rd->skb) { skb_reserve(rd->skb,1); rd->skb->protocol = htons(ETH_P_IRDA); } else break; /* probably not worth logging? */ } /* give dma buffer back to busmaster */ pci_dma_sync_single_for_device(r->pdev, rd_get_addr(rd), r->len, r->dir); rd_activate(rd); } } static void vlsi_rx_interrupt(struct net_device *ndev) { vlsi_irda_dev_t *idev = netdev_priv(ndev); struct vlsi_ring *r = idev->rx_ring; struct ring_descr *rd; int ret; for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) { if (rd_is_active(rd)) break; ret = vlsi_process_rx(r, rd); if (ret < 0) { ret = -ret; ndev->stats.rx_errors++; if (ret & VLSI_RX_DROP) ndev->stats.rx_dropped++; if (ret & VLSI_RX_OVER) ndev->stats.rx_over_errors++; if (ret & VLSI_RX_LENGTH) ndev->stats.rx_length_errors++; if (ret & VLSI_RX_FRAME) ndev->stats.rx_frame_errors++; if (ret & VLSI_RX_CRC) ndev->stats.rx_crc_errors++; } else if (ret > 0) { ndev->stats.rx_packets++; ndev->stats.rx_bytes += ret; } } do_gettimeofday(&idev->last_rx); /* remember "now" for later mtt delay */ vlsi_fill_rx(r); if (ring_first(r) == NULL) { /* we are in big trouble, if this should ever happen */ IRDA_ERROR("%s: rx ring exhausted!\n", __func__); vlsi_ring_debug(r); } else outw(0, ndev->base_addr+VLSI_PIO_PROMPT); } /* caller must have stopped the controller from busmastering */ static void vlsi_unarm_rx(vlsi_irda_dev_t *idev) { struct net_device *ndev = pci_get_drvdata(idev->pdev); struct vlsi_ring *r = idev->rx_ring; struct ring_descr *rd; int ret; for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) { ret = 0; if (rd_is_active(rd)) { rd_set_status(rd, 0); if (rd_get_count(rd)) { IRDA_DEBUG(0, "%s - dropping rx packet\n", __func__); ret = -VLSI_RX_DROP; } rd_set_count(rd, 0); pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir); if (rd->skb) { dev_kfree_skb_any(rd->skb); rd->skb = NULL; } } else ret = vlsi_process_rx(r, rd); if (ret < 0) { ret = -ret; ndev->stats.rx_errors++; if (ret & VLSI_RX_DROP) ndev->stats.rx_dropped++; if (ret & VLSI_RX_OVER) ndev->stats.rx_over_errors++; if (ret & VLSI_RX_LENGTH) ndev->stats.rx_length_errors++; if (ret & VLSI_RX_FRAME) ndev->stats.rx_frame_errors++; if (ret & VLSI_RX_CRC) ndev->stats.rx_crc_errors++; } else if (ret > 0) { ndev->stats.rx_packets++; ndev->stats.rx_bytes += ret; } } } /********************************************************/ static int vlsi_process_tx(struct vlsi_ring *r, struct ring_descr *rd) { u16 status; int len; int ret; pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir); /* dma buffer now owned by the CPU */ status = rd_get_status(rd); if (status & RD_TX_UNDRN) ret = VLSI_TX_FIFO; else ret = 0; rd_set_status(rd, 0); if (rd->skb) { len = rd->skb->len; dev_kfree_skb_any(rd->skb); rd->skb = NULL; } else /* tx-skb already freed? - should never happen */ len = rd_get_count(rd); /* incorrect for SIR! (due to wrapping) */ rd_set_count(rd, 0); /* dma buffer still owned by the CPU */ return (ret) ? -ret : len; } static int vlsi_set_baud(vlsi_irda_dev_t *idev, unsigned iobase) { u16 nphyctl; u16 config; unsigned mode; int ret; int baudrate; int fifocnt; baudrate = idev->new_baud; IRDA_DEBUG(2, "%s: %d -> %d\n", __func__, idev->baud, idev->new_baud); if (baudrate == 4000000) { mode = IFF_FIR; config = IRCFG_FIR; nphyctl = PHYCTL_FIR; } else if (baudrate == 1152000) { mode = IFF_MIR; config = IRCFG_MIR | IRCFG_CRC16; nphyctl = PHYCTL_MIR(clksrc==3); } else { mode = IFF_SIR; config = IRCFG_SIR | IRCFG_SIRFILT | IRCFG_RXANY; switch(baudrate) { default: IRDA_WARNING("%s: undefined baudrate %d - fallback to 9600!