/* * QLogic qlge NIC HBA Driver * Copyright (c) 2003-2008 QLogic Corporation * See LICENSE.qlge for copyright and licensing details. * Author: Linux qlge network device driver by * Ron Mercer */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "qlge.h" char qlge_driver_name[] = DRV_NAME; const char qlge_driver_version[] = DRV_VERSION; MODULE_AUTHOR("Ron Mercer "); MODULE_DESCRIPTION(DRV_STRING " "); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | /* NETIF_MSG_TIMER | */ NETIF_MSG_IFDOWN | NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR | /* NETIF_MSG_TX_QUEUED | */ /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */ /* NETIF_MSG_PKTDATA | */ NETIF_MSG_HW | NETIF_MSG_WOL | 0; static int debug = 0x00007fff; /* defaults above */ module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); #define MSIX_IRQ 0 #define MSI_IRQ 1 #define LEG_IRQ 2 static int qlge_irq_type = MSIX_IRQ; module_param(qlge_irq_type, int, MSIX_IRQ); MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy."); static int qlge_mpi_coredump; module_param(qlge_mpi_coredump, int, 0); MODULE_PARM_DESC(qlge_mpi_coredump, "Option to enable MPI firmware dump. " "Default is OFF - Do Not allocate memory. "); static int qlge_force_coredump; module_param(qlge_force_coredump, int, 0); MODULE_PARM_DESC(qlge_force_coredump, "Option to allow force of firmware core dump. " "Default is OFF - Do not allow."); static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = { {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)}, {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)}, /* required last entry */ {0,} }; MODULE_DEVICE_TABLE(pci, qlge_pci_tbl); static int ql_wol(struct ql_adapter *qdev); static void qlge_set_multicast_list(struct net_device *ndev); /* This hardware semaphore causes exclusive access to * resources shared between the NIC driver, MPI firmware, * FCOE firmware and the FC driver. */ static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask) { u32 sem_bits = 0; switch (sem_mask) { case SEM_XGMAC0_MASK: sem_bits = SEM_SET << SEM_XGMAC0_SHIFT; break; case SEM_XGMAC1_MASK: sem_bits = SEM_SET << SEM_XGMAC1_SHIFT; break; case SEM_ICB_MASK: sem_bits = SEM_SET << SEM_ICB_SHIFT; break; case SEM_MAC_ADDR_MASK: sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT; break; case SEM_FLASH_MASK: sem_bits = SEM_SET << SEM_FLASH_SHIFT; break; case SEM_PROBE_MASK: sem_bits = SEM_SET << SEM_PROBE_SHIFT; break; case SEM_RT_IDX_MASK: sem_bits = SEM_SET << SEM_RT_IDX_SHIFT; break; case SEM_PROC_REG_MASK: sem_bits = SEM_SET << SEM_PROC_REG_SHIFT; break; default: netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n"); return -EINVAL; } ql_write32(qdev, SEM, sem_bits | sem_mask); return !(ql_read32(qdev, SEM) & sem_bits); } int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask) { unsigned int wait_count = 30; do { if (!ql_sem_trylock(qdev, sem_mask)) return 0; udelay(100); } while (--wait_count); return -ETIMEDOUT; } void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask) { ql_write32(qdev, SEM, sem_mask); ql_read32(qdev, SEM); /* flush */ } /* This function waits for a specific bit to come ready * in a given register. It is used mostly by the initialize * process, but is also used in kernel thread API such as * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid. */ int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit) { u32 temp; int count = UDELAY_COUNT; while (count) { temp = ql_read32(qdev, reg); /* check for errors */ if (temp & err_bit) { netif_alert(qdev, probe, qdev->ndev, "register 0x%.08x access error, value = 0x%.08x!.\n", reg, temp); return -EIO; } else if (temp & bit) return 0; udelay(UDELAY_DELAY); count--; } netif_alert(qdev, probe, qdev->ndev, "Timed out waiting for reg %x to come ready.\n", reg); return -ETIMEDOUT; } /* The CFG register is used to download TX and RX control blocks * to the chip. This function waits for an operation to complete. */ static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit) { int count = UDELAY_COUNT; u32 temp; while (count) { temp = ql_read32(qdev, CFG); if (temp & CFG_LE) return -EIO; if (!(temp & bit)) return 0; udelay(UDELAY_DELAY); count--; } return -ETIMEDOUT; } /* Used to issue init control blocks to hw. Maps control block, * sets address, triggers download, waits for completion. */ int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit, u16 q_id) { u64 map; int status = 0; int direction; u32 mask; u32 value; direction = (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE; map = pci_map_single(qdev->pdev, ptr, size, direction); if (pci_dma_mapping_error(qdev->pdev, map)) { netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n"); return -ENOMEM; } status = ql_sem_spinlock(qdev, SEM_ICB_MASK); if (status) return status; status = ql_wait_cfg(qdev, bit); if (status) { netif_err(qdev, ifup, qdev->ndev, "Timed out waiting for CFG to come ready.\n"); goto exit; } ql_write32(qdev, ICB_L, (u32) map); ql_write32(qdev, ICB_H, (u32) (map >> 32)); mask = CFG_Q_MASK | (bit << 16); value = bit | (q_id << CFG_Q_SHIFT); ql_write32(qdev, CFG, (mask | value)); /* * Wait for the bit to clear after signaling hw. */ status = ql_wait_cfg(qdev, bit); exit: ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */ pci_unmap_single(qdev->pdev, map, size, direction); return status; } /* Get a specific MAC address from the CAM. Used for debug and reg dump. */ int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index, u32 *value) { u32 offset = 0; int status; switch (type) { case MAC_ADDR_TYPE_MULTI_MAC: case MAC_ADDR_TYPE_CAM_MAC: { status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) goto exit; ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MR, 0); if (status) goto exit; *value++ = ql_read32(qdev, MAC_ADDR_DATA); status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) goto exit; ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MR, 0); if (status) goto exit; *value++ = ql_read32(qdev, MAC_ADDR_DATA); if (type == MAC_ADDR_TYPE_CAM_MAC) { status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) goto exit; ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MR, 0); if (status) goto exit; *value++ = ql_read32(qdev, MAC_ADDR_DATA); } break; } case MAC_ADDR_TYPE_VLAN: case MAC_ADDR_TYPE_MULTI_FLTR: default: netif_crit(qdev, ifup, qdev->ndev, "Address type %d not yet supported.\n", type); status = -EPERM; } exit: return status; } /* Set up a MAC, multicast or VLAN address for the * inbound frame matching. */ static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type, u16 index) { u32 offset = 0; int status = 0; switch (type) { case MAC_ADDR_TYPE_MULTI_MAC: { u32 upper = (addr[0] << 8) | addr[1]; u32 lower = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | (addr[5]); status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) goto exit; ql_write32(qdev, MAC_ADDR_IDX, (offset++) | (index << MAC_ADDR_IDX_SHIFT) | type | MAC_ADDR_E); ql_write32(qdev, MAC_ADDR_DATA, lower); status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) goto exit; ql_write32(qdev, MAC_ADDR_IDX, (offset++) | (index << MAC_ADDR_IDX_SHIFT) | type | MAC_ADDR_E); ql_write32(qdev, MAC_ADDR_DATA, upper); status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) goto exit; break; } case MAC_ADDR_TYPE_CAM_MAC: { u32 cam_output; u32 upper = (addr[0] << 8) | addr[1]; u32 lower = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | (addr[5]); netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Adding %s address %pM at index %d in the CAM.\n", type == MAC_ADDR_TYPE_MULTI_MAC ? "MULTICAST" : "UNICAST", addr, index); status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) goto exit; ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ type); /* type */ ql_write32(qdev, MAC_ADDR_DATA, lower); status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) goto exit; ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ type); /* type */ ql_write32(qdev, MAC_ADDR_DATA, upper); status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) goto exit; ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ type); /* type */ /* This field should also include the queue id and possibly the function id. Right now we hardcode the route field to NIC core. */ cam_output = (CAM_OUT_ROUTE_NIC | (qdev-> func << CAM_OUT_FUNC_SHIFT) | (0 << CAM_OUT_CQ_ID_SHIFT)); if (qdev->vlgrp) cam_output |= CAM_OUT_RV; /* route to NIC core */ ql_write32(qdev, MAC_ADDR_DATA, cam_output); break; } case MAC_ADDR_TYPE_VLAN: { u32 enable_bit = *((u32 *) &addr[0]); /* For VLAN, the addr actually holds a bit that * either enables or disables the vlan id we are * addressing. It's either MAC_ADDR_E on or off. * That's bit-27 we're talking about. */ netif_info(qdev, ifup, qdev->ndev, "%s VLAN ID %d %s the CAM.\n", enable_bit ? "Adding" : "Removing", index, enable_bit ? "to" : "from"); status = ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) goto exit; ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ type | /* type */ enable_bit); /* enable/disable */ break; } case MAC_ADDR_TYPE_MULTI_FLTR: default: netif_crit(qdev, ifup, qdev->ndev, "Address type %d not yet supported.\n", type); status = -EPERM; } exit: return status; } /* Set or clear MAC address in hardware. We sometimes * have to clear it to prevent wrong frame routing * especially in a bonding environment. */ static int ql_set_mac_addr(struct ql_adapter *qdev, int set) { int status; char zero_mac_addr[ETH_ALEN]; char *addr; if (set) { addr = &qdev->current_mac_addr[0]; netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Set Mac addr %pM\n", addr); } else { memset(zero_mac_addr, 0, ETH_ALEN); addr = &zero_mac_addr[0]; netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Clearing MAC address\n"); } status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); if (status) return status; status = ql_set_mac_addr_reg(qdev, (u8 *) addr, MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ); ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); if (status) netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n"); return status; } void ql_link_on(struct ql_adapter *qdev) { netif_err(qdev, link, qdev->ndev, "Link is up.\n"); netif_carrier_on(qdev->ndev); ql_set_mac_addr(qdev, 1); } void ql_link_off(struct ql_adapter *qdev) { netif_err(qdev, link, qdev->ndev, "Link is down.\n"); netif_carrier_off(qdev->ndev); ql_set_mac_addr(qdev, 0); } /* Get a specific frame routing value from the CAM. * Used for debug and reg dump. */ int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value) { int status = 0; status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0); if (status) goto exit; ql_write32(qdev, RT_IDX, RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT)); status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0); if (status) goto exit; *value = ql_read32(qdev, RT_DATA); exit: return status; } /* The NIC function for this chip has 16 routing indexes. Each one can be used * to route different frame types to various inbound queues. We send broadcast/ * multicast/error frames to the default queue for slow handling, * and CAM hit/RSS frames to the fast handling queues. */ static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask, int enable) { int status = -EINVAL; /* Return error if no mask match. */ u32 value = 0; netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "%s %s mask %s the routing reg.\n", enable ? "Adding" : "Removing", index == RT_IDX_ALL_ERR_SLOT ? "MAC ERROR/ALL ERROR" : index == RT_IDX_IP_CSUM_ERR_SLOT ? "IP CSUM ERROR" : index == RT_IDX_TCP_UDP_CSUM_ERR_SLOT ? "TCP/UDP CSUM ERROR" : index == RT_IDX_BCAST_SLOT ? "BROADCAST" : index == RT_IDX_MCAST_MATCH_SLOT ? "MULTICAST MATCH" : index == RT_IDX_ALLMULTI_SLOT ? "ALL MULTICAST MATCH" : index == RT_IDX_UNUSED6_SLOT ? "UNUSED6" : index == RT_IDX_UNUSED7_SLOT ? "UNUSED7" : index == RT_IDX_RSS_MATCH_SLOT ? "RSS ALL/IPV4 MATCH" : index == RT_IDX_RSS_IPV6_SLOT ? "RSS IPV6" : index == RT_IDX_RSS_TCP4_SLOT ? "RSS TCP4" : index == RT_IDX_RSS_TCP6_SLOT ? "RSS TCP6" : index == RT_IDX_CAM_HIT_SLOT ? "CAM HIT" : index == RT_IDX_UNUSED013 ? "UNUSED13" : index == RT_IDX_UNUSED014 ? "UNUSED14" : index == RT_IDX_PROMISCUOUS_SLOT ? "PROMISCUOUS" : "(Bad index != RT_IDX)", enable ? "to" : "from"); switch (mask) { case RT_IDX_CAM_HIT: { value = RT_IDX_DST_CAM_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case RT_IDX_VALID: /* Promiscuous Mode frames. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_IP_CSUM_ERR_SLOT << RT_IDX_IDX_SHIFT); /* index */ break; } case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_TCP_UDP_CSUM_ERR_SLOT << RT_IDX_IDX_SHIFT); /* index */ break; } case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case RT_IDX_MCAST: /* Pass up All Multicast frames. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */ { value = RT_IDX_DST_RSS | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case 0: /* Clear the E-bit on an entry. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (index << RT_IDX_IDX_SHIFT);/* index */ break; } default: netif_err(qdev, ifup, qdev->ndev, "Mask type %d not yet supported.\n", mask); status = -EPERM; goto exit; } if (value) { status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0); if (status) goto exit; value |= (enable ? RT_IDX_E : 0); ql_write32(qdev, RT_IDX, value); ql_write32(qdev, RT_DATA, enable ? mask : 0); } exit: return status; } static void ql_enable_interrupts(struct ql_adapter *qdev) { ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI); } static void ql_disable_interrupts(struct ql_adapter *qdev) { ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16)); } /* If we're running with multiple MSI-X vectors then we enable on the fly. * Otherwise, we may have multiple outstanding workers and don't want to * enable until the last one finishes. In this case, the irq_cnt gets * incremented everytime we queue a worker and decremented everytime * a worker finishes. Once it hits zero we enable the interrupt. */ u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr) { u32 var = 0; unsigned long hw_flags = 0; struct intr_context *ctx = qdev->intr_context + intr; if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) { /* Always enable if we're MSIX multi interrupts and * it's not the default (zeroeth) interrupt. */ ql_write32(qdev, INTR_EN, ctx->intr_en_mask); var = ql_read32(qdev, STS); return var; } spin_lock_irqsave(&qdev->hw_lock, hw_flags); if (atomic_dec_and_test(&ctx->irq_cnt)) { ql_write32(qdev, INTR_EN, ctx->intr_en_mask); var = ql_read32(qdev, STS); } spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); return var; } static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr) { u32 var = 0; struct intr_context *ctx; /* HW disables for us if we're MSIX multi interrupts and * it's not the default (zeroeth) interrupt. */ if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) return 0; ctx = qdev->intr_context + intr; spin_lock(&qdev->hw_lock); if (!atomic_read(&ctx->irq_cnt)) { ql_write32(qdev, INTR_EN, ctx->intr_dis_mask); var = ql_read32(qdev, STS); } atomic_inc(&ctx->irq_cnt); spin_unlock(&qdev->hw_lock); return var; } static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev) { int i; for (i = 0; i < qdev->intr_count; i++) { /* The enable call does a atomic_dec_and_test * and enables only if the result is zero. * So we precharge it here. */ if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) || i == 0)) atomic_set(&qdev->intr_context[i].irq_cnt, 1); ql_enable_completion_interrupt(qdev, i); } } static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str) { int status, i; u16 csum = 0; __le16 *flash = (__le16 *)&qdev->flash; status = strncmp((char *)&qdev->flash, str, 4); if (status) { netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n"); return status; } for (i = 0; i < size; i++) csum += le16_to_cpu(*flash++); if (csum) netif_err(qdev, ifup, qdev->ndev, "Invalid flash checksum, csum = 0x%.04x.