/* * sgiseeq.c: Seeq8003 ethernet driver for SGI machines. * * Copyright (C) 1996 David S. Miller (dm@engr.sgi.com) */ #undef DEBUG #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/types.h> #include <linux/interrupt.h> #include <linux/string.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/platform_device.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <asm/sgi/hpc3.h> #include <asm/sgi/ip22.h> #include <asm/sgi/seeq.h> #include "sgiseeq.h" static char *sgiseeqstr = "SGI Seeq8003"; /* * If you want speed, you do something silly, it always has worked for me. So, * with that in mind, I've decided to make this driver look completely like a * stupid Lance from a driver architecture perspective. Only difference is that * here our "ring buffer" looks and acts like a real Lance one does but is * layed out like how the HPC DMA and the Seeq want it to. You'd be surprised * how a stupid idea like this can pay off in performance, not to mention * making this driver 2,000 times easier to write. ;-) */ /* Tune these if we tend to run out often etc. */ #define SEEQ_RX_BUFFERS 16 #define SEEQ_TX_BUFFERS 16 #define PKT_BUF_SZ 1584 #define NEXT_RX(i) (((i) + 1) & (SEEQ_RX_BUFFERS - 1)) #define NEXT_TX(i) (((i) + 1) & (SEEQ_TX_BUFFERS - 1)) #define PREV_RX(i) (((i) - 1) & (SEEQ_RX_BUFFERS - 1)) #define PREV_TX(i) (((i) - 1) & (SEEQ_TX_BUFFERS - 1)) #define TX_BUFFS_AVAIL(sp) ((sp->tx_old <= sp->tx_new) ? \ sp->tx_old + (SEEQ_TX_BUFFERS - 1) - sp->tx_new : \ sp->tx_old - sp->tx_new - 1) #define VIRT_TO_DMA(sp, v) ((sp)->srings_dma + \ (dma_addr_t)((unsigned long)(v) - \ (unsigned long)((sp)->rx_desc))) /* Copy frames shorter than rx_copybreak, otherwise pass on up in * a full sized sk_buff. Value of 100 stolen from tulip.c (!alpha). */ static int rx_copybreak = 100; #define PAD_SIZE (128 - sizeof(struct hpc_dma_desc) - sizeof(void *)) struct sgiseeq_rx_desc { volatile struct hpc_dma_desc rdma; u8 padding[PAD_SIZE]; struct sk_buff *skb; }; struct sgiseeq_tx_desc { volatile struct hpc_dma_desc tdma; u8 padding[PAD_SIZE]; struct sk_buff *skb; }; /* * Warning: This structure is layed out in a certain way because HPC dma * descriptors must be 8-byte aligned. So don't touch this without * some care. */ struct sgiseeq_init_block { /* Note the name ;-) */ struct sgiseeq_rx_desc rxvector[SEEQ_RX_BUFFERS]; struct sgiseeq_tx_desc txvector[SEEQ_TX_BUFFERS]; }; struct sgiseeq_private { struct sgiseeq_init_block *srings; dma_addr_t srings_dma; /* Ptrs to the descriptors in uncached space. */ struct sgiseeq_rx_desc *rx_desc; struct sgiseeq_tx_desc *tx_desc; char *name; struct hpc3_ethregs *hregs; struct sgiseeq_regs *sregs; /* Ring entry counters. */ unsigned int rx_new, tx_new; unsigned int rx_old, tx_old; int is_edlc; unsigned char control; unsigned char mode; spinlock_t tx_lock; }; static inline void dma_sync_desc_cpu(struct net_device *dev, void *addr) { dma_cache_sync(dev->dev.parent, addr, sizeof(struct sgiseeq_rx_desc), DMA_FROM_DEVICE); } static inline void dma_sync_desc_dev(struct net_device *dev, void *addr) { dma_cache_sync(dev->dev.parent, addr, sizeof(struct sgiseeq_rx_desc), DMA_TO_DEVICE); } static inline void hpc3_eth_reset(struct hpc3_ethregs *hregs) { hregs->reset = HPC3_ERST_CRESET | HPC3_ERST_CLRIRQ; udelay(20); hregs->reset = 0; } static inline void reset_hpc3_and_seeq(struct hpc3_ethregs *hregs, struct sgiseeq_regs *sregs) { hregs->rx_ctrl = hregs->tx_ctrl = 0; hpc3_eth_reset(hregs); } #define RSTAT_GO_BITS (SEEQ_RCMD_IGOOD | SEEQ_RCMD_IEOF | SEEQ_RCMD_ISHORT | \ SEEQ_RCMD_IDRIB | SEEQ_RCMD_ICRC) static inline void seeq_go(struct sgiseeq_private *sp, struct hpc3_ethregs *hregs, struct sgiseeq_regs *sregs) { sregs->rstat = sp->mode | RSTAT_GO_BITS; hregs->rx_ctrl = HPC3_ERXCTRL_ACTIVE; } static inline void __sgiseeq_set_mac_address(struct net_device *dev) { struct sgiseeq_private *sp = netdev_priv(dev); struct sgiseeq_regs *sregs = sp->sregs; int i; sregs->tstat = SEEQ_TCMD_RB0; for (i = 0; i < 6; i++) sregs->rw.eth_addr[i] = dev->dev_addr[i]; } static int sgiseeq_set_mac_address(struct net_device *dev, void *addr) { struct sgiseeq_private *sp = netdev_priv(dev); struct sockaddr *sa = addr; memcpy(dev->dev_addr, sa->sa_data, dev->addr_len); spin_lock_irq(&sp->tx_lock); __sgiseeq_set_mac_address(dev); spin_unlock_irq(&sp->tx_lock); return 0; } #define TCNTINFO_INIT (HPCDMA_EOX | HPCDMA_ETXD) #define RCNTCFG_INIT (HPCDMA_OWN | HPCDMA_EORP | HPCDMA_XIE) #define RCNTINFO_INIT (RCNTCFG_INIT | (PKT_BUF_SZ & HPCDMA_BCNT)) static int seeq_init_ring(struct net_device *dev) { struct sgiseeq_private *sp = netdev_priv(dev); int i; netif_stop_queue(dev); sp->rx_new = sp->tx_new = 0; sp->rx_old = sp->tx_old = 0; __sgiseeq_set_mac_address(dev); /* Setup tx ring. */ for(i = 0; i < SEEQ_TX_BUFFERS; i++) { sp->tx_desc[i].tdma.cntinfo = TCNTINFO_INIT; dma_sync_desc_dev(dev, &sp->tx_desc[i]); } /* And now the rx ring. */ for (i = 0; i < SEEQ_RX_BUFFERS; i++) { if (!sp->rx_desc[i].skb) { dma_addr_t dma_addr; struct sk_buff *skb = netdev_alloc_skb(dev, PKT_BUF_SZ); if (skb == NULL) return -ENOMEM; skb_reserve(skb, 2); dma_addr = dma_map_single(dev->dev.parent, skb->data - 2, PKT_BUF_SZ, DMA_FROM_DEVICE); sp->rx_desc[i].skb = skb; sp->rx_desc[i].rdma.pbuf = dma_addr; } sp->rx_desc[i].rdma.cntinfo = RCNTINFO_INIT; dma_sync_desc_dev(dev, &sp->rx_desc[i]); } sp->rx_desc[i - 1].rdma.cntinfo |= HPCDMA_EOR; dma_sync_desc_dev(dev, &sp->rx_desc[i - 1]); return 0; } static void seeq_purge_ring(struct net_device *dev) { struct sgiseeq_private *sp = netdev_priv(dev); int i; /* clear tx ring. */ for (i = 0; i < SEEQ_TX_BUFFERS; i++) { if (sp->tx_desc[i].skb) { dev_kfree_skb(sp->tx_desc[i].skb); sp->tx_desc[i].skb = NULL; } } /* And now the rx ring. */ for (i = 0; i < SEEQ_RX_BUFFERS; i++) { if (sp->rx_desc[i].skb) { dev_kfree_skb(sp->rx_desc[i].skb); sp->rx_desc[i].skb = NULL; } } } #ifdef DEBUG static struct sgiseeq_private *gpriv; static struct net_device *gdev; static void sgiseeq_dump_rings(void) { static int once; struct sgiseeq_rx_desc *r = gpriv->rx_desc; struct sgiseeq_tx_desc *t = gpriv->tx_desc; struct hpc3_ethregs *hregs = gpriv->hregs; int i; if (once) return; once++; printk("RING DUMP:\n"); for (i = 0; i < SEEQ_RX_BUFFERS; i++) { printk("RX [%d]: @(%p) [%08x,%08x,%08x] ", i, (&r[i]), r[i].rdma.pbuf, r[i].rdma.cntinfo, r[i].rdma.pnext); i += 1; printk("-- [%d]: @(%p) [%08x,%08x,%08x]\n", i, (&r[i]), r[i].rdma.pbuf, r[i].rdma.cntinfo, r[i].rdma.pnext); } for (i = 0; i < SEEQ_TX_BUFFERS; i++) { printk("TX [%d]: @(%p) [%08x,%08x,%08x] ", i, (&t[i]), t[i].tdma.pbuf, t[i].tdma.cntinfo, t[i].tdma.pnext); i += 1; printk("-- [%d]: @(%p) [%08x,%08x,%08x]\n", i, (&t[i]), t[i].tdma.pbuf, t[i].tdma.cntinfo, t[i].tdma.pnext); } printk("INFO: [rx_new = %d rx_old=%d] [tx_new = %d tx_old = %d]\n", gpriv->rx_new, gpriv->rx_old, gpriv->tx_new, gpriv->tx_old); printk("RREGS: rx_cbptr[%08x] rx_ndptr[%08x] rx_ctrl[%08x]\n", hregs->rx_cbptr, hregs->rx_ndptr, hregs->rx_ctrl); printk("TREGS: tx_cbptr[%08x] tx_ndptr[%08x] tx_ctrl[%08x]\n", hregs->tx_cbptr, hregs->tx_ndptr, hregs->tx_ctrl); } #endif #define TSTAT_INIT_SEEQ (SEEQ_TCMD_IPT|SEEQ_TCMD_I16|SEEQ_TCMD_IC|SEEQ_TCMD_IUF) #define TSTAT_INIT_EDLC ((TSTAT_INIT_SEEQ) | SEEQ_TCMD_RB2) static int init_seeq(struct net_device *dev, struct sgiseeq_private *sp, struct sgiseeq_regs *sregs) { struct hpc3_ethregs *hregs = sp->hregs; int err; reset_hpc3_and_seeq(hregs, sregs); err = seeq_init_ring(dev); if (err) return err; /* Setup to field the proper interrupt types. */ if (sp->is_edlc) { sregs->tstat = TSTAT_INIT_EDLC; sregs->rw.wregs.control = sp->control; sregs->rw.wregs.frame_gap = 0; } else { sregs->tstat = TSTAT_INIT_SEEQ; } hregs->rx_ndptr = VIRT_TO_DMA(sp, sp->rx_desc); hregs->tx_ndptr = VIRT_TO_DMA(sp, sp->tx_desc); seeq_go(sp, hregs, sregs); return 0; } static void record_rx_errors(struct net_device *dev, unsigned char status) { if (status & SEEQ_RSTAT_OVERF || status & SEEQ_RSTAT_SFRAME) dev->stats.rx_over_errors++; if (status & SEEQ_RSTAT_CERROR) dev->stats.rx_crc_errors++; if (status & SEEQ_RSTAT_DERROR) dev->stats.rx_frame_errors++; if (status & SEEQ_RSTAT_REOF) dev->stats.rx_errors++; } static inline void rx_maybe_restart(struct sgiseeq_private *sp, struct hpc3_ethregs *hregs, struct sgiseeq_regs *sregs) { if (!(hregs->rx_ctrl & HPC3_ERXCTRL_ACTIVE)) { hregs->rx_ndptr = VIRT_TO_DMA(sp, sp->rx_desc + sp->rx_new); seeq_go(sp, hregs, sregs); } } static inline void sgiseeq_rx(struct net_device *dev, struct sgiseeq_private *sp, struct hpc3_ethregs *hregs, struct sgiseeq_regs *sregs) { struct sgiseeq_rx_desc *rd; struct sk_buff *skb = NULL; struct sk_buff *newskb; unsigned char pkt_status; int len = 0; unsigned int orig_end = PREV_RX(sp->rx_new); /* Service every received packet. */ rd = &sp->rx_desc[sp->rx_new]; dma_sync_desc_cpu(dev, rd); while (!