\n", __func__, baudrate); baudrate = 9600; /* fallthru */ case 2400: case 9600: case 19200: case 38400: case 57600: case 115200: nphyctl = PHYCTL_SIR(baudrate,sirpulse,clksrc==3); break; } } config |= IRCFG_MSTR | IRCFG_ENRX; fifocnt = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK; if (fifocnt != 0) { IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n", __func__, fifocnt); } outw(0, iobase+VLSI_PIO_IRENABLE); outw(config, iobase+VLSI_PIO_IRCFG); outw(nphyctl, iobase+VLSI_PIO_NPHYCTL); wmb(); outw(IRENABLE_PHYANDCLOCK, iobase+VLSI_PIO_IRENABLE); mb(); udelay(1); /* chip applies IRCFG on next rising edge of its 8MHz clock */ /* read back settings for validation */ config = inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_MASK; if (mode == IFF_FIR) config ^= IRENABLE_FIR_ON; else if (mode == IFF_MIR) config ^= (IRENABLE_MIR_ON|IRENABLE_CRC16_ON); else config ^= IRENABLE_SIR_ON; if (config != (IRENABLE_PHYANDCLOCK|IRENABLE_ENRXST)) { IRDA_WARNING("%s: failed to set %s mode!\n", __func__, (mode==IFF_SIR)?"SIR":((mode==IFF_MIR)?"MIR":"FIR")); ret = -1; } else { if (inw(iobase+VLSI_PIO_PHYCTL) != nphyctl) { IRDA_WARNING("%s: failed to apply baudrate %d\n", __func__, baudrate); ret = -1; } else { idev->mode = mode; idev->baud = baudrate; idev->new_baud = 0; ret = 0; } } if (ret) vlsi_reg_debug(iobase,__func__); return ret; } static int vlsi_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev) { vlsi_irda_dev_t *idev = netdev_priv(ndev); struct vlsi_ring *r = idev->tx_ring; struct ring_descr *rd; unsigned long flags; unsigned iobase = ndev->base_addr; u8 status; u16 config; int mtt; int len, speed; struct timeval now, ready; char *msg = NULL; speed = irda_get_next_speed(skb); spin_lock_irqsave(&idev->lock, flags); if (speed != -1 && speed != idev->baud) { netif_stop_queue(ndev); idev->new_baud = speed; status = RD_TX_CLRENTX; /* stop tx-ring after this frame */ } else status = 0; if (skb->len == 0) { /* handle zero packets - should be speed change */ if (status == 0) { msg = "bogus zero-length packet"; goto drop_unlock; } /* due to the completely asynch tx operation we might have * IrLAP racing with the hardware here, f.e. if the controller * is just sending the last packet with current speed while * the LAP is already switching the speed using synchronous * len=0 packet. Immediate execution would lead to hw lockup * requiring a powercycle to reset. Good candidate to trigger * this is the final UA:RSP packet after receiving a DISC:CMD * when getting the LAP down. * Note that we are not protected by the queue_stop approach * because the final UA:RSP arrives _without_ request to apply * new-speed-after-this-packet - hence the driver doesn't know * this was the last packet and doesn't stop the queue. So the * forced switch to default speed from LAP gets through as fast * as only some 10 usec later while the UA:RSP is still processed * by the hardware and we would get screwed. */ if (ring_first(idev->tx_ring) == NULL) { /* no race - tx-ring already empty */ vlsi_set_baud(idev, iobase); netif_wake_queue(ndev); } else ; /* keep the speed change pending like it would * for any len>0 packet. tx completion interrupt * will apply it when the tx ring becomes empty. */ spin_unlock_irqrestore(&idev->lock, flags); dev_kfree_skb_any(skb); return 0; } /* sanity checks - simply drop the packet */ rd = ring_last(r); if (!rd) { msg = "ring full, but queue wasn't stopped"; goto drop_unlock; } if (rd_is_active(rd)) { msg = "entry still owned by hw"; goto drop_unlock; } if (!rd->buf) { msg = "tx ring entry without pci buffer"; goto drop_unlock; } if (rd->skb) { msg = "ring entry with old skb still attached"; goto drop_unlock; } /* no need for serialization or interrupt disable during mtt */ spin_unlock_irqrestore(&idev->lock, flags); if ((mtt = irda_get_mtt(skb)) > 0) { ready.tv_usec = idev->last_rx.tv_usec + mtt; ready.tv_sec = idev->last_rx.tv_sec; if (ready.tv_usec >= 1000000) { ready.tv_usec -= 1000000; ready.tv_sec++; /* IrLAP 1.1: mtt always < 1 sec */ } for(;;) { do_gettimeofday(&now); if (now.tv_sec > ready.tv_sec || (now.tv_sec==ready.tv_sec && now.tv_usec>=ready.tv_usec)) break; udelay(100); /* must not sleep here - called under netif_tx_lock! */ } } /* tx buffer already owned by CPU due to pci_dma_sync_single_for_cpu() * after subsequent tx-completion */ if (idev->mode == IFF_SIR) { status |= RD_TX_DISCRC; /* no hw-crc creation */ len = async_wrap_skb(skb, rd->buf, r->len); /* Some rare worst case situation in SIR mode might lead to * potential buffer overflow. The wrapper detects this, returns * with a shortened frame (without FCS/EOF) but doesn't provide * any error indication about the invalid packet which we are * going to transmit. * Therefore we log if the buffer got filled to the point, where the * wrapper would abort, i.e. when there are less than 5 bytes left to * allow appending the FCS/EOF. */ if (len >= r->len-5) IRDA_WARNING("%s: possible buffer overflow with SIR wrapping!\n", __func__); } else { /* hw deals with MIR/FIR mode wrapping */ status |= RD_TX_PULSE; /* send 2 us highspeed indication pulse */ len = skb->len; if (len > r->len) { msg = "frame exceeds tx buffer length"; goto drop; } else skb_copy_from_linear_data(skb, rd->buf, len); } rd->skb = skb; /* remember skb for tx-complete stats */ rd_set_count(rd, len); rd_set_status(rd, status); /* not yet active! */ /* give dma buffer back to busmaster-hw (flush caches to make * CPU-driven changes visible from the pci bus). */ pci_dma_sync_single_for_device(r->pdev, rd_get_addr(rd), r->len, r->dir); /* Switching to TX mode here races with the controller * which may stop TX at any time when fetching an inactive descriptor * or one with CLR_ENTX set. So we switch on TX only, if TX was not running * _after_ the new descriptor was activated on the ring. This ensures * we will either find TX already stopped or we can be sure, there * will be a TX-complete interrupt even if the chip stopped doing * TX just after we found it still running. The ISR will then find * the non-empty ring and restart TX processing. The enclosing * spinlock provides the correct serialization to prevent race with isr. */ spin_lock_irqsave(&idev->lock,flags); rd_activate(rd); if (!(inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_ENTXST)) { int fifocnt; fifocnt = inw(ndev->base_addr+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK; if (fifocnt != 0) { IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n", __func__, fifocnt); } config = inw(iobase+VLSI_PIO_IRCFG); mb(); outw(config | IRCFG_ENTX, iobase+VLSI_PIO_IRCFG); wmb(); outw(0, iobase+VLSI_PIO_PROMPT); } ndev->trans_start = jiffies; if (ring_put(r) == NULL) { netif_stop_queue(ndev); IRDA_DEBUG(3, "%s: tx ring full - queue stopped\n", __func__); } spin_unlock_irqrestore(&idev->lock, flags); return 0; drop_unlock: spin_unlock_irqrestore(&idev->lock, flags); drop: IRDA_WARNING("%s: dropping packet - %s\n", __func__, msg); dev_kfree_skb_any(skb); ndev->stats.tx_errors++; ndev->stats.tx_dropped++; /* Don't even think about returning NET_XMIT_DROP (=1) here! * In fact any retval!=0 causes the packet scheduler to requeue the * packet for later retry of transmission - which isn't exactly * what we want after we've just called dev_kfree_skb_any ;-) */ return 0; } static void vlsi_tx_interrupt(struct net_device *ndev) { vlsi_irda_dev_t *idev = netdev_priv(ndev); struct vlsi_ring *r = idev->tx_ring; struct ring_descr *rd; unsigned iobase; int ret; u16 config; for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) { if (rd_is_active(rd)) break; ret = vlsi_process_tx(r, rd); if (ret < 0) { ret = -ret; ndev->stats.tx_errors++; if (ret & VLSI_TX_DROP) ndev->stats.tx_dropped++; if (ret & VLSI_TX_FIFO) ndev->stats.tx_fifo_errors++; } else if (ret > 0){ ndev->stats.tx_packets++; ndev->stats.tx_bytes += ret; } } iobase = ndev->base_addr; if (idev->new_baud && rd == NULL) /* tx ring empty and speed change pending */ vlsi_set_baud(idev, iobase); config = inw(iobase+VLSI_PIO_IRCFG); if (rd == NULL) /* tx ring empty: re-enable rx */ outw((config & ~IRCFG_ENTX) | IRCFG_ENRX, iobase+VLSI_PIO_IRCFG); else if (!(inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_ENTXST)) { int fifocnt; fifocnt = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK; if (fifocnt != 0) { IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n", __func__, fifocnt); } outw(config | IRCFG_ENTX, iobase+VLSI_PIO_IRCFG); } outw(0, iobase+VLSI_PIO_PROMPT); if (netif_queue_stopped(ndev) && !idev->new_baud) { netif_wake_queue(ndev); IRDA_DEBUG(3, "%s: queue awoken\n", __func__); } } /* caller must have stopped the controller from busmastering */ static void vlsi_unarm_tx(vlsi_irda_dev_t *idev) { struct net_device *ndev = pci_get_drvdata(idev->pdev); struct vlsi_ring *r = idev->tx_ring; struct ring_descr *rd; int ret; for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) { ret = 0; if (rd_is_active(rd)) { rd_set_status(rd, 0); rd_set_count(rd, 0); pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir); if (rd->skb) { dev_kfree_skb_any(rd->skb); rd->skb = NULL; } IRDA_DEBUG(0, "%s - dropping tx packet\n", __func__); ret = -VLSI_TX_DROP; } else ret = vlsi_process_tx(r, rd); if (ret < 0) { ret = -ret; ndev->stats.tx_errors++; if (ret & VLSI_TX_DROP) ndev->stats.tx_dropped++; if (ret & VLSI_TX_FIFO) ndev->stats.tx_fifo_errors++; } else if (ret > 0){ ndev->stats.tx_packets++; ndev->stats.tx_bytes += ret; } } } /********************************************************/ static int vlsi_start_clock(struct pci_dev *pdev) { u8 clkctl, lock; int i, count; if (clksrc < 2) { /* auto or PLL: try PLL */ clkctl = CLKCTL_PD_INV | CLKCTL_CLKSTP; pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl); /* procedure to detect PLL lock synchronisation: * after 0.5 msec initial delay we expect to find 3 PLL lock * indications within 10 msec for successful PLL detection. */ udelay(500); count = 0; for (i = 500; i <= 10000; i += 50) { /* max 10 msec */ pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &lock); if (lock&CLKCTL_LOCK) { if (++count >= 3) break; } udelay(50); } if (count < 3) { if (clksrc == 1) { /* explicitly asked for PLL hence bail out */ IRDA_ERROR("%s: no PLL or failed to lock!\n", __func__); clkctl = CLKCTL_CLKSTP; pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl); return -1; } else /* was: clksrc=0(auto) */ clksrc = 3; /* fallback to 40MHz XCLK (OB800) */ IRDA_DEBUG(0, "%s: PLL not locked, fallback to clksrc=%d\n", __func__, clksrc); } else clksrc = 1; /* got successful PLL lock */ } if (clksrc != 1) { /* we get here if either no PLL detected in auto-mode or an external clock source was explicitly specified */ clkctl = CLKCTL_EXTCLK | CLKCTL_CLKSTP; if (clksrc == 3) clkctl |= CLKCTL_XCKSEL; pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl); /* no way to test for working XCLK */ } else pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &clkctl); /* ok, now going to connect the chip with the clock source */ clkctl &= ~CLKCTL_CLKSTP; pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl); return 0; } static void vlsi_stop_clock(struct pci_dev *pdev) { u8 clkctl; /* disconnect chip from clock source */ pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &clkctl); clkctl |= CLKCTL_CLKSTP; pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl); /* disable all clock sources */ clkctl &= ~(CLKCTL_EXTCLK | CLKCTL_PD_INV); pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl); } /********************************************************/ /* writing all-zero to the VLSI PCI IO register area seems to prevent * some occasional situations where the hardware fails (symptoms are * what appears as stalled tx/rx state machines, i.e. everything ok for * receive or transmit but hw makes no progress