\n", csum); return csum; } static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data) { int status = 0; /* wait for reg to come ready */ status = ql_wait_reg_rdy(qdev, FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR); if (status) goto exit; /* set up for reg read */ ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset); /* wait for reg to come ready */ status = ql_wait_reg_rdy(qdev, FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR); if (status) goto exit; /* This data is stored on flash as an array of * __le32. Since ql_read32() returns cpu endian * we need to swap it back. */ *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA)); exit: return status; } static int ql_get_8000_flash_params(struct ql_adapter *qdev) { u32 i, size; int status; __le32 *p = (__le32 *)&qdev->flash; u32 offset; u8 mac_addr[6]; /* Get flash offset for function and adjust * for dword access. */ if (!qdev->port) offset = FUNC0_FLASH_OFFSET / sizeof(u32); else offset = FUNC1_FLASH_OFFSET / sizeof(u32); if (ql_sem_spinlock(qdev, SEM_FLASH_MASK)) return -ETIMEDOUT; size = sizeof(struct flash_params_8000) / sizeof(u32); for (i = 0; i < size; i++, p++) { status = ql_read_flash_word(qdev, i+offset, p); if (status) { netif_err(qdev, ifup, qdev->ndev, "Error reading flash.\n"); goto exit; } } status = ql_validate_flash(qdev, sizeof(struct flash_params_8000) / sizeof(u16), "8000"); if (status) { netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n"); status = -EINVAL; goto exit; } /* Extract either manufacturer or BOFM modified * MAC address. */ if (qdev->flash.flash_params_8000.data_type1 == 2) memcpy(mac_addr, qdev->flash.flash_params_8000.mac_addr1, qdev->ndev->addr_len); else memcpy(mac_addr, qdev->flash.flash_params_8000.mac_addr, qdev->ndev->addr_len); if (!is_valid_ether_addr(mac_addr)) { netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n"); status = -EINVAL; goto exit; } memcpy(qdev->ndev->dev_addr, mac_addr, qdev->ndev->addr_len); exit: ql_sem_unlock(qdev, SEM_FLASH_MASK); return status; } static int ql_get_8012_flash_params(struct ql_adapter *qdev) { int i; int status; __le32 *p = (__le32 *)&qdev->flash; u32 offset = 0; u32 size = sizeof(struct flash_params_8012) / sizeof(u32); /* Second function's parameters follow the first * function's. */ if (qdev->port) offset = size; if (ql_sem_spinlock(qdev, SEM_FLASH_MASK)) return -ETIMEDOUT; for (i = 0; i < size; i++, p++) { status = ql_read_flash_word(qdev, i+offset, p); if (status) { netif_err(qdev, ifup, qdev->ndev, "Error reading flash.\n"); goto exit; } } status = ql_validate_flash(qdev, sizeof(struct flash_params_8012) / sizeof(u16), "8012"); if (status) { netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n"); status = -EINVAL; goto exit; } if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) { status = -EINVAL; goto exit; } memcpy(qdev->ndev->dev_addr, qdev->flash.flash_params_8012.mac_addr, qdev->ndev->addr_len); exit: ql_sem_unlock(qdev, SEM_FLASH_MASK); return status; } /* xgmac register are located behind the xgmac_addr and xgmac_data * register pair. Each read/write requires us to wait for the ready * bit before reading/writing the data. */ static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data) { int status; /* wait for reg to come ready */ status = ql_wait_reg_rdy(qdev, XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); if (status) return status; /* write the data to the data reg */ ql_write32(qdev, XGMAC_DATA, data); /* trigger the write */ ql_write32(qdev, XGMAC_ADDR, reg); return status; } /* xgmac register are located behind the xgmac_addr and xgmac_data * register pair. Each read/write requires us to wait for the ready * bit before reading/writing the data. */ int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data) { int status = 0; /* wait for reg to come ready */ status = ql_wait_reg_rdy(qdev, XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); if (status) goto exit; /* set up for reg read */ ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R); /* wait for reg to come ready */ status = ql_wait_reg_rdy(qdev, XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); if (status) goto exit; /* get the data */ *data = ql_read32(qdev, XGMAC_DATA); exit: return status; } /* This is used for reading the 64-bit statistics regs. */ int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data) { int status = 0; u32 hi = 0; u32 lo = 0; status = ql_read_xgmac_reg(qdev, reg, &lo); if (status) goto exit; status = ql_read_xgmac_reg(qdev, reg + 4, &hi); if (status) goto exit; *data = (u64) lo | ((u64) hi << 32); exit: return status; } static int ql_8000_port_initialize(struct ql_adapter *qdev) { int status; /* * Get MPI firmware version for driver banner * and ethool info. */ status = ql_mb_about_fw(qdev); if (status) goto exit; status = ql_mb_get_fw_state(qdev); if (status) goto exit; /* Wake up a worker to get/set the TX/RX frame sizes. */ queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0); exit: return status; } /* Take the MAC Core out of reset. * Enable statistics counting. * Take the transmitter/receiver out of reset. * This functionality may be done in the MPI firmware at a * later date. */ static int ql_8012_port_initialize(struct ql_adapter *qdev) { int status = 0; u32 data; if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) { /* Another function has the semaphore, so * wait for the port init bit to come ready. */ netif_info(qdev, link, qdev->ndev, "Another function has the semaphore, so wait for the port init bit to come ready.\n"); status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0); if (status) { netif_crit(qdev, link, qdev->ndev, "Port initialize timed out.\n"); } return status; } netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n"); /* Set the core reset. */ status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data); if (status) goto end; data |= GLOBAL_CFG_RESET; status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data); if (status) goto end; /* Clear the core reset and turn on jumbo for receiver. */ data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */ data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */ data |= GLOBAL_CFG_TX_STAT_EN; data |= GLOBAL_CFG_RX_STAT_EN; status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data); if (status) goto end; /* Enable transmitter, and clear it's reset. */ status = ql_read_xgmac_reg(qdev, TX_CFG, &data); if (status) goto end; data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */ data |= TX_CFG_EN; /* Enable the transmitter. */ status = ql_write_xgmac_reg(qdev, TX_CFG, data); if (status) goto end; /* Enable receiver and clear it's reset. */ status = ql_read_xgmac_reg(qdev, RX_CFG, &data); if (status) goto end; data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */ data |= RX_CFG_EN; /* Enable the receiver. */ status = ql_write_xgmac_reg(qdev, RX_CFG, data); if (status) goto end; /* Turn on jumbo. */ status = ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16)); if (status) goto end; status = ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580); if (status) goto end; /* Signal to the world that the port is enabled. */ ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init)); end: ql_sem_unlock(qdev, qdev->xg_sem_mask); return status; } static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev) { return PAGE_SIZE << qdev->lbq_buf_order; } /* Get the next large buffer. */ static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring) { struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx]; rx_ring->lbq_curr_idx++; if (rx_ring->lbq_curr_idx == rx_ring->lbq_len) rx_ring->lbq_curr_idx = 0; rx_ring->lbq_free_cnt++; return lbq_desc; } static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev, struct rx_ring *rx_ring) { struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring); pci_dma_sync_single_for_cpu(qdev->pdev, dma_unmap_addr(lbq_desc, mapaddr), rx_ring->lbq_buf_size, PCI_DMA_FROMDEVICE); /* If it's the last chunk of our master page then * we unmap it. */ if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size) == ql_lbq_block_size(qdev)) pci_unmap_page(qdev->pdev, lbq_desc->p.pg_chunk.map, ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE); return lbq_desc; } /* Get the next small buffer. */ static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring) { struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx]; rx_ring->sbq_curr_idx++; if (rx_ring->sbq_curr_idx == rx_ring->sbq_len) rx_ring->sbq_curr_idx = 0; rx_ring->sbq_free_cnt++; return sbq_desc; } /* Update an rx ring index. */ static void ql_update_cq(struct rx_ring *rx_ring) { rx_ring->cnsmr_idx++; rx_ring->curr_entry++; if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) { rx_ring->cnsmr_idx = 0; rx_ring->curr_entry = rx_ring->cq_base; } } static void ql_write_cq_idx(struct rx_ring *rx_ring) { ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg); } static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring, struct bq_desc *lbq_desc) { if (!rx_ring->pg_chunk.page) { u64 map; rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC, qdev->lbq_buf_order); if (unlikely(!rx_ring->pg_chunk.page)) { netif_err(qdev, drv, qdev->ndev, "page allocation failed.\n"); return -ENOMEM; } rx_ring->pg_chunk.offset = 0; map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page, 0, ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE); if (pci_dma_mapping_error(qdev->pdev, map)) { __free_pages(rx_ring->pg_chunk.page, qdev->lbq_buf_order); netif_err(qdev, drv, qdev->ndev, "PCI mapping failed.\n"); return -ENOMEM; } rx_ring->pg_chunk.map = map; rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page); } /* Copy the current master pg_chunk info * to the current descriptor. */ lbq_desc->p.pg_chunk = rx_ring->pg_chunk; /* Adjust the master page chunk for next * buffer get. */ rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size; if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) { rx_ring->pg_chunk.page = NULL; lbq_desc->p.pg_chunk.last_flag = 1; } else { rx_ring->pg_chunk.va += rx_ring->lbq_buf_size; get_page(rx_ring->pg_chunk.page); lbq_desc->p.pg_chunk.last_flag = 0; } return 0; } /* Process (refill) a large buffer queue. */ static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring) { u32 clean_idx = rx_ring->lbq_clean_idx; u32 start_idx = clean_idx; struct bq_desc *lbq_desc; u64 map; int i; while (rx_ring->lbq_free_cnt > 32) { for (i = 0; i < 16; i++) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "lbq: try cleaning clean_idx = %d.\n", clean_idx); lbq_desc = &rx_ring->lbq[clean_idx]; if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) { netif_err(qdev, ifup, qdev->ndev, "Could not get a page chunk.\n"); return; } map = lbq_desc->p.pg_chunk.map + lbq_desc->p.pg_chunk.offset; dma_unmap_addr_set(lbq_desc, mapaddr, map); dma_unmap_len_set(lbq_desc, maplen, rx_ring->lbq_buf_size); *lbq_desc->addr = cpu_to_le64(map); pci_dma_sync_single_for_device(qdev->pdev, map, rx_ring->lbq_buf_size, PCI_DMA_FROMDEVICE); clean_idx++; if (clean_idx == rx_ring->lbq_len) clean_idx = 0; } rx_ring->lbq_clean_idx = clean_idx; rx_ring->lbq_prod_idx += 16; if (rx_ring->lbq_prod_idx == rx_ring->lbq_len) rx_ring->lbq_prod_idx = 0; rx_ring->lbq_free_cnt -= 16; } if (start_idx != clean_idx) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "lbq: updating prod idx = %d.\n", rx_ring->lbq_prod_idx); ql_write_db_reg(rx_ring->lbq_prod_idx, rx_ring->lbq_prod_idx_db_reg); } } /* Process (refill) a small buffer queue. */ static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring) { u32 clean_idx = rx_ring->sbq_clean_idx; u32 start_idx = clean_idx; struct bq_desc *sbq_desc; u64 map; int i; while (rx_ring->sbq_free_cnt > 16) { for (i = 0; i < 16; i++) { sbq_desc = &rx_ring->sbq[clean_idx]; netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "sbq: try cleaning clean_idx = %d.\n", clean_idx); if (sbq_desc->p.skb == NULL) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "sbq: getting new skb for index %d.\n", sbq_desc->index); sbq_desc->p.skb = netdev_alloc_skb(qdev->ndev, SMALL_BUFFER_SIZE); if (sbq_desc->p.skb == NULL) { netif_err(qdev, probe, qdev->ndev, "Couldn't get an skb.\n"); rx_ring->sbq_clean_idx = clean_idx; return; } skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD); map = pci_map_single(qdev->pdev, sbq_desc->p.skb->data, rx_ring->sbq_buf_size, PCI_DMA_FROMDEVICE); if (pci_dma_mapping_error(qdev->pdev, map)) { netif_err(qdev, ifup, qdev->ndev, "PCI mapping failed.\n"); rx_ring->sbq_clean_idx = clean_idx; dev_kfree_skb_any(sbq_desc->p.skb); sbq_desc->p.skb = NULL; return; } dma_unmap_addr_set(sbq_desc, mapaddr, map); dma_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size); *sbq_desc->addr = cpu_to_le64(map); } clean_idx++; if (clean_idx == rx_ring->sbq_len) clean_idx = 0; } rx_ring->sbq_clean_idx = clean_idx; rx_ring->sbq_prod_idx += 16; if (rx_ring->sbq_prod_idx == rx_ring->sbq_len) rx_ring->sbq_prod_idx = 0; rx_ring->sbq_free_cnt -= 16; } if (start_idx != clean_idx) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "sbq: updating prod idx = %d.\n", rx_ring->sbq_prod_idx); ql_write_db_reg(rx_ring->sbq_prod_idx, rx_ring->sbq_prod_idx_db_reg); } } static void ql_update_buffer_queues(struct ql_adapter *qdev, struct rx_ring *rx_ring) { ql_update_sbq(qdev, rx_ring); ql_update_lbq(qdev, rx_ring); } /* Unmaps tx buffers. Can be called from send() if a pci mapping * fails at some stage, or from the interrupt when a tx completes. */ static void ql_unmap_send(struct ql_adapter *qdev, struct tx_ring_desc *tx_ring_desc, int mapped) { int i; for (i = 0; i < mapped; i++) { if (i == 0 || (i == 7 && mapped > 7)) { /* * Unmap the skb->data area, or the * external sglist (AKA the Outbound * Address List (OAL)). * If its the zeroeth element, then it's * the skb->data area. If it's the 7th * element and there is more than 6 frags, * then its an OAL. */ if (i == 7) { netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev, "unmapping OAL area.\n"); } pci_unmap_single(qdev->pdev, dma_unmap_addr(&tx_ring_desc->map[i], mapaddr), dma_unmap_len(&tx_ring_desc->map[i], maplen), PCI_DMA_TODEVICE); } else { netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev, "unmapping frag %d.\n", i); pci_unmap_page(qdev->pdev, dma_unmap_addr(&tx_ring_desc->map[i], mapaddr), dma_unmap_len(&tx_ring_desc->map[i], maplen), PCI_DMA_TODEVICE); } } } /* Map the buffers for this transmit. This will return * NETDEV_TX_BUSY or NETDEV_TX_OK based on success. */ static int ql_map_send(struct ql_adapter *qdev, struct ob_mac_iocb_req *mac_iocb_ptr, struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc) { int len = skb_headlen(skb); dma_addr_t map; int frag_idx, err, map_idx = 0; struct tx_buf_desc *tbd = mac_iocb_ptr->tbd; int frag_cnt = skb_shinfo(skb)->nr_frags; if (frag_cnt) { netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev, "frag_cnt = %d.