// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2014 Realtek Semiconductor Corp. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Information for net-next */ #define NETNEXT_VERSION "11" /* Information for net */ #define NET_VERSION "10" #define DRIVER_VERSION "v1." NETNEXT_VERSION "." NET_VERSION #define DRIVER_AUTHOR "Realtek linux nic maintainers " #define DRIVER_DESC "Realtek RTL8152/RTL8153 Based USB Ethernet Adapters" #define MODULENAME "r8152" #define R8152_PHY_ID 32 #define PLA_IDR 0xc000 #define PLA_RCR 0xc010 #define PLA_RMS 0xc016 #define PLA_RXFIFO_CTRL0 0xc0a0 #define PLA_RXFIFO_CTRL1 0xc0a4 #define PLA_RXFIFO_CTRL2 0xc0a8 #define PLA_DMY_REG0 0xc0b0 #define PLA_FMC 0xc0b4 #define PLA_CFG_WOL 0xc0b6 #define PLA_TEREDO_CFG 0xc0bc #define PLA_TEREDO_WAKE_BASE 0xc0c4 #define PLA_MAR 0xcd00 #define PLA_BACKUP 0xd000 #define PLA_BDC_CR 0xd1a0 #define PLA_TEREDO_TIMER 0xd2cc #define PLA_REALWOW_TIMER 0xd2e8 #define PLA_UPHY_TIMER 0xd388 #define PLA_SUSPEND_FLAG 0xd38a #define PLA_INDICATE_FALG 0xd38c #define PLA_MACDBG_PRE 0xd38c /* RTL_VER_04 only */ #define PLA_MACDBG_POST 0xd38e /* RTL_VER_04 only */ #define PLA_EXTRA_STATUS 0xd398 #define PLA_EFUSE_DATA 0xdd00 #define PLA_EFUSE_CMD 0xdd02 #define PLA_LEDSEL 0xdd90 #define PLA_LED_FEATURE 0xdd92 #define PLA_PHYAR 0xde00 #define PLA_BOOT_CTRL 0xe004 #define PLA_GPHY_INTR_IMR 0xe022 #define PLA_EEE_CR 0xe040 #define PLA_EEEP_CR 0xe080 #define PLA_MAC_PWR_CTRL 0xe0c0 #define PLA_MAC_PWR_CTRL2 0xe0ca #define PLA_MAC_PWR_CTRL3 0xe0cc #define PLA_MAC_PWR_CTRL4 0xe0ce #define PLA_WDT6_CTRL 0xe428 #define PLA_TCR0 0xe610 #define PLA_TCR1 0xe612 #define PLA_MTPS 0xe615 #define PLA_TXFIFO_CTRL 0xe618 #define PLA_RSTTALLY 0xe800 #define PLA_CR 0xe813 #define PLA_CRWECR 0xe81c #define PLA_CONFIG12 0xe81e /* CONFIG1, CONFIG2 */ #define PLA_CONFIG34 0xe820 /* CONFIG3, CONFIG4 */ #define PLA_CONFIG5 0xe822 #define PLA_PHY_PWR 0xe84c #define PLA_OOB_CTRL 0xe84f #define PLA_CPCR 0xe854 #define PLA_MISC_0 0xe858 #define PLA_MISC_1 0xe85a #define PLA_OCP_GPHY_BASE 0xe86c #define PLA_TALLYCNT 0xe890 #define PLA_SFF_STS_7 0xe8de #define PLA_PHYSTATUS 0xe908 #define PLA_BP_BA 0xfc26 #define PLA_BP_0 0xfc28 #define PLA_BP_1 0xfc2a #define PLA_BP_2 0xfc2c #define PLA_BP_3 0xfc2e #define PLA_BP_4 0xfc30 #define PLA_BP_5 0xfc32 #define PLA_BP_6 0xfc34 #define PLA_BP_7 0xfc36 #define PLA_BP_EN 0xfc38 #define USB_USB2PHY 0xb41e #define USB_SSPHYLINK2 0xb428 #define USB_U2P3_CTRL 0xb460 #define USB_CSR_DUMMY1 0xb464 #define USB_CSR_DUMMY2 0xb466 #define USB_DEV_STAT 0xb808 #define USB_CONNECT_TIMER 0xcbf8 #define USB_MSC_TIMER 0xcbfc #define USB_BURST_SIZE 0xcfc0 #define USB_FW_FIX_EN0 0xcfca #define USB_FW_FIX_EN1 0xcfcc #define USB_LPM_CONFIG 0xcfd8 #define USB_CSTMR 0xcfef /* RTL8153A */ #define USB_FW_CTRL 0xd334 /* RTL8153B */ #define USB_FC_TIMER 0xd340 #define USB_USB_CTRL 0xd406 #define USB_PHY_CTRL 0xd408 #define USB_TX_AGG 0xd40a #define USB_RX_BUF_TH 0xd40c #define USB_USB_TIMER 0xd428 #define USB_RX_EARLY_TIMEOUT 0xd42c #define USB_RX_EARLY_SIZE 0xd42e #define USB_PM_CTRL_STATUS 0xd432 /* RTL8153A */ #define USB_RX_EXTRA_AGGR_TMR 0xd432 /* RTL8153B */ #define USB_TX_DMA 0xd434 #define USB_UPT_RXDMA_OWN 0xd437 #define USB_TOLERANCE 0xd490 #define USB_LPM_CTRL 0xd41a #define USB_BMU_RESET 0xd4b0 #define USB_U1U2_TIMER 0xd4da #define USB_FW_TASK 0xd4e8 /* RTL8153B */ #define USB_UPS_CTRL 0xd800 #define USB_POWER_CUT 0xd80a #define USB_MISC_0 0xd81a #define USB_MISC_1 0xd81f #define USB_AFE_CTRL2 0xd824 #define USB_UPS_CFG 0xd842 #define USB_UPS_FLAGS 0xd848 #define USB_WDT1_CTRL 0xe404 #define USB_WDT11_CTRL 0xe43c #define USB_BP_BA PLA_BP_BA #define USB_BP_0 PLA_BP_0 #define USB_BP_1 PLA_BP_1 #define USB_BP_2 PLA_BP_2 #define USB_BP_3 PLA_BP_3 #define USB_BP_4 PLA_BP_4 #define USB_BP_5 PLA_BP_5 #define USB_BP_6 PLA_BP_6 #define USB_BP_7 PLA_BP_7 #define USB_BP_EN PLA_BP_EN /* RTL8153A */ #define USB_BP_8 0xfc38 /* RTL8153B */ #define USB_BP_9 0xfc3a #define USB_BP_10 0xfc3c #define USB_BP_11 0xfc3e #define USB_BP_12 0xfc40 #define USB_BP_13 0xfc42 #define USB_BP_14 0xfc44 #define USB_BP_15 0xfc46 #define USB_BP2_EN 0xfc48 /* OCP Registers */ #define OCP_ALDPS_CONFIG 0x2010 #define OCP_EEE_CONFIG1 0x2080 #define OCP_EEE_CONFIG2 0x2092 #define OCP_EEE_CONFIG3 0x2094 #define OCP_BASE_MII 0xa400 #define OCP_EEE_AR 0xa41a #define OCP_EEE_DATA 0xa41c #define OCP_PHY_STATUS 0xa420 #define OCP_NCTL_CFG 0xa42c #define OCP_POWER_CFG 0xa430 #define OCP_EEE_CFG 0xa432 #define OCP_SRAM_ADDR 0xa436 #define OCP_SRAM_DATA 0xa438 #define OCP_DOWN_SPEED 0xa442 #define OCP_EEE_ABLE 0xa5c4 #define OCP_EEE_ADV 0xa5d0 #define OCP_EEE_LPABLE 0xa5d2 #define OCP_PHY_STATE 0xa708 /* nway state for 8153 */ #define OCP_PHY_PATCH_STAT 0xb800 #define OCP_PHY_PATCH_CMD 0xb820 #define OCP_PHY_LOCK 0xb82e #define OCP_ADC_IOFFSET 0xbcfc #define OCP_ADC_CFG 0xbc06 #define OCP_SYSCLK_CFG 0xc416 /* SRAM Register */ #define SRAM_GREEN_CFG 0x8011 #define SRAM_LPF_CFG 0x8012 #define SRAM_10M_AMP1 0x8080 #define SRAM_10M_AMP2 0x8082 #define SRAM_IMPEDANCE 0x8084 #define SRAM_PHY_LOCK 0xb82e /* PLA_RCR */ #define RCR_AAP 0x00000001 #define RCR_APM 0x00000002 #define RCR_AM 0x00000004 #define RCR_AB 0x00000008 #define RCR_ACPT_ALL (RCR_AAP | RCR_APM | RCR_AM | RCR_AB) /* PLA_RXFIFO_CTRL0 */ #define RXFIFO_THR1_NORMAL 0x00080002 #define RXFIFO_THR1_OOB 0x01800003 /* PLA_RXFIFO_CTRL1 */ #define RXFIFO_THR2_FULL 0x00000060 #define RXFIFO_THR2_HIGH 0x00000038 #define RXFIFO_THR2_OOB 0x0000004a #define RXFIFO_THR2_NORMAL 0x00a0 /* PLA_RXFIFO_CTRL2 */ #define RXFIFO_THR3_FULL 0x00000078 #define RXFIFO_THR3_HIGH 0x00000048 #define RXFIFO_THR3_OOB 0x0000005a #define RXFIFO_THR3_NORMAL 0x0110 /* PLA_TXFIFO_CTRL */ #define TXFIFO_THR_NORMAL 0x00400008 #define TXFIFO_THR_NORMAL2 0x01000008 /* PLA_DMY_REG0 */ #define ECM_ALDPS 0x0002 /* PLA_FMC */ #define FMC_FCR_MCU_EN 0x0001 /* PLA_EEEP_CR */ #define EEEP_CR_EEEP_TX 0x0002 /* PLA_WDT6_CTRL */ #define WDT6_SET_MODE 0x0010 /* PLA_TCR0 */ #define TCR0_TX_EMPTY 0x0800 #define TCR0_AUTO_FIFO 0x0080 /* PLA_TCR1 */ #define VERSION_MASK 0x7cf0 /* PLA_MTPS */ #define MTPS_JUMBO (12 * 1024 / 64) #define MTPS_DEFAULT (6 * 1024 / 64) /* PLA_RSTTALLY */ #define TALLY_RESET 0x0001 /* PLA_CR */ #define CR_RST 0x10 #define CR_RE 0x08 #define CR_TE 0x04 /* PLA_CRWECR */ #define CRWECR_NORAML 0x00 #define CRWECR_CONFIG 0xc0 /* PLA_OOB_CTRL */ #define NOW_IS_OOB 0x80 #define TXFIFO_EMPTY 0x20 #define RXFIFO_EMPTY 0x10 #define LINK_LIST_READY 0x02 #define DIS_MCU_CLROOB 0x01 #define FIFO_EMPTY (TXFIFO_EMPTY | RXFIFO_EMPTY) /* PLA_MISC_1 */ #define RXDY_GATED_EN 0x0008 /* PLA_SFF_STS_7 */ #define RE_INIT_LL 0x8000 #define MCU_BORW_EN 0x4000 /* PLA_CPCR */ #define CPCR_RX_VLAN 0x0040 /* PLA_CFG_WOL */ #define MAGIC_EN 0x0001 /* PLA_TEREDO_CFG */ #define TEREDO_SEL 0x8000 #define TEREDO_WAKE_MASK 0x7f00 #define TEREDO_RS_EVENT_MASK 0x00fe #define OOB_TEREDO_EN 0x0001 /* PLA_BDC_CR */ #define ALDPS_PROXY_MODE 0x0001 /* PLA_EFUSE_CMD */ #define EFUSE_READ_CMD BIT(15) #define EFUSE_DATA_BIT16 BIT(7) /* PLA_CONFIG34 */ #define LINK_ON_WAKE_EN 0x0010 #define LINK_OFF_WAKE_EN 0x0008 /* PLA_CONFIG5 */ #define