/* * QLogic QLA41xx NIC HBA Driver * Copyright (c) 2003-2006 QLogic Corporation * * See LICENSE.qlge for copyright and licensing details. */ #ifndef _QLGE_H_ #define _QLGE_H_ #include #include #include /* * General definitions... */ #define DRV_NAME "qlge" #define DRV_STRING "QLogic 10 Gigabit PCI-E Ethernet Driver " #define DRV_VERSION "v1.00.00.23.00.00-01" #define PFX "qlge: " #define QPRINTK(qdev, nlevel, klevel, fmt, args...) \ do { \ if (!((qdev)->msg_enable & NETIF_MSG_##nlevel)) \ ; \ else \ dev_printk(KERN_##klevel, &((qdev)->pdev->dev), \ "%s: " fmt, __func__, ##args); \ } while (0) #define WQ_ADDR_ALIGN 0x3 /* 4 byte alignment */ #define QLGE_VENDOR_ID 0x1077 #define QLGE_DEVICE_ID_8012 0x8012 #define QLGE_DEVICE_ID_8000 0x8000 #define MAX_CPUS 8 #define MAX_TX_RINGS MAX_CPUS #define MAX_RX_RINGS ((MAX_CPUS * 2) + 1) #define NUM_TX_RING_ENTRIES 256 #define NUM_RX_RING_ENTRIES 256 #define NUM_SMALL_BUFFERS 512 #define NUM_LARGE_BUFFERS 512 #define DB_PAGE_SIZE 4096 /* Calculate the number of (4k) pages required to * contain a buffer queue of the given length. */ #define MAX_DB_PAGES_PER_BQ(x) \ (((x * sizeof(u64)) / DB_PAGE_SIZE) + \ (((x * sizeof(u64)) % DB_PAGE_SIZE) ? 1 : 0)) #define RX_RING_SHADOW_SPACE (sizeof(u64) + \ MAX_DB_PAGES_PER_BQ(NUM_SMALL_BUFFERS) * sizeof(u64) + \ MAX_DB_PAGES_PER_BQ(NUM_LARGE_BUFFERS) * sizeof(u64)) #define LARGE_BUFFER_MAX_SIZE 8192 #define LARGE_BUFFER_MIN_SIZE 2048 #define MAX_CQ 128 #define DFLT_COALESCE_WAIT 100 /* 100 usec wait for coalescing */ #define MAX_INTER_FRAME_WAIT 10 /* 10 usec max interframe-wait for coalescing */ #define DFLT_INTER_FRAME_WAIT (MAX_INTER_FRAME_WAIT/2) #define UDELAY_COUNT 3 #define UDELAY_DELAY 100 #define TX_DESC_PER_IOCB 8 /* The maximum number of frags we handle is based * on PAGE_SIZE... */ #if (PAGE_SHIFT == 12) || (PAGE_SHIFT == 13) /* 4k & 8k pages */ #define TX_DESC_PER_OAL ((MAX_SKB_FRAGS - TX_DESC_PER_IOCB) + 2) #else /* all other page sizes */ #define TX_DESC_PER_OAL 0 #endif /* Word shifting for converting 64-bit * address to a series of 16-bit words. * This is used for some MPI firmware * mailbox commands. */ #define LSW(x) ((u16)(x)) #define MSW(x) ((u16)((u32)(x) >> 16)) #define LSD(x) ((u32)((u64)(x))) #define MSD(x) ((u32)((((u64)(x)) >> 32))) /* MPI test register definitions. This register * is used for determining alternate NIC function's * PCI->func number. */ enum { MPI_TEST_FUNC_PORT_CFG = 0x1002, MPI_TEST_FUNC_PRB_CTL = 0x100e, MPI_TEST_FUNC_PRB_EN = 0x18a20000, MPI_TEST_FUNC_RST_STS = 0x100a, MPI_TEST_FUNC_RST_FRC = 0x00000003, MPI_TEST_NIC_FUNC_MASK = 0x00000007, MPI_TEST_NIC1_FUNCTION_ENABLE = (1 << 0), MPI_TEST_NIC1_FUNCTION_MASK = 0x0000000e, MPI_TEST_NIC1_FUNC_SHIFT = 1, MPI_TEST_NIC2_FUNCTION_ENABLE = (1 << 4), MPI_TEST_NIC2_FUNCTION_MASK = 0x000000e0, MPI_TEST_NIC2_FUNC_SHIFT = 5, MPI_TEST_FC1_FUNCTION_ENABLE = (1 << 8), MPI_TEST_FC1_FUNCTION_MASK = 0x00000e00, MPI_TEST_FC1_FUNCTION_SHIFT = 9, MPI_TEST_FC2_FUNCTION_ENABLE = (1 << 12), MPI_TEST_FC2_FUNCTION_MASK = 0x0000e000, MPI_TEST_FC2_FUNCTION_SHIFT = 13, MPI_NIC_READ = 0x00000000, MPI_NIC_REG_BLOCK = 0x00020000, MPI_NIC_FUNCTION_SHIFT = 6, }; /* * Processor Address Register (PROC_ADDR) bit definitions. */ enum { /* Misc. stuff */ MAILBOX_COUNT = 16, MAILBOX_TIMEOUT = 5, PROC_ADDR_RDY = (1 << 31), PROC_ADDR_R = (1 << 30), PROC_ADDR_ERR = (1 << 29), PROC_ADDR_DA = (1 << 28), PROC_ADDR_FUNC0_MBI = 0x00001180, PROC_ADDR_FUNC0_MBO = (PROC_ADDR_FUNC0_MBI + MAILBOX_COUNT), PROC_ADDR_FUNC0_CTL = 0x000011a1, PROC_ADDR_FUNC2_MBI = 0x00001280, PROC_ADDR_FUNC2_MBO = (PROC_ADDR_FUNC2_MBI + MAILBOX_COUNT), PROC_ADDR_FUNC2_CTL = 0x000012a1, PROC_ADDR_MPI_RISC = 0x00000000, PROC_ADDR_MDE = 0x00010000, PROC_ADDR_REGBLOCK = 0x00020000, PROC_ADDR_RISC_REG = 0x00030000, }; /* * System Register (SYS) bit definitions. */ enum { SYS_EFE = (1 << 0), SYS_FAE = (1 << 1), SYS_MDC = (1 << 2), SYS_DST = (1 << 3), SYS_DWC = (1 << 4), SYS_EVW = (1 << 5), SYS_OMP_DLY_MASK = 0x3f000000, /* * There are no values defined as of edit #15. */ SYS_ODI = (1 << 14), }; /* * Reset/Failover Register (RST_FO) bit definitions. */ enum { RST_FO_TFO = (1 << 0), RST_FO_RR_MASK = 0x00060000, RST_FO_RR_CQ_CAM = 0x00000000, RST_FO_RR_DROP = 0x00000002, RST_FO_RR_DQ = 0x00000004, RST_FO_RR_RCV_FUNC_CQ = 0x00000006, RST_FO_FRB = (1 << 12), RST_FO_MOP = (1 << 13), RST_FO_REG = (1 << 14), RST_FO_FR = (1 << 15), }; /* * Function Specific Control Register (FSC) bit definitions. */ enum { FSC_DBRST_MASK = 0x00070000, FSC_DBRST_256 = 0x00000000, FSC_DBRST_512 = 0x00000001, FSC_DBRST_768 = 0x00000002, FSC_DBRST_1024 = 0x00000003, FSC_DBL_MASK = 0x00180000, FSC_DBL_DBRST = 0x00000000, FSC_DBL_MAX_PLD = 0x00000008, FSC_DBL_MAX_BRST = 0x00000010, FSC_DBL_128_BYTES = 0x00000018, FSC_EC = (1 << 5), FSC_EPC_MASK = 0x00c00000, FSC_EPC_INBOUND = (1 << 6), FSC_EPC_OUTBOUND = (1 << 7), FSC_VM_PAGESIZE_MASK = 0x07000000, FSC_VM_PAGE_2K = 0x00000100, FSC_VM_PAGE_4K = 0x00000200, FSC_VM_PAGE_8K = 0x00000300, FSC_VM_PAGE_64K = 0x00000600, FSC_SH = (1 << 11), FSC_DSB = (1 << 12), FSC_STE = (1 << 13), FSC_FE = (1 << 15), }; /* * Host Command Status Register (CSR) bit definitions. */ enum { CSR_ERR_STS_MASK = 0x0000003f, /* * There are no valued defined as of edit #15. */ CSR_RR = (1 << 8), CSR_HRI = (1 << 9), CSR_RP = (1 << 10), CSR_CMD_PARM_SHIFT = 22, CSR_CMD_NOP = 0x00000000, CSR_CMD_SET_RST = 0x10000000, CSR_CMD_CLR_RST = 0x20000000, CSR_CMD_SET_PAUSE = 0x30000000, CSR_CMD_CLR_PAUSE = 0x40000000, CSR_CMD_SET_H2R_INT = 0x50000000, CSR_CMD_CLR_H2R_INT = 0x60000000, CSR_CMD_PAR_EN = 0x70000000, CSR_CMD_SET_BAD_PAR = 0x80000000, CSR_CMD_CLR_BAD_PAR = 0x90000000, CSR_CMD_CLR_R2PCI_INT = 0xa0000000, }; /* * Configuration Register (CFG) bit definitions. */ enum { CFG_LRQ = (1 << 0), CFG_DRQ = (1 << 1), CFG_LR = (1 << 2), CFG_DR = (1 << 3), CFG_LE = (1 << 5), CFG_LCQ = (1 << 6), CFG_DCQ = (1 << 7), CFG_Q_SHIFT = 8, CFG_Q_MASK = 0x7f000000, }; /* * Status Register (STS) bit definitions. */ enum { STS_FE = (1 << 0), STS_PI = (1 << 1), STS_PL0 = (1 << 2), STS_PL1 = (1 << 3), STS_PI0 = (1 << 4), STS_PI1 = (1 << 5), STS_FUNC_ID_MASK = 0x000000c0, STS_FUNC_ID_SHIFT = 6, STS_F0E = (1 << 8), STS_F1E = (1 << 9), STS_F2E = (1 << 10), STS_F3E = (1 << 11), STS_NFE = (1 << 12), }; /* * Interrupt Enable Register (INTR_EN) bit definitions. */ enum { INTR_EN_INTR_MASK = 0x007f0000, INTR_EN_TYPE_MASK = 0x03000000, INTR_EN_TYPE_ENABLE = 0x00000100, INTR_EN_TYPE_DISABLE = 0x00000200, INTR_EN_TYPE_READ = 0x00000300, INTR_EN_IHD = (1 << 13), INTR_EN_IHD_MASK = (INTR_EN_IHD << 16), INTR_EN_EI = (1 << 14), INTR_EN_EN = (1 << 15), }; /* * Interrupt Mask Register (INTR_MASK) bit definitions. */ enum { INTR_MASK_PI = (1 << 0), INTR_MASK_HL0 = (1 << 1), INTR_MASK_LH0 = (1 << 2), INTR_MASK_HL1 = (1 << 3), INTR_MASK_LH1 = (1 << 4), INTR_MASK_SE = (1 << 5), INTR_MASK_LSC = (1 << 6), INTR_MASK_MC = (1 << 7), INTR_MASK_LINK_IRQS = INTR_MASK_LSC | INTR_MASK_SE | INTR_MASK_MC, }; /* * Register (REV_ID) bit definitions. */ enum { REV_ID_MASK = 0x0000000f, REV_ID_NICROLL_SHIFT = 0, REV_ID_NICREV_SHIFT = 4, REV_ID_XGROLL_SHIFT = 8, REV_ID_XGREV_SHIFT = 12, REV_ID_CHIPREV_SHIFT = 28, }; /* * Force ECC Error Register (FRC_ECC_ERR) bit definitions. */ enum { FRC_ECC_ERR_VW = (1 << 12), FRC_ECC_ERR_VB = (1 << 13), FRC_ECC_ERR_NI = (1 << 14), FRC_ECC_ERR_NO = (1 << 15), FRC_ECC_PFE_SHIFT = 16, FRC_ECC_ERR_DO = (1 << 18), FRC_ECC_P14 = (1 << 19), }; /* * Error Status Register (ERR_STS) bit definitions. */ enum { ERR_STS_NOF = (1 << 0), ERR_STS_NIF = (1 << 1), ERR_STS_DRP = (1 << 2), ERR_STS_XGP = (1 << 3), ERR_STS_FOU = (1 << 4), ERR_STS_FOC = (1 << 5), ERR_STS_FOF = (1 << 6), ERR_STS_FIU = (1 << 7), ERR_STS_FIC = (1 << 8), ERR_STS_FIF = (1 << 9), ERR_STS_MOF = (1 << 10), ERR_STS_TA = (1 << 11), ERR_STS_MA = (1 << 12), ERR_STS_MPE = (1 << 13), ERR_STS_SCE = (1 << 14), ERR_STS_STE = (1 << 15), ERR_STS_FOW = (1 << 16), ERR_STS_UE = (1 << 17), ERR_STS_MCH = (1 << 26), ERR_STS_LOC_SHIFT = 27, }; /* * RAM Debug Address Register (RAM_DBG_ADDR) bit definitions. */ enum { RAM_DBG_ADDR_FW = (1 << 30), RAM_DBG_ADDR_FR = (1 << 31), }; /* * Semaphore Register (SEM) bit definitions. */ enum { /* * Example: * reg = SEM_XGMAC0_MASK | (SEM_SET << SEM_XGMAC0_SHIFT) */ SEM_CLEAR = 0, SEM_SET = 1, SEM_FORCE = 3, SEM_XGMAC0_SHIFT = 0, SEM_XGMAC1_SHIFT = 2, SEM_ICB_SHIFT = 4, SEM_MAC_ADDR_SHIFT = 6, SEM_FLASH_SHIFT = 8, SEM_PROBE_SHIFT = 10, SEM_RT_IDX_SHIFT = 12, SEM_PROC_REG_SHIFT = 14, SEM_XGMAC0_MASK = 0x00030000, SEM_XGMAC1_MASK = 0x000c0000, SEM_ICB_MASK = 0x00300000, SEM_MAC_ADDR_MASK = 0x00c00000, SEM_FLASH_MASK = 0x03000000, SEM_PROBE_MASK = 0x0c000000, SEM_RT_IDX_MASK = 0x30000000, SEM_PROC_REG_MASK = 0xc0000000, }; /* * 10G MAC Address Register (XGMAC_ADDR) bit definitions. */ enum { XGMAC_ADDR_RDY = (1 << 31), XGMAC_ADDR_R = (1 << 30), XGMAC_ADDR_XME = (1 << 29), /* XGMAC control registers */ PAUSE_SRC_LO = 0x00000100, PAUSE_SRC_HI = 0x00000104, GLOBAL_CFG = 0x00000108, GLOBAL_CFG_RESET = (1 << 0), GLOBAL_CFG_JUMBO = (1 << 6), GLOBAL_CFG_TX_STAT_EN = (1 << 10), GLOBAL_CFG_RX_STAT_EN = (1 << 11), TX_CFG = 0x0000010c, TX_CFG_RESET = (1 << 0), TX_CFG_EN = (1 << 1), TX_CFG_PREAM = (1 << 2), RX_CFG = 0x00000110, RX_CFG_RESET = (1 << 0), RX_CFG_EN = (1 << 1), RX_CFG_PREAM = (1 << 2), FLOW_CTL = 0x0000011c, PAUSE_OPCODE = 0x00000120, PAUSE_TIMER = 0x00000124, PAUSE_FRM_DEST_LO = 0x00000128, PAUSE_FRM_DEST_HI = 0x0000012c, MAC_TX_PARAMS = 0x00000134, MAC_TX_PARAMS_JUMBO = (1 << 31), MAC_TX_PARAMS_SIZE_SHIFT = 16, MAC_RX_PARAMS = 0x00000138, MAC_SYS_INT = 0x00000144, MAC_SYS_INT_MASK = 0x00000148, MAC_MGMT_INT = 0x0000014c, MAC_MGMT_IN_MASK = 0x00000150, EXT_ARB_MODE = 0x000001fc, /* XGMAC TX statistics registers */ TX_PKTS = 0x00000200, TX_BYTES = 0x00000208, TX_MCAST_PKTS = 0x00000210, TX_BCAST_PKTS = 0x00000218, TX_UCAST_PKTS = 0x00000220, TX_CTL_PKTS = 0x00000228, TX_PAUSE_PKTS = 0x00000230, TX_64_PKT = 0x00000238, TX_65_TO_127_PKT = 0x00000240, TX_128_TO_255_PKT = 0x00000248, TX_256_511_PKT = 0x00000250, TX_512_TO_1023_PKT = 0x00000258, TX_1024_TO_1518_PKT = 0x00000260, TX_1519_TO_MAX_PKT = 0x00000268, TX_UNDERSIZE_PKT = 0x00000270, TX_OVERSIZE_PKT = 0x00000278, /* XGMAC statistics control registers */ RX_HALF_FULL_DET = 0x000002a0, TX_HALF_FULL_DET = 0x000002a4, RX_OVERFLOW_DET = 0x000002a8, TX_OVERFLOW_DET = 0x000002ac, RX_HALF_FULL_MASK = 0x000002b0, TX_HALF_FULL_MASK = 0x000002b4, RX_OVERFLOW_MASK = 0x000002b8, TX_OVERFLOW_MASK = 0x000002bc, STAT_CNT_CTL = 0x000002c0, STAT_CNT_CTL_CLEAR_TX = (1 << 0), STAT_CNT_CTL_CLEAR_RX = (1 << 1), AUX_RX_HALF_FULL_DET = 0x000002d0, AUX_TX_HALF_FULL_DET = 0x000002d4, AUX_RX_OVERFLOW_DET = 0x000002d8, AUX_TX_OVERFLOW_DET = 0x000002dc, AUX_RX_HALF_FULL_MASK = 0x000002f0, AUX_TX_HALF_FULL_MASK = 0x000002f4, AUX_RX_OVERFLOW_MASK = 0x000002f8, AUX_TX_OVERFLOW_MASK = 0x000002fc, /* XGMAC RX statistics registers */ RX_BYTES = 0x00000300, RX_BYTES_OK = 0x00000308, RX_PKTS = 0x00000310, RX_PKTS_OK = 0x00000318, RX_BCAST_PKTS = 0x00000320, RX_MCAST_PKTS = 0x00000328, RX_UCAST_PKTS = 0x00000330, RX_UNDERSIZE_PKTS = 0x00000338, RX_OVERSIZE_PKTS = 0x00000340, RX_JABBER_PKTS = 0x00000348, RX_UNDERSIZE_FCERR_PKTS = 0x00000350, RX_DROP_EVENTS = 0x00000358, RX_FCERR_PKTS = 0x00000360, RX_ALIGN_ERR = 0x00000368, RX_SYMBOL_ERR = 0x00000370, RX_MAC_ERR = 0x00000378, RX_CTL_PKTS = 0x00000380, RX_PAUSE_PKTS = 0x00000388, RX_64_PKTS = 0x00000390, RX_65_TO_127_PKTS = 0x00000398, RX_128_255_PKTS = 0x000003a0, RX_256_511_PKTS = 0x000003a8, RX_512_TO_1023_PKTS = 0x000003b0, RX_1024_TO_1518_PKTS = 0x000003b8, RX_1519_TO_MAX_PKTS = 0x000003c0, RX_LEN_ERR_PKTS = 0x000003c8, /* XGMAC MDIO control registers */ MDIO_TX_DATA = 0x00000400, MDIO_RX_DATA = 0x00000410, MDIO_CMD = 0x00000420, MDIO_PHY_ADDR = 0x00000430, MDIO_PORT = 0x00000440, MDIO_STATUS = 0x00000450, XGMAC_REGISTER_END = 0x00000740, }; /* * Enhanced Transmission Schedule Registers (NIC_ETS,CNA_ETS) bit definitions. */ enum { ETS_QUEUE_SHIFT = 29, ETS_REF = (1 << 26), ETS_RS = (1 << 27), ETS_P = (1 << 28), ETS_FC_COS_SHIFT = 23, }; /* * Flash Address Register (FLASH_ADDR) bit definitions. */ enum { FLASH_ADDR_RDY = (1 << 31), FLASH_ADDR_R = (1 << 30), FLASH_ADDR_ERR = (1 << 29), }; /* * Stop CQ Processing Register (CQ_STOP) bit definitions. */ enum { CQ_STOP_QUEUE_MASK = (0x007f0000), CQ_STOP_TYPE_MASK = (0x03000000), CQ_STOP_TYPE_START = 0x00000100, CQ_STOP_TYPE_STOP = 0x00000200, CQ_STOP_TYPE_READ = 0x00000300, CQ_STOP_EN = (1 << 15), }; /* * MAC Protocol Address Index Register (MAC_ADDR_IDX) bit definitions. */ enum { MAC_ADDR_IDX_SHIFT = 4, MAC_ADDR_TYPE_SHIFT = 16, MAC_ADDR_TYPE_COUNT = 10, MAC_ADDR_TYPE_MASK = 0x000f0000, MAC_ADDR_TYPE_CAM_MAC = 0x00000000, MAC_ADDR_TYPE_MULTI_MAC = 0x00010000, MAC_ADDR_TYPE_VLAN = 0x00020000, MAC_ADDR_TYPE_MULTI_FLTR = 0x00030000, MAC_ADDR_TYPE_FC_MAC = 0x00040000, MAC_ADDR_TYPE_MGMT_MAC = 0x00050000, MAC_ADDR_TYPE_MGMT_VLAN = 0x00060000, MAC_ADDR_TYPE_MGMT_V4 = 0x00070000, MAC_ADDR_TYPE_MGMT_V6 = 0x00080000, MAC_ADDR_TYPE_MGMT_TU_DP = 0x00090000, MAC_ADDR_ADR = (1 << 25), MAC_ADDR_RS = (1 << 26), MAC_ADDR_E = (1 << 27), MAC_ADDR_MR = (1 << 30), MAC_ADDR_MW = (1 << 31), MAX_MULTICAST_ENTRIES = 32, /* Entry count and words per entry * for each address type in the filter. */ MAC_ADDR_MAX_CAM_ENTRIES = 512, MAC_ADDR_MAX_CAM_WCOUNT = 3, MAC_ADDR_MAX_MULTICAST_ENTRIES = 32, MAC_ADDR_MAX_MULTICAST_WCOUNT = 2, MAC_ADDR_MAX_VLAN_ENTRIES = 4096, MAC_ADDR_MAX_VLAN_WCOUNT = 1, MAC_ADDR_MAX_MCAST_FLTR_ENTRIES = 4096, MAC_ADDR_MAX_MCAST_FLTR_WCOUNT = 1, MAC_ADDR_MAX_FC_MAC_ENTRIES = 4, MAC_ADDR_MAX_FC_MAC_WCOUNT = 2, MAC_ADDR_MAX_MGMT_MAC_ENTRIES = 8, MAC_ADDR_MAX_MGMT_MAC_WCOUNT = 2, MAC_ADDR_MAX_MGMT_VLAN_ENTRIES = 16, MAC_ADDR_MAX_MGMT_VLAN_WCOUNT = 1, MAC_ADDR_MAX_MGMT_V4_ENTRIES = 4, MAC_ADDR_MAX_MGMT_V4_WCOUNT = 1, MAC_ADDR_MAX_MGMT_V6_ENTRIES = 4, MAC_ADDR_MAX_MGMT_V6_WCOUNT = 4, MAC_ADDR_MAX_MGMT_TU_DP_ENTRIES = 4, MAC_ADDR_MAX_MGMT_TU_DP_WCOUNT = 1, }; /* * MAC Protocol Address Index Register (SPLT_HDR) bit definitions. */ enum { SPLT_HDR_EP = (1 << 31), }; /* * FCoE Receive Configuration Register (FC_RCV_CFG) bit definitions. */ enum { FC_RCV_CFG_ECT = (1 << 15), FC_RCV_CFG_DFH = (1 << 20), FC_RCV_CFG_DVF = (1 << 21), FC_RCV_CFG_RCE = (1 << 27), FC_RCV_CFG_RFE = (1 << 28), FC_RCV_CFG_TEE = (1 << 29), FC_RCV_CFG_TCE = (1 << 30), FC_RCV_CFG_TFE = (1 << 31), }; /* * NIC Receive Configuration Register (NIC_RCV_CFG) bit definitions. */ enum { NIC_RCV_CFG_PPE = (1 << 0), NIC_RCV_CFG_VLAN_MASK = 0x00060000, NIC_RCV_CFG_VLAN_ALL = 0x00000000, NIC_RCV_CFG_VLAN_MATCH_ONLY = 0x00000002, NIC_RCV_CFG_VLAN_MATCH_AND_NON = 0x00000004, NIC_RCV_CFG_VLAN_NONE_AND_NON = 0x00000006, NIC_RCV_CFG_RV = (1 << 3), NIC_RCV_CFG_DFQ_MASK = (0x7f000000), NIC_RCV_CFG_DFQ_SHIFT = 8, NIC_RCV_CFG_DFQ = 0, /* HARDCODE default queue to 0. */ }; /* * Mgmt Receive Configuration Register (MGMT_RCV_CFG) bit definitions. */ enum { MGMT_RCV_CFG_ARP = (1 << 0), MGMT_RCV_CFG_DHC = (1 << 1), MGMT_RCV_CFG_DHS = (1 << 2), MGMT_RCV_CFG_NP = (1 << 3), MGMT_RCV_CFG_I6N = (1 << 4), MGMT_RCV_CFG_I6R = (1 << 5), MGMT_RCV_CFG_DH6 = (1 << 6), MGMT_RCV_CFG_UD1 = (1 << 7), MGMT_RCV_CFG_UD0 = (1 << 8), MGMT_RCV_CFG_BCT = (1 << 9), MGMT_RCV_CFG_MCT = (1 << 10), MGMT_RCV_CFG_DM = (1 << 11), MGMT_RCV_CFG_RM = (1 << 12), MGMT_RCV_CFG_STL = (1 << 13), MGMT_RCV_CFG_VLAN_MASK = 0xc0000000, MGMT_RCV_CFG_VLAN_ALL = 0x00000000, MGMT_RCV_CFG_VLAN_MATCH_ONLY = 0x00004000, MGMT_RCV_CFG_VLAN_MATCH_AND_NON = 0x00008000, MGMT_RCV_CFG_VLAN_NONE_AND_NON = 0x0000c000, }; /* * Routing Index Register (RT_IDX) bit definitions. */ enum { RT_IDX_IDX_SHIFT = 8, RT_IDX_TYPE_MASK = 0x000f0000, RT_IDX_TYPE_SHIFT = 16, RT_IDX_TYPE_RT = 0x00000000, RT_IDX_TYPE_RT_INV = 0x00010000, RT_IDX_TYPE_NICQ = 0x00020000, RT_IDX_TYPE_NICQ_INV = 0x00030000, RT_IDX_DST_MASK = 0x00700000, RT_IDX_DST_RSS = 0x00000000, RT_IDX_DST_CAM_Q = 0x00100000, RT_IDX_DST_COS_Q = 0x00200000, RT_IDX_DST_DFLT_Q = 0x00300000, RT_IDX_DST_DEST_Q = 0x00400000, RT_IDX_RS = (1 << 26), RT_IDX_E = (1 << 27), RT_IDX_MR = (1 << 30), RT_IDX_MW = (1 << 31), /* Nic Queue format - type 2 bits */ RT_IDX_BCAST = (1 << 0), RT_IDX_MCAST = (1 << 1), RT_IDX_MCAST_MATCH = (1 << 2), RT_IDX_MCAST_REG_MATCH = (1 << 3), RT_IDX_MCAST_HASH_MATCH = (1 << 4), RT_IDX_FC_MACH = (1 << 5), RT_IDX_ETH_FCOE = (1 << 6), RT_IDX_CAM_HIT = (1 << 7), RT_IDX_CAM_BIT0 = (1 << 8), RT_IDX_CAM_BIT1 = (1 << 9), RT_IDX_VLAN_TAG = (1 << 10), RT_IDX_VLAN_MATCH = (1 << 11), RT_IDX_VLAN_FILTER = (1 << 12), RT_IDX_ETH_SKIP1 = (1 << 13), RT_IDX_ETH_SKIP2 = (1 << 14), RT_IDX_BCAST_MCAST_MATCH = (1 << 15), RT_IDX_802_3 = (1 << 16), RT_IDX_LLDP = (1 << 17), RT_IDX_UNUSED018 = (1 << 18), RT_IDX_UNUSED019 = (1 << 19), RT_IDX_UNUSED20 = (1 << 20), RT_IDX_UNUSED21 = (1 << 21), RT_IDX_ERR = (1 << 22), RT_IDX_VALID = (1 << 23), RT_IDX_TU_CSUM_ERR = (1 << 24), RT_IDX_IP_CSUM_ERR = (1 << 25), RT_IDX_MAC_ERR = (1 << 26), RT_IDX_RSS_TCP6 = (1 << 27), RT_IDX_RSS_TCP4 = (1 << 28), RT_IDX_RSS_IPV6 = (1 << 29), RT_IDX_RSS_IPV4 = (1 << 30), RT_IDX_RSS_MATCH = (1 << 31), /* Hierarchy for the NIC Queue Mask */ RT_IDX_ALL_ERR_SLOT = 0, RT_IDX_MAC_ERR_SLOT = 0, RT_IDX_IP_CSUM_ERR_SLOT = 1, RT_IDX_TCP_UDP_CSUM_ERR_SLOT = 2, RT_IDX_BCAST_SLOT = 3, RT_IDX_MCAST_MATCH_SLOT = 4, RT_IDX_ALLMULTI_SLOT = 5, RT_IDX_UNUSED6_SLOT = 6, RT_IDX_UNUSED7_SLOT = 7, RT_IDX_RSS_MATCH_SLOT = 8, RT_IDX_RSS_IPV4_SLOT = 8, RT_IDX_RSS_IPV6_SLOT = 9, RT_IDX_RSS_TCP4_SLOT = 10, RT_IDX_RSS_TCP6_SLOT = 11, RT_IDX_CAM_HIT_SLOT = 12, RT_IDX_UNUSED013 = 13, RT_IDX_UNUSED014 = 14, RT_IDX_PROMISCUOUS_SLOT = 15, RT_IDX_MAX_RT_SLOTS = 8, RT_IDX_MAX_NIC_SLOTS = 16, }; /* * Serdes Address Register (XG_SERDES_ADDR) bit definitions. */ enum { XG_SERDES_ADDR_RDY = (1 << 31), XG_SERDES_ADDR_R = (1 << 30), XG_SERDES_ADDR_STS = 0x00001E06, XG_SERDES_ADDR_XFI1_PWR_UP = 0x00000005, XG_SERDES_ADDR_XFI2_PWR_UP = 0x0000000a, XG_SERDES_ADDR_XAUI_PWR_DOWN = 0x00000001, /* Serdes coredump definitions. */ XG_SERDES_XAUI_AN_START = 0x00000000, XG_SERDES_XAUI_AN_END = 0x00000034, XG_SERDES_XAUI_HSS_PCS_START = 0x00000800, XG_SERDES_XAUI_HSS_PCS_END = 0x0000880, XG_SERDES_XFI_AN_START = 0x00001000, XG_SERDES_XFI_AN_END = 0x00001034, XG_SERDES_XFI_TRAIN_START = 0x10001050, XG_SERDES_XFI_TRAIN_END = 0x1000107C, XG_SERDES_XFI_HSS_PCS_START = 0x00001800, XG_SERDES_XFI_HSS_PCS_END = 0x00001838, XG_SERDES_XFI_HSS_TX_START = 0x00001c00, XG_SERDES_XFI_HSS_TX_END = 0x00001c1f, XG_SERDES_XFI_HSS_RX_START = 0x00001c40, XG_SERDES_XFI_HSS_RX_END = 0x00001c5f, XG_SERDES_XFI_HSS_PLL_START = 0x00001e00, XG_SERDES_XFI_HSS_PLL_END = 0x00001e1f, }; /* * NIC Probe Mux Address Register (PRB_MX_ADDR) bit definitions. */ enum { PRB_MX_ADDR_ARE = (1 << 16), PRB_MX_ADDR_UP = (1 << 15), PRB_MX_ADDR_SWP = (1 << 14), /* Module select values. */ PRB_MX_ADDR_MAX_MODS = 21, PRB_MX_ADDR_MOD_SEL_SHIFT = 9, PRB_MX_ADDR_MOD_SEL_TBD = 0, PRB_MX_ADDR_MOD_SEL_IDE1 = 1, PRB_MX_ADDR_MOD_SEL_IDE2 = 2, PRB_MX_ADDR_MOD_SEL_FRB = 3, PRB_MX_ADDR_MOD_SEL_ODE1 = 4, PRB_MX_ADDR_MOD_SEL_ODE2 = 5, PRB_MX_ADDR_MOD_SEL_DA1 = 6, PRB_MX_ADDR_MOD_SEL_DA2 = 7, PRB_MX_ADDR_MOD_SEL_IMP1 = 8, PRB_MX_ADDR_MOD_SEL_IMP2 = 9, PRB_MX_ADDR_MOD_SEL_OMP1 = 10, PRB_MX_ADDR_MOD_SEL_OMP2 = 11, PRB_MX_ADDR_MOD_SEL_ORS1 = 12, PRB_MX_ADDR_MOD_SEL_ORS2 = 13, PRB_MX_ADDR_MOD_SEL_REG = 14, PRB_MX_ADDR_MOD_SEL_MAC1 = 16, PRB_MX_ADDR_MOD_SEL_MAC2 = 17, PRB_MX_ADDR_MOD_SEL_VQM1 = 18, PRB_MX_ADDR_MOD_SEL_VQM2 = 19, PRB_MX_ADDR_MOD_SEL_MOP = 20, /* Bit fields indicating which modules * are valid for each clock domain. */ PRB_MX_ADDR_VALID_SYS_MOD = 0x000f7ff7, PRB_MX_ADDR_VALID_PCI_MOD = 0x000040c1, PRB_MX_ADDR_VALID_XGM_MOD = 0x00037309, PRB_MX_ADDR_VALID_FC_MOD = 0x00003001, PRB_MX_ADDR_VALID_TOTAL = 34, /* Clock domain values. */ PRB_MX_ADDR_CLOCK_SHIFT = 6, PRB_MX_ADDR_SYS_CLOCK = 0, PRB_MX_ADDR_PCI_CLOCK = 2, PRB_MX_ADDR_FC_CLOCK = 5, PRB_MX_ADDR_XGM_CLOCK = 6, PRB_MX_ADDR_MAX_MUX = 64, }; /* * Control Register Set Map */ enum { PROC_ADDR = 0, /* Use semaphore */ PROC_DATA = 0x04, /* Use semaphore */ SYS = 0x08, RST_FO = 0x0c, FSC = 0x10, CSR = 0x14, LED = 0x18, ICB_RID = 0x1c, /* Use semaphore */ ICB_L = 0x20, /* Use semaphore */ ICB_H = 0x24, /* Use semaphore */ CFG = 0x28, BIOS_ADDR = 0x2c, STS = 0x30, INTR_EN = 0x34, INTR_MASK = 0x38, ISR1 = 0x3c, ISR2 = 0x40, ISR3 = 0x44, ISR4 = 0x48, REV_ID = 0x4c, FRC_ECC_ERR = 0x50, ERR_STS = 0x54, RAM_DBG_ADDR = 0x58, RAM_DBG_DATA = 0x5c, ECC_ERR_CNT = 0x60, SEM = 0x64, GPIO_1 = 0x68, /* Use semaphore */ GPIO_2 = 0x6c, /* Use semaphore */ GPIO_3 = 0x70, /* Use semaphore */ RSVD2 = 0x74, XGMAC_ADDR = 0x78, /* Use semaphore */ XGMAC_DATA = 0x7c, /* Use semaphore */ NIC_ETS = 0x80, CNA_ETS = 0x84, FLASH_ADDR = 0x88, /* Use semaphore */ FLASH_DATA = 0x8c, /* Use semaphore */ CQ_STOP = 0x90, PAGE_TBL_RID = 0x94, WQ_PAGE_TBL_LO = 0x98, WQ_PAGE_TBL_HI = 0x9c, CQ_PAGE_TBL_LO = 0xa0, CQ_PAGE_TBL_HI = 0xa4, MAC_ADDR_IDX = 0xa8, /* Use semaphore */ MAC_ADDR_DATA = 0xac, /* Use semaphore */ COS_DFLT_CQ1 = 0xb0, COS_DFLT_CQ2 = 0xb4, ETYPE_SKIP1 = 0xb8, ETYPE_SKIP2 = 0xbc, SPLT_HDR = 0xc0, FC_PAUSE_THRES = 0xc4, NIC_PAUSE_THRES = 0xc8, FC_ETHERTYPE = 0xcc, FC_RCV_CFG = 0xd0, NIC_RCV_CFG = 0xd4, FC_COS_TAGS = 0xd8, NIC_COS_TAGS = 0xdc, MGMT_RCV_CFG = 0xe0, RT_IDX = 0xe4, RT_DATA = 0xe8, RSVD7 = 0xec, XG_SERDES_ADDR = 0xf0, XG_SERDES_DATA = 0xf4, PRB_MX_ADDR = 0xf8, /* Use semaphore */ PRB_MX_DATA = 0xfc, /* Use semaphore */ }; #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS #define SMALL_BUFFER_SIZE 256 #define SMALL_BUF_MAP_SIZE SMALL_BUFFER_SIZE #define SPLT_SETTING FSC_DBRST_1024 #define SPLT_LEN 0 #define QLGE_SB_PAD 0 #else #define SMALL_BUFFER_SIZE 512 #define SMALL_BUF_MAP_SIZE (SMALL_BUFFER_SIZE / 2) #define SPLT_SETTING FSC_SH #define SPLT_LEN (SPLT_HDR_EP | \ min(SMALL_BUF_MAP_SIZE, 1023)) #define QLGE_SB_PAD 32 #endif /* * CAM output format. */ enum { CAM_OUT_ROUTE_FC = 0, CAM_OUT_ROUTE_NIC = 1, CAM_OUT_FUNC_SHIFT = 2, CAM_OUT_RV = (1 << 4), CAM_OUT_SH = (1 << 15), CAM_OUT_CQ_ID_SHIFT = 5, }; /* * Mailbox definitions */ enum { /* Asynchronous Event Notifications */ AEN_SYS_ERR = 0x00008002, AEN_LINK_UP = 0x00008011, AEN_LINK_DOWN = 0x00008012, AEN_IDC_CMPLT = 0x00008100, AEN_IDC_REQ = 0x00008101, AEN_IDC_EXT = 0x00008102, AEN_DCBX_CHG = 0x00008110, AEN_AEN_LOST = 0x00008120, AEN_AEN_SFP_IN = 0x00008130, AEN_AEN_SFP_OUT = 0x00008131, AEN_FW_INIT_DONE = 0x00008400, AEN_FW_INIT_FAIL = 0x00008401, /* Mailbox Command Opcodes. */ MB_CMD_NOP = 0x00000000, MB_CMD_EX_FW = 0x00000002, MB_CMD_MB_TEST = 0x00000006, MB_CMD_CSUM_TEST = 0x00000007, /* Verify Checksum */ MB_CMD_ABOUT_FW = 0x00000008, MB_CMD_COPY_RISC_RAM = 0x0000000a, MB_CMD_LOAD_RISC_RAM = 0x0000000b, MB_CMD_DUMP_RISC_RAM = 0x0000000c, MB_CMD_WRITE_RAM = 0x0000000d, MB_CMD_INIT_RISC_RAM = 0x0000000e, MB_CMD_READ_RAM = 0x0000000f, MB_CMD_STOP_FW = 0x00000014, MB_CMD_MAKE_SYS_ERR = 0x0000002a, MB_CMD_WRITE_SFP = 0x00000030, MB_CMD_READ_SFP = 0x00000031, MB_CMD_INIT_FW = 0x00000060, MB_CMD_GET_IFCB = 0x00000061, MB_CMD_GET_FW_STATE = 0x00000069, MB_CMD_IDC_REQ = 0x00000100, /* Inter-Driver Communication */ MB_CMD_IDC_ACK = 0x00000101, /* Inter-Driver