\n", frag_cnt); } /* * Map the skb buffer first. */ map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE); err = pci_dma_mapping_error(qdev->pdev, map); if (err) { netif_err(qdev, tx_queued, qdev->ndev, "PCI mapping failed with error: %d\n", err); return NETDEV_TX_BUSY; } tbd->len = cpu_to_le32(len); tbd->addr = cpu_to_le64(map); dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map); dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len); map_idx++; /* * This loop fills the remainder of the 8 address descriptors * in the IOCB. If there are more than 7 fragments, then the * eighth address desc will point to an external list (OAL). * When this happens, the remainder of the frags will be stored * in this list. */ for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx]; tbd++; if (frag_idx == 6 && frag_cnt > 7) { /* Let's tack on an sglist. * Our control block will now * look like this: * iocb->seg[0] = skb->data * iocb->seg[1] = frag[0] * iocb->seg[2] = frag[1] * iocb->seg[3] = frag[2] * iocb->seg[4] = frag[3] * iocb->seg[5] = frag[4] * iocb->seg[6] = frag[5] * iocb->seg[7] = ptr to OAL (external sglist) * oal->seg[0] = frag[6] * oal->seg[1] = frag[7] * oal->seg[2] = frag[8] * oal->seg[3] = frag[9] * oal->seg[4] = frag[10] * etc... */ /* Tack on the OAL in the eighth segment of IOCB. */ map = pci_map_single(qdev->pdev, &tx_ring_desc->oal, sizeof(struct oal), PCI_DMA_TODEVICE); err = pci_dma_mapping_error(qdev->pdev, map); if (err) { netif_err(qdev, tx_queued, qdev->ndev, "PCI mapping outbound address list with error: %d\n", err); goto map_error; } tbd->addr = cpu_to_le64(map); /* * The length is the number of fragments * that remain to be mapped times the length * of our sglist (OAL). */ tbd->len = cpu_to_le32((sizeof(struct tx_buf_desc) * (frag_cnt - frag_idx)) | TX_DESC_C); dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map); dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, sizeof(struct oal)); tbd = (struct tx_buf_desc *)&tx_ring_desc->oal; map_idx++; } map = pci_map_page(qdev->pdev, frag->page, frag->page_offset, frag->size, PCI_DMA_TODEVICE); err = pci_dma_mapping_error(qdev->pdev, map); if (err) { netif_err(qdev, tx_queued, qdev->ndev, "PCI mapping frags failed with error: %d.\n", err); goto map_error; } tbd->addr = cpu_to_le64(map); tbd->len = cpu_to_le32(frag->size); dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map); dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, frag->size); } /* Save the number of segments we've mapped. */ tx_ring_desc->map_cnt = map_idx; /* Terminate the last segment. */ tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E); return NETDEV_TX_OK; map_error: /* * If the first frag mapping failed, then i will be zero. * This causes the unmap of the skb->data area. Otherwise * we pass in the number of frags that mapped successfully * so they can be umapped. */ ql_unmap_send(qdev, tx_ring_desc, map_idx); return NETDEV_TX_BUSY; } /* Process an inbound completion from an rx ring. */ static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev, struct rx_ring *rx_ring, struct ib_mac_iocb_rsp *ib_mac_rsp, u32 length, u16 vlan_id) { struct sk_buff *skb; struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring); struct skb_frag_struct *rx_frag; int nr_frags; struct napi_struct *napi = &rx_ring->napi; napi->dev = qdev->ndev; skb = napi_get_frags(napi); if (!skb) { netif_err(qdev, drv, qdev->ndev, "Couldn't get an skb, exiting.\n"); rx_ring->rx_dropped++; put_page(lbq_desc->p.pg_chunk.page); return; } prefetch(lbq_desc->p.pg_chunk.va); rx_frag = skb_shinfo(skb)->frags; nr_frags = skb_shinfo(skb)->nr_frags; rx_frag += nr_frags; rx_frag->page = lbq_desc->p.pg_chunk.page; rx_frag->page_offset = lbq_desc->p.pg_chunk.offset; rx_frag->size = length; skb->len += length; skb->data_len += length; skb->truesize += length; skb_shinfo(skb)->nr_frags++; rx_ring->rx_packets++; rx_ring->rx_bytes += length; skb->ip_summed = CHECKSUM_UNNECESSARY; skb_record_rx_queue(skb, rx_ring->cq_id); if (qdev->vlgrp && (vlan_id != 0xffff)) vlan_gro_frags(&rx_ring->napi, qdev->vlgrp, vlan_id); else napi_gro_frags(napi); } /* Process an inbound completion from an rx ring. */ static void ql_process_mac_rx_page(struct ql_adapter *qdev, struct rx_ring *rx_ring, struct ib_mac_iocb_rsp *ib_mac_rsp, u32 length, u16 vlan_id) { struct net_device *ndev = qdev->ndev; struct sk_buff *skb = NULL; void *addr; struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring); struct napi_struct *napi = &rx_ring->napi; skb = netdev_alloc_skb(ndev, length); if (!skb) { netif_err(qdev, drv, qdev->ndev, "Couldn't get an skb, need to unwind!.\n"); rx_ring->rx_dropped++; put_page(lbq_desc->p.pg_chunk.page); return; } addr = lbq_desc->p.pg_chunk.va; prefetch(addr); /* Frame error, so drop the packet. */ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) { netif_info(qdev, drv, qdev->ndev, "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2); rx_ring->rx_errors++; goto err_out; } /* The max framesize filter on this chip is set higher than * MTU since FCoE uses 2k frames. */ if (skb->len > ndev->mtu + ETH_HLEN) { netif_err(qdev, drv, qdev->ndev, "Segment too small, dropping.\n"); rx_ring->rx_dropped++; goto err_out; } memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN); netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length); skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page, lbq_desc->p.pg_chunk.offset+ETH_HLEN, length-ETH_HLEN); skb->len += length-ETH_HLEN; skb->data_len += length-ETH_HLEN; skb->truesize += length-ETH_HLEN; rx_ring->rx_packets++; rx_ring->rx_bytes += skb->len; skb->protocol = eth_type_trans(skb, ndev); skb_checksum_none_assert(skb); if (qdev->rx_csum && !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) { /* TCP frame. */ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "TCP checksum done!\n"); skb->ip_summed = CHECKSUM_UNNECESSARY; } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) && (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) { /* Unfragmented ipv4 UDP frame. */ struct iphdr *iph = (struct iphdr *) skb->data; if (!(iph->frag_off & cpu_to_be16(IP_MF|IP_OFFSET))) { skb->ip_summed = CHECKSUM_UNNECESSARY; netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "TCP checksum done!\n"); } } } skb_record_rx_queue(skb, rx_ring->cq_id); if (skb->ip_summed == CHECKSUM_UNNECESSARY) { if (qdev->vlgrp && (vlan_id != 0xffff)) vlan_gro_receive(napi, qdev->vlgrp, vlan_id, skb); else napi_gro_receive(napi, skb); } else { if (qdev->vlgrp && (vlan_id != 0xffff)) vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id); else netif_receive_skb(skb); } return; err_out: dev_kfree_skb_any(skb); put_page(lbq_desc->p.pg_chunk.page); } /* Process an inbound completion from an rx ring. */ static void ql_process_mac_rx_skb(struct ql_adapter *qdev, struct rx_ring *rx_ring, struct ib_mac_iocb_rsp *ib_mac_rsp, u32 length, u16 vlan_id) { struct net_device *ndev = qdev->ndev; struct sk_buff *skb = NULL; struct sk_buff *new_skb = NULL; struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring); skb = sbq_desc->p.skb; /* Allocate new_skb and copy */ new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN); if (new_skb == NULL) { netif_err(qdev, probe, qdev->ndev, "No skb available, drop the packet.\n"); rx_ring->rx_dropped++; return; } skb_reserve(new_skb, NET_IP_ALIGN); memcpy(skb_put(new_skb, length), skb->data, length); skb = new_skb; /* Frame error, so drop the packet. */ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) { netif_info(qdev, drv, qdev->ndev, "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2); dev_kfree_skb_any(skb); rx_ring->rx_errors++; return; } /* loopback self test for ethtool */ if (test_bit(QL_SELFTEST, &qdev->flags)) { ql_check_lb_frame(qdev, skb); dev_kfree_skb_any(skb); return; } /* The max framesize filter on this chip is set higher than * MTU since FCoE uses 2k frames. */ if (skb->len > ndev->mtu + ETH_HLEN) { dev_kfree_skb_any(skb); rx_ring->rx_dropped++; return; } prefetch(skb->data); skb->dev = ndev; if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n", (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == IB_MAC_IOCB_RSP_M_HASH ? "Hash" : (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == IB_MAC_IOCB_RSP_M_REG ? "Registered" : (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : ""); } if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Promiscuous Packet.\n"); rx_ring->rx_packets++; rx_ring->rx_bytes += skb->len; skb->protocol = eth_type_trans(skb, ndev); skb_checksum_none_assert(skb); /* If rx checksum is on, and there are no * csum or frame errors. */ if (qdev->rx_csum && !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) { /* TCP frame. */ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "TCP checksum done!\n"); skb->ip_summed = CHECKSUM_UNNECESSARY; } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) && (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) { /* Unfragmented ipv4 UDP frame. */ struct iphdr *iph = (struct iphdr *) skb->data; if (!(iph->frag_off & ntohs(IP_MF|IP_OFFSET))) { skb->ip_summed = CHECKSUM_UNNECESSARY; netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "TCP checksum done!\n"); } } } skb_record_rx_queue(skb, rx_ring->cq_id); if (skb->ip_summed == CHECKSUM_UNNECESSARY) { if (qdev->vlgrp && (vlan_id != 0xffff)) vlan_gro_receive(&rx_ring->napi, qdev->vlgrp, vlan_id, skb); else napi_gro_receive(&rx_ring->napi, skb); } else { if (qdev->vlgrp && (vlan_id != 0xffff)) vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id); else netif_receive_skb(skb); } } static void ql_realign_skb(struct sk_buff *skb, int len) { void *temp_addr = skb->data; /* Undo the skb_reserve(skb,32) we did before * giving to hardware, and realign data on * a 2-byte boundary. */ skb->data -= QLGE_SB_PAD - NET_IP_ALIGN; skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN; skb_copy_to_linear_data(skb, temp_addr, (unsigned int)len); } /* * This function builds an skb for the given inbound * completion. It will be rewritten for readability in the near * future, but for not it works well. */ static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev, struct rx_ring *rx_ring, struct ib_mac_iocb_rsp *ib_mac_rsp) { struct bq_desc *lbq_desc; struct bq_desc *sbq_desc; struct sk_buff *skb = NULL; u32 length = le32_to_cpu(ib_mac_rsp->data_len); u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len); /* * Handle the header buffer if present. */ if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV && ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Header of %d bytes in small buffer.\n", hdr_len); /* * Headers fit nicely into a small buffer. */ sbq_desc = ql_get_curr_sbuf(rx_ring); pci_unmap_single(qdev->pdev, dma_unmap_addr(sbq_desc, mapaddr), dma_unmap_len(sbq_desc, maplen), PCI_DMA_FROMDEVICE); skb = sbq_desc->p.skb; ql_realign_skb(skb, hdr_len); skb_put(skb, hdr_len); sbq_desc->p.skb = NULL; } /* * Handle the data buffer(s). */ if (unlikely(!length)) { /* Is there data too? */ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "No Data buffer in this packet.\n"); return skb; } if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) { if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Headers in small, data of %d bytes in small, combine them.\n", length); /* * Data is less than small buffer size so it's * stuffed in a small buffer. * For this case we append the data * from the "data" small buffer to the "header" small * buffer. */ sbq_desc = ql_get_curr_sbuf(rx_ring); pci_dma_sync_single_for_cpu(qdev->pdev, dma_unmap_addr (sbq_desc, mapaddr), dma_unmap_len (sbq_desc, maplen), PCI_DMA_FROMDEVICE); memcpy(skb_put(skb, length), sbq_desc->p.skb->data, length); pci_dma_sync_single_for_device(qdev->pdev, dma_unmap_addr (sbq_desc, mapaddr), dma_unmap_len (sbq_desc, maplen), PCI_DMA_FROMDEVICE); } else { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%d bytes in a single small buffer.\n", length); sbq_desc = ql_get_curr_sbuf(rx_ring); skb = sbq_desc->p.skb; ql_realign_skb(skb, length); skb_put(skb, length); pci_unmap_single(qdev->pdev, dma_unmap_addr(sbq_desc, mapaddr), dma_unmap_len(sbq_desc, maplen), PCI_DMA_FROMDEVICE); sbq_desc->p.skb = NULL; } } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) { if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Header in small, %d bytes in large. Chain large to small!\n", length); /* * The data is in a single large buffer. We * chain it to the header buffer's skb and let * it rip. */ lbq_desc = ql_get_curr_lchunk(qdev, rx_ring); netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Chaining page at offset = %d, for %d bytes to skb.\n", lbq_desc->p.pg_chunk.offset, length); skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page, lbq_desc->p.pg_chunk.offset, length); skb->len += length; skb->data_len += length; skb->truesize += length; } else { /* * The headers and data are in a single large buffer. We * copy it to a new skb and let it go. This can happen with * jumbo mtu on a non-TCP/UDP frame. */ lbq_desc = ql_get_curr_lchunk(qdev, rx_ring); skb = netdev_alloc_skb(qdev->ndev, length); if (skb == NULL) { netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev, "No skb available, drop the packet.\n"); return NULL; } pci_unmap_page(qdev->pdev, dma_unmap_addr(lbq_desc, mapaddr), dma_unmap_len(lbq_desc, maplen), PCI_DMA_FROMDEVICE); skb_reserve(skb, NET_IP_ALIGN); netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length); skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page, lbq_desc->p.pg_chunk.offset, length); skb->len += length; skb->data_len += length; skb->truesize += length; length -= length; __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? VLAN_ETH_HLEN : ETH_HLEN); } } else { /* * The data is in a chain of large buffers * pointed to by a small buffer. We loop * thru and chain them to the our small header * buffer's skb. * frags: There are 18 max frags and our small * buffer will hold 32 of them. The thing is, * we'll use 3 max for our 9000 byte jumbo * frames. If the MTU goes up we could * eventually be in trouble. */ int size, i = 0; sbq_desc = ql_get_curr_sbuf(rx_ring); pci_unmap_single(qdev->pdev, dma_unmap_addr(sbq_desc, mapaddr), dma_unmap_len(sbq_desc, maplen), PCI_DMA_FROMDEVICE); if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) { /* * This is an non TCP/UDP IP frame, so * the headers aren't split into a small * buffer. We have to use the small buffer * that contains our sg list as our skb to * send upstairs. Copy the sg list here to * a local buffer and use it to find the * pages to chain. */ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%d bytes of headers & data in chain of large.\n", length); skb = sbq_desc->p.skb; sbq_desc->p.skb = NULL; skb_reserve(skb, NET_IP_ALIGN); } while (length > 0) { lbq_desc = ql_get_curr_lchunk(qdev, rx_ring); size = (length < rx_ring->lbq_buf_size) ? length : rx_ring->lbq_buf_size; netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Adding page %d to skb for %d bytes.