or is unable to access * the bus memory locations). * Best place to call this is immediately after/before the internal clock * gets started/stopped. */ static inline void vlsi_clear_regs(unsigned iobase) { unsigned i; const unsigned chip_io_extent = 32; for (i = 0; i < chip_io_extent; i += sizeof(u16)) outw(0, iobase + i); } static int vlsi_init_chip(struct pci_dev *pdev) { struct net_device *ndev = pci_get_drvdata(pdev); vlsi_irda_dev_t *idev = netdev_priv(ndev); unsigned iobase; u16 ptr; /* start the clock and clean the registers */ if (vlsi_start_clock(pdev)) { IRDA_ERROR("%s: no valid clock source\n", __func__); return -1; } iobase = ndev->base_addr; vlsi_clear_regs(iobase); outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR); /* w/c pending IRQ, disable all INT */ outw(0, iobase+VLSI_PIO_IRENABLE); /* disable IrPHY-interface */ /* disable everything, particularly IRCFG_MSTR - (also resetting the RING_PTR) */ outw(0, iobase+VLSI_PIO_IRCFG); wmb(); outw(MAX_PACKET_LENGTH, iobase+VLSI_PIO_MAXPKT); /* max possible value=0x0fff */ outw(BUS_TO_RINGBASE(idev->busaddr), iobase+VLSI_PIO_RINGBASE); outw(TX_RX_TO_RINGSIZE(idev->tx_ring->size, idev->rx_ring->size), iobase+VLSI_PIO_RINGSIZE); ptr = inw(iobase+VLSI_PIO_RINGPTR); atomic_set(&idev->rx_ring->head, RINGPTR_GET_RX(ptr)); atomic_set(&idev->rx_ring->tail, RINGPTR_GET_RX(ptr)); atomic_set(&idev->tx_ring->head, RINGPTR_GET_TX(ptr)); atomic_set(&idev->tx_ring->tail, RINGPTR_GET_TX(ptr)); vlsi_set_baud(idev, iobase); /* idev->new_baud used as provided by caller */ outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR); /* just in case - w/c pending IRQ's */ wmb(); /* DO NOT BLINDLY ENABLE IRINTR_ACTEN! * basically every received pulse fires an ACTIVITY-INT * leading to >>1000 INT's per second instead of few 10 */ outb(IRINTR_RPKTEN|IRINTR_TPKTEN, iobase+VLSI_PIO_IRINTR); return 0; } static int vlsi_start_hw(vlsi_irda_dev_t *idev) { struct pci_dev *pdev = idev->pdev; struct net_device *ndev = pci_get_drvdata(pdev); unsigned iobase = ndev->base_addr; u8 byte; /* we don't use the legacy UART, disable its address decoding */ pci_read_config_byte(pdev, VLSI_PCI_IRMISC, &byte); byte &= ~(IRMISC_UARTEN | IRMISC_UARTTST); pci_write_config_byte(pdev, VLSI_PCI_IRMISC, byte); /* enable PCI busmaster access to our 16MB page */ pci_write_config_byte(pdev, VLSI_PCI_MSTRPAGE, MSTRPAGE_VALUE); pci_set_master(pdev); if (vlsi_init_chip(pdev) < 0) { pci_disable_device(pdev); return -1; } vlsi_fill_rx(idev->rx_ring); do_gettimeofday(&idev->last_rx); /* first mtt may start from now on */ outw(0, iobase+VLSI_PIO_PROMPT); /* kick hw state machine */ return 0; } static int vlsi_stop_hw(vlsi_irda_dev_t *idev) { struct pci_dev *pdev = idev->pdev; struct net_device *ndev = pci_get_drvdata(pdev); unsigned iobase = ndev->base_addr; unsigned long flags; spin_lock_irqsave(&idev->lock,flags); outw(0, iobase+VLSI_PIO_IRENABLE); outw(0, iobase+VLSI_PIO_IRCFG); /* disable everything */ /* disable and w/c irqs */ outb(0, iobase+VLSI_PIO_IRINTR); wmb(); outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR); spin_unlock_irqrestore(&idev->lock,flags); vlsi_unarm_tx(idev); vlsi_unarm_rx(idev); vlsi_clear_regs(iobase); vlsi_stop_clock(pdev); pci_disable_device(pdev); return 0; } /**************************************************************/ static void vlsi_tx_timeout(struct net_device *ndev) { vlsi_irda_dev_t *idev = netdev_priv(ndev); vlsi_reg_debug(ndev->base_addr, __func__); vlsi_ring_debug(idev->tx_ring); if (netif_running(ndev)) netif_stop_queue(ndev); vlsi_stop_hw(idev); /* now simply restart the whole thing */ if (!idev->new_baud) idev->new_baud = idev->baud; /* keep current baudrate */ if (vlsi_start_hw(idev)) IRDA_ERROR("%s: failed to restart hw - %s(%s) unusable!