Communication */ MB_CMD_SET_WOL_MODE = 0x00000110, /* Wake On Lan */ MB_WOL_DISABLE = 0, MB_WOL_MAGIC_PKT = (1 << 1), MB_WOL_FLTR = (1 << 2), MB_WOL_UCAST = (1 << 3), MB_WOL_MCAST = (1 << 4), MB_WOL_BCAST = (1 << 5), MB_WOL_LINK_UP = (1 << 6), MB_WOL_LINK_DOWN = (1 << 7), MB_WOL_MODE_ON = (1 << 16), /* Wake on Lan Mode on */ MB_CMD_SET_WOL_FLTR = 0x00000111, /* Wake On Lan Filter */ MB_CMD_CLEAR_WOL_FLTR = 0x00000112, /* Wake On Lan Filter */ MB_CMD_SET_WOL_MAGIC = 0x00000113, /* Wake On Lan Magic Packet */ MB_CMD_CLEAR_WOL_MAGIC = 0x00000114,/* Wake On Lan Magic Packet */ MB_CMD_SET_WOL_IMMED = 0x00000115, MB_CMD_PORT_RESET = 0x00000120, MB_CMD_SET_PORT_CFG = 0x00000122, MB_CMD_GET_PORT_CFG = 0x00000123, MB_CMD_GET_LINK_STS = 0x00000124, MB_CMD_SET_LED_CFG = 0x00000125, /* Set LED Configuration Register */ QL_LED_BLINK = 0x03e803e8, MB_CMD_GET_LED_CFG = 0x00000126, /* Get LED Configuration Register */ MB_CMD_SET_MGMNT_TFK_CTL = 0x00000160, /* Set Mgmnt Traffic Control */ MB_SET_MPI_TFK_STOP = (1 << 0), MB_SET_MPI_TFK_RESUME = (1 << 1), MB_CMD_GET_MGMNT_TFK_CTL = 0x00000161, /* Get Mgmnt Traffic Control */ MB_GET_MPI_TFK_STOPPED = (1 << 0), MB_GET_MPI_TFK_FIFO_EMPTY = (1 << 1), /* Sub-commands for IDC request. * This describes the reason for the * IDC request. */ MB_CMD_IOP_NONE = 0x0000, MB_CMD_IOP_PREP_UPDATE_MPI = 0x0001, MB_CMD_IOP_COMP_UPDATE_MPI = 0x0002, MB_CMD_IOP_PREP_LINK_DOWN = 0x0010, MB_CMD_IOP_DVR_START = 0x0100, MB_CMD_IOP_FLASH_ACC = 0x0101, MB_CMD_IOP_RESTART_MPI = 0x0102, MB_CMD_IOP_CORE_DUMP_MPI = 0x0103, /* Mailbox Command Status. */ MB_CMD_STS_GOOD = 0x00004000, /* Success. */ MB_CMD_STS_INTRMDT = 0x00001000, /* Intermediate Complete. */ MB_CMD_STS_INVLD_CMD = 0x00004001, /* Invalid. */ MB_CMD_STS_XFC_ERR = 0x00004002, /* Interface Error. */ MB_CMD_STS_CSUM_ERR = 0x00004003, /* Csum Error. */ MB_CMD_STS_ERR = 0x00004005, /* System Error. */ MB_CMD_STS_PARAM_ERR = 0x00004006, /* Parameter Error. */ }; struct mbox_params { u32 mbox_in[MAILBOX_COUNT]; u32 mbox_out[MAILBOX_COUNT]; int in_count; int out_count; }; struct flash_params_8012 { u8 dev_id_str[4]; __le16 size; __le16 csum; __le16 ver; __le16 sub_dev_id; u8 mac_addr[6]; __le16 res; }; /* 8000 device's flash is a different structure * at a different offset in flash. */ #define FUNC0_FLASH_OFFSET 0x140200 #define FUNC1_FLASH_OFFSET 0x140600 /* Flash related data structures. */ struct flash_params_8000 { u8 dev_id_str[4]; /* "8000" */ __le16 ver; __le16 size; __le16 csum; __le16 reserved0; __le16 total_size; __le16 entry_count; u8 data_type0; u8 data_size0; u8 mac_addr[6]; u8 data_type1; u8 data_size1; u8 mac_addr1[6]; u8 data_type2; u8 data_size2; __le16 vlan_id; u8 data_type3; u8 data_size3; __le16 last; u8 reserved1[464]; __le16 subsys_ven_id; __le16 subsys_dev_id; u8 reserved2[4]; }; union flash_params { struct flash_params_8012 flash_params_8012; struct flash_params_8000 flash_params_8000; }; /* * doorbell space for the rx ring context */ struct rx_doorbell_context { u32 cnsmr_idx; /* 0x00 */ u32 valid; /* 0x04 */ u32 reserved[4]; /* 0x08-0x14 */ u32 lbq_prod_idx; /* 0x18 */ u32 sbq_prod_idx; /* 0x1c */ }; /* * doorbell space for the tx ring context */ struct tx_doorbell_context { u32 prod_idx; /* 0x00 */ u32 valid; /* 0x04 */ u32 reserved[4]; /* 0x08-0x14 */ u32 lbq_prod_idx; /* 0x18 */ u32 sbq_prod_idx; /* 0x1c */ }; /* DATA STRUCTURES SHARED WITH HARDWARE. */ struct tx_buf_desc { __le64 addr; __le32 len; #define TX_DESC_LEN_MASK 0x000fffff #define TX_DESC_C 0x40000000 #define TX_DESC_E 0x80000000 } __attribute((packed)); /* * IOCB Definitions... */ #define OPCODE_OB_MAC_IOCB 0x01 #define OPCODE_OB_MAC_TSO_IOCB 0x02 #define OPCODE_IB_MAC_IOCB 0x20 #define OPCODE_IB_MPI_IOCB 0x21 #define OPCODE_IB_AE_IOCB 0x3f struct ob_mac_iocb_req { u8 opcode; u8 flags1; #define OB_MAC_IOCB_REQ_OI 0x01 #define OB_MAC_IOCB_REQ_I 0x02 #define OB_MAC_IOCB_REQ_D 0x08 #define OB_MAC_IOCB_REQ_F 0x10 u8 flags2; u8 flags3; #define OB_MAC_IOCB_DFP 0x02 #define OB_MAC_IOCB_V 0x04 __le32 reserved1[2]; __le16 frame_len; #define OB_MAC_IOCB_LEN_MASK 0x3ffff __le16 reserved2; u32 tid; u32 txq_idx; __le32 reserved3; __le16 vlan_tci; __le16 reserved4; struct tx_buf_desc tbd[TX_DESC_PER_IOCB]; } __attribute((packed)); struct ob_mac_iocb_rsp { u8 opcode; /* */ u8 flags1; /* */ #define OB_MAC_IOCB_RSP_OI 0x01 /* */ #define OB_MAC_IOCB_RSP_I 0x02 /* */ #define OB_MAC_IOCB_RSP_E 0x08 /* */ #define OB_MAC_IOCB_RSP_S 0x10 /* too Short */ #define OB_MAC_IOCB_RSP_L 0x20 /* too Large */ #define OB_MAC_IOCB_RSP_P 0x40 /* Padded */ u8 flags2; /* */ u8 flags3; /* */ #define OB_MAC_IOCB_RSP_B 0x80 /* */ u32 tid; u32 txq_idx; __le32 reserved[13]; } __attribute((packed)); struct ob_mac_tso_iocb_req { u8 opcode; u8 flags1; #define OB_MAC_TSO_IOCB_OI 0x01 #define OB_MAC_TSO_IOCB_I 0x02 #define OB_MAC_TSO_IOCB_D 0x08 #define OB_MAC_TSO_IOCB_IP4 0x40 #define OB_MAC_TSO_IOCB_IP6 0x80 u8 flags2; #define OB_MAC_TSO_IOCB_LSO 0x20 #define OB_MAC_TSO_IOCB_UC 0x40 #define OB_MAC_TSO_IOCB_TC 0x80 u8 flags3; #define OB_MAC_TSO_IOCB_IC 0x01 #define OB_MAC_TSO_IOCB_DFP 0x02 #define OB_MAC_TSO_IOCB_V 0x04 __le32 reserved1[2]; __le32 frame_len; u32 tid; u32 txq_idx; __le16 total_hdrs_len; __le16 net_trans_offset; #define OB_MAC_TRANSPORT_HDR_SHIFT 6 __le16 vlan_tci; __le16 mss; struct tx_buf_desc tbd[TX_DESC_PER_IOCB]; } __attribute((packed)); struct ob_mac_tso_iocb_rsp { u8 opcode; u8 flags1; #define OB_MAC_TSO_IOCB_RSP_OI 0x01 #define OB_MAC_TSO_IOCB_RSP_I 0x02 #define OB_MAC_TSO_IOCB_RSP_E 0x08 #define OB_MAC_TSO_IOCB_RSP_S 0x10 #define OB_MAC_TSO_IOCB_RSP_L 0x20 #define OB_MAC_TSO_IOCB_RSP_P 0x40 u8 flags2; /* */ u8 flags3; /* */ #define OB_MAC_TSO_IOCB_RSP_B 0x8000 u32 tid; u32 txq_idx; __le32 reserved2[13]; } __attribute((packed)); struct ib_mac_iocb_rsp { u8 opcode; /* 0x20 */ u8 flags1; #define IB_MAC_IOCB_RSP_OI 0x01 /* Overide intr delay */ #define IB_MAC_IOCB_RSP_I 0x02 /* Disble Intr Generation */ #define IB_MAC_CSUM_ERR_MASK 0x1c /* A mask to use for csum errs */ #define IB_MAC_IOCB_RSP_TE 0x04 /* Checksum error */ #define IB_MAC_IOCB_RSP_NU 0x08 /* No checksum rcvd */ #define IB_MAC_IOCB_RSP_IE 0x10 /* IPv4 checksum error */ #define IB_MAC_IOCB_RSP_M_MASK 0x60 /* Multicast info */ #define IB_MAC_IOCB_RSP_M_NONE 0x00 /* Not mcast frame */ #define IB_MAC_IOCB_RSP_M_HASH 0x20 /* HASH mcast frame */ #define IB_MAC_IOCB_RSP_M_REG 0x40 /* Registered mcast frame */ #define IB_MAC_IOCB_RSP_M_PROM 0x60 /* Promiscuous mcast frame */ #define IB_MAC_IOCB_RSP_B 0x80 /* Broadcast frame */ u8 flags2; #define IB_MAC_IOCB_RSP_P 0x01 /* Promiscuous frame */ #define IB_MAC_IOCB_RSP_V 0x02 /* Vlan tag present */ #define IB_MAC_IOCB_RSP_ERR_MASK 0x1c /* */ #define IB_MAC_IOCB_RSP_ERR_CODE_ERR 0x04 #define IB_MAC_IOCB_RSP_ERR_OVERSIZE 0x08 #define IB_MAC_IOCB_RSP_ERR_UNDERSIZE 0x10 #define IB_MAC_IOCB_RSP_ERR_PREAMBLE 0x14 #define IB_MAC_IOCB_RSP_ERR_FRAME_LEN 0x18 #define IB_MAC_IOCB_RSP_ERR_CRC 0x1c #define IB_MAC_IOCB_RSP_U 0x20 /* UDP packet */ #define IB_MAC_IOCB_RSP_T 0x40 /* TCP packet */ #define IB_MAC_IOCB_RSP_FO 0x80 /* Failover port */ u8 flags3; #define IB_MAC_IOCB_RSP_RSS_MASK 0x07 /* RSS mask */ #define IB_MAC_IOCB_RSP_M_NONE 0x00 /* No RSS match */ #define IB_MAC_IOCB_RSP_M_IPV4 0x04 /* IPv4 RSS match */ #define IB_MAC_IOCB_RSP_M_IPV6 0x02 /* IPv6 RSS match */ #define IB_MAC_IOCB_RSP_M_TCP_V4 0x05 /* TCP with IPv4 */ #define IB_MAC_IOCB_RSP_M_TCP_V6 0x03 /* TCP with IPv6 */ #define IB_MAC_IOCB_RSP_V4 0x08 /* IPV4 */ #define IB_MAC_IOCB_RSP_V6 0x10 /* IPV6 */ #define IB_MAC_IOCB_RSP_IH 0x20 /* Split after IP header */ #define IB_MAC_IOCB_RSP_DS 0x40 /* data is in small buffer */ #define IB_MAC_IOCB_RSP_DL 0x80 /* data is in large buffer */ __le32 data_len; /* */ __le64 data_addr; /* */ __le32 rss; /* */ __le16 vlan_id; /* 12 bits */ #define IB_MAC_IOCB_RSP_C 0x1000 /* VLAN CFI bit */ #define IB_MAC_IOCB_RSP_COS_SHIFT 12 /* class of service value */ #define IB_MAC_IOCB_RSP_VLAN_MASK 0x0ffff __le16 reserved1; __le32 reserved2[6]; u8 reserved3[3]; u8 flags4; #define IB_MAC_IOCB_RSP_HV 0x20 #define IB_MAC_IOCB_RSP_HS 0x40 #define IB_MAC_IOCB_RSP_HL 0x80 __le32 hdr_len; /* */ __le64 hdr_addr; /* */ } __attribute((packed)); struct ib_ae_iocb_rsp { u8 opcode; u8 flags1; #define IB_AE_IOCB_RSP_OI 0x01 #define IB_AE_IOCB_RSP_I 0x02 u8 event; #define LINK_UP_EVENT 0x00 #define LINK_DOWN_EVENT 0x01 #define CAM_LOOKUP_ERR_EVENT 0x06 #define SOFT_ECC_ERROR_EVENT 0x07 #define MGMT_ERR_EVENT 0x08 #define TEN_GIG_MAC_EVENT 0x09 #define GPI0_H2L_EVENT 0x10 #define GPI0_L2H_EVENT 0x20 #define GPI1_H2L_EVENT 0x11 #define GPI1_L2H_EVENT 0x21 #define PCI_ERR_ANON_BUF_RD 0x40 u8 q_id; __le32 reserved[15]; } __attribute((packed)); /* * These three structures are for generic * handling of ib and ob iocbs. */ struct ql_net_rsp_iocb { u8 opcode; u8 flags0; __le16 length; __le32 tid; __le32 reserved[14]; } __attribute((packed)); struct net_req_iocb { u8 opcode; u8 flags0; __le16 flags1; __le32 tid; __le32 reserved1[30]; } __attribute((packed)); /* * tx ring initialization control block for chip. * It is defined as: * "Work Queue Initialization Control Block" */ struct wqicb { __le16 len; #define Q_LEN_V (1 << 4) #define Q_LEN_CPP_CONT 0x0000 #define Q_LEN_CPP_16 0x0001 #define Q_LEN_CPP_32 0x0002 #define Q_LEN_CPP_64 0x0003 #define Q_LEN_CPP_512 0x0006 __le16 flags; #define Q_PRI_SHIFT 1 #define Q_FLAGS_LC 0x1000 #define Q_FLAGS_LB 0x2000 #define Q_FLAGS_LI 0x4000 #define Q_FLAGS_LO 0x8000 __le16 cq_id_rss; #define Q_CQ_ID_RSS_RV 0x8000 __le16 rid; __le64 addr; __le64 cnsmr_idx_addr; } __attribute((packed)); /* * rx ring initialization control block for chip. * It is defined as: * "Completion Queue Initialization Control Block" */ struct cqicb { u8 msix_vect; u8 reserved1; u8 reserved2; u8 flags; #define FLAGS_LV 0x08 #define FLAGS_LS 0x10 #define FLAGS_LL 0x20 #define FLAGS_LI 0x40 #define FLAGS_LC 0x80 __le16 len; #define LEN_V (1 << 4) #define LEN_CPP_CONT 0x0000 #define LEN_CPP_32 0x0001 #define LEN_CPP_64 0x0002 #define LEN_CPP_128 0x0003 __le16 rid; __le64 addr; __le64 prod_idx_addr; __le16 pkt_delay; __le16 irq_delay; __le64 lbq_addr; __le16 lbq_buf_size; __le16 lbq_len; /* entry count */ __le64 sbq_addr; __le16 sbq_buf_size; __le16 sbq_len; /* entry count */ } __attribute((packed)); struct ricb { u8 base_cq; #define RSS_L4K 0x80 u8 flags; #define RSS_L6K 0x01 #define RSS_LI 0x02 #define RSS_LB 0x04 #define RSS_LM 0x08 #define RSS_RI4 0x10 #define RSS_RT4 0x20 #define RSS_RI6 0x40 #define RSS_RT6 0x80 __le16 mask; u8 hash_cq_id[1024]; __le32 ipv6_hash_key[10]; __le32 ipv4_hash_key[4]; } __attribute((packed)); /* SOFTWARE/DRIVER DATA STRUCTURES. */ struct oal { struct tx_buf_desc oal[TX_DESC_PER_OAL]; }; struct map_list { DECLARE_PCI_UNMAP_ADDR(mapaddr); DECLARE_PCI_UNMAP_LEN(maplen); }; struct tx_ring_desc { struct sk_buff *skb; struct ob_mac_iocb_req *queue_entry; u32 index; struct oal oal; struct map_list map[MAX_SKB_FRAGS + 1]; int map_cnt; struct tx_ring_desc *next; }; struct page_chunk { struct page *page; /* master page */ char *va; /* virt addr for this chunk */ u64 map; /* mapping for master */ unsigned int offset; /* offset for this chunk */ unsigned int last_flag; /* flag set for last chunk in page */ }; struct bq_desc { union { struct page_chunk pg_chunk; struct sk_buff *skb; } p; __le64 *addr; u32 index; DECLARE_PCI_UNMAP_ADDR(mapaddr); DECLARE_PCI_UNMAP_LEN(maplen); }; #define QL_TXQ_IDX(qdev, skb) (smp_processor_id()%(qdev->tx_ring_count)) struct tx_ring { /* * queue info. */ struct wqicb wqicb; /* structure used to inform chip of new queue */ void *wq_base; /* pci_alloc:virtual addr for tx */ dma_addr_t wq_base_dma; /* pci_alloc:dma addr for tx */ __le32 *cnsmr_idx_sh_reg; /* shadow copy of consumer idx */ dma_addr_t cnsmr_idx_sh_reg_dma; /* dma-shadow copy of consumer */ u32 wq_size; /* size in bytes of queue area */ u32 wq_len; /* number of entries in queue */ void __iomem *prod_idx_db_reg; /* doorbell area index reg at offset 0x00 */ void __iomem *valid_db_reg; /* doorbell area valid reg at offset 0x04 */ u16 prod_idx; /* current value for prod idx */ u16 cq_id; /* completion (rx) queue for tx completions */ u8 wq_id; /* queue id for this entry */ u8 reserved1[3]; struct tx_ring_desc *q; /* descriptor list for the queue */ spinlock_t lock; atomic_t tx_count; /* counts down for every outstanding IO */ atomic_t queue_stopped; /* Turns queue off when full. */ struct delayed_work tx_work; struct ql_adapter *qdev; u64 tx_packets; u64 tx_bytes; u64 tx_errors; }; /* * Type of inbound queue. */ enum { DEFAULT_Q = 2, /* Handles slow queue and chip/MPI events. */ TX_Q = 3, /* Handles outbound completions. */ RX_Q = 4, /* Handles inbound completions. */ }; struct rx_ring { struct cqicb cqicb; /* The chip's completion queue init control block. */ /* Completion queue elements. */ void *cq_base; dma_addr_t cq_base_dma; u32 cq_size; u32 cq_len; u16 cq_id; __le32 *prod_idx_sh_reg; /* Shadowed producer register. */ dma_addr_t prod_idx_sh_reg_dma; void __iomem *cnsmr_idx_db_reg; /* PCI doorbell mem area + 0 */ u32 cnsmr_idx; /* current sw idx */ struct ql_net_rsp_iocb *curr_entry; /* next entry on queue */ void __iomem *valid_db_reg; /* PCI doorbell mem area + 0x04 */ /* Large buffer queue elements. */ u32 lbq_len; /* entry count */ u32 lbq_size; /* size in bytes of queue */ u32 lbq_buf_size; void *lbq_base; dma_addr_t lbq_base_dma; void *lbq_base_indirect; dma_addr_t lbq_base_indirect_dma; struct page_chunk pg_chunk; /* current page for chunks */ struct bq_desc *lbq; /* array of control blocks */ void __iomem *lbq_prod_idx_db_reg; /* PCI doorbell mem area + 0x18 */ u32 lbq_prod_idx; /* current sw prod idx */ u32 lbq_curr_idx; /* next entry we expect */ u32 lbq_clean_idx; /* beginning of new descs */ u32 lbq_free_cnt; /* free buffer desc cnt */ /* Small buffer queue elements. */ u32 sbq_len; /* entry count */ u32 sbq_size; /* size in bytes of queue */ u32 sbq_buf_size; void *sbq_base; dma_addr_t sbq_base_dma; void *sbq_base_indirect; dma_addr_t sbq_base_indirect_dma; struct bq_desc *sbq; /* array of control blocks */ void __iomem *sbq_prod_idx_db_reg; /* PCI doorbell mem area + 0x1c */ u32 sbq_prod_idx; /* current sw prod idx */ u32 sbq_curr_idx; /* next entry we expect */ u32 sbq_clean_idx; /* beginning of new descs */ u32 sbq_free_cnt; /* free buffer desc cnt */ /* Misc. handler elements. */ u32 type; /* Type of queue, tx, rx. */ u32 irq; /* Which vector this ring is assigned. */ u32 cpu; /* Which CPU this should run on. */ char name[IFNAMSIZ + 5]; struct napi_struct napi; u8 reserved; struct ql_adapter *qdev; u64 rx_packets; u64 rx_multicast; u64 rx_bytes; u64 rx_dropped; u64 rx_errors; }; /* * RSS Initialization Control Block */ struct hash_id { u8 value[4]; }; struct nic_stats { /* * These stats come from offset 200h to 278h * in the XGMAC register. */ u64 tx_pkts; u64 tx_bytes; u64 tx_mcast_pkts; u64 tx_bcast_pkts; u64 tx_ucast_pkts; u64 tx_ctl_pkts; u64 tx_pause_pkts; u64 tx_64_pkt; u64 tx_65_to_127_pkt; u64 tx_128_to_255_pkt; u64 tx_256_511_pkt; u64 tx_512_to_1023_pkt; u64 tx_1024_to_1518_pkt; u64 tx_1519_to_max_pkt; u64 tx_undersize_pkt; u64 tx_oversize_pkt; /* * These stats come from offset 300h to 3C8h * in the XGMAC register. */ u64 rx_bytes; u64 rx_bytes_ok; u64 rx_pkts; u64 rx_pkts_ok; u64 rx_bcast_pkts; u64 rx_mcast_pkts; u64 rx_ucast_pkts; u64 rx_undersize_pkts; u64 rx_oversize_pkts; u64 