\n", i, size); skb_fill_page_desc(skb, i, lbq_desc->p.pg_chunk.page, lbq_desc->p.pg_chunk.offset, size); skb->len += size; skb->data_len += size; skb->truesize += size; length -= size; i++; } __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? VLAN_ETH_HLEN : ETH_HLEN); } return skb; } /* Process an inbound completion from an rx ring. */ static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev, struct rx_ring *rx_ring, struct ib_mac_iocb_rsp *ib_mac_rsp, u16 vlan_id) { struct net_device *ndev = qdev->ndev; struct sk_buff *skb = NULL; QL_DUMP_IB_MAC_RSP(ib_mac_rsp); skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp); if (unlikely(!skb)) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "No skb available, drop packet.\n"); rx_ring->rx_dropped++; return; } /* Frame error, so drop the packet. */ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) { netif_info(qdev, drv, qdev->ndev, "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2); dev_kfree_skb_any(skb); rx_ring->rx_errors++; return; } /* The max framesize filter on this chip is set higher than * MTU since FCoE uses 2k frames. */ if (skb->len > ndev->mtu + ETH_HLEN) { dev_kfree_skb_any(skb); rx_ring->rx_dropped++; return; } /* loopback self test for ethtool */ if (test_bit(QL_SELFTEST, &qdev->flags)) { ql_check_lb_frame(qdev, skb); dev_kfree_skb_any(skb); return; } prefetch(skb->data); skb->dev = ndev; if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n", (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == IB_MAC_IOCB_RSP_M_HASH ? "Hash" : (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == IB_MAC_IOCB_RSP_M_REG ? "Registered" : (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : ""); rx_ring->rx_multicast++; } if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Promiscuous Packet.\n"); } skb->protocol = eth_type_trans(skb, ndev); skb_checksum_none_assert(skb); /* If rx checksum is on, and there are no * csum or frame errors. */ if (qdev->rx_csum && !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) { /* TCP frame. */ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "TCP checksum done!\n"); skb->ip_summed = CHECKSUM_UNNECESSARY; } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) && (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) { /* Unfragmented ipv4 UDP frame. */ struct iphdr *iph = (struct iphdr *) skb->data; if (!(iph->frag_off & ntohs(IP_MF|IP_OFFSET))) { skb->ip_summed = CHECKSUM_UNNECESSARY; netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "TCP checksum done!\n"); } } } rx_ring->rx_packets++; rx_ring->rx_bytes += skb->len; skb_record_rx_queue(skb, rx_ring->cq_id); if (skb->ip_summed == CHECKSUM_UNNECESSARY) { if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0)) vlan_gro_receive(&rx_ring->napi, qdev->vlgrp, vlan_id, skb); else napi_gro_receive(&rx_ring->napi, skb); } else { if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0)) vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id); else netif_receive_skb(skb); } } /* Process an inbound completion from an rx ring. */ static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev, struct rx_ring *rx_ring, struct ib_mac_iocb_rsp *ib_mac_rsp) { u32 length = le32_to_cpu(ib_mac_rsp->data_len); u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? ((le16_to_cpu(ib_mac_rsp->vlan_id) & IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff; QL_DUMP_IB_MAC_RSP(ib_mac_rsp); if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) { /* The data and headers are split into * separate buffers. */ ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp, vlan_id); } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) { /* The data fit in a single small buffer. * Allocate a new skb, copy the data and * return the buffer to the free pool. */ ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp, length, vlan_id); } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) && !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) { /* TCP packet in a page chunk that's been checksummed. * Tack it on to our GRO skb and let it go. */ ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp, length, vlan_id); } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) { /* Non-TCP packet in a page chunk. Allocate an * skb, tack it on frags, and send it up. */ ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp, length, vlan_id); } else { /* Non-TCP/UDP large frames that span multiple buffers * can be processed corrrectly by the split frame logic. */ ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp, vlan_id); } return (unsigned long)length; } /* Process an outbound completion from an rx ring. */ static void ql_process_mac_tx_intr(struct ql_adapter *qdev, struct ob_mac_iocb_rsp *mac_rsp) { struct tx_ring *tx_ring; struct tx_ring_desc *tx_ring_desc; QL_DUMP_OB_MAC_RSP(mac_rsp); tx_ring = &qdev->tx_ring[mac_rsp->txq_idx]; tx_ring_desc = &tx_ring->q[mac_rsp->tid]; ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt); tx_ring->tx_bytes += (tx_ring_desc->skb)->len; tx_ring->tx_packets++; dev_kfree_skb(tx_ring_desc->skb); tx_ring_desc->skb = NULL; if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E | OB_MAC_IOCB_RSP_S | OB_MAC_IOCB_RSP_L | OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) { if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) { netif_warn(qdev, tx_done, qdev->ndev, "Total descriptor length did not match transfer length.\n"); } if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) { netif_warn(qdev, tx_done, qdev->ndev, "Frame too short to be valid, not sent.\n"); } if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) { netif_warn(qdev, tx_done, qdev->ndev, "Frame too long, but sent anyway.\n"); } if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) { netif_warn(qdev, tx_done, qdev->ndev, "PCI backplane error. Frame not sent.\n"); } } atomic_inc(&tx_ring->tx_count); } /* Fire up a handler to reset the MPI processor. */ void ql_queue_fw_error(struct ql_adapter *qdev) { ql_link_off(qdev); queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0); } void ql_queue_asic_error(struct ql_adapter *qdev) { ql_link_off(qdev); ql_disable_interrupts(qdev); /* Clear adapter up bit to signal the recovery * process that it shouldn't kill the reset worker * thread */ clear_bit(QL_ADAPTER_UP, &qdev->flags); queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0); } static void ql_process_chip_ae_intr(struct ql_adapter *qdev, struct ib_ae_iocb_rsp *ib_ae_rsp) { switch (ib_ae_rsp->event) { case MGMT_ERR_EVENT: netif_err(qdev, rx_err, qdev->ndev, "Management Processor Fatal Error.\n"); ql_queue_fw_error(qdev); return; case CAM_LOOKUP_ERR_EVENT: netif_err(qdev, link, qdev->ndev, "Multiple CAM hits lookup occurred.\n"); netif_err(qdev, drv, qdev->ndev, "This event shouldn't occur.\n"); ql_queue_asic_error(qdev); return; case SOFT_ECC_ERROR_EVENT: netif_err(qdev, rx_err, qdev->ndev, "Soft ECC error detected.\n"); ql_queue_asic_error(qdev); break; case PCI_ERR_ANON_BUF_RD: netif_err(qdev, rx_err, qdev->ndev, "PCI error occurred when reading anonymous buffers from rx_ring %d.\n", ib_ae_rsp->q_id); ql_queue_asic_error(qdev); break; default: netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n", ib_ae_rsp->event); ql_queue_asic_error(qdev); break; } } static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring) { struct ql_adapter *qdev = rx_ring->qdev; u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); struct ob_mac_iocb_rsp *net_rsp = NULL; int count = 0; struct tx_ring *tx_ring; /* While there are entries in the completion queue. */ while (prod != rx_ring->cnsmr_idx) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id, prod, rx_ring->cnsmr_idx); net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry; rmb(); switch (net_rsp->opcode) { case OPCODE_OB_MAC_TSO_IOCB: case OPCODE_OB_MAC_IOCB: ql_process_mac_tx_intr(qdev, net_rsp); break; default: netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Hit default case, not handled! dropping the packet, opcode = %x.\n", net_rsp->opcode); } count++; ql_update_cq(rx_ring); prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); } if (!net_rsp) return 0; ql_write_cq_idx(rx_ring); tx_ring = &qdev->tx_ring[net_rsp->txq_idx]; if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) { if (atomic_read(&tx_ring->queue_stopped) && (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4))) /* * The queue got stopped because the tx_ring was full. * Wake it up, because it's now at least 25% empty. */ netif_wake_subqueue(qdev->ndev, tx_ring->wq_id); } return count; } static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget) { struct ql_adapter *qdev = rx_ring->qdev; u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); struct ql_net_rsp_iocb *net_rsp; int count = 0; /* While there are entries in the completion queue. */ while (prod != rx_ring->cnsmr_idx) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id, prod, rx_ring->cnsmr_idx); net_rsp = rx_ring->curr_entry; rmb(); switch (net_rsp->opcode) { case OPCODE_IB_MAC_IOCB: ql_process_mac_rx_intr(qdev, rx_ring, (struct ib_mac_iocb_rsp *) net_rsp); break; case OPCODE_IB_AE_IOCB: ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *) net_rsp); break; default: netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Hit default case, not handled! dropping the packet, opcode = %x.\n", net_rsp->opcode); break; } count++; ql_update_cq(rx_ring); prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); if (count == budget) break; } ql_update_buffer_queues(qdev, rx_ring); ql_write_cq_idx(rx_ring); return count; } static int ql_napi_poll_msix(struct napi_struct *napi, int budget) { struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi); struct ql_adapter *qdev = rx_ring->qdev; struct rx_ring *trx_ring; int i, work_done = 0; struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id]; netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id); /* Service the TX rings first. They start * right after the RSS rings. */ for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) { trx_ring = &qdev->rx_ring[i]; /* If this TX completion ring belongs to this vector and * it's not empty then service it. */ if ((ctx->irq_mask & (1 << trx_ring->cq_id)) && (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) != trx_ring->cnsmr_idx)) { netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev, "%s: Servicing TX completion ring %d.\n", __func__, trx_ring->cq_id); ql_clean_outbound_rx_ring(trx_ring); } } /* * Now service the RSS ring if it's active. */ if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) { netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev, "%s: Servicing RX completion ring %d.\n", __func__, rx_ring->cq_id); work_done = ql_clean_inbound_rx_ring(rx_ring, budget); } if (work_done < budget) { napi_complete(napi); ql_enable_completion_interrupt(qdev, rx_ring->irq); } return work_done; } static void qlge_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp) { struct ql_adapter *qdev = netdev_priv(ndev); qdev->vlgrp = grp; if (grp) { netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Turning on VLAN in NIC_RCV_CFG.\n"); ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK | NIC_RCV_CFG_VLAN_MATCH_AND_NON); } else { netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Turning off VLAN in NIC_RCV_CFG.\n"); ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK); } } static void qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid) { struct ql_adapter *qdev = netdev_priv(ndev); u32 enable_bit = MAC_ADDR_E; int status; status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); if (status) return; if (ql_set_mac_addr_reg (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) { netif_err(qdev, ifup, qdev->ndev, "Failed to init vlan address.\n"); } ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); } static void qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid) { struct ql_adapter *qdev = netdev_priv(ndev); u32 enable_bit = 0; int status; status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); if (status) return; if (ql_set_mac_addr_reg (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) { netif_err(qdev, ifup, qdev->ndev, "Failed to clear vlan address.\n"); } ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); } static void qlge_restore_vlan(struct ql_adapter *qdev) { qlge_vlan_rx_register(qdev->ndev, qdev->vlgrp); if (qdev->vlgrp) { u16 vid; for (vid = 0; vid < VLAN_N_VID; vid++) { if (!vlan_group_get_device(qdev->vlgrp, vid)) continue; qlge_vlan_rx_add_vid(qdev->ndev, vid); } } } /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */ static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id) { struct rx_ring *rx_ring = dev_id; napi_schedule(&rx_ring->napi); return IRQ_HANDLED; } /* This handles a fatal error, MPI activity, and the default * rx_ring in an MSI-X multiple vector environment. * In MSI/Legacy environment it also process the rest of * the rx_rings. */ static irqreturn_t qlge_isr(int irq, void *dev_id) { struct rx_ring *rx_ring = dev_id; struct ql_adapter *qdev = rx_ring->qdev; struct intr_context *intr_context = &qdev->intr_context[0]; u32 var; int work_done = 0; spin_lock(&qdev->hw_lock); if (atomic_read(&qdev->intr_context[0].irq_cnt)) { netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev, "Shared Interrupt, Not ours!\n"); spin_unlock(&qdev->hw_lock); return IRQ_NONE; } spin_unlock(&qdev->hw_lock); var = ql_disable_completion_interrupt(qdev, intr_context->intr); /* * Check for fatal error. */ if (var & STS_FE) { ql_queue_asic_error(qdev); netif_err(qdev, intr, qdev->ndev, "Got fatal error, STS = %x.\n", var); var = ql_read32(qdev, ERR_STS); netif_err(qdev, intr, qdev->ndev, "Resetting chip. Error Status Register = 0x%x\n", var); return IRQ_HANDLED; } /* * Check MPI processor activity. */ if ((var & STS_PI) && (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) { /* * We've got an async event or mailbox completion. * Handle it and clear the source of the interrupt. */ netif_err(qdev, intr, qdev->ndev, "Got MPI processor interrupt.\n"); ql_disable_completion_interrupt(qdev, intr_context->intr); ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16)); queue_delayed_work_on(smp_processor_id(), qdev->workqueue, &qdev->mpi_work, 0); work_done++; } /* * Get the bit-mask that shows the active queues for this * pass. Compare it to the queues that this irq services * and call napi if there's a match. */ var = ql_read32(qdev, ISR1); if (var & intr_context->irq_mask) { netif_info(qdev, intr, qdev->ndev, "Waking handler for rx_ring[0].