BWF_EN 0x0040 #define MWF_EN 0x0020 #define UWF_EN 0x0010 #define LAN_WAKE_EN 0x0002 /* PLA_LED_FEATURE */ #define LED_MODE_MASK 0x0700 /* PLA_PHY_PWR */ #define TX_10M_IDLE_EN 0x0080 #define PFM_PWM_SWITCH 0x0040 /* PLA_MAC_PWR_CTRL */ #define D3_CLK_GATED_EN 0x00004000 #define MCU_CLK_RATIO 0x07010f07 #define MCU_CLK_RATIO_MASK 0x0f0f0f0f #define ALDPS_SPDWN_RATIO 0x0f87 /* PLA_MAC_PWR_CTRL2 */ #define EEE_SPDWN_RATIO 0x8007 #define MAC_CLK_SPDWN_EN BIT(15) /* PLA_MAC_PWR_CTRL3 */ #define PKT_AVAIL_SPDWN_EN 0x0100 #define SUSPEND_SPDWN_EN 0x0004 #define U1U2_SPDWN_EN 0x0002 #define L1_SPDWN_EN 0x0001 /* PLA_MAC_PWR_CTRL4 */ #define PWRSAVE_SPDWN_EN 0x1000 #define RXDV_SPDWN_EN 0x0800 #define TX10MIDLE_EN 0x0100 #define TP100_SPDWN_EN 0x0020 #define TP500_SPDWN_EN 0x0010 #define TP1000_SPDWN_EN 0x0008 #define EEE_SPDWN_EN 0x0001 /* PLA_GPHY_INTR_IMR */ #define GPHY_STS_MSK 0x0001 #define SPEED_DOWN_MSK 0x0002 #define SPDWN_RXDV_MSK 0x0004 #define SPDWN_LINKCHG_MSK 0x0008 /* PLA_PHYAR */ #define PHYAR_FLAG 0x80000000 /* PLA_EEE_CR */ #define EEE_RX_EN 0x0001 #define EEE_TX_EN 0x0002 /* PLA_BOOT_CTRL */ #define AUTOLOAD_DONE 0x0002 /* PLA_SUSPEND_FLAG */ #define LINK_CHG_EVENT BIT(0) /* PLA_INDICATE_FALG */ #define UPCOMING_RUNTIME_D3 BIT(0) /* PLA_MACDBG_PRE and PLA_MACDBG_POST */ #define DEBUG_OE BIT(0) #define DEBUG_LTSSM 0x0082 /* PLA_EXTRA_STATUS */ #define U3P3_CHECK_EN BIT(7) /* RTL_VER_05 only */ #define LINK_CHANGE_FLAG BIT(8) /* USB_USB2PHY */ #define USB2PHY_SUSPEND 0x0001 #define USB2PHY_L1 0x0002 /* USB_SSPHYLINK2 */ #define pwd_dn_scale_mask 0x3ffe #define pwd_dn_scale(x) ((x) << 1) /* USB_CSR_DUMMY1 */ #define DYNAMIC_BURST 0x0001 /* USB_CSR_DUMMY2 */ #define EP4_FULL_FC 0x0001 /* USB_DEV_STAT */ #define STAT_SPEED_MASK 0x0006 #define STAT_SPEED_HIGH 0x0000 #define STAT_SPEED_FULL 0x0002 /* USB_FW_FIX_EN0 */ #define FW_FIX_SUSPEND BIT(14) /* USB_FW_FIX_EN1 */ #define FW_IP_RESET_EN BIT(9) /* USB_LPM_CONFIG */ #define LPM_U1U2_EN BIT(0) /* USB_TX_AGG */ #define TX_AGG_MAX_THRESHOLD 0x03 /* USB_RX_BUF_TH */ #define RX_THR_SUPPER 0x0c350180 #define RX_THR_HIGH 0x7a120180 #define RX_THR_SLOW 0xffff0180 #define RX_THR_B 0x00010001 /* USB_TX_DMA */ #define TEST_MODE_DISABLE 0x00000001 #define TX_SIZE_ADJUST1 0x00000100 /* USB_BMU_RESET */ #define BMU_RESET_EP_IN 0x01 #define BMU_RESET_EP_OUT 0x02 /* USB_UPT_RXDMA_OWN */ #define OWN_UPDATE BIT(0) #define OWN_CLEAR BIT(1) /* USB_FW_TASK */ #define FC_PATCH_TASK BIT(1) /* USB_UPS_CTRL */ #define POWER_CUT 0x0100 /* USB_PM_CTRL_STATUS */ #define RESUME_INDICATE 0x0001 /* USB_CSTMR */ #define FORCE_SUPER BIT(0) /* USB_FW_CTRL */ #define FLOW_CTRL_PATCH_OPT BIT(1) /* USB_FC_TIMER */ #define CTRL_TIMER_EN BIT(15) /* USB_USB_CTRL */ #define RX_AGG_DISABLE 0x0010 #define RX_ZERO_EN 0x0080 /* USB_U2P3_CTRL */ #define U2P3_ENABLE 0x0001 /* USB_POWER_CUT */ #define PWR_EN 0x0001 #define PHASE2_EN 0x0008 #define UPS_EN BIT(4) #define USP_PREWAKE BIT(5) /* USB_MISC_0 */ #define PCUT_STATUS 0x0001 /* USB_RX_EARLY_TIMEOUT */ #define COALESCE_SUPER 85000U #define COALESCE_HIGH 250000U #define COALESCE_SLOW 524280U /* USB_WDT1_CTRL */ #define WTD1_EN BIT(0) /* USB_WDT11_CTRL */ #define TIMER11_EN 0x0001 /* USB_LPM_CTRL */ /* bit 4 ~ 5: fifo empty boundary */ #define FIFO_EMPTY_1FB 0x30 /* 0x1fb * 64 = 32448 bytes */ /* bit 2 ~ 3: LMP timer */ #define LPM_TIMER_MASK 0x0c #define LPM_TIMER_500MS 0x04 /* 500 ms */ #define LPM_TIMER_500US 0x0c /* 500 us */ #define ROK_EXIT_LPM 0x02 /* USB_AFE_CTRL2 */ #define SEN_VAL_MASK 0xf800 #define SEN_VAL_NORMAL 0xa000 #define SEL_RXIDLE 0x0100 /* USB_UPS_CFG */ #define SAW_CNT_1MS_MASK 0x0fff /* USB_UPS_FLAGS */ #define UPS_FLAGS_R_TUNE BIT(0) #define UPS_FLAGS_EN_10M_CKDIV BIT(1) #define UPS_FLAGS_250M_CKDIV BIT(2) #define UPS_FLAGS_EN_ALDPS BIT(3) #define UPS_FLAGS_CTAP_SHORT_DIS BIT(4) #define ups_flags_speed(x) ((x) << 16) #define UPS_FLAGS_EN_EEE BIT(20) #define UPS_FLAGS_EN_500M_EEE BIT(21) #define UPS_FLAGS_EN_EEE_CKDIV BIT(22) #define UPS_FLAGS_EEE_PLLOFF_100 BIT(23) #define UPS_FLAGS_EEE_PLLOFF_GIGA BIT(24) #define UPS_FLAGS_EEE_CMOD_LV_EN BIT(25) #define UPS_FLAGS_EN_GREEN BIT(26) #define UPS_FLAGS_EN_FLOW_CTR BIT(27) enum spd_duplex { NWAY_10M_HALF, NWAY_10M_FULL, NWAY_100M_HALF, NWAY_100M_FULL, NWAY_1000M_FULL, FORCE_10M_HALF, FORCE_10M_FULL, FORCE_100M_HALF, FORCE_100M_FULL, }; /* OCP_ALDPS_CONFIG */ #define ENPWRSAVE 0x8000 #define ENPDNPS 0x0200 #define LINKENA 0x0100 #define DIS_SDSAVE 0x0010 /* OCP_PHY_STATUS */ #define PHY_STAT_MASK 0x0007 #define PHY_STAT_EXT_INIT 2 #define PHY_STAT_LAN_ON 3 #define PHY_STAT_PWRDN 5 /* OCP_NCTL_CFG */ #define PGA_RETURN_EN BIT(1) /* OCP_POWER_CFG */ #define EEE_CLKDIV_EN 0x8000 #define EN_ALDPS 0x0004 #define EN_10M_PLLOFF 0x0001 /* OCP_EEE_CONFIG1 */ #define RG_TXLPI_MSK_HFDUP 0x8000 #define RG_MATCLR_EN 0x4000 #define EEE_10_CAP 0x2000 #define EEE_NWAY_EN 0x1000 #define TX_QUIET_EN 0x0200 #define RX_QUIET_EN 0x0100 #define sd_rise_time_mask 0x0070 #define sd_rise_time(x) (min(x, 7) << 4) /* bit 4 ~ 6 */ #define RG_RXLPI_MSK_HFDUP 0x0008 #define SDFALLTIME 0x0007 /* bit 0 ~ 2 */ /* OCP_EEE_CONFIG2 */ #define RG_LPIHYS_NUM 0x7000 /* bit 12 ~ 15 */ #define RG_DACQUIET_EN 0x0400 #define RG_LDVQUIET_EN 0x0200 #define RG_CKRSEL 0x0020 #define RG_EEEPRG_EN 0x0010 /* OCP_EEE_CONFIG3 */ #define fast_snr_mask 0xff80 #define fast_snr(x) (min(x, 0x1ff) << 7) /* bit 7 ~ 15 */ #define RG_LFS_SEL 0x0060 /* bit 6 ~ 5 */ #define MSK_PH 0x0006 /* bit 0 ~ 3 */ /* OCP_EEE_AR */ /* bit[15:14] function */ #define FUN_ADDR 0x0000 #define FUN_DATA 0x4000 /* bit[4:0] device addr */ /* OCP_EEE_CFG */ #define CTAP_SHORT_EN 0x0040 #define EEE10_EN 0x0010 /* OCP_DOWN_SPEED */ #define EN_EEE_CMODE BIT(14) #define EN_EEE_1000 BIT(13) #define EN_EEE_100 BIT(12) #define EN_10M_CLKDIV BIT(11) #define EN_10M_BGOFF 0x0080 /* OCP_PHY_STATE */ #define TXDIS_STATE 0x01 #define ABD_STATE 0x02 /* OCP_PHY_PATCH_STAT */ #define PATCH_READY BIT(6) /* OCP_PHY_PATCH_CMD */ #define PATCH_REQUEST BIT(4) /* OCP_PHY_LOCK */ #define PATCH_LOCK BIT(0) /* OCP_ADC_CFG */ #define CKADSEL_L 0x0100 #define ADC_EN 0x0080 #define EN_EMI_L 0x0040 /* OCP_SYSCLK_CFG */ #define clk_div_expo(x) (min(x, 5) << 8) /* SRAM_GREEN_CFG */ #define GREEN_ETH_EN BIT(15) #define R_TUNE_EN BIT(11) /* SRAM_LPF_CFG */ #define LPF_AUTO_TUNE 0x8000 /* SRAM_10M_AMP1 */ #define GDAC_IB_UPALL 0x0008 /* SRAM_10M_AMP2 */ #define AMP_DN 0x0200 /* SRAM_IMPEDANCE */ #define RX_DRIVING_MASK 0x6000 /* SRAM_PHY_LOCK */ #define PHY_PATCH_LOCK 0x0001 /* MAC PASSTHRU */ #define AD_MASK 0xfee0 #define BND_MASK 0x0004 #define BD_MASK 0x0001 #define EFUSE 0xcfdb #define PASS_THRU_MASK 0x1 #define BP4_SUPER_ONLY 0x1578 /* RTL_VER_04 only */ enum rtl_register_content { _1000bps = 0x10, _100bps = 0x08, _10bps = 0x04, LINK_STATUS = 0x02, FULL_DUP = 0x01, }; #define RTL8152_MAX_TX 4 #define RTL8152_MAX_RX 10 #define INTBUFSIZE 2 #define TX_ALIGN 4 #define RX_ALIGN 8 #define RTL8152_RX_MAX_PENDING 4096 #define RTL8152_RXFG_HEADSZ 256 #define INTR_LINK 0x0004 #define RTL8152_REQT_READ 0xc0 #define RTL8152_REQT_WRITE 0x40 #define RTL8152_REQ_GET_REGS 0x05 #define RTL8152_REQ_SET_REGS 0x05 #define