rx_jabber_pkts; u64 rx_undersize_fcerr_pkts; u64 rx_drop_events; u64 rx_fcerr_pkts; u64 rx_align_err; u64 rx_symbol_err; u64 rx_mac_err; u64 rx_ctl_pkts; u64 rx_pause_pkts; u64 rx_64_pkts; u64 rx_65_to_127_pkts; u64 rx_128_255_pkts; u64 rx_256_511_pkts; u64 rx_512_to_1023_pkts; u64 rx_1024_to_1518_pkts; u64 rx_1519_to_max_pkts; u64 rx_len_err_pkts; /* * These stats come from offset 500h to 5C8h * in the XGMAC register. */ u64 tx_cbfc_pause_frames0; u64 tx_cbfc_pause_frames1; u64 tx_cbfc_pause_frames2; u64 tx_cbfc_pause_frames3; u64 tx_cbfc_pause_frames4; u64 tx_cbfc_pause_frames5; u64 tx_cbfc_pause_frames6; u64 tx_cbfc_pause_frames7; u64 rx_cbfc_pause_frames0; u64 rx_cbfc_pause_frames1; u64 rx_cbfc_pause_frames2; u64 rx_cbfc_pause_frames3; u64 rx_cbfc_pause_frames4; u64 rx_cbfc_pause_frames5; u64 rx_cbfc_pause_frames6; u64 rx_cbfc_pause_frames7; u64 rx_nic_fifo_drop; }; /* Firmware coredump internal register address/length pairs. */ enum { MPI_CORE_REGS_ADDR = 0x00030000, MPI_CORE_REGS_CNT = 127, MPI_CORE_SH_REGS_CNT = 16, TEST_REGS_ADDR = 0x00001000, TEST_REGS_CNT = 23, RMII_REGS_ADDR = 0x00001040, RMII_REGS_CNT = 64, FCMAC1_REGS_ADDR = 0x00001080, FCMAC2_REGS_ADDR = 0x000010c0, FCMAC_REGS_CNT = 64, FC1_MBX_REGS_ADDR = 0x00001100, FC2_MBX_REGS_ADDR = 0x00001240, FC_MBX_REGS_CNT = 64, IDE_REGS_ADDR = 0x00001140, IDE_REGS_CNT = 64, NIC1_MBX_REGS_ADDR = 0x00001180, NIC2_MBX_REGS_ADDR = 0x00001280, NIC_MBX_REGS_CNT = 64, SMBUS_REGS_ADDR = 0x00001200, SMBUS_REGS_CNT = 64, I2C_REGS_ADDR = 0x00001fc0, I2C_REGS_CNT = 64, MEMC_REGS_ADDR = 0x00003000, MEMC_REGS_CNT = 256, PBUS_REGS_ADDR = 0x00007c00, PBUS_REGS_CNT = 256, MDE_REGS_ADDR = 0x00010000, MDE_REGS_CNT = 6, CODE_RAM_ADDR = 0x00020000, CODE_RAM_CNT = 0x2000, MEMC_RAM_ADDR = 0x00100000, MEMC_RAM_CNT = 0x2000, }; #define MPI_COREDUMP_COOKIE 0x5555aaaa struct mpi_coredump_global_header { u32 cookie; u8 idString[16]; u32 timeLo; u32 timeHi; u32 imageSize; u32 headerSize; u8 info[220]; }; struct mpi_coredump_segment_header { u32 cookie; u32 segNum; u32 segSize; u32 extra; u8 description[16]; }; /* Firmware coredump header segment numbers. */ enum { CORE_SEG_NUM = 1, TEST_LOGIC_SEG_NUM = 2, RMII_SEG_NUM = 3, FCMAC1_SEG_NUM = 4, FCMAC2_SEG_NUM = 5, FC1_MBOX_SEG_NUM = 6, IDE_SEG_NUM = 7, NIC1_MBOX_SEG_NUM = 8, SMBUS_SEG_NUM = 9, FC2_MBOX_SEG_NUM = 10, NIC2_MBOX_SEG_NUM = 11, I2C_SEG_NUM = 12, MEMC_SEG_NUM = 13, PBUS_SEG_NUM = 14, MDE_SEG_NUM = 15, NIC1_CONTROL_SEG_NUM = 16, NIC2_CONTROL_SEG_NUM = 17, NIC1_XGMAC_SEG_NUM = 18, NIC2_XGMAC_SEG_NUM = 19, WCS_RAM_SEG_NUM = 20, MEMC_RAM_SEG_NUM = 21, XAUI_AN_SEG_NUM = 22, XAUI_HSS_PCS_SEG_NUM = 23, XFI_AN_SEG_NUM = 24, XFI_TRAIN_SEG_NUM = 25, XFI_HSS_PCS_SEG_NUM = 26, XFI_HSS_TX_SEG_NUM = 27, XFI_HSS_RX_SEG_NUM = 28, XFI_HSS_PLL_SEG_NUM = 29, MISC_NIC_INFO_SEG_NUM = 30, INTR_STATES_SEG_NUM = 31, CAM_ENTRIES_SEG_NUM = 32, ROUTING_WORDS_SEG_NUM = 33, ETS_SEG_NUM = 34, PROBE_DUMP_SEG_NUM = 35, ROUTING_INDEX_SEG_NUM = 36, MAC_PROTOCOL_SEG_NUM = 37, XAUI2_AN_SEG_NUM = 38, XAUI2_HSS_PCS_SEG_NUM = 39, XFI2_AN_SEG_NUM = 40, XFI2_TRAIN_SEG_NUM = 41, XFI2_HSS_PCS_SEG_NUM = 42, XFI2_HSS_TX_SEG_NUM = 43, XFI2_HSS_RX_SEG_NUM = 44, XFI2_HSS_PLL_SEG_NUM = 45, SEM_REGS_SEG_NUM = 50 }; /* There are 64 generic NIC registers. */ #define NIC_REGS_DUMP_WORD_COUNT 64 /* XGMAC word count. */ #define XGMAC_DUMP_WORD_COUNT (XGMAC_REGISTER_END / 4) /* Word counts for the SERDES blocks. */ #define XG_SERDES_XAUI_AN_COUNT 14 #define XG_SERDES_XAUI_HSS_PCS_COUNT 33 #define XG_SERDES_XFI_AN_COUNT 14 #define XG_SERDES_XFI_TRAIN_COUNT 12 #define XG_SERDES_XFI_HSS_PCS_COUNT 15 #define XG_SERDES_XFI_HSS_TX_COUNT 32 #define XG_SERDES_XFI_HSS_RX_COUNT 32 #define XG_SERDES_XFI_HSS_PLL_COUNT 32 /* There are 2 CNA ETS and 8 NIC ETS registers. */ #define ETS_REGS_DUMP_WORD_COUNT 10 /* Each probe mux entry stores the probe type plus 64 entries * that are each each 64-bits in length. There are a total of * 34 (PRB_MX_ADDR_VALID_TOTAL) valid probes. */ #define PRB_MX_ADDR_PRB_WORD_COUNT (1 + (PRB_MX_ADDR_MAX_MUX * 2)) #define PRB_MX_DUMP_TOT_COUNT (PRB_MX_ADDR_PRB_WORD_COUNT * \ PRB_MX_ADDR_VALID_TOTAL) /* Each routing entry consists of 4 32-bit words. * They are route type, index, index word, and result. * There are 2 route blocks with 8 entries each and * 2 NIC blocks with 16 entries each. * The totol entries is 48 with 4 words each. */ #define RT_IDX_DUMP_ENTRIES 48 #define RT_IDX_DUMP_WORDS_PER_ENTRY 4 #define RT_IDX_DUMP_TOT_WORDS (RT_IDX_DUMP_ENTRIES * \ RT_IDX_DUMP_WORDS_PER_ENTRY) /* There are 10 address blocks in filter, each with * different entry counts and different word-count-per-entry. */ #define MAC_ADDR_DUMP_ENTRIES \ ((MAC_ADDR_MAX_CAM_ENTRIES * MAC_ADDR_MAX_CAM_WCOUNT) + \ (MAC_ADDR_MAX_MULTICAST_ENTRIES * MAC_ADDR_MAX_MULTICAST_WCOUNT) + \ (MAC_ADDR_MAX_VLAN_ENTRIES * MAC_ADDR_MAX_VLAN_WCOUNT) + \ (MAC_ADDR_MAX_MCAST_FLTR_ENTRIES * MAC_ADDR_MAX_MCAST_FLTR_WCOUNT) + \ (MAC_ADDR_MAX_FC_MAC_ENTRIES * MAC_ADDR_MAX_FC_MAC_WCOUNT) + \ (MAC_ADDR_MAX_MGMT_MAC_ENTRIES * MAC_ADDR_MAX_MGMT_MAC_WCOUNT) + \ (MAC_ADDR_MAX_MGMT_VLAN_ENTRIES * MAC_ADDR_MAX_MGMT_VLAN_WCOUNT) + \ (MAC_ADDR_MAX_MGMT_V4_ENTRIES * MAC_ADDR_MAX_MGMT_V4_WCOUNT) + \ (MAC_ADDR_MAX_MGMT_V6_ENTRIES * MAC_ADDR_MAX_MGMT_V6_WCOUNT) + \ (MAC_ADDR_MAX_MGMT_TU_DP_ENTRIES * MAC_ADDR_MAX_MGMT_TU_DP_WCOUNT)) #define MAC_ADDR_DUMP_WORDS_PER_ENTRY 2 #define MAC_ADDR_DUMP_TOT_WORDS (MAC_ADDR_DUMP_ENTRIES * \ MAC_ADDR_DUMP_WORDS_PER_ENTRY) /* Maximum of 4 functions whose semaphore registeres are * in the coredump. */ #define MAX_SEMAPHORE_FUNCTIONS 4 /* Defines for access the MPI shadow registers. */ #define RISC_124 0x0003007c #define RISC_127 0x0003007f #define SHADOW_OFFSET 0xb0000000 #define SHADOW_REG_SHIFT 20 struct ql_nic_misc { u32 rx_ring_count; u32 tx_ring_count; u32 intr_count; u32 function; }; struct ql_reg_dump { /* segment 0 */ struct mpi_coredump_global_header mpi_global_header; /* segment 16 */ struct mpi_coredump_segment_header nic_regs_seg_hdr; u32 nic_regs[64]; /* segment 30 */ struct mpi_coredump_segment_header misc_nic_seg_hdr; struct ql_nic_misc misc_nic_info; /* segment 31 */ /* one interrupt state for each CQ */ struct mpi_coredump_segment_header intr_states_seg_hdr; u32 intr_states[MAX_CPUS]; /* segment 32 */ /* 3 cam words each for 16 unicast, * 2 cam words for each of 32 multicast. */ struct mpi_coredump_segment_header cam_entries_seg_hdr; u32 cam_entries[(16 * 3) + (32 * 3)]; /* segment 33 */ struct mpi_coredump_segment_header nic_routing_words_seg_hdr; u32 nic_routing_words[16]; /* segment 34 */ struct mpi_coredump_segment_header ets_seg_hdr; u32 ets[8+2]; }; struct ql_mpi_coredump { /* segment 0 */ struct mpi_coredump_global_header mpi_global_header; /* segment 1 */ struct mpi_coredump_segment_header core_regs_seg_hdr; u32 mpi_core_regs[MPI_CORE_REGS_CNT]; u32 mpi_core_sh_regs[MPI_CORE_SH_REGS_CNT]; /* segment 2 */ struct mpi_coredump_segment_header test_logic_regs_seg_hdr; u32 test_logic_regs[TEST_REGS_CNT]; /* segment 3 */ struct mpi_coredump_segment_header rmii_regs_seg_hdr; u32 rmii_regs[RMII_REGS_CNT]; /* segment 4 */ struct mpi_coredump_segment_header fcmac1_regs_seg_hdr; u32 fcmac1_regs[FCMAC_REGS_CNT]; /* segment 5 */ struct mpi_coredump_segment_header fcmac2_regs_seg_hdr; u32 fcmac2_regs[FCMAC_REGS_CNT]; /* segment 6 */ struct mpi_coredump_segment_header fc1_mbx_regs_seg_hdr; u32 fc1_mbx_regs[FC_MBX_REGS_CNT]; /* segment 7 */ struct mpi_coredump_segment_header ide_regs_seg_hdr; u32 ide_regs[IDE_REGS_CNT]; /* segment 8 */ struct mpi_coredump_segment_header nic1_mbx_regs_seg_hdr; u32 nic1_mbx_regs[NIC_MBX_REGS_CNT]; /* segment 9 */ struct mpi_coredump_segment_header smbus_regs_seg_hdr; u32 smbus_regs[SMBUS_REGS_CNT]; /* segment 