\n"); ql_disable_completion_interrupt(qdev, intr_context->intr); napi_schedule(&rx_ring->napi); work_done++; } ql_enable_completion_interrupt(qdev, intr_context->intr); return work_done ? IRQ_HANDLED : IRQ_NONE; } static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr) { if (skb_is_gso(skb)) { int err; if (skb_header_cloned(skb)) { err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); if (err) return err; } mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB; mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC; mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len); mac_iocb_ptr->total_hdrs_len = cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb)); mac_iocb_ptr->net_trans_offset = cpu_to_le16(skb_network_offset(skb) | skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT); mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO; if (likely(skb->protocol == htons(ETH_P_IP))) { struct iphdr *iph = ip_hdr(skb); iph->check = 0; mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4; tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0, IPPROTO_TCP, 0); } else if (skb->protocol == htons(ETH_P_IPV6)) { mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6; tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); } return 1; } return 0; } static void ql_hw_csum_setup(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr) { int len; struct iphdr *iph = ip_hdr(skb); __sum16 *check; mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB; mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len); mac_iocb_ptr->net_trans_offset = cpu_to_le16(skb_network_offset(skb) | skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT); mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4; len = (ntohs(iph->tot_len) - (iph->ihl << 2)); if (likely(iph->protocol == IPPROTO_TCP)) { check = &(tcp_hdr(skb)->check); mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC; mac_iocb_ptr->total_hdrs_len = cpu_to_le16(skb_transport_offset(skb) + (tcp_hdr(skb)->doff << 2)); } else { check = &(udp_hdr(skb)->check); mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC; mac_iocb_ptr->total_hdrs_len = cpu_to_le16(skb_transport_offset(skb) + sizeof(struct udphdr)); } *check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, len, iph->protocol, 0); } static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev) { struct tx_ring_desc *tx_ring_desc; struct ob_mac_iocb_req *mac_iocb_ptr; struct ql_adapter *qdev = netdev_priv(ndev); int tso; struct tx_ring *tx_ring; u32 tx_ring_idx = (u32) skb->queue_mapping; tx_ring = &qdev->tx_ring[tx_ring_idx]; if (skb_padto(skb, ETH_ZLEN)) return NETDEV_TX_OK; if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) { netif_info(qdev, tx_queued, qdev->ndev, "%s: shutting down tx queue %d du to lack of resources.\n", __func__, tx_ring_idx); netif_stop_subqueue(ndev, tx_ring->wq_id); atomic_inc(&tx_ring->queue_stopped); tx_ring->tx_errors++; return NETDEV_TX_BUSY; } tx_ring_desc = &tx_ring->q[tx_ring->prod_idx]; mac_iocb_ptr = tx_ring_desc->queue_entry; memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr)); mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB; mac_iocb_ptr->tid = tx_ring_desc->index; /* We use the upper 32-bits to store the tx queue for this IO. * When we get the completion we can use it to establish the context. */ mac_iocb_ptr->txq_idx = tx_ring_idx; tx_ring_desc->skb = skb; mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len); if (vlan_tx_tag_present(skb)) { netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev, "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb)); mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V; mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb)); } tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr); if (tso < 0) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) { ql_hw_csum_setup(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr); } if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) { netif_err(qdev, tx_queued, qdev->ndev, "Could not map the segments.\n"); tx_ring->tx_errors++; return NETDEV_TX_BUSY; } QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr); tx_ring->prod_idx++; if (tx_ring->prod_idx == tx_ring->wq_len) tx_ring->prod_idx = 0; wmb(); ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg); netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev, "tx queued, slot %d, len %d\n", tx_ring->prod_idx, skb->len); atomic_dec(&tx_ring->tx_count); return NETDEV_TX_OK; } static void ql_free_shadow_space(struct ql_adapter *qdev) { if (qdev->rx_ring_shadow_reg_area) { pci_free_consistent(qdev->pdev, PAGE_SIZE, qdev->rx_ring_shadow_reg_area, qdev->rx_ring_shadow_reg_dma); qdev->rx_ring_shadow_reg_area = NULL; } if (qdev->tx_ring_shadow_reg_area) { pci_free_consistent(qdev->pdev, PAGE_SIZE, qdev->tx_ring_shadow_reg_area, qdev->tx_ring_shadow_reg_dma); qdev->tx_ring_shadow_reg_area = NULL; } } static int ql_alloc_shadow_space(struct ql_adapter *qdev) { qdev->rx_ring_shadow_reg_area = pci_alloc_consistent(qdev->pdev, PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma); if (qdev->rx_ring_shadow_reg_area == NULL) { netif_err(qdev, ifup, qdev->ndev, "Allocation of RX shadow space failed.\n"); return -ENOMEM; } memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE); qdev->tx_ring_shadow_reg_area = pci_alloc_consistent(qdev->pdev, PAGE_SIZE, &qdev->tx_ring_shadow_reg_dma); if (qdev->tx_ring_shadow_reg_area == NULL) { netif_err(qdev, ifup, qdev->ndev, "Allocation of TX shadow space failed.\n"); goto err_wqp_sh_area; } memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE); return 0; err_wqp_sh_area: pci_free_consistent(qdev->pdev, PAGE_SIZE, qdev->rx_ring_shadow_reg_area, qdev->rx_ring_shadow_reg_dma); return -ENOMEM; } static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring) { struct tx_ring_desc *tx_ring_desc; int i; struct ob_mac_iocb_req *mac_iocb_ptr; mac_iocb_ptr = tx_ring->wq_base; tx_ring_desc = tx_ring->q; for (i = 0; i < tx_ring->wq_len; i++) { tx_ring_desc->index = i; tx_ring_desc->skb = NULL; tx_ring_desc->queue_entry = mac_iocb_ptr; mac_iocb_ptr++; tx_ring_desc++; } atomic_set(&tx_ring->tx_count, tx_ring->wq_len); atomic_set(&tx_ring->queue_stopped, 0); } static void ql_free_tx_resources(struct ql_adapter *qdev, struct tx_ring *tx_ring) { if (tx_ring->wq_base) { pci_free_consistent(qdev->pdev, tx_ring->wq_size, tx_ring->wq_base, tx_ring->wq_base_dma); tx_ring->wq_base = NULL; } kfree(tx_ring->q); tx_ring->q = NULL; } static int ql_alloc_tx_resources(struct ql_adapter *qdev, struct tx_ring *tx_ring) { tx_ring->wq_base = pci_alloc_consistent(qdev->pdev, tx_ring->wq_size, &tx_ring->wq_base_dma); if ((tx_ring->wq_base == NULL) || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) { netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n"); return -ENOMEM; } tx_ring->q = kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL); if (tx_ring->q == NULL) goto err; return 0; err: pci_free_consistent(qdev->pdev, tx_ring->wq_size, tx_ring->wq_base, tx_ring->wq_base_dma); return -ENOMEM; } static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring) { struct bq_desc *lbq_desc; uint32_t curr_idx, clean_idx; curr_idx = rx_ring->lbq_curr_idx; clean_idx = rx_ring->lbq_clean_idx; while (curr_idx != clean_idx) { lbq_desc = &rx_ring->lbq[curr_idx]; if (lbq_desc->p.pg_chunk.last_flag) { pci_unmap_page(qdev->pdev, lbq_desc->p.pg_chunk.map, ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE); lbq_desc->p.pg_chunk.last_flag = 0; } put_page(lbq_desc->p.pg_chunk.page); lbq_desc->p.pg_chunk.page = NULL; if (++curr_idx == rx_ring->lbq_len) curr_idx = 0; } } static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring) { int i; struct bq_desc *sbq_desc; for (i = 0; i < rx_ring->sbq_len; i++) { sbq_desc = &rx_ring->sbq[i]; if (sbq_desc == NULL) { netif_err(qdev, ifup, qdev->ndev, "sbq_desc %d is NULL.\n", i); return; } if (sbq_desc->p.skb) { pci_unmap_single(qdev->pdev, dma_unmap_addr(sbq_desc, mapaddr), dma_unmap_len(sbq_desc, maplen), PCI_DMA_FROMDEVICE); dev_kfree_skb(sbq_desc->p.skb); sbq_desc->p.skb = NULL; } } } /* Free all large and small rx buffers associated * with the completion queues for this device. */ static void ql_free_rx_buffers(struct ql_adapter *qdev) { int i; struct rx_ring *rx_ring; for (i = 0; i < qdev->rx_ring_count; i++) { rx_ring = &qdev->rx_ring[i]; if (rx_ring->lbq) ql_free_lbq_buffers(qdev, rx_ring); if (rx_ring->sbq) ql_free_sbq_buffers(qdev, rx_ring); } } static void ql_alloc_rx_buffers(struct ql_adapter *qdev) { struct rx_ring *rx_ring; int i; for (i = 0; i < qdev->rx_ring_count; i++) { rx_ring = &qdev->rx_ring[i]; if (rx_ring->type != TX_Q) ql_update_buffer_queues(qdev, rx_ring); } } static void ql_init_lbq_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring) { int i; struct bq_desc *lbq_desc; __le64 *bq = rx_ring->lbq_base; memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc)); for (i = 0; i < rx_ring->lbq_len; i++) { lbq_desc = &rx_ring->lbq[i]; memset(lbq_desc, 0, sizeof(*lbq_desc)); lbq_desc->index = i; lbq_desc->addr = bq; bq++; } } static void ql_init_sbq_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring) { int i; struct bq_desc *sbq_desc; __le64 *bq = rx_ring->sbq_base; memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc)); for (i = 0; i < rx_ring->sbq_len; i++) { sbq_desc = &rx_ring->sbq[i]; memset(sbq_desc, 0, sizeof(*sbq_desc)); sbq_desc->index = i; sbq_desc->addr = bq; bq++; } } static void ql_free_rx_resources(struct ql_adapter *qdev, struct rx_ring *rx_ring) { /* Free the small buffer queue. */ if (rx_ring->sbq_base) { pci_free_consistent(qdev->pdev, rx_ring->sbq_size, rx_ring->sbq_base, rx_ring->sbq_base_dma); rx_ring->sbq_base = NULL; } /* Free the small buffer queue control blocks. */ kfree(rx_ring->sbq); rx_ring->sbq = NULL; /* Free the large buffer queue. */ if (rx_ring->lbq_base) { pci_free_consistent(qdev->pdev, rx_ring->lbq_size, rx_ring->lbq_base, rx_ring->lbq_base_dma); rx_ring->lbq_base = NULL; } /* Free the large buffer queue control blocks. */ kfree(rx_ring->lbq); rx_ring->lbq = NULL; /* Free the rx queue. */ if (rx_ring->cq_base) { pci_free_consistent(qdev->pdev, rx_ring->cq_size, rx_ring->cq_base, rx_ring->cq_base_dma); rx_ring->cq_base = NULL; } } /* Allocate queues and buffers for this completions queue based * on the values in the parameter structure. */ static int ql_alloc_rx_resources(struct ql_adapter *qdev, struct rx_ring *rx_ring) { /* * Allocate the completion queue for this rx_ring. */ rx_ring->cq_base = pci_alloc_consistent(qdev->pdev, rx_ring->cq_size, &rx_ring->cq_base_dma); if (rx_ring->cq_base == NULL) { netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n"); return -ENOMEM; } if (rx_ring->sbq_len) { /* * Allocate small buffer queue. */ rx_ring->sbq_base = pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size, &rx_ring->sbq_base_dma); if (rx_ring->sbq_base == NULL) { netif_err(qdev, ifup, qdev->ndev, "Small buffer queue allocation failed.\n"); goto err_mem; } /* * Allocate small buffer queue control blocks. */ rx_ring->sbq = kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc), GFP_KERNEL); if (rx_ring->sbq == NULL) { netif_err(qdev, ifup, qdev->ndev, "Small buffer queue control block allocation failed.\n"); goto err_mem; } ql_init_sbq_ring(qdev, rx_ring); } if (rx_ring->lbq_len) { /* * Allocate large buffer queue. */ rx_ring->lbq_base = pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size, &rx_ring->lbq_base_dma); if (rx_ring->lbq_base == NULL) { netif_err(qdev, ifup, qdev->ndev, "Large buffer queue allocation failed.\n"); goto err_mem; } /* * Allocate large buffer queue control blocks. */ rx_ring->lbq = kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc), GFP_KERNEL); if (rx_ring->lbq == NULL) { netif_err(qdev, ifup, qdev->ndev, "Large buffer queue control block allocation failed.\n"); goto err_mem; } ql_init_lbq_ring(qdev, rx_ring); } return 0; err_mem: ql_free_rx_resources(qdev, rx_ring); return -ENOMEM; } static void ql_tx_ring_clean(struct ql_adapter *qdev) { struct tx_ring *tx_ring; struct tx_ring_desc *tx_ring_desc; int i, j; /* * Loop through all queues and free * any resources. */ for (j = 0; j < qdev->tx_ring_count; j++) { tx_ring = &qdev->tx_ring[j]; for (i = 0; i < tx_ring->wq_len; i++) { tx_ring_desc = &tx_ring->q[i]; if (tx_ring_desc && tx_ring_desc->skb) { netif_err(qdev, ifdown, qdev->ndev, "Freeing lost SKB %p, from queue %d, index %d.\n", tx_ring_desc->skb, j, tx_ring_desc->index); ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt); dev_kfree_skb(tx_ring_desc->skb); tx_ring_desc->skb = NULL; } } } } static void ql_free_mem_resources(struct ql_adapter *qdev) { int i; for (i = 0; i < qdev->tx_ring_count; i++) ql_free_tx_resources(qdev, &qdev->tx_ring[i]); for (i = 0; i < qdev->rx_ring_count; i++) ql_free_rx_resources(qdev, &qdev->rx_ring[i]); ql_free_shadow_space(qdev); } static int ql_alloc_mem_resources(struct ql_adapter *qdev) { int i; /* Allocate space for our shadow registers and such. */ if (ql_alloc_shadow_space(qdev)) return -ENOMEM; for (i = 0; i < qdev->rx_ring_count; i++) { if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) { netif_err(qdev, ifup, qdev->ndev, "RX resource allocation failed.\n"); goto err_mem; } } /* Allocate tx queue resources */ for (i = 0; i < qdev->tx_ring_count; i++) { if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) { netif_err(qdev, ifup, qdev->ndev, "TX resource allocation failed.\n"); goto err_mem; } } return 0; err_mem: ql_free_mem_resources(qdev); return -ENOMEM; } /* Set up the rx ring control block and pass it to the chip. * The control block is defined as * "Completion Queue Initialization Control Block", or cqicb. */ static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring) { struct cqicb *cqicb = &rx_ring->cqicb; void *shadow_reg = qdev->rx_ring_shadow_reg_area + (rx_ring->cq_id * RX_RING_SHADOW_SPACE); u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma + (rx_ring->cq_id * RX_RING_SHADOW_SPACE); void __iomem *doorbell_area = qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id)); int err = 0; u16 bq_len; u64 tmp; __le64 *base_indirect_ptr; int page_entries; /* Set up the shadow registers for this ring. */ rx_ring->prod_idx_sh_reg = shadow_reg; rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma; *rx_ring->prod_idx_sh_reg = 0; shadow_reg += sizeof(u64); shadow_reg_dma += sizeof(u64); rx_ring->lbq_base_indirect = shadow_reg; rx_ring->lbq_base_indirect_dma = shadow_reg_dma; shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len)); shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len)); rx_ring->sbq_base_indirect = shadow_reg; rx_ring->sbq_base_indirect_dma = shadow_reg_dma; /* PCI doorbell mem area + 0x00 for consumer index register */ rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area; rx_ring->cnsmr_idx = 0; rx_ring->curr_entry = rx_ring->cq_base; /* PCI doorbell mem area + 0x04 for valid register */ rx_ring->valid_db_reg = doorbell_area + 0x04; /* PCI doorbell mem area + 0x18 for large buffer consumer */ rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18); /* PCI doorbell mem area + 0x1c */ rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c); memset((void *)cqicb, 0, sizeof(struct cqicb)); cqicb->msix_vect = rx_ring->irq; bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len; cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT); cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma); cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma); /* * Set up the control block load flags. */ cqicb->flags = FLAGS_LC | /* Load queue base address */ FLAGS_LV | /* Load MSI-X vector */ FLAGS_LI; /* Load irq delay values */ if (rx_ring->lbq_len) { cqicb->flags |= FLAGS_LL; /* Load lbq values */ tmp = (u64)rx_ring->lbq_base_dma; base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect; page_entries = 0; do { *base_indirect_ptr = cpu_to_le64(tmp); tmp += DB_PAGE_SIZE; base_indirect_ptr++; page_entries++; } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len)); cqicb->lbq_addr = cpu_to_le64(rx_ring->lbq_base_indirect_dma); bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 : (u16) rx_ring->lbq_buf_size; cqicb->lbq_buf_size = cpu_to_le16(bq_len); bq_len = (rx_ring->lbq_len == 65536) ? 