BYTE_EN_DWORD 0xff #define BYTE_EN_WORD 0x33 #define BYTE_EN_BYTE 0x11 #define BYTE_EN_SIX_BYTES 0x3f #define BYTE_EN_START_MASK 0x0f #define BYTE_EN_END_MASK 0xf0 #define RTL8153_MAX_PACKET 9216 /* 9K */ #define RTL8153_MAX_MTU (RTL8153_MAX_PACKET - VLAN_ETH_HLEN - \ ETH_FCS_LEN) #define RTL8152_RMS (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN) #define RTL8153_RMS RTL8153_MAX_PACKET #define RTL8152_TX_TIMEOUT (5 * HZ) #define RTL8152_NAPI_WEIGHT 64 #define rx_reserved_size(x) ((x) + VLAN_ETH_HLEN + ETH_FCS_LEN + \ sizeof(struct rx_desc) + RX_ALIGN) /* rtl8152 flags */ enum rtl8152_flags { RTL8152_UNPLUG = 0, RTL8152_SET_RX_MODE, WORK_ENABLE, RTL8152_LINK_CHG, SELECTIVE_SUSPEND, PHY_RESET, SCHEDULE_TASKLET, GREEN_ETHERNET, DELL_TB_RX_AGG_BUG, LENOVO_MACPASSTHRU, }; /* Define these values to match your device */ #define VENDOR_ID_REALTEK 0x0bda #define VENDOR_ID_MICROSOFT 0x045e #define VENDOR_ID_SAMSUNG 0x04e8 #define VENDOR_ID_LENOVO 0x17ef #define VENDOR_ID_LINKSYS 0x13b1 #define VENDOR_ID_NVIDIA 0x0955 #define VENDOR_ID_TPLINK 0x2357 #define MCU_TYPE_PLA 0x0100 #define MCU_TYPE_USB 0x0000 struct tally_counter { __le64 tx_packets; __le64 rx_packets; __le64 tx_errors; __le32 rx_errors; __le16 rx_missed; __le16 align_errors; __le32 tx_one_collision; __le32 tx_multi_collision; __le64 rx_unicast; __le64 rx_broadcast; __le32 rx_multicast; __le16 tx_aborted; __le16 tx_underrun; }; struct rx_desc { __le32 opts1; #define RX_LEN_MASK 0x7fff __le32 opts2; #define RD_UDP_CS BIT(23) #define RD_TCP_CS BIT(22) #define RD_IPV6_CS BIT(20) #define RD_IPV4_CS BIT(19) __le32 opts3; #define IPF BIT(23) /* IP checksum fail */ #define UDPF BIT(22) /* UDP checksum fail */ #define TCPF BIT(21) /* TCP checksum fail */ #define RX_VLAN_TAG BIT(16) __le32 opts4; __le32 opts5; __le32 opts6; }; struct tx_desc { __le32 opts1; #define TX_FS BIT(31) /* First segment of a packet */ #define TX_LS BIT(30) /* Final segment of a packet */ #define GTSENDV4 BIT(28) #define GTSENDV6 BIT(27) #define GTTCPHO_SHIFT 18 #define GTTCPHO_MAX 0x7fU #define TX_LEN_MAX 0x3ffffU __le32 opts2; #define UDP_CS BIT(31) /* Calculate UDP/IP checksum */ #define TCP_CS BIT(30) /* Calculate TCP/IP checksum */ #define IPV4_CS BIT(29) /* Calculate IPv4 checksum */ #define IPV6_CS BIT(28) /* Calculate IPv6 checksum */ #define MSS_SHIFT 17 #define MSS_MAX 0x7ffU #define TCPHO_SHIFT 17 #define TCPHO_MAX 0x7ffU #define TX_VLAN_TAG BIT(16) }; struct r8152; struct rx_agg { struct list_head list, info_list; struct urb *urb; struct r8152 *context; struct page *page; void *buffer; }; struct tx_agg { struct list_head list; struct urb *urb; struct r8152 *context; void *buffer; void *head; u32 skb_num; u32 skb_len; }; struct r8152 { unsigned long flags; struct usb_device *udev; struct napi_struct napi; struct usb_interface *intf; struct net_device *netdev; struct urb *intr_urb; struct tx_agg tx_info[RTL8152_MAX_TX]; struct list_head rx_info, rx_used; struct list_head rx_done, tx_free; struct sk_buff_head tx_queue, rx_queue; spinlock_t rx_lock, tx_lock; struct delayed_work schedule, hw_phy_work; struct mii_if_info mii; struct mutex control; /* use for hw setting */ #ifdef CONFIG_PM_SLEEP struct notifier_block pm_notifier; #endif struct tasklet_struct tx_tl; struct rtl_ops { void (*init)(struct r8152 *tp); int (*enable)(struct r8152 *tp); void (*disable)(struct r8152 *tp); void (*up)(struct r8152 *tp); void (*down)(struct r8152 *tp); void (*unload)(struct r8152 *tp); int (*eee_get)(struct r8152 *tp, struct ethtool_eee *eee); int (*eee_set)(struct r8152 *tp, struct ethtool_eee *eee); bool (*in_nway)(struct r8152 *tp); void (*hw_phy_cfg)(struct r8152 *tp); void (*autosuspend_en)(struct r8152 *tp, bool enable); } rtl_ops; struct ups_info { u32 _10m_ckdiv:1; u32 _250m_ckdiv:1; u32 aldps:1; u32 lite_mode:2; u32 speed_duplex:4; u32 eee:1; u32 eee_lite:1; u32 eee_ckdiv:1; u32 eee_plloff_100:1; u32 eee_plloff_giga:1; u32 eee_cmod_lv:1; u32 green:1; u32 flow_control:1; u32 ctap_short_off:1; } ups_info; #define RTL_VER_SIZE 32 struct rtl_fw { const char *fw_name; const struct firmware *fw; char version[RTL_VER_SIZE]; int (*pre_fw)(struct r8152 *tp); int (*post_fw)(struct r8152 *tp); bool retry; } rtl_fw; atomic_t rx_count; bool eee_en; int intr_interval; u32 saved_wolopts; u32 msg_enable; u32 tx_qlen; u32 coalesce; u32 advertising; u32 rx_buf_sz; u32 rx_copybreak; u32 rx_pending; u16 ocp_base; u16 speed; u16 eee_adv; u8 *intr_buff; u8 version; u8 duplex; u8 autoneg; }; /** * struct fw_block - block type and total length * @type: type of the current block, such as RTL_FW_END, RTL_FW_PLA, * RTL_FW_USB and so on. * @length: total length of the current block. */ struct fw_block { __le32 type; __le32 length; } __packed; /** * struct fw_header - header of the firmware file * @checksum: checksum of sha256 which is calculated from the whole file * except the checksum field of the file. That is, calculate sha256 * from the version field to the end of the file. * @version: version of this firmware. * @blocks: the first firmware block of the file */ struct fw_header { u8 checksum[32]; char version[RTL_VER_SIZE]; struct fw_block blocks[0]; } __packed; /** * struct fw_mac - a firmware block used by RTL_FW_PLA and RTL_FW_USB. * The layout of the firmware block is: * + + . * @fw_offset: offset of the firmware binary data. The start address of * the data would be the address of struct fw_mac + @fw_offset. * @fw_reg: the register to load the firmware. Depends on chip. * @bp_ba_addr: the register to write break point base address. Depends on * chip. * @bp_ba_value: break point base address. Depends on chip. * @bp_en_addr: the register to write break point enabled mask. Depends * on chip. * @bp_en_value: break point enabled mask. Depends on the firmware. * @bp_start: the start register of break points. Depends on chip. * @bp_num: the break point number which needs to be set for this firmware. * Depends on the firmware. * @bp: break points. Depends on firmware. * @fw_ver_reg: the register to store the fw version. * @fw_ver_data: the firmware version of the current type. * @info: additional information for debugging, and is followed by the * binary data of firmware. */ struct fw_mac { struct fw_block blk_hdr; __le16 fw_offset; __le16 fw_reg; __le16 bp_ba_addr; __le16 bp_ba_value; __le16 bp_en_addr; __le16 bp_en_value; __le16 bp_start; __le16 bp_num; __le16 bp[16]; /* any value determined by firmware */ __le32 reserved; __le16 fw_ver_reg; u8 fw_ver_data; char info[0]; } __packed; /** * struct fw_phy_patch_key - a firmware block used by RTL_FW_PHY_START. * This is used to set patch key when loading the firmware of PHY. * @key_reg: the register to write the patch key. * @key_data: patch key. */ struct fw_phy_patch_key { struct fw_block blk_hdr; __le16 key_reg; __le16 key_data; __le32 reserved; } __packed; /** * struct fw_phy_nc - a firmware block used by RTL_FW_PHY_NC. * The layout of the firmware block is: * + + . * @fw_offset: offset of the firmware binary data. The start address of * the data would be the address of struct fw_phy_nc + @fw_offset. * @fw_reg: the register to load the firmware. Depends on chip. * @ba_reg: the register to write the base address. Depends on chip. * @ba_data: base address. Depends on chip. * @patch_en_addr: the register of enabling patch mode. Depends on chip. * @patch_en_value: patch mode enabled mask. Depends on the firmware. * @mode_reg: the regitster of switching the mode. * @mod_pre: the mode needing to be set before loading the firmware. * @mod_post: the mode to be set when finishing to load the firmware. * @bp_start: the start register of break points. Depends on chip. * @bp_num: the break point number which needs to be set for this firmware. * Depends on the firmware. * @bp: break points. Depends on firmware. * @info: additional information for debugging, and is followed by the * binary data of firmware. */ struct fw_phy_nc { struct fw_block blk_hdr; __le16 fw_offset; __le16 fw_reg; __le16 ba_reg; __le16 ba_data; __le16 patch_en_addr; __le16 patch_en_value; __le16 mode_reg; __le16 mode_pre; __le16 mode_post; __le16 reserved; __le16 bp_start; __le16 bp_num; __le16 bp[4]; char info[0]; } __packed; enum rtl_fw_type { RTL_FW_END = 0, RTL_FW_PLA, RTL_FW_USB, RTL_FW_PHY_START, RTL_FW_PHY_STOP, RTL_FW_PHY_NC, }; enum rtl_version { RTL_VER_UNKNOWN = 0, RTL_VER_01, RTL_VER_02, RTL_VER_03, RTL_VER_04, RTL_VER_05, RTL_VER_06, RTL_VER_07, RTL_VER_08, RTL_VER_09, RTL_VER_MAX }; enum tx_csum_stat { TX_CSUM_SUCCESS = 0, TX_CSUM_TSO, TX_CSUM_NONE }; #define RTL_ADVERTISED_10_HALF BIT(0) #define RTL_ADVERTISED_10_FULL BIT(1) #define RTL_ADVERTISED_100_HALF BIT(2) #define RTL_ADVERTISED_100_FULL BIT(3) #define RTL_ADVERTISED_1000_HALF BIT(4) #define RTL_ADVERTISED_1000_FULL BIT(5) /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). * The RTL chips use a 64 element hash table based on the Ethernet CRC. */ static const int multicast_filter_limit = 32; static unsigned int agg_buf_sz = 16384; #define RTL_LIMITED_TSO_SIZE (agg_buf_sz - sizeof(struct tx_desc) - \ VLAN_ETH_HLEN - ETH_FCS_LEN) static int get_registers(struct r8152 *tp, u16 value, u16 index, u16 size, void *data) { int ret; void *tmp; tmp = kmalloc(size, GFP_KERNEL); if (!tmp) return -ENOMEM; ret = usb_control_msg(tp->udev, usb_rcvctrlpipe(tp->udev, 0), RTL8152_REQ_GET_REGS, RTL8152_REQT_READ, value, index, tmp, size, 500); if (ret < 0) memset(data, 0xff, size); else memcpy(data, tmp, size); kfree(tmp); return ret; } static int set_registers(struct r8152 *tp, u16 value, u16 index, u16 size, void *data) { int ret; void *tmp; tmp = kmemdup(data, size, GFP_KERNEL); if (!tmp) return -ENOMEM; ret = usb_control_msg(tp->udev, usb_sndctrlpipe(tp->udev, 0), RTL8152_REQ_SET_REGS, RTL8152_REQT_WRITE, value, index, tmp, size, 500); kfree(tmp); return ret; } static void rtl_set_unplug(struct r8152 *tp) { if (tp->udev->state == USB_STATE_NOTATTACHED) { set_bit(RTL8152_UNPLUG, &tp->flags); smp_mb__after_atomic(); } } static int generic_ocp_read(struct r8152 *tp, u16 index, u16 size, void *data, u16 type) { u16 limit = 64; int ret = 0; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return -ENODEV; /* both size and indix must be 4 bytes align */ if ((size & 3) || !size || (index & 3) || !data) return -EPERM; if ((u32)index + (u32)size > 0xffff) return -EPERM; while (size) { if (size > limit) { ret = get_registers(tp, index, type, limit, data); if (ret < 0) break; index += limit; data += limit; size -= limit; } else { ret = get_registers(tp, index, type, size, data); if (ret < 0) break; index += size; data += size; size = 0; break; } } if (ret == -ENODEV) rtl_set_unplug(tp); return ret; } static int generic_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data, u16 type) { int ret; u16 byteen_start, byteen_end, byen; u16 limit = 512; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return -ENODEV; /* both size and indix must be 4 bytes align */ if ((size & 3) || !size || (index & 3) || !data) return -EPERM; if ((u32)index + (u32)size > 0xffff) return -EPERM; byteen_start = byteen & BYTE_EN_START_MASK; byteen_end = byteen & BYTE_EN_END_MASK; byen = byteen_start | (byteen_start << 4); ret = set_registers(tp, index, type | byen, 4, data); if (ret < 0) goto error1; index += 4; data += 4; size -= 4; if (size) { size -= 4; while (size) { if (size > limit) { ret = set_registers(tp, index, type | BYTE_EN_DWORD, limit, data); if (ret < 0) goto error1; index += limit; data += limit; size -= limit; } else { ret = set_registers(tp, index, type | BYTE_EN_DWORD, size, data); if (ret < 0) goto error1; index += size; data += size; size = 0; break; } } byen = byteen_end | (byteen_end >> 4); ret = set_registers(tp, index, type | byen, 4, data); if (ret < 0) goto error1; } error1: if (ret == -ENODEV) rtl_set_unplug(tp); return ret; } static inline int pla_ocp_read(struct r8152 *tp, u16 index, u16 size, void *data) { return generic_ocp_read(tp, index, size, data, MCU_TYPE_PLA); } static inline int pla_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data) { return generic_ocp_write(tp, index, byteen, size, data, MCU_TYPE_PLA); } static inline int usb_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data) { return generic_ocp_write(tp, index, byteen, size, data, MCU_TYPE_USB); } static u32 ocp_read_dword(struct r8152 *tp, u16 type, u16 index) { __le32 data; generic_ocp_read(tp, index, sizeof(data), &data, type); return __le32_to_cpu(data); } static void ocp_write_dword(struct r8152 *tp, u16 type, u16 index, u32 data) { __le32 tmp = __cpu_to_le32(data); generic_ocp_write(tp, index, BYTE_EN_DWORD, sizeof(tmp), &tmp, type); } static u16 ocp_read_word(struct r8152 *tp, u16 type, u16 index) { u32 data; __le32 tmp; u16 byen = BYTE_EN_WORD; u8 shift = index & 2; index &= ~3; byen <<= shift; generic_ocp_read(tp, index, sizeof(tmp), &tmp, type | byen); data = __le32_to_cpu(tmp); data >>= (shift * 8); data &= 0xffff; return (u16)data; } static void ocp_write_word(struct r8152 *tp, u16 type, u16 index, u32 data) { u32 mask = 0xffff; __le32 tmp; u16 byen = BYTE_EN_WORD; u8 shift = index & 2; data &= mask; if (index & 2) { byen <<= shift; mask <<= (shift * 8); data <<= (shift * 8); index &= ~3; } tmp = __cpu_to_le32(data); generic_ocp_write(tp, index, byen, sizeof(tmp), &tmp, type); } static u8 ocp_read_byte(struct r8152 *tp, u16 type, u16 index) { u32 data; __le32 tmp; u8 shift = index & 3; index &= ~3; generic_ocp_read(tp, index, sizeof(tmp), &tmp, type); data = __le32_to_cpu(tmp); data >>= (shift * 8); data &= 0xff; return (u8)data; } static void ocp_write_byte(struct r8152 *tp, u16 type, u16 index, u32 data) { u32 mask = 0xff; __le32 tmp; u16 byen = BYTE_EN_BYTE; u8 shift = index & 3; data &= mask; if (index & 3) { byen <<= shift; mask <<= (shift * 8); data <<= (shift * 8); index &= ~3; } tmp = __cpu_to_le32(data); generic_ocp_write(tp, index, byen, sizeof(tmp), &tmp, type); } static u16 ocp_reg_read(struct r8152 *tp, u16 addr) { u16 ocp_base, ocp_index; ocp_base = addr & 0xf000; if (ocp_base != tp->ocp_base) { ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, ocp_base); tp->ocp_base = ocp_base; } ocp_index = (addr & 0x0fff) | 0xb000; return ocp_read_word(tp, MCU_TYPE_PLA, ocp_index); } static void ocp_reg_write(struct r8152 *tp, u16 addr, u16 data) { u16 ocp_base, ocp_index; ocp_base = addr & 0xf000; if (ocp_base != tp->ocp_base) { ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, ocp_base); tp->ocp_base = ocp_base; } ocp_index = (addr & 0x0fff) | 0xb000; ocp_write_word(tp, MCU_TYPE_PLA, ocp_index, data); } static inline void r8152_mdio_write(struct r8152 *tp, u32 reg_addr, u32 value) { ocp_reg_write(tp, OCP_BASE_MII + reg_addr * 2, value); } static inline int r8152_mdio_read(struct r8152 *tp, u32 reg_addr) { return ocp_reg_read(tp, OCP_BASE_MII + reg_addr * 2); } static void sram_write(struct r8152 *tp, u16 addr, u16 data) { ocp_reg_write(tp, OCP_SRAM_ADDR, addr); ocp_reg_write(tp, OCP_SRAM_DATA, data); } static u16 sram_read(struct r8152 *tp, u16 addr) { ocp_reg_write(tp, OCP_SRAM_ADDR, addr); return ocp_reg_read(tp, OCP_SRAM_DATA); } static int read_mii_word(struct net_device *netdev, int phy_id, int reg) { struct r8152 *tp = netdev_priv(netdev); int ret; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return -ENODEV; if (phy_id != R8152_PHY_ID) return -EINVAL; ret = r8152_mdio_read(tp, reg); return ret; } static void write_mii_word(struct net_device *netdev, int phy_id, int reg, int val) { struct r8152 *tp = netdev_priv(netdev); if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; if (phy_id != R8152_PHY_ID) return; r8152_mdio_write(tp, reg, val); } static int r8152_submit_rx(struct r8152 *tp, struct rx_agg *agg, gfp_t mem_flags); static int rtl8152_set_mac_address(struct net_device *netdev, void *p) { struct r8152 *tp = netdev_priv(netdev); struct sockaddr *addr = p; int ret = -EADDRNOTAVAIL; if (!is_valid_ether_addr(addr->sa_data)) goto out1; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out1; mutex_lock(&tp->control); memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG); pla_ocp_write(tp, PLA_IDR, BYTE_EN_SIX_BYTES, 8, addr->sa_data); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out1: return ret; } /* Devices containing proper chips can support a persistent * host system provided MAC address. * Examples of this are Dell TB15 and Dell WD15 docks */ static int vendor_mac_passthru_addr_read(struct r8152 *tp, struct sockaddr *sa) { acpi_status status; struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *obj; int ret = -EINVAL; u32 ocp_data; unsigned char buf[6]; char *mac_obj_name; acpi_object_type mac_obj_type; int mac_strlen; if (test_bit(LENOVO_MACPASSTHRU, &tp->flags)) { mac_obj_name = "\\MACA"; mac_obj_type = ACPI_TYPE_STRING; mac_strlen = 0x16; } else { /* test for -AD variant of RTL8153 */ ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0); if ((ocp_data & AD_MASK) == 0x1000) { /* test for MAC address pass-through bit */ ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, EFUSE); if ((ocp_data & PASS_THRU_MASK) != 1) { netif_dbg(tp, probe, tp->netdev, "No efuse for RTL8153-AD MAC pass through\n"); return -ENODEV; } } else { /* test for RTL8153-BND and RTL8153-BD */ ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_MISC_1); if ((ocp_data & BND_MASK) == 0 && (ocp_data & BD_MASK) == 0) { netif_dbg(tp, probe, tp->netdev, "Invalid variant for MAC pass through\n"); return -ENODEV; } } mac_obj_name = "\\_SB.AMAC"; mac_obj_type = ACPI_TYPE_BUFFER; mac_strlen = 0x17; } /* returns _AUXMAC_#AABBCCDDEEFF# */ status = acpi_evaluate_object(NULL, mac_obj_name, NULL, &buffer); obj = (union acpi_object *)buffer.pointer; if (!ACPI_SUCCESS(status)) return -ENODEV; if (obj->type != mac_obj_type || obj->string.length != mac_strlen) { netif_warn(tp, probe, tp->netdev, "Invalid buffer for pass-thru MAC addr: (%d, %d)\n", obj->type, obj->string.length); goto amacout; } if (strncmp(obj->string.pointer, "_AUXMAC_#", 9) != 0 || strncmp(obj->string.pointer + 0x15, "#", 1) != 0) { netif_warn(tp, probe, tp->netdev, "Invalid header when reading pass-thru MAC addr\n"); goto amacout; } ret = hex2bin(buf, obj->string.pointer + 9, 6); if (!(ret == 0 && is_valid_ether_addr(buf))) { netif_warn(tp, probe, tp->netdev, "Invalid MAC for pass-thru MAC addr: %d, %pM\n", ret, buf); ret = -EINVAL; goto amacout; } memcpy(sa->sa_data, buf, 6); netif_info(tp, probe, tp->netdev, "Using pass-thru MAC addr %pM\n", sa->sa_data); amacout: kfree(obj); return ret; } static int determine_ethernet_addr(struct r8152 *tp, struct sockaddr *sa) { struct net_device *dev = tp->netdev; int ret; sa->sa_family = dev->type; if (tp->version == RTL_VER_01) { ret = pla_ocp_read(tp, PLA_IDR, 8, sa->sa_data); } else { /* if device doesn't support MAC pass through this will * be expected to be non-zero */ ret = vendor_mac_passthru_addr_read(tp, sa); if (ret < 0) ret = pla_ocp_read(tp, PLA_BACKUP, 8, sa->sa_data); } if (ret < 0) { netif_err(tp, probe, dev, "Get ether addr fail\n"); } else if (!is_valid_ether_addr(sa->sa_data)) { netif_err(tp, probe, dev, "Invalid ether addr %pM\n", sa->sa_data); eth_hw_addr_random(dev); ether_addr_copy(sa->sa_data, dev->dev_addr); netif_info(tp, probe, dev, "Random ether addr %pM\n", sa->sa_data); return 0; } return ret; } static int set_ethernet_addr(struct r8152 *tp) { struct net_device *dev = tp->netdev; struct sockaddr sa; int ret; ret = determine_ethernet_addr(tp, &sa); if (ret < 0) return ret; if (tp->version == RTL_VER_01) ether_addr_copy(dev->dev_addr, sa.sa_data); else ret = rtl8152_set_mac_address(dev, &sa); return ret; } static void read_bulk_callback(struct urb *urb) { struct net_device *netdev; int status = urb->status; struct rx_agg *agg; struct r8152 *tp; unsigned long flags; agg = urb->context; if (!agg) return; tp = agg->context; if (!tp) return; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; if (!test_bit(WORK_ENABLE, &tp->flags)) return; netdev = tp->netdev; /* When link down, the driver would cancel all bulks. */ /* This avoid the re-submitting bulk */ if (!netif_carrier_ok(netdev)) return; usb_mark_last_busy(tp->udev); switch (status) { case 0: if (urb->actual_length < ETH_ZLEN) break; spin_lock_irqsave(&tp->rx_lock, flags); list_add_tail(&agg->list, &tp->rx_done); spin_unlock_irqrestore(&tp->rx_lock, flags); napi_schedule(&tp->napi); return; case -ESHUTDOWN: rtl_set_unplug(tp); netif_device_detach(tp->netdev); return; case -ENOENT: return; /* the urb is in unlink state */ case -ETIME: if (net_ratelimit()) netdev_warn(netdev, "maybe reset is needed?