10 */ struct mpi_coredump_segment_header fc2_mbx_regs_seg_hdr; u32 fc2_mbx_regs[FC_MBX_REGS_CNT]; /* segment 11 */ struct mpi_coredump_segment_header nic2_mbx_regs_seg_hdr; u32 nic2_mbx_regs[NIC_MBX_REGS_CNT]; /* segment 12 */ struct mpi_coredump_segment_header i2c_regs_seg_hdr; u32 i2c_regs[I2C_REGS_CNT]; /* segment 13 */ struct mpi_coredump_segment_header memc_regs_seg_hdr; u32 memc_regs[MEMC_REGS_CNT]; /* segment 14 */ struct mpi_coredump_segment_header pbus_regs_seg_hdr; u32 pbus_regs[PBUS_REGS_CNT]; /* segment 15 */ struct mpi_coredump_segment_header mde_regs_seg_hdr; u32 mde_regs[MDE_REGS_CNT]; /* segment 16 */ struct mpi_coredump_segment_header nic_regs_seg_hdr; u32 nic_regs[NIC_REGS_DUMP_WORD_COUNT]; /* segment 17 */ struct mpi_coredump_segment_header nic2_regs_seg_hdr; u32 nic2_regs[NIC_REGS_DUMP_WORD_COUNT]; /* segment 18 */ struct mpi_coredump_segment_header xgmac1_seg_hdr; u32 xgmac1[XGMAC_DUMP_WORD_COUNT]; /* segment 19 */ struct mpi_coredump_segment_header xgmac2_seg_hdr; u32 xgmac2[XGMAC_DUMP_WORD_COUNT]; /* segment 20 */ struct mpi_coredump_segment_header code_ram_seg_hdr; u32 code_ram[CODE_RAM_CNT]; /* segment 21 */ struct mpi_coredump_segment_header memc_ram_seg_hdr; u32 memc_ram[MEMC_RAM_CNT]; /* segment 22 */ struct mpi_coredump_segment_header xaui_an_hdr; u32 serdes_xaui_an[XG_SERDES_XAUI_AN_COUNT]; /* segment 23 */ struct mpi_coredump_segment_header xaui_hss_pcs_hdr; u32 serdes_xaui_hss_pcs[XG_SERDES_XAUI_HSS_PCS_COUNT]; /* segment 24 */ struct mpi_coredump_segment_header xfi_an_hdr; u32 serdes_xfi_an[XG_SERDES_XFI_AN_COUNT]; /* segment 25 */ struct mpi_coredump_segment_header xfi_train_hdr; u32 serdes_xfi_train[XG_SERDES_XFI_TRAIN_COUNT]; /* segment 26 */ struct mpi_coredump_segment_header xfi_hss_pcs_hdr; u32 serdes_xfi_hss_pcs[XG_SERDES_XFI_HSS_PCS_COUNT]; /* segment 27 */ struct mpi_coredump_segment_header xfi_hss_tx_hdr; u32 serdes_xfi_hss_tx[XG_SERDES_XFI_HSS_TX_COUNT]; /* segment 28 */ struct mpi_coredump_segment_header xfi_hss_rx_hdr; u32 serdes_xfi_hss_rx[XG_SERDES_XFI_HSS_RX_COUNT]; /* segment 29 */ struct mpi_coredump_segment_header xfi_hss_pll_hdr; u32 serdes_xfi_hss_pll[XG_SERDES_XFI_HSS_PLL_COUNT]; /* segment 30 */ struct mpi_coredump_segment_header misc_nic_seg_hdr; struct ql_nic_misc misc_nic_info; /* segment 31 */ /* one interrupt state for each CQ */ struct mpi_coredump_segment_header intr_states_seg_hdr; u32 intr_states[MAX_RX_RINGS]; /* segment 32 */ /* 3 cam words each for 16 unicast, * 2 cam words for each of 32 multicast. */ struct mpi_coredump_segment_header cam_entries_seg_hdr; u32 cam_entries[(16 * 3) + (32 * 3)]; /* segment 33 */ struct mpi_coredump_segment_header nic_routing_words_seg_hdr; u32 nic_routing_words[16]; /* segment 34 */ struct mpi_coredump_segment_header ets_seg_hdr; u32 ets[ETS_REGS_DUMP_WORD_COUNT]; /* segment 35 */ struct mpi_coredump_segment_header probe_dump_seg_hdr; u32 probe_dump[PRB_MX_DUMP_TOT_COUNT]; /* segment 36 */ struct mpi_coredump_segment_header routing_reg_seg_hdr; u32 routing_regs[RT_IDX_DUMP_TOT_WORDS]; /* segment 37 */ struct mpi_coredump_segment_header mac_prot_reg_seg_hdr; u32 mac_prot_regs[MAC_ADDR_DUMP_TOT_WORDS]; /* segment 38 */ struct mpi_coredump_segment_header xaui2_an_hdr; u32 serdes2_xaui_an[XG_SERDES_XAUI_AN_COUNT]; /* segment 39 */ struct mpi_coredump_segment_header xaui2_hss_pcs_hdr; u32 serdes2_xaui_hss_pcs[XG_SERDES_XAUI_HSS_PCS_COUNT]; /* segment 40 */ struct mpi_coredump_segment_header xfi2_an_hdr; u32 serdes2_xfi_an[XG_SERDES_XFI_AN_COUNT]; /* segment 41 */ struct mpi_coredump_segment_header xfi2_train_hdr; u32 serdes2_xfi_train[XG_SERDES_XFI_TRAIN_COUNT]; /* segment 42 */ struct mpi_coredump_segment_header xfi2_hss_pcs_hdr; u32 serdes2_xfi_hss_pcs[XG_SERDES_XFI_HSS_PCS_COUNT]; /* segment 43 */ struct mpi_coredump_segment_header xfi2_hss_tx_hdr; u32 serdes2_xfi_hss_tx[XG_SERDES_XFI_HSS_TX_COUNT]; /* segment 44 */ struct mpi_coredump_segment_header xfi2_hss_rx_hdr; u32 serdes2_xfi_hss_rx[XG_SERDES_XFI_HSS_RX_COUNT]; /* segment 45 */ struct mpi_coredump_segment_header xfi2_hss_pll_hdr; u32 serdes2_xfi_hss_pll[XG_SERDES_XFI_HSS_PLL_COUNT]; /* segment 50 */ /* semaphore register for all 5 functions */ struct mpi_coredump_segment_header sem_regs_seg_hdr; u32 sem_regs[MAX_SEMAPHORE_FUNCTIONS]; }; /* * intr_context structure is used during initialization * to hook the interrupts. It is also used in a single * irq environment as a context to the ISR. */ struct intr_context { struct ql_adapter *qdev; u32 intr; u32 irq_mask; /* Mask of which rings the vector services. */ u32 hooked; u32 intr_en_mask; /* value/mask used to enable this intr */ u32 intr_dis_mask; /* value/mask used to disable this intr */ u32 intr_read_mask; /* value/mask used to read this intr */ char name[IFNAMSIZ * 2]; atomic_t irq_cnt; /* irq_cnt is used in single vector * environment. It's incremented for each * irq handler that is scheduled. When each * handler finishes it decrements irq_cnt and * enables interrupts if it's zero. */ irq_handler_t handler; }; /* adapter flags definitions. */ enum { QL_ADAPTER_UP = 0, /* Adapter has been brought up. */ QL_LEGACY_ENABLED = 1, QL_MSI_ENABLED = 2, QL_MSIX_ENABLED = 3, QL_DMA64 = 4, QL_PROMISCUOUS = 5, QL_ALLMULTI = 6, QL_PORT_CFG = 7, QL_CAM_RT_SET = 8, QL_SELFTEST = 9, QL_LB_LINK_UP = 10, }; /* link_status bit definitions */ enum { STS_LOOPBACK_MASK = 0x00000700, STS_LOOPBACK_PCS = 0x00000100, STS_LOOPBACK_HSS = 0x00000200, STS_LOOPBACK_EXT = 0x00000300, STS_PAUSE_MASK = 0x000000c0, STS_PAUSE_STD = 0x00000040, STS_PAUSE_PRI = 0x00000080, STS_SPEED_MASK = 0x00000038, STS_SPEED_100Mb = 0x00000000, STS_SPEED_1Gb = 0x00000008, STS_SPEED_10Gb = 0x00000010, STS_LINK_TYPE_MASK = 0x00000007, STS_LINK_TYPE_XFI = 0x00000001, STS_LINK_TYPE_XAUI = 0x00000002, STS_LINK_TYPE_XFI_BP = 0x00000003, STS_LINK_TYPE_XAUI_BP = 0x00000004, STS_LINK_TYPE_10GBASET = 0x00000005, }; /* link_config bit definitions */ enum { CFG_JUMBO_FRAME_SIZE = 0x00010000, CFG_PAUSE_MASK = 0x00000060, CFG_PAUSE_STD = 0x00000020, CFG_PAUSE_PRI = 0x00000040, CFG_DCBX = 0x00000010, CFG_LOOPBACK_MASK = 0x00000007, CFG_LOOPBACK_PCS = 0x00000002, CFG_LOOPBACK_HSS = 0x00000004, CFG_LOOPBACK_EXT = 0x00000006, CFG_DEFAULT_MAX_FRAME_SIZE = 0x00002580, }; struct nic_operations { int (*get_flash) (struct ql_adapter *); int (*port_initialize) (struct ql_adapter *); }; /* * The main Adapter structure definition. * This structure has all fields relevant to the hardware. */ struct ql_adapter { struct ricb ricb; unsigned long flags; u32 wol; struct nic_stats nic_stats; struct vlan_group *vlgrp; /* PCI Configuration information for this device */ struct pci_dev *pdev; struct net_device *ndev; /* Parent NET device */ /* Hardware information */ u32 chip_rev_id; u32 fw_rev_id; u32 func; /* PCI function for this adapter */ u32 alt_func; /* PCI function for alternate adapter */ u32 port; /* Port number this adapter */ spinlock_t adapter_lock; spinlock_t hw_lock; spinlock_t stats_lock; /* PCI Bus Relative Register Addresses */ void __iomem *reg_base; void __iomem *doorbell_area; u32 doorbell_area_size; u32 msg_enable; /* Page for Shadow Registers */ void *rx_ring_shadow_reg_area; dma_addr_t rx_ring_shadow_reg_dma; void *tx_ring_shadow_reg_area; dma_addr_t tx_ring_shadow_reg_dma; u32 mailbox_in; u32 mailbox_out; struct mbox_params idc_mbc; int tx_ring_size; int rx_ring_size; u32 intr_count; struct msix_entry *msi_x_entry; struct intr_context intr_context[MAX_RX_RINGS]; int tx_ring_count; /* One per online CPU. */ u32 rss_ring_count; /* One per irq vector. */ /* * rx_ring_count = * (CPU count * outbound completion rx_ring) + * (irq_vector_cnt * inbound (RSS) completion rx_ring) */ int rx_ring_count; int