0 : (u16) rx_ring->lbq_len; cqicb->lbq_len = cpu_to_le16(bq_len); rx_ring->lbq_prod_idx = 0; rx_ring->lbq_curr_idx = 0; rx_ring->lbq_clean_idx = 0; rx_ring->lbq_free_cnt = rx_ring->lbq_len; } if (rx_ring->sbq_len) { cqicb->flags |= FLAGS_LS; /* Load sbq values */ tmp = (u64)rx_ring->sbq_base_dma; base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect; page_entries = 0; do { *base_indirect_ptr = cpu_to_le64(tmp); tmp += DB_PAGE_SIZE; base_indirect_ptr++; page_entries++; } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len)); cqicb->sbq_addr = cpu_to_le64(rx_ring->sbq_base_indirect_dma); cqicb->sbq_buf_size = cpu_to_le16((u16)(rx_ring->sbq_buf_size)); bq_len = (rx_ring->sbq_len == 65536) ? 0 : (u16) rx_ring->sbq_len; cqicb->sbq_len = cpu_to_le16(bq_len); rx_ring->sbq_prod_idx = 0; rx_ring->sbq_curr_idx = 0; rx_ring->sbq_clean_idx = 0; rx_ring->sbq_free_cnt = rx_ring->sbq_len; } switch (rx_ring->type) { case TX_Q: cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs); cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames); break; case RX_Q: /* Inbound completion handling rx_rings run in * separate NAPI contexts. */ netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix, 64); cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs); cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames); break; default: netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Invalid rx_ring->type = %d.\n", rx_ring->type); } netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Initializing rx work queue.\n"); err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb), CFG_LCQ, rx_ring->cq_id); if (err) { netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n"); return err; } return err; } static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring) { struct wqicb *wqicb = (struct wqicb *)tx_ring; void __iomem *doorbell_area = qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id); void *shadow_reg = qdev->tx_ring_shadow_reg_area + (tx_ring->wq_id * sizeof(u64)); u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma + (tx_ring->wq_id * sizeof(u64)); int err = 0; /* * Assign doorbell registers for this tx_ring. */ /* TX PCI doorbell mem area for tx producer index */ tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area; tx_ring->prod_idx = 0; /* TX PCI doorbell mem area + 0x04 */ tx_ring->valid_db_reg = doorbell_area + 0x04; /* * Assign shadow registers for this tx_ring. */ tx_ring->cnsmr_idx_sh_reg = shadow_reg; tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma; wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT); wqicb->flags = cpu_to_le16(Q_FLAGS_LC | Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO); wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id); wqicb->rid = 0; wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma); wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma); ql_init_tx_ring(qdev, tx_ring); err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ, (u16) tx_ring->wq_id); if (err) { netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n"); return err; } netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Successfully loaded WQICB.\n"); return err; } static void ql_disable_msix(struct ql_adapter *qdev) { if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) { pci_disable_msix(qdev->pdev); clear_bit(QL_MSIX_ENABLED, &qdev->flags); kfree(qdev->msi_x_entry); qdev->msi_x_entry = NULL; } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) { pci_disable_msi(qdev->pdev); clear_bit(QL_MSI_ENABLED, &qdev->flags); } } /* We start by trying to get the number of vectors * stored in qdev->intr_count. If we don't get that * many then we reduce the count and try again. */ static void ql_enable_msix(struct ql_adapter *qdev) { int i, err; /* Get the MSIX vectors. */ if (qlge_irq_type == MSIX_IRQ) { /* Try to alloc space for the msix struct, * if it fails then go to MSI/legacy. */ qdev->msi_x_entry = kcalloc(qdev->intr_count, sizeof(struct msix_entry), GFP_KERNEL); if (!qdev->msi_x_entry) { qlge_irq_type = MSI_IRQ; goto msi; } for (i = 0; i < qdev->intr_count; i++) qdev->msi_x_entry[i].entry = i; /* Loop to get our vectors. We start with * what we want and settle for what we get. */ do { err = pci_enable_msix(qdev->pdev, qdev->msi_x_entry, qdev->intr_count); if (err > 0) qdev->intr_count = err; } while (err > 0); if (err < 0) { kfree(qdev->msi_x_entry); qdev->msi_x_entry = NULL; netif_warn(qdev, ifup, qdev->ndev, "MSI-X Enable failed, trying MSI.\n"); qdev->intr_count = 1; qlge_irq_type = MSI_IRQ; } else if (err == 0) { set_bit(QL_MSIX_ENABLED, &qdev->flags); netif_info(qdev, ifup, qdev->ndev, "MSI-X Enabled, got %d vectors.\n", qdev->intr_count); return; } } msi: qdev->intr_count = 1; if (qlge_irq_type == MSI_IRQ) { if (!pci_enable_msi(qdev->pdev)) { set_bit(QL_MSI_ENABLED, &qdev->flags); netif_info(qdev, ifup, qdev->ndev, "Running with MSI interrupts.\n"); return; } } qlge_irq_type = LEG_IRQ; netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Running with legacy interrupts.\n"); } /* Each vector services 1 RSS ring and and 1 or more * TX completion rings. This function loops through * the TX completion rings and assigns the vector that * will service it. An example would be if there are * 2 vectors (so 2 RSS rings) and 8 TX completion rings. * This would mean that vector 0 would service RSS ring 0 * and TX competion rings 0,1,2 and 3. Vector 1 would * service RSS ring 1 and TX completion rings 4,5,6 and 7. */ static void ql_set_tx_vect(struct ql_adapter *qdev) { int i, j, vect; u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count; if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) { /* Assign irq vectors to TX rx_rings.*/ for (vect = 0, j = 0, i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) { if (j == tx_rings_per_vector) { vect++; j = 0; } qdev->rx_ring[i].irq = vect; j++; } } else { /* For single vector all rings have an irq * of zero. */ for (i = 0; i < qdev->rx_ring_count; i++) qdev->rx_ring[i].irq = 0; } } /* Set the interrupt mask for this vector. Each vector * will service 1 RSS ring and 1 or more TX completion * rings. This function sets up a bit mask per vector * that indicates which rings it services. */ static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx) { int j, vect = ctx->intr; u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count; if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) { /* Add the RSS ring serviced by this vector * to the mask. */ ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id); /* Add the TX ring(s) serviced by this vector * to the mask. */ for (j = 0; j < tx_rings_per_vector; j++) { ctx->irq_mask |= (1 << qdev->rx_ring[qdev->rss_ring_count + (vect * tx_rings_per_vector) + j].cq_id); } } else { /* For single vector we just shift each queue's * ID into the mask. */ for (j = 0; j < qdev->rx_ring_count; j++) ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id); } } /* * Here we build the intr_context structures based on * our rx_ring count and intr vector count. * The intr_context structure is used to hook each vector * to possibly different handlers. */ static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev) { int i = 0; struct intr_context *intr_context = &qdev->intr_context[0]; if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) { /* Each rx_ring has it's * own intr_context since we have separate * vectors for each queue. */ for (i = 0; i < qdev->intr_count; i++, intr_context++) { qdev->rx_ring[i].irq = i; intr_context->intr = i; intr_context->qdev = qdev; /* Set up this vector's bit-mask that indicates * which queues it services. */ ql_set_irq_mask(qdev, intr_context); /* * We set up each vectors enable/disable/read bits so * there's no bit/mask calculations in the critical path. */ intr_context->intr_en_mask = INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD | i; intr_context->intr_dis_mask = INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK | INTR_EN_IHD | i; intr_context->intr_read_mask = INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD | i; if (i == 0) { /* The first vector/queue handles * broadcast/multicast, fatal errors, * and firmware events. This in addition * to normal inbound NAPI processing. */ intr_context->handler = qlge_isr; sprintf(intr_context->name, "%s-rx-%d", qdev->ndev->name, i); } else { /* * Inbound queues handle unicast frames only. */ intr_context->handler = qlge_msix_rx_isr; sprintf(intr_context->name, "%s-rx-%d", qdev->ndev->name, i); } } } else { /* * All rx_rings use the same intr_context since * there is only one vector. */ intr_context->intr = 0; intr_context->qdev = qdev; /* * We set up each vectors enable/disable/read bits so * there's no bit/mask calculations in the critical path. */ intr_context->intr_en_mask = INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE; intr_context->intr_dis_mask = INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_DISABLE; intr_context->intr_read_mask = INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ; /* * Single interrupt means one handler for all rings. */ intr_context->handler = qlge_isr; sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name); /* Set up this vector's bit-mask that indicates * which queues it services. In this case there is * a single vector so it will service all RSS and * TX completion rings. */ ql_set_irq_mask(qdev, intr_context); } /* Tell the TX completion rings which MSIx vector * they will be using. */ ql_set_tx_vect(qdev); } static void ql_free_irq(struct ql_adapter *qdev) { int i; struct intr_context *intr_context = &qdev->intr_context[0]; for (i = 0; i < qdev->intr_count; i++, intr_context++) { if (intr_context->hooked) { if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) { free_irq(qdev->msi_x_entry[i].vector, &qdev->rx_ring[i]); netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev, "freeing msix interrupt %d.\n", i); } else { free_irq(qdev->pdev->irq, &qdev->rx_ring[0]); netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev, "freeing msi interrupt %d.\n", i); } } } ql_disable_msix(qdev); } static int ql_request_irq(struct ql_adapter *qdev) { int i; int status = 0; struct pci_dev *pdev = qdev->pdev; struct intr_context *intr_context = &qdev->intr_context[0]; ql_resolve_queues_to_irqs(qdev); for (i = 0; i < qdev->intr_count; i++, intr_context++) { atomic_set(&intr_context->irq_cnt, 0); if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) { status = request_irq(qdev->msi_x_entry[i].vector, intr_context->handler, 0, intr_context->name, &qdev->rx_ring[i]); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed request for MSIX interrupt %d.\n", i); goto err_irq; } else { netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Hooked intr %d, queue type %s, with name %s.\n", i, qdev->rx_ring[i].type == DEFAULT_Q ? "DEFAULT_Q" : qdev->rx_ring[i].type == TX_Q ? "TX_Q" : qdev->rx_ring[i].type == RX_Q ? "RX_Q" : "", intr_context->name); } } else { netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "trying msi or legacy interrupts.\n"); netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "%s: irq = %d.\n", __func__, pdev->irq); netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "%s: context->name = %s.\n", __func__, intr_context->name); netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "%s: dev_id = 0x%p.\n", __func__, &qdev->rx_ring[0]); status = request_irq(pdev->irq, qlge_isr, test_bit(QL_MSI_ENABLED, &qdev-> flags) ? 0 : IRQF_SHARED, intr_context->name, &qdev->rx_ring[0]); if (status) goto err_irq; netif_err(qdev, ifup, qdev->ndev, "Hooked intr %d, queue type %s, with name %s.\n", i, qdev->rx_ring[0].type == DEFAULT_Q ? "DEFAULT_Q" : qdev->rx_ring[0].type == TX_Q ? "TX_Q" : qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "", intr_context->name); } intr_context->hooked = 1; } return status; err_irq: netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n"); ql_free_irq(qdev); return status; } static int ql_start_rss(struct ql_adapter *qdev) { u8 init_hash_seed[] = {0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa}; struct ricb *ricb = &qdev->ricb; int status = 0; int i; u8 *hash_id = (u8 *) ricb->hash_cq_id; memset((void *)ricb, 0, sizeof(*ricb)); ricb->base_cq = RSS_L4K; ricb->flags = (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6); ricb->mask = cpu_to_le16((u16)(0x3ff)); /* * Fill out the Indirection Table. */ for (i = 0; i < 1024; i++) hash_id[i] = (i & (qdev->rss_ring_count - 1)); memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40); memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16); netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Initializing RSS.\n"); status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n"); return status; } netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Successfully loaded RICB.\n"); return status; } static int ql_clear_routing_entries(struct ql_adapter *qdev) { int i, status = 0; status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK); if (status) return status; /* Clear all the entries in the routing table. */ for (i = 0; i < 16; i++) { status = ql_set_routing_reg(qdev, i, 0, 0); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to init routing register for CAM packets.\n"); break; } } ql_sem_unlock(qdev, SEM_RT_IDX_MASK); return status; } /* Initialize the frame-to-queue routing. */ static int ql_route_initialize(struct ql_adapter *qdev) { int status = 0; /* Clear all the entries in the routing table. */ status = ql_clear_routing_entries(qdev); if (status) return status; status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK); if (status) return status; status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT, RT_IDX_IP_CSUM_ERR, 1); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to init routing register " "for IP CSUM error packets.\n"); goto exit; } status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT, RT_IDX_TU_CSUM_ERR, 1); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to init routing register " "for TCP/UDP CSUM error packets.\n"); goto exit; } status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to init routing register for broadcast packets.\n"); goto exit; } /* If we have more than one inbound queue, then turn on RSS in the * routing block. */ if (qdev->rss_ring_count > 1) { status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT, RT_IDX_RSS_MATCH, 1); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to init routing register for MATCH RSS packets.\n"); goto exit; } } status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT, RT_IDX_CAM_HIT, 1); if (status) netif_err(qdev, ifup, qdev->ndev, "Failed to init routing register for CAM packets.