// SPDX-License-Identifier: GPL-2.0-or-later /* * ASIX AX8817X based USB 2.0 Ethernet Devices * Copyright (C) 2003-2006 David Hollis * Copyright (C) 2005 Phil Chang * Copyright (C) 2006 James Painter * Copyright (c) 2002-2003 TiVo Inc. */ #include "asix.h" #define AX_HOST_EN_RETRIES 30 int __must_check asix_read_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index, u16 size, void *data, int in_pm) { int ret; int (*fn)(struct usbnet *, u8, u8, u16, u16, void *, u16); BUG_ON(!dev); if (!in_pm) fn = usbnet_read_cmd; else fn = usbnet_read_cmd_nopm; ret = fn(dev, cmd, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, value, index, data, size); if (unlikely(ret < size)) { ret = ret < 0 ? ret : -ENODATA; netdev_warn(dev->net, "Failed to read reg index 0x%04x: %d\n", index, ret); } return ret; } int asix_write_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index, u16 size, void *data, int in_pm) { int ret; int (*fn)(struct usbnet *, u8, u8, u16, u16, const void *, u16); BUG_ON(!dev); if (!in_pm) fn = usbnet_write_cmd; else fn = usbnet_write_cmd_nopm; ret = fn(dev, cmd, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, value, index, data, size); if (unlikely(ret < 0)) netdev_warn(dev->net, "Failed to write reg index 0x%04x: %d\n", index, ret); return ret; } void asix_write_cmd_async(struct usbnet *dev, u8 cmd, u16 value, u16 index, u16 size, void *data) { usbnet_write_cmd_async(dev, cmd, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, value, index, data, size); } static int asix_check_host_enable(struct usbnet *dev, int in_pm) { int i, ret; u8 smsr; for (i = 0; i < AX_HOST_EN_RETRIES; ++i) { ret = asix_set_sw_mii(dev, in_pm); if (ret == -ENODEV || ret == -ETIMEDOUT) break; usleep_range(1000, 1100); ret = asix_read_cmd(dev, AX_CMD_STATMNGSTS_REG, 0, 0, 1, &smsr, in_pm); if (ret == -ENODEV) break; else if (ret < 0) continue; else if (smsr & AX_HOST_EN) break; } return i >= AX_HOST_EN_RETRIES ? -ETIMEDOUT : ret; } static void reset_asix_rx_fixup_info(struct asix_rx_fixup_info *rx) { /* Reset the variables that have a lifetime outside of * asix_rx_fixup_internal() so that future processing starts from a * known set of initial conditions. */ if (rx->ax_skb) { /* Discard any incomplete Ethernet frame in the netdev buffer */ kfree_skb(rx->ax_skb); rx->ax_skb = NULL; } /* Assume the Data header 32-bit word is at the start of the current * or next URB socket buffer so reset all the state variables. */ rx->remaining = 0; rx->split_head = false; rx->header = 0; } int asix_rx_fixup_internal(struct usbnet *dev, struct sk_buff *skb, struct asix_rx_fixup_info *rx) { int offset = 0; u16 size; /* When an Ethernet frame spans multiple URB socket buffers, * do a sanity test for the Data header synchronisation. * Attempt to detect the situation of the previous socket buffer having * been truncated or a socket buffer was missing. These situations * cause a discontinuity in the data stream and therefore need to avoid * appending bad data to the end of the current netdev socket buffer. * Also avoid unnecessarily discarding a good current netdev socket * buffer. */ if (rx->remaining && (rx->remaining + sizeof(u32) <= skb->len)) { offset = ((rx->remaining + 1) & 0xfffe); rx->header = get_unaligned_le32(skb->data + offset); offset = 0; size = (u16)(rx->header & 0x7ff); if (size != ((~rx->header >> 16) & 0x7ff)) { netdev_err(dev->net, "asix_rx_fixup() Data Header synchronisation was lost, remaining %d\n", rx->remaining); reset_asix_rx_fixup_info(rx); } } while (offset + sizeof(u16) <= skb->len) { u16 copy_length; if (!rx->remaining) { if (skb->len - offset == sizeof(u16)) { rx->header = get_unaligned_le16( skb->data + offset); rx->split_head = true; offset += sizeof(u16); break; } if (rx->split_head == true) { rx->header |= (get_unaligned_le16( skb->data + offset) << 16); rx->split_head = false; offset += sizeof(u16); } else { rx->header = get_unaligned_le32(skb->data + offset); offset += sizeof(u32); } /* take frame length from Data header 32-bit word */ size = (u16)(rx->header & 0x7ff); if (size != ((~rx->header >> 16) & 0x7ff)) { netdev_err(dev->net, "asix_rx_fixup() Bad Header Length 0x%x, offset %d\n", rx->header, offset); reset_asix_rx_fixup_info(rx); return 0; } if (size > dev->net->mtu + ETH_HLEN + VLAN_HLEN) { netdev_dbg(dev->net, "asix_rx_fixup() Bad RX Length %d\n", size); reset_asix_rx_fixup_info(rx); return 0; } /* Sometimes may fail to get a netdev socket buffer but * continue to process the URB socket buffer so that * synchronisation of the Ethernet frame Data header * word is maintained. */ rx->ax_skb = netdev_alloc_skb_ip_align(dev->net, size); rx->remaining = size; } if (rx->remaining > skb->len - offset) { copy_length = skb->len - offset; rx->remaining -= copy_length; } else { copy_length = rx->remaining; rx->remaining = 0; } if (rx->ax_skb) { skb_put_data(rx->ax_skb, skb->data + offset, copy_length); if (!rx->remaining) { usbnet_skb_return(dev, rx->ax_skb); rx->ax_skb = NULL; } } offset += (copy_length + 1) & 0xfffe; } if (skb->len != offset) { netdev_err(dev->net, "asix_rx_fixup() Bad SKB Length %d, %d\n", skb->len, offset); reset_asix_rx_fixup_info(rx); return 0; } return 1; } int asix_rx_fixup_common(struct usbnet *dev, struct sk_buff *skb) { struct asix_common_private *dp = dev->driver_priv; struct asix_rx_fixup_info *rx = &dp->rx_fixup_info; return asix_rx_fixup_internal(dev, skb, rx); } void asix_rx_fixup_common_free(struct asix_common_private *dp) { struct asix_rx_fixup_info *rx; if (!dp) return; rx = &dp->rx_fixup_info; if (rx->ax_skb) { kfree_skb(rx->ax_skb); rx->ax_skb = NULL; } } struct sk_buff *asix_tx_fixup(struct usbnet *dev, struct sk_buff *skb, gfp_t flags) { int padlen; int headroom = skb_headroom(skb); int tailroom = skb_tailroom(skb); u32 packet_len; u32 padbytes = 0xffff0000; void *ptr; padlen = ((skb->len + 4) & (dev->maxpacket - 1)) ? 0 : 4; /* We need to push 4 bytes in front of frame (packet_len) * and maybe add 4 bytes after the end (if padlen is 4) * * Avoid skb_copy_expand() expensive call, using following rules : * - We are allowed to push 4 bytes in headroom if skb_header_cloned() * is false (and if we have 4 bytes of headroom) * - We are allowed to put 4 bytes at tail if skb_cloned() * is false (and if we have 4 bytes of tailroom) * * TCP packets for example are cloned, but __skb_header_release() * was called in tcp stack, allowing us to use headroom for our needs. */ if (!skb_header_cloned(skb) && !