ring_mem_size; void *ring_mem; struct rx_ring rx_ring[MAX_RX_RINGS]; struct tx_ring tx_ring[MAX_TX_RINGS]; unsigned int lbq_buf_order; int rx_csum; u32 default_rx_queue; u16 rx_coalesce_usecs; /* cqicb->int_delay */ u16 rx_max_coalesced_frames; /* cqicb->pkt_int_delay */ u16 tx_coalesce_usecs; /* cqicb->int_delay */ u16 tx_max_coalesced_frames; /* cqicb->pkt_int_delay */ u32 xg_sem_mask; u32 port_link_up; u32 port_init; u32 link_status; struct ql_mpi_coredump *mpi_coredump; u32 core_is_dumped; u32 link_config; u32 led_config; u32 max_frame_size; union flash_params flash; struct workqueue_struct *workqueue; struct delayed_work asic_reset_work; struct delayed_work mpi_reset_work; struct delayed_work mpi_work; struct delayed_work mpi_port_cfg_work; struct delayed_work mpi_idc_work; struct delayed_work mpi_core_to_log; struct completion ide_completion; struct nic_operations *nic_ops; u16 device_id; atomic_t lb_count; }; /* * Typical Register accessor for memory mapped device. */ static inline u32 ql_read32(const struct ql_adapter *qdev, int reg) { return readl(qdev->reg_base + reg); } /* * Typical Register accessor for memory mapped device. */ static inline void ql_write32(const struct ql_adapter *qdev, int reg, u32 val) { writel(val, qdev->reg_base + reg); } /* * Doorbell Registers: * Doorbell registers are virtual registers in the PCI memory space. * The space is allocated by the chip during PCI initialization. The * device driver finds the doorbell address in BAR 3 in PCI config space. * The registers are used to control outbound and inbound queues. For * example, the producer index for an outbound queue. Each queue uses * 1 4k chunk of memory. The lower half of the space is for outbound * queues. The upper half is for inbound queues. */ static inline void ql_write_db_reg(u32 val, void __iomem *addr) { writel(val, addr); mmiowb(); } /* * Shadow Registers: * Outbound queues have a consumer index that is maintained by the chip. * Inbound queues have a producer index that is maintained by the chip. * For lower overhead, these registers are "shadowed" to host memory * which allows the device driver to track the queue progress without * PCI reads. When an entry is placed on an inbound queue, the chip will * update the relevant index register and then copy the value to the * shadow register in host memory. */ static inline u32 ql_read_sh_reg(__le32 *addr) { u32 reg; reg = le32_to_cpu(*addr); rmb(); return reg; } extern char qlge_driver_name[]; extern const char qlge_driver_version[]; extern const struct ethtool_ops qlge_ethtool_ops; extern int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask); extern void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask); extern int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data); extern int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index, u32 *value); extern int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value); extern int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit, u16 q_id); void ql_queue_fw_error(struct ql_adapter *qdev); void ql_mpi_work(struct work_struct *work); void ql_mpi_reset_work(struct work_struct *work); void ql_mpi_core_to_log(struct work_struct *work); int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 ebit); void ql_queue_asic_error(struct ql_adapter *qdev); u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr); void ql_set_ethtool_ops(struct net_device *ndev); int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data); void ql_mpi_idc_work(struct work_struct *work); void ql_mpi_port_cfg_work(struct work_struct *work); int ql_mb_get_fw_state(struct ql_adapter *qdev); int ql_cam_route_initialize(struct ql_adapter *qdev); int ql_read_mpi_reg(struct ql_adapter *qdev, u32 reg, u32 *data); int ql_write_mpi_reg(struct ql_adapter *qdev, u32 reg, u32 data); int ql_unpause_mpi_risc(struct ql_adapter *qdev); int ql_pause_mpi_risc(struct ql_adapter *qdev); int ql_hard_reset_mpi_risc(struct ql_adapter *qdev); int ql_dump_risc_ram_area(struct ql_adapter *qdev, void *buf, u32 ram_addr, int word_count); int ql_core_dump(struct ql_adapter *qdev, struct ql_mpi_coredump *mpi_coredump); int ql_mb_about_fw(struct ql_adapter *qdev); int ql_wol(struct ql_adapter *qdev); int ql_mb_wol_set_magic(struct ql_adapter *qdev, u32 enable_wol); int ql_mb_wol_mode(struct ql_adapter *qdev, u32 wol); int ql_mb_set_led_cfg(struct ql_adapter *qdev, u32 led_config); int ql_mb_get_led_cfg(struct ql_adapter *qdev); void ql_link_on(struct ql_adapter *qdev); void ql_link_off(struct ql_adapter *qdev); int ql_mb_set_mgmnt_traffic_ctl(struct ql_adapter *qdev, u32 control); int ql_mb_get_port_cfg(struct ql_adapter *qdev); int ql_mb_set_port_cfg(struct ql_adapter *qdev); int ql_wait_fifo_empty(struct ql_adapter *qdev); void ql_gen_reg_dump(struct ql_adapter *qdev, struct ql_reg_dump *mpi_coredump); netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev); void ql_check_lb_frame(struct ql_adapter *, struct sk_buff *); int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget); #if 1 #define QL_ALL_DUMP #define QL_REG_DUMP #define QL_DEV_DUMP #define QL_CB_DUMP /* #define QL_IB_DUMP */ /* #define QL_OB_DUMP */ #endif #ifdef QL_REG_DUMP extern void ql_dump_xgmac_control_regs(struct ql_adapter *qdev); extern void ql_dump_routing_entries(struct ql_adapter *qdev); extern void ql_dump_regs(struct ql_adapter *qdev); #define QL_DUMP_REGS(qdev) ql_dump_regs(qdev) #define QL_DUMP_ROUTE(qdev) ql_dump_routing_entries(qdev) #define QL_DUMP_XGMAC_CONTROL_REGS(qdev) ql_dump_xgmac_control_regs(qdev) #else #define QL_DUMP_REGS(qdev) #define QL_DUMP_ROUTE(qdev) #define QL_DUMP_XGMAC_CONTROL_REGS(qdev) #endif #ifdef QL_STAT_DUMP extern void ql_dump_stat(struct ql_adapter *qdev); #define QL_DUMP_STAT(qdev) ql_dump_stat(qdev) #else #define QL_DUMP_STAT(qdev) #endif #ifdef QL_DEV_DUMP extern void ql_dump_qdev(struct ql_adapter *qdev); #define QL_DUMP_QDEV(qdev) ql_dump_qdev(qdev) #else #define QL_DUMP_QDEV(qdev) #endif #ifdef QL_CB_DUMP extern void ql_dump_wqicb(struct wqicb *wqicb); extern void ql_dump_tx_ring(struct tx_ring *tx_ring); extern void ql_dump_ricb(struct ricb *ricb); extern void ql_dump_cqicb(struct cqicb *cqicb); extern void ql_dump_rx_ring(struct rx_ring *rx_ring); extern void ql_dump_hw_cb(struct ql_adapter *qdev, int size, u32 bit, u16 q_id); #define QL_DUMP_RICB(ricb) ql_dump_ricb(ricb) #define QL_DUMP_WQICB(wqicb) ql_dump_wqicb(wqicb) #define QL_DUMP_TX_RING(tx_ring) ql_dump_tx_ring(tx_ring) #define QL_DUMP_CQICB(cqicb) ql_dump_cqicb(cqicb) #define QL_DUMP_RX_RING(rx_ring) ql_dump_rx_ring(rx_ring) #define QL_DUMP_HW_CB(qdev, size, bit, q_id) \ ql_dump_hw_cb(qdev, size, bit, q_id) #else #define QL_DUMP_RICB(ricb) #define QL_DUMP_WQICB(wqicb) #define QL_DUMP_TX_RING(tx_ring) #define QL_DUMP_CQICB(cqicb) #define QL_DUMP_RX_RING(rx_ring) #define QL_DUMP_HW_CB(qdev, size, bit, q_id) #endif #ifdef QL_OB_DUMP extern void ql_dump_tx_desc(struct tx_buf_desc *tbd); extern void ql_dump_ob_mac_iocb(struct ob_mac_iocb_req *ob_mac_iocb); extern void ql_dump_ob_mac_rsp(struct ob_mac_iocb_rsp *ob_mac_rsp); #define QL_DUMP_OB_MAC_IOCB(ob_mac_iocb) ql_dump_ob_mac_iocb(ob_mac_iocb) #define QL_DUMP_OB_MAC_RSP(ob_mac_rsp) ql_dump_ob_mac_rsp(ob_mac_rsp) #else #define QL_DUMP_OB_MAC_IOCB(ob_mac_iocb) #define QL_DUMP_OB_MAC_RSP(ob_mac_rsp) #endif #ifdef QL_IB_DUMP extern void ql_dump_ib_mac_rsp(struct ib_mac_iocb_rsp *ib_mac_rsp); #define QL_DUMP_IB_MAC_RSP(ib_mac_rsp) ql_dump_ib_mac_rsp(ib_mac_rsp) #else #define QL_DUMP_IB_MAC_RSP(ib_mac_rsp) #endif #ifdef QL_ALL_DUMP extern void ql_dump_all(struct ql_adapter *qdev); #define QL_DUMP_ALL(qdev) ql_dump_all(qdev) #else #define QL_DUMP_ALL(qdev) #endif #endif /* _QLGE_H_ */