\n"); exit: ql_sem_unlock(qdev, SEM_RT_IDX_MASK); return status; } int ql_cam_route_initialize(struct ql_adapter *qdev) { int status, set; /* If check if the link is up and use to * determine if we are setting or clearing * the MAC address in the CAM. */ set = ql_read32(qdev, STS); set &= qdev->port_link_up; status = ql_set_mac_addr(qdev, set); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n"); return status; } status = ql_route_initialize(qdev); if (status) netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n"); return status; } static int ql_adapter_initialize(struct ql_adapter *qdev) { u32 value, mask; int i; int status = 0; /* * Set up the System register to halt on errors. */ value = SYS_EFE | SYS_FAE; mask = value << 16; ql_write32(qdev, SYS, mask | value); /* Set the default queue, and VLAN behavior. */ value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV; mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16); ql_write32(qdev, NIC_RCV_CFG, (mask | value)); /* Set the MPI interrupt to enabled. */ ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI); /* Enable the function, set pagesize, enable error checking. */ value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND | FSC_EC | FSC_VM_PAGE_4K; value |= SPLT_SETTING; /* Set/clear header splitting. */ mask = FSC_VM_PAGESIZE_MASK | FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16); ql_write32(qdev, FSC, mask | value); ql_write32(qdev, SPLT_HDR, SPLT_LEN); /* Set RX packet routing to use port/pci function on which the * packet arrived on in addition to usual frame routing. * This is helpful on bonding where both interfaces can have * the same MAC address. */ ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ); /* Reroute all packets to our Interface. * They may have been routed to MPI firmware * due to WOL. */ value = ql_read32(qdev, MGMT_RCV_CFG); value &= ~MGMT_RCV_CFG_RM; mask = 0xffff0000; /* Sticky reg needs clearing due to WOL. */ ql_write32(qdev, MGMT_RCV_CFG, mask); ql_write32(qdev, MGMT_RCV_CFG, mask | value); /* Default WOL is enable on Mezz cards */ if (qdev->pdev->subsystem_device == 0x0068 || qdev->pdev->subsystem_device == 0x0180) qdev->wol = WAKE_MAGIC; /* Start up the rx queues. */ for (i = 0; i < qdev->rx_ring_count; i++) { status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to start rx ring[%d].\n", i); return status; } } /* If there is more than one inbound completion queue * then download a RICB to configure RSS. */ if (qdev->rss_ring_count > 1) { status = ql_start_rss(qdev); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n"); return status; } } /* Start up the tx queues. */ for (i = 0; i < qdev->tx_ring_count; i++) { status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to start tx ring[%d].\n", i); return status; } } /* Initialize the port and set the max framesize. */ status = qdev->nic_ops->port_initialize(qdev); if (status) netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n"); /* Set up the MAC address and frame routing filter. */ status = ql_cam_route_initialize(qdev); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to init CAM/Routing tables.\n"); return status; } /* Start NAPI for the RSS queues. */ for (i = 0; i < qdev->rss_ring_count; i++) { netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Enabling NAPI for rx_ring[%d].\n", i); napi_enable(&qdev->rx_ring[i].napi); } return status; } /* Issue soft reset to chip. */ static int ql_adapter_reset(struct ql_adapter *qdev) { u32 value; int status = 0; unsigned long end_jiffies; /* Clear all the entries in the routing table. */ status = ql_clear_routing_entries(qdev); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n"); return status; } end_jiffies = jiffies + max((unsigned long)1, usecs_to_jiffies(30)); /* Stop management traffic. */ ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP); /* Wait for the NIC and MGMNT FIFOs to empty. */ ql_wait_fifo_empty(qdev); ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR); do { value = ql_read32(qdev, RST_FO); if ((value & RST_FO_FR) == 0) break; cpu_relax(); } while (time_before(jiffies, end_jiffies)); if (value & RST_FO_FR) { netif_err(qdev, ifdown, qdev->ndev, "ETIMEDOUT!!! errored out of resetting the chip!\n"); status = -ETIMEDOUT; } /* Resume management traffic. */ ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME); return status; } static void ql_display_dev_info(struct net_device *ndev) { struct ql_adapter *qdev = netdev_priv(ndev); netif_info(qdev, probe, qdev->ndev, "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, " "XG Roll = %d, XG Rev = %d.\n", qdev->func, qdev->port, qdev->chip_rev_id & 0x0000000f, qdev->chip_rev_id >> 4 & 0x0000000f, qdev->chip_rev_id >> 8 & 0x0000000f, qdev->chip_rev_id >> 12 & 0x0000000f); netif_info(qdev, probe, qdev->ndev, "MAC address %pM\n", ndev->dev_addr); } static int ql_wol(struct ql_adapter *qdev) { int status = 0; u32 wol = MB_WOL_DISABLE; /* The CAM is still intact after a reset, but if we * are doing WOL, then we may need to program the * routing regs. We would also need to issue the mailbox * commands to instruct the MPI what to do per the ethtool * settings. */ if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST)) { netif_err(qdev, ifdown, qdev->ndev, "Unsupported WOL paramter. qdev->wol = 0x%x.\n", qdev->wol); return -EINVAL; } if (qdev->wol & WAKE_MAGIC) { status = ql_mb_wol_set_magic(qdev, 1); if (status) { netif_err(qdev, ifdown, qdev->ndev, "Failed to set magic packet on %s.\n", qdev->ndev->name); return status; } else netif_info(qdev, drv, qdev->ndev, "Enabled magic packet successfully on %s.\n", qdev->ndev->name); wol |= MB_WOL_MAGIC_PKT; } if (qdev->wol) { wol |= MB_WOL_MODE_ON; status = ql_mb_wol_mode(qdev, wol); netif_err(qdev, drv, qdev->ndev, "WOL %s (wol code 0x%x) on %s\n", (status == 0) ? "Successfully set" : "Failed", wol, qdev->ndev->name); } return status; } static void ql_cancel_all_work_sync(struct ql_adapter *qdev) { /* Don't kill the reset worker thread if we * are in the process of recovery. */ if (test_bit(QL_ADAPTER_UP, &qdev->flags)) cancel_delayed_work_sync(&qdev->asic_reset_work); cancel_delayed_work_sync(&qdev->mpi_reset_work); cancel_delayed_work_sync(&qdev->mpi_work); cancel_delayed_work_sync(&qdev->mpi_idc_work); cancel_delayed_work_sync(&qdev->mpi_core_to_log); cancel_delayed_work_sync(&qdev->mpi_port_cfg_work); } static int ql_adapter_down(struct ql_adapter *qdev) { int i, status = 0; ql_link_off(qdev); ql_cancel_all_work_sync(qdev); for (i = 0; i < qdev->rss_ring_count; i++) napi_disable(&qdev->rx_ring[i].napi); clear_bit(QL_ADAPTER_UP, &qdev->flags); ql_disable_interrupts(qdev); ql_tx_ring_clean(qdev); /* Call netif_napi_del() from common point. */ for (i = 0; i < qdev->rss_ring_count; i++) netif_napi_del(&qdev->rx_ring[i].napi); status = ql_adapter_reset(qdev); if (status) netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n", qdev->func); ql_free_rx_buffers(qdev); return status; } static int ql_adapter_up(struct ql_adapter *qdev) { int err = 0; err = ql_adapter_initialize(qdev); if (err) { netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n"); goto err_init; } set_bit(QL_ADAPTER_UP, &qdev->flags); ql_alloc_rx_buffers(qdev); /* If the port is initialized and the * link is up the turn on the carrier. */ if ((ql_read32(qdev, STS) & qdev->port_init) && (ql_read32(qdev, STS) & qdev->port_link_up)) ql_link_on(qdev); /* Restore rx mode. */ clear_bit(QL_ALLMULTI, &qdev->flags); clear_bit(QL_PROMISCUOUS, &qdev->flags); qlge_set_multicast_list(qdev->ndev); /* Restore vlan setting. */ qlge_restore_vlan(qdev); ql_enable_interrupts(qdev); ql_enable_all_completion_interrupts(qdev); netif_tx_start_all_queues(qdev->ndev); return 0; err_init: ql_adapter_reset(qdev); return err; } static void ql_release_adapter_resources(struct ql_adapter *qdev) { ql_free_mem_resources(qdev); ql_free_irq(qdev); } static int ql_get_adapter_resources(struct ql_adapter *qdev) { int status = 0; if (ql_alloc_mem_resources(qdev)) { netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n"); return -ENOMEM; } status = ql_request_irq(qdev); return status; } static int qlge_close(struct net_device *ndev) { struct ql_adapter *qdev = netdev_priv(ndev); /* If we hit pci_channel_io_perm_failure * failure condition, then we already * brought the adapter down. */ if (test_bit(QL_EEH_FATAL, &qdev->flags)) { netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n"); clear_bit(QL_EEH_FATAL, &qdev->flags); return 0; } /* * Wait for device to recover from a reset. * (Rarely happens, but possible.) */ while (!test_bit(QL_ADAPTER_UP, &qdev->flags)) msleep(1); ql_adapter_down(qdev); ql_release_adapter_resources(qdev); return 0; } static int ql_configure_rings(struct ql_adapter *qdev) { int i; struct rx_ring *rx_ring; struct tx_ring *tx_ring; int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus()); unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ? LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE; qdev->lbq_buf_order = get_order(lbq_buf_len); /* In a perfect world we have one RSS ring for each CPU * and each has it's own vector. To do that we ask for * cpu_cnt vectors. ql_enable_msix() will adjust the * vector count to what we actually get. We then * allocate an RSS ring for each. * Essentially, we are doing min(cpu_count, msix_vector_count). */ qdev->intr_count = cpu_cnt; ql_enable_msix(qdev); /* Adjust the RSS ring count to the actual vector count. */ qdev->rss_ring_count = qdev->intr_count; qdev->tx_ring_count = cpu_cnt; qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count; for (i = 0; i < qdev->tx_ring_count; i++) { tx_ring = &qdev->tx_ring[i]; memset((void *)tx_ring, 0, sizeof(*tx_ring)); tx_ring->qdev = qdev; tx_ring->wq_id = i; tx_ring->wq_len = qdev->tx_ring_size; tx_ring->wq_size = tx_ring->wq_len * sizeof(struct ob_mac_iocb_req); /* * The completion queue ID for the tx rings start * immediately after the rss rings. */ tx_ring->cq_id = qdev->rss_ring_count + i; } for (i = 0; i < qdev->rx_ring_count; i++) { rx_ring = &qdev->rx_ring[i]; memset((void *)rx_ring, 0, sizeof(*rx_ring)); rx_ring->qdev = qdev; rx_ring->cq_id = i; rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */ if (i < qdev->rss_ring_count) { /* * Inbound (RSS) queues. */ rx_ring->cq_len = qdev->rx_ring_size; rx_ring->cq_size = rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb); rx_ring->lbq_len = NUM_LARGE_BUFFERS; rx_ring->lbq_size = rx_ring->lbq_len * sizeof(__le64); rx_ring->lbq_buf_size = (u16)lbq_buf_len; netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "lbq_buf_size %d, order = %d\n", rx_ring->lbq_buf_size, qdev->lbq_buf_order); rx_ring->sbq_len = NUM_SMALL_BUFFERS; rx_ring->sbq_size = rx_ring->sbq_len * sizeof(__le64); rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE; rx_ring->type = RX_Q; } else { /* * Outbound queue handles outbound completions only. */ /* outbound cq is same size as tx_ring it services. */ rx_ring->cq_len = qdev->tx_ring_size; rx_ring->cq_size = rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb); rx_ring->lbq_len = 0; rx_ring->lbq_size = 0; rx_ring->lbq_buf_size = 0; rx_ring->sbq_len = 0; rx_ring->sbq_size = 0; rx_ring->sbq_buf_size = 0; rx_ring->type = TX_Q; } } return 0; } static int qlge_open(struct net_device *ndev) { int err = 0; struct ql_adapter *qdev = netdev_priv(ndev); err = ql_adapter_reset(qdev); if (err) return err; err = ql_configure_rings(qdev); if (err) return err; err = ql_get_adapter_resources(qdev); if (err) goto error_up; err = ql_adapter_up(qdev); if (err) goto error_up; return err; error_up: ql_release_adapter_resources(qdev); return err; } static int ql_change_rx_buffers(struct ql_adapter *qdev) { struct rx_ring *rx_ring; int i, status; u32 lbq_buf_len; /* Wait for an oustanding reset to complete. */ if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) { int i = 3; while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) { netif_err(qdev, ifup, qdev->ndev, "Waiting for adapter UP...\n"); ssleep(1); } if (!i) { netif_err(qdev, ifup, qdev->ndev, "Timed out waiting for adapter UP\n"); return -ETIMEDOUT; } } status = ql_adapter_down(qdev); if (status) goto error; /* Get the new rx buffer size. */ lbq_buf_len = (qdev->ndev->mtu > 1500) ? LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE; qdev->lbq_buf_order = get_order(lbq_buf_len); for (i = 0; i < qdev->rss_ring_count; i++) { rx_ring = &qdev->rx_ring[i]; /* Set the new size. */ rx_ring->lbq_buf_size = lbq_buf_len; } status = ql_adapter_up(qdev); if (status) goto error; return status; error: netif_alert(qdev, ifup, qdev->ndev, "Driver up/down cycle failed, closing device.\n"); set_bit(QL_ADAPTER_UP, &qdev->flags); dev_close(qdev->ndev); return status; } static int qlge_change_mtu(struct net_device *ndev, int new_mtu) { struct ql_adapter *qdev = netdev_priv(ndev); int status; if (ndev->mtu == 1500 && new_mtu == 9000) { netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n"); } else if (ndev->mtu == 9000 && new_mtu == 1500) { netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n"); } else return -EINVAL; queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 3*HZ); ndev->mtu = new_mtu; if (!netif_running(qdev->ndev)) { return 0; } status = ql_change_rx_buffers(qdev); if (status) { netif_err(qdev, ifup, qdev->ndev, "Changing MTU failed.\n"); } return status; } static struct net_device_stats *qlge_get_stats(struct net_device *ndev) { struct ql_adapter *qdev = netdev_priv(ndev); struct rx_ring *rx_ring = &qdev->rx_ring[0]; struct tx_ring *tx_ring = &qdev->tx_ring[0]; unsigned long pkts, mcast, dropped, errors, bytes; int i; /* Get RX stats. */ pkts = mcast = dropped = errors = bytes = 0; for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) { pkts += rx_ring->rx_packets; bytes += rx_ring->rx_bytes; dropped += rx_ring->rx_dropped; errors += rx_ring->rx_errors; mcast += rx_ring->rx_multicast; } ndev->stats.rx_packets = pkts; ndev->stats.rx_bytes = bytes; ndev->stats.rx_dropped = dropped; ndev->stats.rx_errors = errors; ndev->stats.multicast = mcast; /* Get TX stats. */ pkts = errors = bytes = 0; for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) { pkts += tx_ring->tx_packets; bytes += tx_ring->tx_bytes; errors += tx_ring->tx_errors; } ndev->stats.tx_packets = pkts; ndev->stats.tx_bytes = bytes; ndev->stats.tx_errors = errors; return &ndev->stats; } static void qlge_set_multicast_list(struct net_device *ndev) { struct ql_adapter *qdev = netdev_priv(ndev); struct netdev_hw_addr *ha; int i, status; status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK); if (status) return; /* * Set or clear promiscuous mode if a * transition is taking place. */ if (ndev->flags & IFF_PROMISC) { if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) { if (ql_set_routing_reg (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) { netif_err(qdev, hw, qdev->ndev, "Failed to set promiscous mode.\n"); } else { set_bit(QL_PROMISCUOUS, &qdev->flags); } } } else { if (test_bit(QL_PROMISCUOUS, &qdev->flags)) { if (ql_set_routing_reg (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) { netif_err(qdev, hw, qdev->ndev, "Failed to clear promiscous mode.\n"); } else { clear_bit(QL_PROMISCUOUS, &qdev->flags); } } } /* * Set or clear all multicast mode if a * transition is taking place. */ if ((ndev->flags & IFF_ALLMULTI) || (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) { if (!test_bit(QL_ALLMULTI, &qdev->flags)) { if (ql_set_routing_reg (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) { netif_err(qdev, hw, qdev->ndev, "Failed to set all-multi mode.\n"); } else { set_bit(QL_ALLMULTI, &qdev->flags); } } } else { if (test_bit(QL_ALLMULTI, &qdev->flags)) { if (ql_set_routing_reg (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) { netif_err(qdev, hw, qdev->ndev, "Failed to clear all-multi mode.