(padlen && skb_cloned(skb)) && headroom + tailroom >= 4 + padlen) { /* following should not happen, but better be safe */ if (headroom < 4 || tailroom < padlen) { skb->data = memmove(skb->head + 4, skb->data, skb->len); skb_set_tail_pointer(skb, skb->len); } } else { struct sk_buff *skb2; skb2 = skb_copy_expand(skb, 4, padlen, flags); dev_kfree_skb_any(skb); skb = skb2; if (!skb) return NULL; } packet_len = ((skb->len ^ 0x0000ffff) << 16) + skb->len; ptr = skb_push(skb, 4); put_unaligned_le32(packet_len, ptr); if (padlen) { put_unaligned_le32(padbytes, skb_tail_pointer(skb)); skb_put(skb, sizeof(padbytes)); } usbnet_set_skb_tx_stats(skb, 1, 0); return skb; } int asix_set_sw_mii(struct usbnet *dev, int in_pm) { int ret; ret = asix_write_cmd(dev, AX_CMD_SET_SW_MII, 0x0000, 0, 0, NULL, in_pm); if (ret < 0) netdev_err(dev->net, "Failed to enable software MII access\n"); return ret; } int asix_set_hw_mii(struct usbnet *dev, int in_pm) { int ret; ret = asix_write_cmd(dev, AX_CMD_SET_HW_MII, 0x0000, 0, 0, NULL, in_pm); if (ret < 0) netdev_err(dev->net, "Failed to enable hardware MII access\n"); return ret; } int asix_read_phy_addr(struct usbnet *dev, bool internal) { int ret, offset; u8 buf[2]; ret = asix_read_cmd(dev, AX_CMD_READ_PHY_ID, 0, 0, 2, buf, 0); if (ret < 0) goto error; if (ret < 2) { ret = -EIO; goto error; } offset = (internal ? 1 : 0); ret = buf[offset]; netdev_dbg(dev->net, "%s PHY address 0x%x\n", internal ? "internal" : "external", ret); return ret; error: netdev_err(dev->net, "Error reading PHY_ID register: %02x\n", ret); return ret; } int asix_sw_reset(struct usbnet *dev, u8 flags, int in_pm) { int ret; ret = asix_write_cmd(dev, AX_CMD_SW_RESET, flags, 0, 0, NULL, in_pm); if (ret < 0) netdev_err(dev->net, "Failed to send software reset: %02x\n", ret); return ret; } u16 asix_read_rx_ctl(struct usbnet *dev, int in_pm) { __le16 v; int ret = asix_read_cmd(dev, AX_CMD_READ_RX_CTL, 0, 0, 2, &v, in_pm); if (ret < 0) { netdev_err(dev->net, "Error reading RX_CTL register: %02x\n", ret); goto out; } ret = le16_to_cpu(v); out: return ret; } int asix_write_rx_ctl(struct usbnet *dev, u16 mode, int in_pm) { int ret; netdev_dbg(dev->net, "asix_write_rx_ctl() - mode = 0x%04x\n", mode); ret = asix_write_cmd(dev, AX_CMD_WRITE_RX_CTL, mode, 0, 0, NULL, in_pm); if (ret < 0) netdev_err(dev->net, "Failed to write RX_CTL mode to 0x%04x: %02x\n", mode, ret); return ret; } u16 asix_read_medium_status(struct usbnet *dev, int in_pm) { __le16 v; int ret = asix_read_cmd(dev, AX_CMD_READ_MEDIUM_STATUS, 0, 0, 2, &v, in_pm); if (ret < 0) { netdev_err(dev->net, "Error reading Medium Status register: %02x\n", ret); return ret; /* TODO: callers not checking for error ret */ } return le16_to_cpu(v); } int asix_write_medium_mode(struct usbnet *dev, u16 mode, int in_pm) { int ret; netdev_dbg(dev->net, "asix_write_medium_mode() - mode = 0x%04x\n", mode); ret = asix_write_cmd(dev, AX_CMD_WRITE_MEDIUM_MODE, mode, 0, 0, NULL, in_pm); if (ret < 0) netdev_err(dev->net, "Failed to write Medium Mode mode to 0x%04x: %02x\n", mode, ret); return ret; } /* set MAC link settings according to information from phylib */ void asix_adjust_link(struct net_device *netdev) { struct phy_device *phydev = netdev->phydev; struct usbnet *dev = netdev_priv(netdev); u16 mode = 0; if (phydev->link) { mode = AX88772_MEDIUM_DEFAULT; if (phydev->duplex == DUPLEX_HALF) mode &= ~AX_MEDIUM_FD; if (phydev->speed != SPEED_100) mode &= ~AX_MEDIUM_PS; } asix_write_medium_mode(dev, mode, 0); phy_print_status(phydev); } int asix_write_gpio(struct usbnet *dev, u16 value, int sleep, int in_pm) { int ret; netdev_dbg(dev->net, "asix_write_gpio() - value = 0x%04x\n", value); ret = asix_write_cmd(dev, AX_CMD_WRITE_GPIOS, value, 0, 0, NULL, in_pm); if (ret < 0) netdev_err(dev->net, "Failed to write GPIO value 0x%04x: %02x\n", value, ret); if (sleep) msleep(sleep); return ret; } /* * AX88772 & AX88178 have a 16-bit RX_CTL value */ void asix_set_multicast(struct net_device *net) { struct usbnet *dev = netdev_priv(net); struct asix_data *data = (struct asix_data *)&dev->data; u16 rx_ctl = AX_DEFAULT_RX_CTL; if (net->flags & IFF_PROMISC) { rx_ctl |= AX_RX_CTL_PRO; } else if (net->flags & IFF_ALLMULTI || netdev_mc_count(net) > AX_MAX_MCAST) { rx_ctl |= AX_RX_CTL_AMALL; } else if (netdev_mc_empty(net)) { /* just broadcast and directed */ } else { /* We use the 20 byte dev->data * for our 8 byte filter buffer * to avoid allocating memory that * is tricky to free later */ struct netdev_hw_addr *ha; u32 crc_bits; memset(data->multi_filter, 0, AX_MCAST_FILTER_SIZE); /* Build the multicast hash filter. */ netdev_for_each_mc_addr(ha, net) { crc_bits = ether_crc(ETH_ALEN, ha->addr) >> 26; data->multi_filter[crc_bits >> 3] |= 1 << (crc_bits & 7); } asix_write_cmd_async(dev, AX_CMD_WRITE_MULTI_FILTER, 0, 0, AX_MCAST_FILTER_SIZE, data->multi_filter); rx_ctl |= AX_RX_CTL_AM; } asix_write_cmd_async(dev, AX_CMD_WRITE_RX_CTL, rx_ctl, 0, 0, NULL); } int asix_mdio_read(struct net_device *netdev, int phy_id, int loc) { struct usbnet *dev = netdev_priv(netdev); __le16 res; int ret; mutex_lock(&dev->phy_mutex); ret = asix_check_host_enable(dev, 0); if (ret == -ENODEV || ret == -ETIMEDOUT) { mutex_unlock(&dev->phy_mutex); return ret; } ret = asix_read_cmd(dev, AX_CMD_READ_MII_REG, phy_id, (__u16)loc, 2, &res, 0); if (ret < 0) goto out; ret = asix_set_hw_mii(dev, 0); out: mutex_unlock(&dev->phy_mutex); netdev_dbg(dev->net, "asix_mdio_read() phy_id=0x%02x, loc=0x%02x, returns=0x%04x\n", phy_id, loc, le16_to_cpu(res)); return ret < 0 ? ret : le16_to_cpu(res); } static int __asix_mdio_write(struct net_device *netdev, int phy_id, int loc, int val) { struct usbnet *dev = netdev_priv(netdev); __le16 res = cpu_to_le16(val); int ret; netdev_dbg(dev->net, "asix_mdio_write() phy_id=0x%02x, loc=0x%02x, val=0x%04x\n", phy_id, loc, val); mutex_lock(&dev->phy_mutex); ret = asix_check_host_enable(dev, 0); if (ret == -ENODEV) goto out; ret = asix_write_cmd(dev, AX_CMD_WRITE_MII_REG, phy_id, (__u16)loc, 2, &res, 0); if (ret < 0) goto out; ret = asix_set_hw_mii(dev, 0); out: mutex_unlock(&dev->phy_mutex); return ret < 0 ? ret : 0; } void asix_mdio_write(struct net_device *netdev, int phy_id, int loc, int val) { __asix_mdio_write(netdev, phy_id, loc, val); } /* MDIO read and write wrappers for phylib */ int asix_mdio_bus_read(struct mii_bus *bus, int phy_id, int regnum) { struct usbnet *priv = bus->priv; return asix_mdio_read(priv->net, phy_id, regnum); } int asix_mdio_bus_write(struct mii_bus *bus, int phy_id, int regnum, u16 val) { struct usbnet *priv = bus->priv; return __asix_mdio_write(priv->net, phy_id, regnum, val); } int asix_mdio_read_nopm(struct net_device *netdev, int phy_id, int loc) { struct usbnet *dev = netdev_priv(netdev); __le16 res; int ret; mutex_lock(&dev->phy_mutex); ret = asix_check_host_enable(dev, 1); if (ret == -ENODEV || ret == -ETIMEDOUT) { mutex_unlock(&dev->phy_mutex); return ret; } ret = asix_read_cmd(dev, AX_CMD_READ_MII_REG, phy_id, (__u16)loc, 2, &res, 1); if (ret < 0) { mutex_unlock(&dev->phy_mutex); return ret; } asix_set_hw_mii(dev, 1); mutex_unlock(&dev->phy_mutex); netdev_dbg(dev->net, "asix_mdio_read_nopm() phy_id=0x%02x, loc=0x%02x, returns=0x%04x\n", phy_id, loc, le16_to_cpu(res)); return le16_to_cpu(res); } void asix_mdio_write_nopm(struct net_device *netdev, int phy_id, int loc, int val) { struct usbnet *dev = netdev_priv(netdev); __le16 res = cpu_to_le16(val); int ret; netdev_dbg(dev->net, "asix_mdio_write() phy_id=0x%02x, loc=0x%02x, val=0x%04x\n", phy_id, loc, val); mutex_lock(&dev->phy_mutex); ret = asix_check_host_enable(dev, 1); if (ret == -ENODEV) { mutex_unlock(&dev->phy_mutex); return; } asix_write_cmd(dev, AX_CMD_WRITE_MII_REG, phy_id, (__u16)loc, 2, &res, 1); asix_set_hw_mii(dev, 1); mutex_unlock(&dev->phy_mutex); } void asix_get_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo) { struct usbnet *dev = netdev_priv(net); u8 opt; if (asix_read_cmd(dev, AX_CMD_READ_MONITOR_MODE, 0, 0, 1, &opt, 0) < 0) { wolinfo->supported = 0; wolinfo->wolopts = 0; return; } wolinfo->supported = WAKE_PHY | WAKE_MAGIC; wolinfo->wolopts = 0; if (opt & AX_MONITOR_LINK) wolinfo->wolopts |= WAKE_PHY; if (opt & AX_MONITOR_MAGIC) wolinfo->wolopts |= WAKE_MAGIC; } int asix_set_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo) { struct usbnet *dev = netdev_priv(net); u8 opt = 0; if (wolinfo->wolopts & ~(WAKE_PHY | WAKE_MAGIC)) return -EINVAL; if (wolinfo->wolopts & WAKE_PHY) opt |= AX_MONITOR_LINK; if (wolinfo->wolopts & WAKE_MAGIC) opt |= AX_MONITOR_MAGIC; if (asix_write_cmd(dev, AX_CMD_WRITE_MONITOR_MODE, opt, 0, 0, NULL, 0) < 0) return -EINVAL; return 0; } int asix_get_eeprom_len(struct net_device *net) { return AX_EEPROM_LEN; } int asix_get_eeprom(struct net_device *net, struct ethtool_eeprom *eeprom, u8 *data) { struct usbnet *dev = netdev_priv(net); u16 *eeprom_buff; int first_word, last_word; int i; if (eeprom->len == 0) return -EINVAL; eeprom->magic = AX_EEPROM_MAGIC; first_word = eeprom->offset >> 1; last_word = (eeprom->offset + eeprom->len - 1) >> 1; eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), GFP_KERNEL); if (!eeprom_buff) return -ENOMEM; /* ax8817x returns 2 bytes from eeprom on read */ for (i = first_word; i <= last_word; i++) { if (asix_read_cmd(dev, AX_CMD_READ_EEPROM, i, 0, 2, &eeprom_buff[i - first_word], 0) < 0) { kfree(eeprom_buff); return -EIO; } } memcpy(data, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); kfree(eeprom_buff); return 0; } int asix_set_eeprom(struct net_device *net, struct ethtool_eeprom *eeprom, u8 *data) { struct usbnet *dev = netdev_priv(net); u16 *eeprom_buff; int first_word, last_word; int i; int ret; netdev_dbg(net, "write EEPROM len %d, offset %d, magic 0x%x\n", eeprom->len, eeprom->offset, eeprom->magic); if (eeprom->len == 0) return -EINVAL; if (eeprom->magic != AX_EEPROM_MAGIC) return -EINVAL; first_word = eeprom->offset >> 1; last_word = (eeprom->offset + eeprom->len - 1) >> 1; eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), GFP_KERNEL); if (!eeprom_buff) return -ENOMEM; /* align data to 16 bit boundaries, read the missing data from the EEPROM */ if (eeprom->offset & 1) { ret = asix_read_cmd(dev, AX_CMD_READ_EEPROM, first_word, 0, 2, &eeprom_buff[0], 0); if (ret < 0) { netdev_err(net, "Failed to read EEPROM at offset 0x%02x.\n", first_word); goto free; } } if ((eeprom->offset + eeprom->len) & 1) { ret = asix_read_cmd(dev, AX_CMD_READ_EEPROM, last_word, 0, 2, &eeprom_buff[last_word - first_word], 0); if (ret < 0) { netdev_err(net, "Failed to read EEPROM at offset 0x%02x.\n", last_word); goto free; } } memcpy((u8 *)eeprom_buff + (eeprom->offset & 1), data, eeprom->len); /* write data to EEPROM */ ret = asix_write_cmd(dev, AX_CMD_WRITE_ENABLE, 0x0000, 0, 0, NULL, 0); if (ret < 0) { netdev_err(net, "Failed to enable EEPROM write\n"); goto free; } msleep(20); for (i = first_word; i <= last_word; i++) { netdev_dbg(net, "write to EEPROM at offset 0x%02x, data 0x%04x\n", i, eeprom_buff[i - first_word]); ret = asix_write_cmd(dev, AX_CMD_WRITE_EEPROM, i, eeprom_buff[i - first_word], 0, NULL, 0); if (ret < 0) { netdev_err(net, "Failed to write EEPROM at offset 0x%02x.\n", i); goto free; } msleep(20); } ret = asix_write_cmd(dev, AX_CMD_WRITE_DISABLE, 0x0000, 0, 0, NULL, 0); if (ret < 0) { netdev_err(net, "Failed to disable EEPROM write\n"); goto free; } ret = 0; free: kfree(eeprom_buff); return ret; } void asix_get_drvinfo(struct net_device *net, struct ethtool_drvinfo *info) { /* Inherit standard device info */ usbnet_get_drvinfo(net, info); strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver)); strlcpy(info->version, DRIVER_VERSION, sizeof(info->version)); } int asix_set_mac_address(struct net_device *net, void *p) { struct usbnet *dev = netdev_priv(net); struct asix_data *data = (struct asix_data *)&dev->data; struct sockaddr *addr = p; if (netif_running(net)) return -EBUSY; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; eth_hw_addr_set(net, addr->sa_data); /* We use the 20 byte dev->data * for our 6 byte mac buffer * to avoid allocating memory that * is tricky to free later */ memcpy(data->mac_addr, addr->sa_data, ETH_ALEN); asix_write_cmd_async(dev, AX_CMD_WRITE_NODE_ID, 0, 0, ETH_ALEN, data->mac_addr); return 0; }