(rd->rdma.cntinfo & HPCDMA_OWN)) { len = PKT_BUF_SZ - (rd->rdma.cntinfo & HPCDMA_BCNT) - 3; dma_unmap_single(dev->dev.parent, rd->rdma.pbuf, PKT_BUF_SZ, DMA_FROM_DEVICE); pkt_status = rd->skb->data[len]; if (pkt_status & SEEQ_RSTAT_FIG) { /* Packet is OK. */ /* We don't want to receive our own packets */ if (memcmp(rd->skb->data + 6, dev->dev_addr, ETH_ALEN)) { if (len > rx_copybreak) { skb = rd->skb; newskb = netdev_alloc_skb(dev, PKT_BUF_SZ); if (!newskb) { newskb = skb; skb = NULL; goto memory_squeeze; } skb_reserve(newskb, 2); } else { skb = netdev_alloc_skb_ip_align(dev, len); if (skb) skb_copy_to_linear_data(skb, rd->skb->data, len); newskb = rd->skb; } memory_squeeze: if (skb) { skb_put(skb, len); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); dev->stats.rx_packets++; dev->stats.rx_bytes += len; } else { printk(KERN_NOTICE "%s: Memory squeeze, deferring packet.\n", dev->name); dev->stats.rx_dropped++; } } else { /* Silently drop my own packets */ newskb = rd->skb; } } else { record_rx_errors(dev, pkt_status); newskb = rd->skb; } rd->skb = newskb; rd->rdma.pbuf = dma_map_single(dev->dev.parent, newskb->data - 2, PKT_BUF_SZ, DMA_FROM_DEVICE); /* Return the entry to the ring pool. */ rd->rdma.cntinfo = RCNTINFO_INIT; sp->rx_new = NEXT_RX(sp->rx_new); dma_sync_desc_dev(dev, rd); rd = &sp->rx_desc[sp->rx_new]; dma_sync_desc_cpu(dev, rd); } dma_sync_desc_cpu(dev, &sp->rx_desc[orig_end]); sp->rx_desc[orig_end].rdma.cntinfo &= ~(HPCDMA_EOR); dma_sync_desc_dev(dev, &sp->rx_desc[orig_end]); dma_sync_desc_cpu(dev, &sp->rx_desc[PREV_RX(sp->rx_new)]); sp->rx_desc[PREV_RX(sp->rx_new)].rdma.cntinfo |= HPCDMA_EOR; dma_sync_desc_dev(dev, &sp->rx_desc[PREV_RX(sp->rx_new)]); rx_maybe_restart(sp, hregs, sregs); } static inline void tx_maybe_reset_collisions(struct sgiseeq_private *sp, struct sgiseeq_regs *sregs) { if (sp->is_edlc) { sregs->rw.wregs.control = sp->control & ~(SEEQ_CTRL_XCNT); sregs->rw.wregs.control = sp->control; } } static inline void kick_tx(struct net_device *dev, struct sgiseeq_private *sp, struct hpc3_ethregs *hregs) { struct sgiseeq_tx_desc *td; int i = sp->tx_old; /* If the HPC aint doin nothin, and there are more packets * with ETXD cleared and XIU set we must make very certain * that we restart the HPC else we risk locking up the * adapter. The following code is only safe iff the HPCDMA * is not active! */ td = &sp->tx_desc[i]; dma_sync_desc_cpu(dev, td); while ((td->tdma.cntinfo & (HPCDMA_XIU | HPCDMA_ETXD)) == (HPCDMA_XIU | HPCDMA_ETXD)) { i = NEXT_TX(i); td = &sp->tx_desc[i]; dma_sync_desc_cpu(dev, td); } if (td->tdma.cntinfo & HPCDMA_XIU) { hregs->tx_ndptr = VIRT_TO_DMA(sp, td); hregs->tx_ctrl = HPC3_ETXCTRL_ACTIVE; } } static inline void sgiseeq_tx(struct net_device *dev, struct sgiseeq_private *sp, struct hpc3_ethregs *hregs, struct sgiseeq_regs *sregs) { struct sgiseeq_tx_desc *td; unsigned long status = hregs->tx_ctrl; int j; tx_maybe_reset_collisions(sp, sregs); if (!(status & (HPC3_ETXCTRL_ACTIVE | SEEQ_TSTAT_PTRANS))) { /* Oops, HPC detected some sort of error. */ if (status & SEEQ_TSTAT_R16) dev->stats.tx_aborted_errors++; if (status & SEEQ_TSTAT_UFLOW) dev->stats.tx_fifo_errors++; if (status & SEEQ_TSTAT_LCLS) dev->stats.collisions++; } /* Ack 'em... */ for (j = sp->tx_old; j != sp->tx_new; j = NEXT_TX(j)) { td = &sp->tx_desc[j]; dma_sync_desc_cpu(dev, td); if (!