\n"); break; default: if (net_ratelimit()) netdev_warn(netdev, "Rx status %d\n", status); break; } r8152_submit_rx(tp, agg, GFP_ATOMIC); } static void write_bulk_callback(struct urb *urb) { struct net_device_stats *stats; struct net_device *netdev; struct tx_agg *agg; struct r8152 *tp; unsigned long flags; int status = urb->status; agg = urb->context; if (!agg) return; tp = agg->context; if (!tp) return; netdev = tp->netdev; stats = &netdev->stats; if (status) { if (net_ratelimit()) netdev_warn(netdev, "Tx status %d\n", status); stats->tx_errors += agg->skb_num; } else { stats->tx_packets += agg->skb_num; stats->tx_bytes += agg->skb_len; } spin_lock_irqsave(&tp->tx_lock, flags); list_add_tail(&agg->list, &tp->tx_free); spin_unlock_irqrestore(&tp->tx_lock, flags); usb_autopm_put_interface_async(tp->intf); if (!netif_carrier_ok(netdev)) return; if (!test_bit(WORK_ENABLE, &tp->flags)) return; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; if (!skb_queue_empty(&tp->tx_queue)) tasklet_schedule(&tp->tx_tl); } static void intr_callback(struct urb *urb) { struct r8152 *tp; __le16 *d; int status = urb->status; int res; tp = urb->context; if (!tp) return; if (!test_bit(WORK_ENABLE, &tp->flags)) return; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; switch (status) { case 0: /* success */ break; case -ECONNRESET: /* unlink */ case -ESHUTDOWN: netif_device_detach(tp->netdev); /* fall through */ case -ENOENT: case -EPROTO: netif_info(tp, intr, tp->netdev, "Stop submitting intr, status %d\n", status); return; case -EOVERFLOW: netif_info(tp, intr, tp->netdev, "intr status -EOVERFLOW\n"); goto resubmit; /* -EPIPE: should clear the halt */ default: netif_info(tp, intr, tp->netdev, "intr status %d\n", status); goto resubmit; } d = urb->transfer_buffer; if (INTR_LINK & __le16_to_cpu(d[0])) { if (!netif_carrier_ok(tp->netdev)) { set_bit(RTL8152_LINK_CHG, &tp->flags); schedule_delayed_work(&tp->schedule, 0); } } else { if (netif_carrier_ok(tp->netdev)) { netif_stop_queue(tp->netdev); set_bit(RTL8152_LINK_CHG, &tp->flags); schedule_delayed_work(&tp->schedule, 0); } } resubmit: res = usb_submit_urb(urb, GFP_ATOMIC); if (res == -ENODEV) { rtl_set_unplug(tp); netif_device_detach(tp->netdev); } else if (res) { netif_err(tp, intr, tp->netdev, "can't resubmit intr, status %d\n", res); } } static inline void *rx_agg_align(void *data) { return (void *)ALIGN((uintptr_t)data, RX_ALIGN); } static inline void *tx_agg_align(void *data) { return (void *)ALIGN((uintptr_t)data, TX_ALIGN); } static void free_rx_agg(struct r8152 *tp, struct rx_agg *agg) { list_del(&agg->info_list); usb_free_urb(agg->urb); put_page(agg->page); kfree(agg); atomic_dec(&tp->rx_count); } static struct rx_agg *alloc_rx_agg(struct r8152 *tp, gfp_t mflags) { struct net_device *netdev = tp->netdev; int node = netdev->dev.parent ? dev_to_node(netdev->dev.parent) : -1; unsigned int order = get_order(tp->rx_buf_sz); struct rx_agg *rx_agg; unsigned long flags; rx_agg = kmalloc_node(sizeof(*rx_agg), mflags, node); if (!rx_agg) return NULL; rx_agg->page = alloc_pages(mflags | __GFP_COMP, order); if (!rx_agg->page) goto free_rx; rx_agg->buffer = page_address(rx_agg->page); rx_agg->urb = usb_alloc_urb(0, mflags); if (!rx_agg->urb) goto free_buf; rx_agg->context = tp; INIT_LIST_HEAD(&rx_agg->list); INIT_LIST_HEAD(&rx_agg->info_list); spin_lock_irqsave(&tp->rx_lock, flags); list_add_tail(&rx_agg->info_list, &tp->rx_info); spin_unlock_irqrestore(&tp->rx_lock, flags); atomic_inc(&tp->rx_count); return rx_agg; free_buf: __free_pages(rx_agg->page, order); free_rx: kfree(rx_agg); return NULL; } static void free_all_mem(struct r8152 *tp) { struct rx_agg *agg, *agg_next; unsigned long flags; int i; spin_lock_irqsave(&tp->rx_lock, flags); list_for_each_entry_safe(agg, agg_next, &tp->rx_info, info_list) free_rx_agg(tp, agg); spin_unlock_irqrestore(&tp->rx_lock, flags); WARN_ON(atomic_read(&tp->rx_count)); for (i = 0; i < RTL8152_MAX_TX; i++) { usb_free_urb(tp->tx_info[i].urb); tp->tx_info[i].urb = NULL; kfree(tp->tx_info[i].buffer); tp->tx_info[i].buffer = NULL; tp->tx_info[i].head = NULL; } usb_free_urb(tp->intr_urb); tp->intr_urb = NULL; kfree(tp->intr_buff); tp->intr_buff = NULL; } static int alloc_all_mem(struct r8152 *tp) { struct net_device *netdev = tp->netdev; struct usb_interface *intf = tp->intf; struct usb_host_interface *alt = intf->cur_altsetting; struct usb_host_endpoint *ep_intr = alt->endpoint + 2; int node, i; node = netdev->dev.parent ? dev_to_node(netdev->dev.parent) : -1; spin_lock_init(&tp->rx_lock); spin_lock_init(&tp->tx_lock); INIT_LIST_HEAD(&tp->rx_info); INIT_LIST_HEAD(&tp->tx_free); INIT_LIST_HEAD(&tp->rx_done); skb_queue_head_init(&tp->tx_queue); skb_queue_head_init(&tp->rx_queue); atomic_set(&tp->rx_count, 0); for (i = 0; i < RTL8152_MAX_RX; i++) { if (!alloc_rx_agg(tp, GFP_KERNEL)) goto err1; } for (i = 0; i < RTL8152_MAX_TX; i++) { struct urb *urb; u8 *buf; buf = kmalloc_node(agg_buf_sz, GFP_KERNEL, node); if (!buf) goto err1; if (buf != tx_agg_align(buf)) { kfree(buf); buf = kmalloc_node(agg_buf_sz + TX_ALIGN, GFP_KERNEL, node); if (!buf) goto err1; } urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { kfree(buf); goto err1; } INIT_LIST_HEAD(&tp->tx_info[i].list); tp->tx_info[i].context = tp; tp->tx_info[i].urb = urb; tp->tx_info[i].buffer = buf; tp->tx_info[i].head = tx_agg_align(buf); list_add_tail(&tp->tx_info[i].list, &tp->tx_free); } tp->intr_urb = usb_alloc_urb(0, GFP_KERNEL); if (!tp->intr_urb) goto err1; tp->intr_buff = kmalloc(INTBUFSIZE, GFP_KERNEL); if (!tp->intr_buff) goto err1; tp->intr_interval = (int)ep_intr->desc.bInterval; usb_fill_int_urb(tp->intr_urb, tp->udev, usb_rcvintpipe(tp->udev, 3), tp->intr_buff, INTBUFSIZE, intr_callback, tp, tp->intr_interval); return 0; err1: free_all_mem(tp); return -ENOMEM; } static struct tx_agg *r8152_get_tx_agg(struct r8152 *tp) { struct tx_agg *agg = NULL; unsigned long flags; if (list_empty(&tp->tx_free)) return NULL; spin_lock_irqsave(&tp->tx_lock, flags); if (!list_empty(&tp->tx_free)) { struct list_head *cursor; cursor = tp->tx_free.next; list_del_init(cursor); agg = list_entry(cursor, struct tx_agg, list); } spin_unlock_irqrestore(&tp->tx_lock, flags); return agg; } /* r8152_csum_workaround() * The hw limits the value of the transport offset. When the offset is out of * range, calculate the checksum by sw. */ static void r8152_csum_workaround(struct r8152 *tp, struct sk_buff *skb, struct sk_buff_head *list) { if (skb_shinfo(skb)->gso_size) { netdev_features_t features = tp->netdev->features; struct sk_buff *segs, *seg, *next; struct sk_buff_head seg_list; features &= ~(NETIF_F_SG | NETIF_F_IPV6_CSUM | NETIF_F_TSO6); segs = skb_gso_segment(skb, features); if (IS_ERR(segs) || !segs) goto drop; __skb_queue_head_init(&seg_list); skb_list_walk_safe(segs, seg, next) { skb_mark_not_on_list(seg); __skb_queue_tail(&seg_list, seg); } skb_queue_splice(&seg_list, list); dev_kfree_skb(skb); } else if (skb->ip_summed == CHECKSUM_PARTIAL) { if (skb_checksum_help(skb) < 0) goto drop; __skb_queue_head(list, skb); } else { struct net_device_stats *stats; drop: stats = &tp->netdev->stats; stats->tx_dropped++; dev_kfree_skb(skb); } } /* msdn_giant_send_check() * According to the document of microsoft, the TCP Pseudo Header excludes the * packet length for IPv6 TCP large packets. */ static int msdn_giant_send_check(struct sk_buff *skb) { const struct ipv6hdr *ipv6h; struct tcphdr *th; int ret; ret = skb_cow_head(skb, 0); if (ret) return ret; ipv6h = ipv6_hdr(skb); th = tcp_hdr(skb); th->check = 0; th->check = ~tcp_v6_check(0, &ipv6h->saddr, &ipv6h->daddr, 0); return ret; } static inline void rtl_tx_vlan_tag(struct tx_desc *desc, struct sk_buff *skb) { if (skb_vlan_tag_present(skb)) { u32 opts2; opts2 = TX_VLAN_TAG | swab16(skb_vlan_tag_get(skb)); desc->opts2 |= cpu_to_le32(opts2); } } static inline void rtl_rx_vlan_tag(struct rx_desc *desc, struct sk_buff *skb) { u32 opts2 = le32_to_cpu(desc->opts2); if (opts2 & RX_VLAN_TAG) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff)); } static int r8152_tx_csum(struct r8152 *tp, struct