\n", __func__, pci_name(idev->pdev), ndev->name); else netif_start_queue(ndev); } static int vlsi_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) { vlsi_irda_dev_t *idev = netdev_priv(ndev); struct if_irda_req *irq = (struct if_irda_req *) rq; unsigned long flags; u16 fifocnt; int ret = 0; switch (cmd) { case SIOCSBANDWIDTH: if (!capable(CAP_NET_ADMIN)) { ret = -EPERM; break; } spin_lock_irqsave(&idev->lock, flags); idev->new_baud = irq->ifr_baudrate; /* when called from userland there might be a minor race window here * if the stack tries to change speed concurrently - which would be * pretty strange anyway with the userland having full control... */ vlsi_set_baud(idev, ndev->base_addr); spin_unlock_irqrestore(&idev->lock, flags); break; case SIOCSMEDIABUSY: if (!capable(CAP_NET_ADMIN)) { ret = -EPERM; break; } irda_device_set_media_busy(ndev, TRUE); break; case SIOCGRECEIVING: /* the best we can do: check whether there are any bytes in rx fifo. * The trustable window (in case some data arrives just afterwards) * may be as short as 1usec or so at 4Mbps. */ fifocnt = inw(ndev->base_addr+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK; irq->ifr_receiving = (fifocnt!=0) ? 1 : 0; break; default: IRDA_WARNING("%s: notsupp - cmd=%04x\n", __func__, cmd); ret = -EOPNOTSUPP; } return ret; } /********************************************************/ static irqreturn_t vlsi_interrupt(int irq, void *dev_instance) { struct net_device *ndev = dev_instance; vlsi_irda_dev_t *idev = netdev_priv(ndev); unsigned iobase; u8 irintr; int boguscount = 5; unsigned long flags; int handled = 0; iobase = ndev->base_addr; spin_lock_irqsave(&idev->lock,flags); do { irintr = inb(iobase+VLSI_PIO_IRINTR); mb(); outb(irintr, iobase+VLSI_PIO_IRINTR); /* acknowledge asap */ if (!(irintr&=IRINTR_INT_MASK)) /* not our INT - probably shared */ break; handled = 1; if (unlikely(!(irintr & ~IRINTR_ACTIVITY))) break; /* nothing todo if only activity */ if (irintr&IRINTR_RPKTINT) vlsi_rx_interrupt(ndev); if (irintr&IRINTR_TPKTINT) vlsi_tx_interrupt(ndev); } while (--boguscount > 0); spin_unlock_irqrestore(&idev->lock,flags); if (boguscount <= 0) IRDA_MESSAGE("%s: too much work in interrupt!\n", __func__); return IRQ_RETVAL(handled); } /********************************************************/ static int vlsi_open(struct net_device *ndev) { vlsi_irda_dev_t *idev = netdev_priv(ndev); int err = -EAGAIN; char hwname[32]; if (pci_request_regions(idev->pdev, drivername)) { IRDA_WARNING("%s: io resource busy\n", __func__); goto errout; } ndev->base_addr = pci_resource_start(idev->pdev,0); ndev->irq = idev->pdev->irq; /* under some rare occasions the chip apparently comes up with * IRQ's pending. We better w/c pending IRQ and disable them all */ outb(IRINTR_INT_MASK, ndev->base_addr+VLSI_PIO_IRINTR); if (request_irq(ndev->irq, vlsi_interrupt, IRQF_SHARED, drivername, ndev)) { IRDA_WARNING("%s: couldn't get IRQ: %d\n", __func__, ndev->irq); goto errout_io; } if ((err = vlsi_create_hwif(idev)) != 0) goto errout_irq; sprintf(hwname, "VLSI-FIR @ 0x%04x", (unsigned)ndev->base_addr); idev->irlap = irlap_open(ndev,&idev->qos,hwname); if (!idev->irlap) goto errout_free_ring; do_gettimeofday(&idev->last_rx); /* first mtt may start from now on */ idev->new_baud = 9600; /* start with IrPHY using 9600(SIR) mode */ if ((err = vlsi_start_hw(idev)) != 0) goto errout_close_irlap; netif_start_queue(ndev); IRDA_MESSAGE("%s: device %s operational\n", __func__, ndev->name); return 0; errout_close_irlap: irlap_close(idev->irlap); errout_free_ring: vlsi_destroy_hwif(idev); errout_irq: free_irq(ndev->irq,ndev); errout_io: pci_release_regions(idev->pdev); errout: return err; } static int vlsi_close(struct net_device *ndev) { vlsi_irda_dev_t *idev = netdev_priv(ndev); netif_stop_queue(ndev); if (idev->irlap) irlap_close(idev->irlap); idev->irlap = NULL; vlsi_stop_hw(idev); vlsi_destroy_hwif(idev); free_irq(ndev->irq,ndev); pci_release_regions(idev->pdev); IRDA_MESSAGE("%s: device %s stopped\n", __func__, ndev->name); return 0; } static const struct net_device_ops vlsi_netdev_ops = { .ndo_open = vlsi_open, .ndo_stop = vlsi_close, .ndo_start_xmit = vlsi_hard_start_xmit, .ndo_do_ioctl = vlsi_ioctl, .ndo_tx_timeout = vlsi_tx_timeout, }; static int vlsi_irda_init(struct net_device *ndev) { vlsi_irda_dev_t *idev = netdev_priv(ndev); struct pci_dev *pdev = idev->pdev; ndev->irq = pdev->irq; ndev->base_addr = pci_resource_start(pdev,0); /* PCI busmastering * see include file for details why we need these 2 masks, in this order! */ if (pci_set_dma_mask(pdev,DMA_MASK_USED_BY_HW) || pci_set_dma_mask(pdev,DMA_MASK_MSTRPAGE)) { IRDA_ERROR("%s: aborting due to PCI BM-DMA address limitations\n", __func__); return -1; } irda_init_max_qos_capabilies(&idev->qos); /* the VLSI82C147 does not support 576000! */ idev->qos.baud_rate.bits = IR_2400 | IR_9600 | IR_19200 | IR_38400 | IR_57600 | IR_115200 | IR_1152000 | (IR_4000000 << 8); idev->qos.min_turn_time.bits = qos_mtt_bits; irda_qos_bits_to_value(&idev->qos); /* currently no public media definitions for IrDA */ ndev->flags |= IFF_PORTSEL | IFF_AUTOMEDIA; ndev->if_port = IF_PORT_UNKNOWN; ndev->netdev_ops = &vlsi_netdev_ops; ndev->watchdog_timeo = 500*HZ/1000; /* max. allowed turn time for IrLAP */ SET_NETDEV_DEV(ndev, &pdev->dev); return 0; } /**************************************************************/ static int __devinit vlsi_irda_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct net_device *ndev; vlsi_irda_dev_t *idev; if (pci_enable_device(pdev)) goto out; else pdev->current_state = 0; /* hw must be running now */ IRDA_MESSAGE("%s: IrDA PCI controller %s detected\n", drivername, pci_name(pdev)); if ( !pci_resource_start(pdev,0) || !(pci_resource_flags(pdev,0) & IORESOURCE_IO) ) { IRDA_ERROR("%s: bar 0 invalid", __func__); goto out_disable; } ndev = alloc_irdadev(sizeof(*idev)); if (ndev==NULL) { IRDA_ERROR("%s: Unable to allocate device memory.\n", __func__); goto out_disable; } idev = netdev_priv(ndev); spin_lock_init(&idev->lock); mutex_init(&idev->mtx); mutex_lock(&idev->mtx); idev->pdev = pdev; if (vlsi_irda_init(ndev) < 0) goto out_freedev; if (register_netdev(ndev) < 0) { IRDA_ERROR("%s: register_netdev failed\n", __func__); goto out_freedev; } if (vlsi_proc_root != NULL) { struct proc_dir_entry *ent; ent = proc_create_data(ndev->name, S_IFREG|S_IRUGO, vlsi_proc_root, VLSI_PROC_FOPS, ndev); if (!ent) { IRDA_WARNING("%s: failed to create proc entry\n", __func__); } else { ent->size = 0; } idev->proc_entry = ent; } IRDA_MESSAGE("%s: registered device %s\n", drivername, ndev->name); pci_set_drvdata(pdev, ndev); mutex_unlock(&idev->mtx); return 0; out_freedev: mutex_unlock(&idev->mtx); free_netdev(ndev); out_disable: pci_disable_device(pdev); out: pci_set_drvdata(pdev, NULL); return -ENODEV; } static void __devexit vlsi_irda_remove(struct pci_dev *pdev) { struct net_device *ndev = pci_get_drvdata(pdev); vlsi_irda_dev_t *idev; if (!ndev) { IRDA_ERROR("%s: lost netdevice?\n", drivername); return; } unregister_netdev(ndev); idev = netdev_priv(ndev); mutex_lock(&idev->mtx); if (idev->proc_entry) { remove_proc_entry(ndev->name, vlsi_proc_root); idev->proc_entry = NULL; } mutex_unlock(&idev->mtx); free_netdev(ndev); pci_set_drvdata(pdev, NULL); IRDA_MESSAGE("%s: %s removed\n", drivername, pci_name(pdev)); } #ifdef CONFIG_PM /* The Controller doesn't provide PCI PM capabilities as defined by PCI specs. * Some of the Linux PCI-PM code however depends on this, for example in * pci_set_power_state(). So we have to take care to perform the required * operations on our own (particularly reflecting the pdev->current_state) * otherwise we might get cheated by pci-pm. */ static int vlsi_irda_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *ndev = pci_get_drvdata(pdev); vlsi_irda_dev_t *idev; if (!ndev) { IRDA_ERROR("%s - %s: no netdevice \n", __func__, pci_name(pdev)); return 0; } idev = netdev_priv(ndev); mutex_lock(&idev->mtx); if (pdev->current_state != 0) { /* already suspended */ if (state.event > pdev->current_state) { /* simply go deeper */ pci_set_power_state(pdev, pci_choose_state(pdev, state)); pdev->current_state = state.event; } else IRDA_ERROR("%s - %s: invalid suspend request %u -> %u\n", __func__, pci_name(pdev), pdev->current_state, state.event); mutex_unlock(&idev->mtx); return 0; } if (netif_running(ndev)) { netif_device_detach(ndev); vlsi_stop_hw(idev); pci_save_state(pdev); if (!idev->new_baud) /* remember speed settings to restore on resume */ idev->new_baud = idev->baud; } pci_set_power_state(pdev, pci_choose_state(pdev, state)); pdev->current_state = state.event; idev->resume_ok = 1; mutex_unlock(&idev->mtx); return 0; } static int vlsi_irda_resume(struct pci_dev *pdev) { struct net_device *ndev = pci_get_drvdata(pdev); vlsi_irda_dev_t *idev; if (!ndev) { IRDA_ERROR("%s - %s: no netdevice \n", __func__, pci_name(pdev)); return 0; } idev = netdev_priv(ndev); mutex_lock(&idev->mtx); if (pdev->current_state == 0) { mutex_unlock(&idev->mtx); IRDA_WARNING("%s - %s: already resumed\n", __func__, pci_name(pdev)); return 0; } pci_set_power_state(pdev, PCI_D0); pdev->current_state = PM_EVENT_ON; if (!idev->resume_ok) { /* should be obsolete now - but used to happen due to: * - pci layer initially setting pdev->current_state = 4 (unknown) * - pci layer did not walk the save_state-tree (might be APM problem) * so we could not refuse to suspend from undefined state * - vlsi_irda_suspend detected invalid state and refused to save * configuration for resume - but was too late to stop suspending * - vlsi_irda_resume got screwed when trying to resume from garbage * * now we explicitly set pdev->current_state = 0 after enabling the * device and independently resume_ok should catch any garbage config. */ IRDA_WARNING("%s - hm, nothing to resume?\n", __func__); mutex_unlock(&idev->mtx); return 0; } if (netif_running(ndev)) { pci_restore_state(pdev); vlsi_start_hw(idev); netif_device_attach(ndev); } idev->resume_ok = 0; mutex_unlock(&idev->mtx); return 0; } #endif /* CONFIG_PM */ /*********************************************************/ static struct pci_driver vlsi_irda_driver = { .name = drivername, .id_table = vlsi_irda_table, .probe = vlsi_irda_probe, .remove = __devexit_p(vlsi_irda_remove), #ifdef CONFIG_PM .suspend = vlsi_irda_suspend, .resume = vlsi_irda_resume, #endif }; #define PROC_DIR ("driver/" DRIVER_NAME) static int __init vlsi_mod_init(void) { int i, ret; if (clksrc < 0 || clksrc > 3) { IRDA_ERROR("%s: invalid clksrc=%d\n", drivername, clksrc); return -1; } for (i = 0; i < 2; i++) { switch(ringsize[i]) { case 4: case 8: case 16: case 32: case 64: break; default: IRDA_WARNING("%s: invalid %s ringsize %d, using default=8", drivername, (i)?"rx":"tx", ringsize[i]); ringsize[i] = 8; break; } } sirpulse = !!sirpulse; /* proc_mkdir returns NULL if !CONFIG_PROC_FS. * Failure to create the procfs entry is handled like running * without procfs - it's not required for the driver to work. */ vlsi_proc_root = proc_mkdir(PROC_DIR, NULL); if (vlsi_proc_root) { /* protect registered procdir against module removal. * Because we are in the module init path there's no race * window after create_proc_entry (and no barrier needed). */ vlsi_proc_root->owner = THIS_MODULE; } ret = pci_register_driver(&vlsi_irda_driver); if (ret && vlsi_proc_root) remove_proc_entry(PROC_DIR, NULL); return ret; } static void __exit vlsi_mod_exit(void) { pci_unregister_driver(&vlsi_irda_driver); if (vlsi_proc_root) remove_proc_entry(PROC_DIR, NULL); } module_init(vlsi_mod_init); module_exit(vlsi_mod_exit);