(td->tdma.cntinfo & (HPCDMA_XIU))) break; if (!(td->tdma.cntinfo & (HPCDMA_ETXD))) { if (!(status & HPC3_ETXCTRL_ACTIVE)) { hregs->tx_ndptr = VIRT_TO_DMA(sp, td); hregs->tx_ctrl = HPC3_ETXCTRL_ACTIVE; } break; } dev->stats.tx_packets++; sp->tx_old = NEXT_TX(sp->tx_old); td->tdma.cntinfo &= ~(HPCDMA_XIU | HPCDMA_XIE); td->tdma.cntinfo |= HPCDMA_EOX; if (td->skb) { dev_kfree_skb_any(td->skb); td->skb = NULL; } dma_sync_desc_dev(dev, td); } } static irqreturn_t sgiseeq_interrupt(int irq, void *dev_id) { struct net_device *dev = (struct net_device *) dev_id; struct sgiseeq_private *sp = netdev_priv(dev); struct hpc3_ethregs *hregs = sp->hregs; struct sgiseeq_regs *sregs = sp->sregs; spin_lock(&sp->tx_lock); /* Ack the IRQ and set software state. */ hregs->reset = HPC3_ERST_CLRIRQ; /* Always check for received packets. */ sgiseeq_rx(dev, sp, hregs, sregs); /* Only check for tx acks if we have something queued. */ if (sp->tx_old != sp->tx_new) sgiseeq_tx(dev, sp, hregs, sregs); if ((TX_BUFFS_AVAIL(sp) > 0) && netif_queue_stopped(dev)) { netif_wake_queue(dev); } spin_unlock(&sp->tx_lock); return IRQ_HANDLED; } static int sgiseeq_open(struct net_device *dev) { struct sgiseeq_private *sp = netdev_priv(dev); struct sgiseeq_regs *sregs = sp->sregs; unsigned int irq = dev->irq; int err; if (request_irq(irq, sgiseeq_interrupt, 0, sgiseeqstr, dev)) { printk(KERN_ERR "Seeq8003: Can't get irq %d\n", dev->irq); return -EAGAIN; } err = init_seeq(dev, sp, sregs); if (err) goto out_free_irq; netif_start_queue(dev); return 0; out_free_irq: free_irq(irq, dev); return err; } static int sgiseeq_close(struct net_device *dev) { struct sgiseeq_private *sp = netdev_priv(dev); struct sgiseeq_regs *sregs = sp->sregs; unsigned int irq = dev->irq; netif_stop_queue(dev); /* Shutdown the Seeq. */ reset_hpc3_and_seeq(sp->hregs, sregs); free_irq(irq, dev); seeq_purge_ring(dev); return 0; } static inline int sgiseeq_reset(struct net_device *dev) { struct sgiseeq_private *sp = netdev_priv(dev); struct sgiseeq_regs *sregs = sp->sregs; int err; err = init_seeq(dev, sp, sregs); if (err) return err; dev->trans_start = jiffies; /* prevent tx timeout */ netif_wake_queue(dev); return 0; } static int sgiseeq_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct sgiseeq_private *sp = netdev_priv(dev); struct hpc3_ethregs *hregs = sp->hregs; unsigned long flags; struct sgiseeq_tx_desc *td; int len, entry; spin_lock_irqsave(&sp->tx_lock, flags); /* Setup... */ len = skb->len; if (len < ETH_ZLEN) { if (skb_padto(skb, ETH_ZLEN)) { spin_unlock_irqrestore(&sp->tx_lock, flags); return NETDEV_TX_OK; } len = ETH_ZLEN; } dev->stats.tx_bytes += len; entry = sp->tx_new; td = &sp->tx_desc[entry]; dma_sync_desc_cpu(dev, td); /* Create entry. There are so many races with adding a new * descriptor to the chain: * 1) Assume that the HPC is off processing a DMA chain while * we are changing all of the following. * 2) Do no allow the HPC to look at a new descriptor until * we have completely set up it's