\n"); } else { clear_bit(QL_ALLMULTI, &qdev->flags); } } } if (!netdev_mc_empty(ndev)) { status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); if (status) goto exit; i = 0; netdev_for_each_mc_addr(ha, ndev) { if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr, MAC_ADDR_TYPE_MULTI_MAC, i)) { netif_err(qdev, hw, qdev->ndev, "Failed to loadmulticast address.\n"); ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); goto exit; } i++; } ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); if (ql_set_routing_reg (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) { netif_err(qdev, hw, qdev->ndev, "Failed to set multicast match mode.\n"); } else { set_bit(QL_ALLMULTI, &qdev->flags); } } exit: ql_sem_unlock(qdev, SEM_RT_IDX_MASK); } static int qlge_set_mac_address(struct net_device *ndev, void *p) { struct ql_adapter *qdev = netdev_priv(ndev); struct sockaddr *addr = p; int status; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); /* Update local copy of current mac address. */ memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len); status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); if (status) return status; status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr, MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ); if (status) netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n"); ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); return status; } static void qlge_tx_timeout(struct net_device *ndev) { struct ql_adapter *qdev = netdev_priv(ndev); ql_queue_asic_error(qdev); } static void ql_asic_reset_work(struct work_struct *work) { struct ql_adapter *qdev = container_of(work, struct ql_adapter, asic_reset_work.work); int status; rtnl_lock(); status = ql_adapter_down(qdev); if (status) goto error; status = ql_adapter_up(qdev); if (status) goto error; /* Restore rx mode. */ clear_bit(QL_ALLMULTI, &qdev->flags); clear_bit(QL_PROMISCUOUS, &qdev->flags); qlge_set_multicast_list(qdev->ndev); rtnl_unlock(); return; error: netif_alert(qdev, ifup, qdev->ndev, "Driver up/down cycle failed, closing device\n"); set_bit(QL_ADAPTER_UP, &qdev->flags); dev_close(qdev->ndev); rtnl_unlock(); } static struct nic_operations qla8012_nic_ops = { .get_flash = ql_get_8012_flash_params, .port_initialize = ql_8012_port_initialize, }; static struct nic_operations qla8000_nic_ops = { .get_flash = ql_get_8000_flash_params, .port_initialize = ql_8000_port_initialize, }; /* Find the pcie function number for the other NIC * on this chip. Since both NIC functions share a * common firmware we have the lowest enabled function * do any common work. Examples would be resetting * after a fatal firmware error, or doing a firmware * coredump. */ static int ql_get_alt_pcie_func(struct ql_adapter *qdev) { int status = 0; u32 temp; u32 nic_func1, nic_func2; status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG, &temp); if (status) return status; nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) & MPI_TEST_NIC_FUNC_MASK); nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) & MPI_TEST_NIC_FUNC_MASK); if (qdev->func == nic_func1) qdev->alt_func = nic_func2; else if (qdev->func == nic_func2) qdev->alt_func = nic_func1; else status = -EIO; return status; } static int ql_get_board_info(struct ql_adapter *qdev) { int status; qdev->func = (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT; if (qdev->func > 3) return -EIO; status = ql_get_alt_pcie_func(qdev); if (status) return status; qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1; if (qdev->port) { qdev->xg_sem_mask = SEM_XGMAC1_MASK; qdev->port_link_up = STS_PL1; qdev->port_init = STS_PI1; qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI; qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO; } else { qdev->xg_sem_mask = SEM_XGMAC0_MASK; qdev->port_link_up = STS_PL0; qdev->port_init = STS_PI0; qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI; qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO; } qdev->chip_rev_id = ql_read32(qdev, REV_ID); qdev->device_id = qdev->pdev->device; if (qdev->device_id == QLGE_DEVICE_ID_8012) qdev->nic_ops = &qla8012_nic_ops; else if (qdev->device_id == QLGE_DEVICE_ID_8000) qdev->nic_ops = &qla8000_nic_ops; return status; } static void ql_release_all(struct pci_dev *pdev) { struct net_device *ndev = pci_get_drvdata(pdev); struct ql_adapter *qdev = netdev_priv(ndev); if (qdev->workqueue) { destroy_workqueue(qdev->workqueue); qdev->workqueue = NULL; } if (qdev->reg_base) iounmap(qdev->reg_base); if (qdev->doorbell_area) iounmap(qdev->doorbell_area); vfree(qdev->mpi_coredump); pci_release_regions(pdev); pci_set_drvdata(pdev, NULL); } static int __devinit ql_init_device(struct pci_dev *pdev, struct net_device *ndev, int cards_found) { struct ql_adapter *qdev = netdev_priv(ndev); int err = 0; memset((void *)qdev, 0, sizeof(*qdev)); err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "PCI device enable failed.\n"); return err; } qdev->ndev = ndev; qdev->pdev = pdev; pci_set_drvdata(pdev, ndev); /* Set PCIe read request size */ err = pcie_set_readrq(pdev, 4096); if (err) { dev_err(&pdev->dev, "Set readrq failed.\n"); goto err_out1; } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(&pdev->dev, "PCI region request failed.\n"); return err; } pci_set_master(pdev); if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { set_bit(QL_DMA64, &qdev->flags); err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); } else { err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (!err) err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); } if (err) { dev_err(&pdev->dev, "No usable DMA configuration.\n"); goto err_out2; } /* Set PCIe reset type for EEH to fundamental. */ pdev->needs_freset = 1; pci_save_state(pdev); qdev->reg_base = ioremap_nocache(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1)); if (!qdev->reg_base) { dev_err(&pdev->dev, "Register mapping failed.\n"); err = -ENOMEM; goto err_out2; } qdev->doorbell_area_size = pci_resource_len(pdev, 3); qdev->doorbell_area = ioremap_nocache(pci_resource_start(pdev, 3), pci_resource_len(pdev, 3)); if (!qdev->doorbell_area) { dev_err(&pdev->dev, "Doorbell register mapping failed.\n"); err = -ENOMEM; goto err_out2; } err = ql_get_board_info(qdev); if (err) { dev_err(&pdev->dev, "Register access failed.\n"); err = -EIO; goto err_out2; } qdev->msg_enable = netif_msg_init(debug, default_msg); spin_lock_init(&qdev->hw_lock); spin_lock_init(&qdev->stats_lock); if (qlge_mpi_coredump) { qdev->mpi_coredump = vmalloc(sizeof(struct ql_mpi_coredump)); if (qdev->mpi_coredump == NULL) { dev_err(&pdev->dev, "Coredump alloc failed.\n"); err = -ENOMEM; goto err_out2; } if (qlge_force_coredump) set_bit(QL_FRC_COREDUMP, &qdev->flags); } /* make sure the EEPROM is good */ err = qdev->nic_ops->get_flash(qdev); if (err) { dev_err(&pdev->dev, "Invalid FLASH.\n"); goto err_out2; } memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len); /* Keep local copy of current mac address. */ memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len); /* Set up the default ring sizes. */ qdev->tx_ring_size = NUM_TX_RING_ENTRIES; qdev->rx_ring_size = NUM_RX_RING_ENTRIES; /* Set up the coalescing parameters. */ qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT; qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT; qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT; qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT; /* * Set up the operating parameters. */ qdev->rx_csum = 1; qdev->workqueue = create_singlethread_workqueue(ndev->name); INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work); INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work); INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work); INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work); INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work); INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log); init_completion(&qdev->ide_completion); if (!cards_found) { dev_info(&pdev->dev, "%s\n", DRV_STRING); dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n", DRV_NAME, DRV_VERSION); } return 0; err_out2: ql_release_all(pdev); err_out1: pci_disable_device(pdev); return err; } static const struct net_device_ops qlge_netdev_ops = { .ndo_open = qlge_open, .ndo_stop = qlge_close, .ndo_start_xmit = qlge_send, .ndo_change_mtu = qlge_change_mtu, .ndo_get_stats = qlge_get_stats, .ndo_set_multicast_list = qlge_set_multicast_list, .ndo_set_mac_address = qlge_set_mac_address, .ndo_validate_addr = eth_validate_addr, .ndo_tx_timeout = qlge_tx_timeout, .ndo_vlan_rx_register = qlge_vlan_rx_register, .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid, }; static void ql_timer(unsigned long data) { struct ql_adapter *qdev = (struct ql_adapter *)data; u32 var = 0; var = ql_read32(qdev, STS); if (pci_channel_offline(qdev->pdev)) { netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var); return; } mod_timer(&qdev->timer, jiffies + (5*HZ)); } static int __devinit qlge_probe(struct pci_dev *pdev, const struct pci_device_id *pci_entry) { struct net_device *ndev = NULL; struct ql_adapter *qdev = NULL; static int cards_found = 0; int err = 0; ndev = alloc_etherdev_mq(sizeof(struct ql_adapter), min(MAX_CPUS, (int)num_online_cpus())); if (!ndev) return -ENOMEM; err = ql_init_device(pdev, ndev, cards_found); if (err < 0) { free_netdev(ndev); return err; } qdev = netdev_priv(ndev); SET_NETDEV_DEV(ndev, &pdev->dev); ndev->features = (0 | NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER); ndev->features |= NETIF_F_GRO; if (test_bit(QL_DMA64, &qdev->flags)) ndev->features |= NETIF_F_HIGHDMA; /* * Set up net_device structure. */ ndev->tx_queue_len = qdev->tx_ring_size; ndev->irq = pdev->irq; ndev->netdev_ops = &qlge_netdev_ops; SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops); ndev->watchdog_timeo = 10 * HZ; err = register_netdev(ndev); if (err) { dev_err(&pdev->dev, "net device registration failed.\n"); ql_release_all(pdev); pci_disable_device(pdev); return err; } /* Start up the timer to trigger EEH if * the bus goes dead */ init_timer_deferrable(&qdev->timer); qdev->timer.data = (unsigned long)qdev; qdev->timer.function = ql_timer; qdev->timer.expires = jiffies + (5*HZ); add_timer(&qdev->timer); ql_link_off(qdev); ql_display_dev_info(ndev); atomic_set(&qdev->lb_count, 0); cards_found++; return 0; } netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev) { return qlge_send(skb, ndev); } int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget) { return ql_clean_inbound_rx_ring(rx_ring, budget); } static void __devexit qlge_remove(struct pci_dev *pdev) { struct net_device *ndev = pci_get_drvdata(pdev); struct ql_adapter *qdev = netdev_priv(ndev); del_timer_sync(&qdev->timer); ql_cancel_all_work_sync(qdev); unregister_netdev(ndev); ql_release_all(pdev); pci_disable_device(pdev); free_netdev(ndev); } /* Clean up resources without touching hardware. */ static void ql_eeh_close(struct net_device *ndev) { int i; struct ql_adapter *qdev = netdev_priv(ndev); if (netif_carrier_ok(ndev)) { netif_carrier_off(ndev); netif_stop_queue(ndev); } /* Disabling the timer */ del_timer_sync(&qdev->timer); ql_cancel_all_work_sync(qdev); for (i = 0; i < qdev->rss_ring_count; i++) netif_napi_del(&qdev->rx_ring[i].napi); clear_bit(QL_ADAPTER_UP, &qdev->flags); ql_tx_ring_clean(qdev); ql_free_rx_buffers(qdev); ql_release_adapter_resources(qdev); } /* * This callback is called by the PCI subsystem whenever * a PCI bus error is detected. */ static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev, enum pci_channel_state state) { struct net_device *ndev = pci_get_drvdata(pdev); struct ql_adapter *qdev = netdev_priv(ndev); switch (state) { case pci_channel_io_normal: return PCI_ERS_RESULT_CAN_RECOVER; case pci_channel_io_frozen: netif_device_detach(ndev); if (netif_running(ndev)) ql_eeh_close(ndev); pci_disable_device(pdev); return PCI_ERS_RESULT_NEED_RESET; case pci_channel_io_perm_failure: dev_err(&pdev->dev, "%s: pci_channel_io_perm_failure.\n", __func__); ql_eeh_close(ndev); set_bit(QL_EEH_FATAL, &qdev->flags); return PCI_ERS_RESULT_DISCONNECT; } /* Request a slot reset. */ return PCI_ERS_RESULT_NEED_RESET; } /* * This callback is called after the PCI buss has been reset. * Basically, this tries to restart the card from scratch. * This is a shortened version of the device probe/discovery code, * it resembles the first-half of the () routine. */ static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev) { struct net_device *ndev = pci_get_drvdata(pdev); struct ql_adapter *qdev = netdev_priv(ndev); pdev->error_state = pci_channel_io_normal; pci_restore_state(pdev); if (pci_enable_device(pdev)) { netif_err(qdev, ifup, qdev->ndev, "Cannot re-enable PCI device after reset.\n"); return PCI_ERS_RESULT_DISCONNECT; } pci_set_master(pdev); if (ql_adapter_reset(qdev)) { netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n"); set_bit(QL_EEH_FATAL, &qdev->flags); return PCI_ERS_RESULT_DISCONNECT; } return PCI_ERS_RESULT_RECOVERED; } static void qlge_io_resume(struct pci_dev *pdev) { struct net_device *ndev = pci_get_drvdata(pdev); struct ql_adapter *qdev = netdev_priv(ndev); int err = 0; if (netif_running(ndev)) { err = qlge_open(ndev); if (err) { netif_err(qdev, ifup, qdev->ndev, "Device initialization failed after reset.\n"); return; } } else { netif_err(qdev, ifup, qdev->ndev, "Device was not running prior to EEH.\n"); } mod_timer(&qdev->timer, jiffies + (5*HZ)); netif_device_attach(ndev); } static struct pci_error_handlers qlge_err_handler = { .error_detected = qlge_io_error_detected, .slot_reset = qlge_io_slot_reset, .resume = qlge_io_resume, }; static int qlge_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *ndev = pci_get_drvdata(pdev); struct ql_adapter *qdev = netdev_priv(ndev); int err; netif_device_detach(ndev); del_timer_sync(&qdev->timer); if (netif_running(ndev)) { err = ql_adapter_down(qdev); if (!err) return err; } ql_wol(qdev); err = pci_save_state(pdev); if (err) return err; pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } #ifdef CONFIG_PM static int qlge_resume(struct pci_dev *pdev) { struct net_device *ndev = pci_get_drvdata(pdev); struct ql_adapter *qdev = netdev_priv(ndev); int err; pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); err = pci_enable_device(pdev); if (err) { netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n"); return err; } pci_set_master(pdev); pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); if (netif_running(ndev)) { err = ql_adapter_up(qdev); if (err) return err; } mod_timer(&qdev->timer, jiffies + (5*HZ)); netif_device_attach(ndev); return 0; } #endif /* CONFIG_PM */ static void qlge_shutdown(struct pci_dev *pdev) { qlge_suspend(pdev, PMSG_SUSPEND); } static struct pci_driver qlge_driver = { .name = DRV_NAME, .id_table = qlge_pci_tbl, .probe = qlge_probe, .remove = __devexit_p(qlge_remove), #ifdef CONFIG_PM .suspend = qlge_suspend, .resume = qlge_resume, #endif .shutdown = qlge_shutdown, .err_handler = &qlge_err_handler }; static int __init qlge_init_module(void) { return pci_register_driver(&qlge_driver); } static void __exit qlge_exit(void) { pci_unregister_driver(&qlge_driver); } module_init(qlge_init_module); module_exit(qlge_exit);