state. This means, do * not clear HPCDMA_EOX in the current last descritptor * until the one we are adding looks consistent and could * be processes right now. * 3) The tx interrupt code must notice when we've added a new * entry and the HPC got to the end of the chain before we * added this new entry and restarted it. */ td->skb = skb; td->tdma.pbuf = dma_map_single(dev->dev.parent, skb->data, len, DMA_TO_DEVICE); td->tdma.cntinfo = (len & HPCDMA_BCNT) | HPCDMA_XIU | HPCDMA_EOXP | HPCDMA_XIE | HPCDMA_EOX; dma_sync_desc_dev(dev, td); if (sp->tx_old != sp->tx_new) { struct sgiseeq_tx_desc *backend; backend = &sp->tx_desc[PREV_TX(sp->tx_new)]; dma_sync_desc_cpu(dev, backend); backend->tdma.cntinfo &= ~HPCDMA_EOX; dma_sync_desc_dev(dev, backend); } sp->tx_new = NEXT_TX(sp->tx_new); /* Advance. */ /* Maybe kick the HPC back into motion. */ if (!(hregs->tx_ctrl & HPC3_ETXCTRL_ACTIVE)) kick_tx(dev, sp, hregs); if (!TX_BUFFS_AVAIL(sp)) netif_stop_queue(dev); spin_unlock_irqrestore(&sp->tx_lock, flags); return NETDEV_TX_OK; } static void timeout(struct net_device *dev) { printk(KERN_NOTICE "%s: transmit timed out, resetting\n", dev->name); sgiseeq_reset(dev); dev->trans_start = jiffies; /* prevent tx timeout */ netif_wake_queue(dev); } static void sgiseeq_set_multicast(struct net_device *dev) { struct sgiseeq_private *sp = netdev_priv(dev); unsigned char oldmode = sp->mode; if(dev->flags & IFF_PROMISC) sp->mode = SEEQ_RCMD_RANY; else if ((dev->flags & IFF_ALLMULTI) || !netdev_mc_empty(dev)) sp->mode = SEEQ_RCMD_RBMCAST; else sp->mode = SEEQ_RCMD_RBCAST; /* XXX I know this sucks, but is there a better way to reprogram * XXX the receiver? At least, this shouldn't happen too often. */ if (oldmode != sp->mode) sgiseeq_reset(dev); } static inline void setup_tx_ring(struct net_device *dev, struct sgiseeq_tx_desc *buf, int nbufs) { struct sgiseeq_private *sp = netdev_priv(dev); int i = 0; while (i < (nbufs - 1)) { buf[i].tdma.pnext = VIRT_TO_DMA(sp, buf + i + 1); buf[i].tdma.pbuf = 0; dma_sync_desc_dev(dev, &buf[i]); i++; } buf[i].tdma.pnext = VIRT_TO_DMA(sp, buf); dma_sync_desc_dev(dev, &buf[i]); } static inline void setup_rx_ring(struct net_device *dev, struct sgiseeq_rx_desc *buf, int nbufs) { struct sgiseeq_private *sp = netdev_priv(dev); int i = 0; while (i < (nbufs - 1)) { buf[i].rdma.pnext = VIRT_TO_DMA(sp, buf + i + 1); buf[i].rdma.pbuf = 0; dma_sync_desc_dev(dev, &buf[i]); i++; } buf[i].rdma.pbuf = 0; buf[i].rdma.pnext = VIRT_TO_DMA(sp, buf); dma_sync_desc_dev(dev, &buf[i]); } static const struct net_device_ops sgiseeq_netdev_ops = { .ndo_open = sgiseeq_open, .ndo_stop = sgiseeq_close, .ndo_start_xmit = sgiseeq_start_xmit, .ndo_tx_timeout = timeout, .ndo_set_multicast_list = sgiseeq_set_multicast, .ndo_set_mac_address = sgiseeq_set_mac_address, .ndo_change_mtu = eth_change_mtu, .ndo_validate_addr = eth_validate_addr, }; static int __devinit sgiseeq_probe(struct platform_device *pdev) { struct sgiseeq_platform_data *pd = pdev->dev.platform_data; struct hpc3_regs *hpcregs = pd->hpc; struct sgiseeq_init_block *sr; unsigned int irq = pd->irq; struct sgiseeq_private *sp; struct net_device *dev; int err; dev = alloc_etherdev(sizeof (struct sgiseeq_private)); if (!dev) { printk(KERN_ERR "Sgiseeq: Etherdev alloc failed, aborting.\n"); err = -ENOMEM; goto err_out; } platform_set_drvdata(pdev, dev); sp = netdev_priv(dev); /* Make private data page aligned */ sr = dma_alloc_noncoherent(&pdev->dev, sizeof(*sp->srings), &sp->srings_dma, GFP_KERNEL); if (!sr) { printk(KERN_ERR "Sgiseeq: Page alloc failed, aborting.\n"); err = -ENOMEM; goto err_out_free_dev; } sp->srings = sr; sp->rx_desc = sp->srings->rxvector; sp->tx_desc = sp->srings->txvector; /* A couple calculations now, saves many cycles later. */ setup_rx_ring(dev, sp->rx_desc, SEEQ_RX_BUFFERS); setup_tx_ring(dev, sp->tx_desc, SEEQ_TX_BUFFERS); memcpy(dev->dev_addr, pd->mac, ETH_ALEN); #ifdef DEBUG gpriv = sp; gdev = dev; #endif sp->sregs = (struct sgiseeq_regs *) &hpcregs->eth_ext[0]; sp->hregs = &hpcregs->ethregs; sp->name = sgiseeqstr; sp->mode = SEEQ_RCMD_RBCAST; /* Setup PIO and DMA transfer timing */ sp->hregs->pconfig = 0x161; sp->hregs->dconfig = HPC3_EDCFG_FIRQ | HPC3_EDCFG_FEOP | HPC3_EDCFG_FRXDC | HPC3_EDCFG_PTO | 0x026; /* Setup PIO and DMA transfer timing */ sp->hregs->pconfig = 0x161; sp->hregs->dconfig = HPC3_EDCFG_FIRQ | HPC3_EDCFG_FEOP | HPC3_EDCFG_FRXDC | HPC3_EDCFG_PTO | 0x026; /* Reset the chip. */ hpc3_eth_reset(sp->hregs); sp->is_edlc = !(sp->sregs->rw.rregs.collision_tx[0] & 0xff); if (sp->is_edlc) sp->control = SEEQ_CTRL_XCNT | SEEQ_CTRL_ACCNT | SEEQ_CTRL_SFLAG | SEEQ_CTRL_ESHORT | SEEQ_CTRL_ENCARR; dev->netdev_ops = &sgiseeq_netdev_ops; dev->watchdog_timeo = (200 * HZ) / 1000; dev->irq = irq; if (register_netdev(dev)) { printk(KERN_ERR "Sgiseeq: Cannot register net device, " "aborting.\n"); err = -ENODEV; goto err_out_free_page; } printk(KERN_INFO "%s: %s %pM\n", dev->name, sgiseeqstr, dev->dev_addr); return 0; err_out_free_page: free_page((unsigned long) sp->srings); err_out_free_dev: free_netdev(dev); err_out: return err; } static int __exit sgiseeq_remove(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); struct sgiseeq_private *sp = netdev_priv(dev); unregister_netdev(dev); dma_free_noncoherent(&pdev->dev, sizeof(*sp->srings), sp->srings, sp->srings_dma); free_netdev(dev); platform_set_drvdata(pdev, NULL); return 0; } static struct platform_driver sgiseeq_driver = { .probe = sgiseeq_probe, .remove = __exit_p(sgiseeq_remove), .driver = { .name = "sgiseeq", .owner = THIS_MODULE, } }; static int __init sgiseeq_module_init(void) { if (platform_driver_register(&sgiseeq_driver)) { printk(KERN_ERR "Driver registration failed\n"); return -ENODEV; } return 0; } static void __exit sgiseeq_module_exit(void) { platform_driver_unregister(&sgiseeq_driver); } module_init(sgiseeq_module_init); module_exit(sgiseeq_module_exit); MODULE_DESCRIPTION("SGI Seeq 8003 driver"); MODULE_AUTHOR("Linux/MIPS Mailing List <linux-mips@linux-mips.org>"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:sgiseeq");