tx_desc *desc, struct sk_buff *skb, u32 len, u32 transport_offset) { u32 mss = skb_shinfo(skb)->gso_size; u32 opts1, opts2 = 0; int ret = TX_CSUM_SUCCESS; WARN_ON_ONCE(len > TX_LEN_MAX); opts1 = len | TX_FS | TX_LS; if (mss) { if (transport_offset > GTTCPHO_MAX) { netif_warn(tp, tx_err, tp->netdev, "Invalid transport offset 0x%x for TSO\n", transport_offset); ret = TX_CSUM_TSO; goto unavailable; } switch (vlan_get_protocol(skb)) { case htons(ETH_P_IP): opts1 |= GTSENDV4; break; case htons(ETH_P_IPV6): if (msdn_giant_send_check(skb)) { ret = TX_CSUM_TSO; goto unavailable; } opts1 |= GTSENDV6; break; default: WARN_ON_ONCE(1); break; } opts1 |= transport_offset << GTTCPHO_SHIFT; opts2 |= min(mss, MSS_MAX) << MSS_SHIFT; } else if (skb->ip_summed == CHECKSUM_PARTIAL) { u8 ip_protocol; if (transport_offset > TCPHO_MAX) { netif_warn(tp, tx_err, tp->netdev, "Invalid transport offset 0x%x\n", transport_offset); ret = TX_CSUM_NONE; goto unavailable; } switch (vlan_get_protocol(skb)) { case htons(ETH_P_IP): opts2 |= IPV4_CS; ip_protocol = ip_hdr(skb)->protocol; break; case htons(ETH_P_IPV6): opts2 |= IPV6_CS; ip_protocol = ipv6_hdr(skb)->nexthdr; break; default: ip_protocol = IPPROTO_RAW; break; } if (ip_protocol == IPPROTO_TCP) opts2 |= TCP_CS; else if (ip_protocol == IPPROTO_UDP) opts2 |= UDP_CS; else WARN_ON_ONCE(1); opts2 |= transport_offset << TCPHO_SHIFT; } desc->opts2 = cpu_to_le32(opts2); desc->opts1 = cpu_to_le32(opts1); unavailable: return ret; } static int r8152_tx_agg_fill(struct r8152 *tp, struct tx_agg *agg) { struct sk_buff_head skb_head, *tx_queue = &tp->tx_queue; int remain, ret; u8 *tx_data; __skb_queue_head_init(&skb_head); spin_lock(&tx_queue->lock); skb_queue_splice_init(tx_queue, &skb_head); spin_unlock(&tx_queue->lock); tx_data = agg->head; agg->skb_num = 0; agg->skb_len = 0; remain = agg_buf_sz; while (remain >= ETH_ZLEN + sizeof(struct tx_desc)) { struct tx_desc *tx_desc; struct sk_buff *skb; unsigned int len; u32 offset; skb = __skb_dequeue(&skb_head); if (!skb) break; len = skb->len + sizeof(*tx_desc); if (len > remain) { __skb_queue_head(&skb_head, skb); break; } tx_data = tx_agg_align(tx_data); tx_desc = (struct tx_desc *)tx_data; offset = (u32)skb_transport_offset(skb); if (r8152_tx_csum(tp, tx_desc, skb, skb->len, offset)) { r8152_csum_workaround(tp, skb, &skb_head); continue; } rtl_tx_vlan_tag(tx_desc, skb); tx_data += sizeof(*tx_desc); len = skb->len; if (skb_copy_bits(skb, 0, tx_data, len) < 0) { struct net_device_stats *stats = &tp->netdev->stats; stats->tx_dropped++; dev_kfree_skb_any(skb); tx_data -= sizeof(*tx_desc); continue; } tx_data += len; agg->skb_len += len; agg->skb_num += skb_shinfo(skb)->gso_segs ?: 1; dev_kfree_skb_any(skb); remain = agg_buf_sz - (int)(tx_agg_align(tx_data) - agg->head); if (test_bit(DELL_TB_RX_AGG_BUG, &tp->flags)) break; } if (!skb_queue_empty(&skb_head)) { spin_lock(&tx_queue->lock); skb_queue_splice(&skb_head, tx_queue); spin_unlock(&tx_queue->lock); } netif_tx_lock(tp->netdev); if (netif_queue_stopped(tp->netdev) && skb_queue_len(&tp->tx_queue) < tp->tx_qlen) netif_wake_queue(tp->netdev); netif_tx_unlock(tp->netdev); ret = usb_autopm_get_interface_async(tp->intf); if (ret < 0) goto out_tx_fill; usb_fill_bulk_urb(agg->urb, tp->udev, usb_sndbulkpipe(tp->udev, 2), agg->head, (int)(tx_data - (u8 *)agg->head), (usb_complete_t)write_bulk_callback, agg); ret = usb_submit_urb(agg->urb, GFP_ATOMIC); if (ret < 0) usb_autopm_put_interface_async(tp->intf); out_tx_fill: return ret; } static u8 r8152_rx_csum(struct r8152 *tp, struct rx_desc *rx_desc) { u8 checksum = CHECKSUM_NONE; u32 opts2, opts3; if (!(tp->netdev->features & NETIF_F_RXCSUM)) goto return_result; opts2 = le32_to_cpu(rx_desc->opts2); opts3 = le32_to_cpu(rx_desc->opts3); if (opts2 & RD_IPV4_CS) { if (opts3 & IPF) checksum = CHECKSUM_NONE; else if ((opts2 & RD_UDP_CS) && !(opts3 & UDPF)) checksum = CHECKSUM_UNNECESSARY; else if ((opts2 & RD_TCP_CS) && !(opts3 & TCPF)) checksum = CHECKSUM_UNNECESSARY; } else if (opts2 & RD_IPV6_CS) { if ((opts2 & RD_UDP_CS) && !(opts3 & UDPF)) checksum = CHECKSUM_UNNECESSARY; else if ((opts2 & RD_TCP_CS) && !(opts3 & TCPF)) checksum = CHECKSUM_UNNECESSARY; } return_result: return checksum; } static inline bool rx_count_exceed(struct r8152 *tp) { return atomic_read(&tp->rx_count) > RTL8152_MAX_RX; } static inline int agg_offset(struct rx_agg *agg, void *addr) { return (int)(addr - agg->buffer); } static struct rx_agg *rtl_get_free_rx(struct r8152 *tp, gfp_t mflags) { struct rx_agg *agg, *agg_next, *agg_free = NULL; unsigned long flags; spin_lock_irqsave(&tp->rx_lock, flags); list_for_each_entry_safe(agg, agg_next, &tp->rx_used, list) { if (page_count(agg->page) == 1) { if (!agg_free) { list_del_init(&agg->list); agg_free = agg; continue; } if (rx_count_exceed(tp)) { list_del_init(&agg->list); free_rx_agg(tp, agg); } break; } } spin_unlock_irqrestore(&tp->rx_lock, flags); if (!agg_free && atomic_read(&tp->rx_count) < tp->rx_pending) agg_free = alloc_rx_agg(tp, mflags); return agg_free; } static int rx_bottom(struct r8152 *tp, int budget) { unsigned long flags; struct list_head *cursor, *next, rx_queue; int ret = 0, work_done = 0; struct napi_struct *napi = &tp->napi; if (!skb_queue_empty(&tp->rx_queue)) { while (work_done < budget) { struct sk_buff *skb = __skb_dequeue(&tp->rx_queue); struct net_device *netdev = tp->netdev; struct net_device_stats *stats = &netdev->stats; unsigned int pkt_len; if (!skb) break; pkt_len = skb->len; napi_gro_receive(napi, skb); work_done++; stats->rx_packets++; stats->rx_bytes += pkt_len; } } if (list_empty(&tp->rx_done)) goto out1; INIT_LIST_HEAD(&rx_queue); spin_lock_irqsave(&tp->rx_lock, flags); list_splice_init(&tp->rx_done, &rx_queue); spin_unlock_irqrestore(&tp->rx_lock, flags); list_for_each_safe(cursor, next, &rx_queue) { struct rx_desc *rx_desc; struct rx_agg *agg, *agg_free; int len_used = 0; struct urb *urb; u8 *rx_data; list_del_init(cursor); agg = list_entry(cursor, struct rx_agg, list); urb = agg->urb; if (urb->actual_length < ETH_ZLEN) goto submit; agg_free = rtl_get_free_rx(tp, GFP_ATOMIC); rx_desc = agg->buffer; rx_data = agg->buffer; len_used += sizeof(struct rx_desc); while (urb->actual_length > len_used) { struct net_device *netdev = tp->netdev; struct net_device_stats *stats = &netdev->stats; unsigned int pkt_len, rx_frag_head_sz; struct sk_buff *skb; /* limite the skb numbers for rx_queue */ if (unlikely(skb_queue_len(&tp->rx_queue) >= 1000)) break; pkt_len = le32_to_cpu(rx_desc->opts1) & RX_LEN_MASK; if (pkt_len < ETH_ZLEN) break; len_used += pkt_len; if (urb->actual_length < len_used) break; pkt_len -= ETH_FCS_LEN; rx_data += sizeof(struct rx_desc); if (!agg_free || tp->rx_copybreak > pkt_len) rx_frag_head_sz = pkt_len; else rx_frag_head_sz = tp->rx_copybreak; skb = napi_alloc_skb(napi, rx_frag_head_sz); if (!skb) { stats->rx_dropped++; goto find_next_rx; } skb->ip_summed = r8152_rx_csum(tp, rx_desc); memcpy(skb->data, rx_data, rx_frag_head_sz); skb_put(skb, rx_frag_head_sz); pkt_len -= rx_frag_head_sz; rx_data += rx_frag_head_sz; if (pkt_len) { skb_add_rx_frag(skb, 0, agg->page, agg_offset(agg, rx_data), pkt_len, SKB_DATA_ALIGN(pkt_len)); get_page(agg->page); } skb->protocol = eth_type_trans(skb, netdev); rtl_rx_vlan_tag(rx_desc, skb); if (work_done < budget) { work_done++; stats->rx_packets++; stats->rx_bytes += skb->len; napi_gro_receive(napi, skb); } else { __skb_queue_tail(&tp->rx_queue, skb); } find_next_rx: rx_data = rx_agg_align(rx_data + pkt_len + ETH_FCS_LEN); rx_desc = (struct rx_desc *)rx_data; len_used = agg_offset(agg, rx_data); len_used += sizeof(struct rx_desc); } WARN_ON(!agg_free && page_count(agg->page) > 1); if (agg_free) { spin_lock_irqsave(&tp->rx_lock, flags); if (page_count(agg->page) == 1) { list_add(&agg_free->list, &tp->rx_used); } else { list_add_tail(&agg->list, &tp->rx_used); agg = agg_free; urb = agg->urb; } spin_unlock_irqrestore(&tp->rx_lock, flags); } submit: if (!ret) { ret = r8152_submit_rx(tp, agg, GFP_ATOMIC); } else { urb->actual_length = 0; list_add_tail(&agg->list, next); } } if (!list_empty(&rx_queue)) { spin_lock_irqsave(&tp->rx_lock, flags); list_splice_tail(&rx_queue, &tp->rx_done); spin_unlock_irqrestore(&tp->rx_lock, flags); } out1: return work_done; } static void tx_bottom(struct r8152 *tp) { int res; do { struct net_device *netdev = tp->netdev; struct tx_agg *agg; if (skb_queue_empty(&tp->tx_queue)) break; agg = r8152_get_tx_agg(tp); if (!agg) break; res = r8152_tx_agg_fill(tp, agg); if (!res) continue; if (res == -ENODEV) { rtl_set_unplug(tp); netif_device_detach(netdev); } else { struct net_device_stats *stats = &netdev->stats; unsigned long flags; netif_warn(tp, tx_err, netdev, "failed tx_urb %d\n", res); stats->tx_dropped += agg->skb_num; spin_lock_irqsave(&tp->tx_lock, flags); list_add_tail(&agg->list, &tp->tx_free); spin_unlock_irqrestore(&tp->tx_lock, flags); } } while (res == 0); } static void bottom_half(unsigned long data) { struct r8152 *tp; tp = (struct r8152 *)data; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; if (!test_bit(WORK_ENABLE, &tp->flags)) return; /* When link down, the driver would cancel all bulks. */ /* This avoid the re-submitting bulk */ if (!netif_carrier_ok(tp->netdev)) return; clear_bit(SCHEDULE_TASKLET, &tp->flags); tx_bottom(tp); } static int r8152_poll(struct napi_struct *napi, int budget) { struct r8152 *tp = container_of(napi, struct r8152, napi); int work_done; work_done = rx_bottom(tp, budget); if (work_done < budget) { if (!napi_complete_done(napi, work_done)) goto out; if (!list_empty(&tp->rx_done)) napi_schedule(napi); } out: return work_done; } static int r8152_submit_rx(struct r8152 *tp, struct rx_agg *agg, gfp_t mem_flags) { int ret; /* The rx would be stopped, so skip submitting */ if (test_bit(RTL8152_UNPLUG, &tp->flags) || !test_bit(WORK_ENABLE, &tp->flags) || !netif_carrier_ok(tp->netdev)) return 0; usb_fill_bulk_urb(agg->urb, tp->udev, usb_rcvbulkpipe(tp->udev, 1), agg->buffer, tp->rx_buf_sz, (usb_complete_t)read_bulk_callback, agg); ret = usb_submit_urb(agg->urb, mem_flags); if (ret == -ENODEV) { rtl_set_unplug(tp); netif_device_detach(tp->netdev); } else if (ret) { struct urb *urb = agg->urb; unsigned long flags; urb->actual_length = 0; spin_lock_irqsave(&tp->rx_lock, flags); list_add_tail(&agg->list, &tp->rx_done); spin_unlock_irqrestore(&tp->rx_lock, flags); netif_err(tp, rx_err, tp->netdev, "Couldn't submit rx[%p], ret = %d\n", agg, ret); napi_schedule(&tp->napi); } return ret; } static void rtl_drop_queued_tx(struct r8152 *tp) { struct net_device_stats *stats = &tp->netdev->stats; struct sk_buff_head skb_head, *tx_queue = &tp->tx_queue; struct sk_buff *skb; if (skb_queue_empty(tx_queue)) return; __skb_queue_head_init(&skb_head); spin_lock_bh(&tx_queue->lock); skb_queue_splice_init(tx_queue, &skb_head); spin_unlock_bh(&tx_queue->lock); while ((skb = __skb_dequeue(&skb_head))) { dev_kfree_skb(skb); stats->tx_dropped++; } } static void rtl8152_tx_timeout(struct net_device *netdev, unsigned int txqueue) { struct r8152 *tp = netdev_priv(netdev); netif_warn(tp, tx_err, netdev, "Tx timeout\n"); usb_queue_reset_device(tp->intf); } static void rtl8152_set_rx_mode(struct net_device *netdev) { struct r8152 *tp = netdev_priv(netdev); if (netif_carrier_ok(netdev)) { set_bit(RTL8152_SET_RX_MODE, &tp->flags); schedule_delayed_work(&tp->schedule, 0); } } static void _rtl8152_set_rx_mode(struct net_device *netdev) { struct r8152 *tp = netdev_priv(netdev); u32 mc_filter[2]; /* Multicast hash filter */ __le32 tmp[2]; u32 ocp_data; netif_stop_queue(netdev); ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data &= ~RCR_ACPT_ALL; ocp_data |= RCR_AB | RCR_APM; if (netdev->flags & IFF_PROMISC) { /* Unconditionally log net taps. */ netif_notice(tp, link, netdev, "Promiscuous mode enabled\n"); ocp_data |= RCR_AM | RCR_AAP; mc_filter[1] = 0xffffffff; mc_filter[0] = 0xffffffff; } else if ((netdev_mc_count(netdev) > multicast_filter_limit) || (netdev->flags & IFF_ALLMULTI)) { /* Too many to filter perfectly -- accept all multicasts. */ ocp_data |= RCR_AM; mc_filter[1] = 0xffffffff; mc_filter[0] = 0xffffffff; } else { struct netdev_hw_addr *ha; mc_filter[1] = 0; mc_filter[0] = 0; netdev_for_each_mc_addr(ha, netdev) { int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); ocp_data |= RCR_AM; } } tmp[0] = __cpu_to_le32(swab32(mc_filter[1])); tmp[1] = __cpu_to_le32(swab32(mc_filter[0])); pla_ocp_write(tp, PLA_MAR, BYTE_EN_DWORD, sizeof(tmp), tmp); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); netif_wake_queue(netdev); } static netdev_features_t rtl8152_features_check(struct sk_buff *skb, struct net_device *dev, netdev_features_t features) { u32 mss = skb_shinfo(skb)->gso_size; int max_offset = mss ? GTTCPHO_MAX : TCPHO_MAX; int offset = skb_transport_offset(skb); if ((mss || skb->ip_summed == CHECKSUM_PARTIAL) && offset > max_offset) features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); else if ((skb->len + sizeof(struct tx_desc)) > agg_buf_sz) features &= ~NETIF_F_GSO_MASK; return features; } static netdev_tx_t rtl8152_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct r8152 *tp = netdev_priv(netdev); skb_tx_timestamp(skb); skb_queue_tail(&tp->tx_queue, skb); if (!list_empty(&tp->tx_free)) { if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) { set_bit(SCHEDULE_TASKLET, &tp->flags); schedule_delayed_work(&tp->schedule, 0); } else { usb_mark_last_busy(tp->udev); tasklet_schedule(&tp->tx_tl); } } else if (skb_queue_len(&tp->tx_queue) > tp->tx_qlen) { netif_stop_queue(netdev); } return NETDEV_TX_OK; } static void r8152b_reset_packet_filter(struct r8152 *tp) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_FMC); ocp_data &= ~FMC_FCR_MCU_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_FMC, ocp_data); ocp_data |= FMC_FCR_MCU_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_FMC, ocp_data); } static void rtl8152_nic_reset(struct r8152 *tp) { int i; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, CR_RST); for (i = 0; i < 1000; i++) { if (!(ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR) & CR_RST)) break; usleep_range(100, 400); } } static void set_tx_qlen(struct r8152 *tp) { struct net_device *netdev = tp->netdev; tp->tx_qlen = agg_buf_sz / (netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN + sizeof(struct tx_desc)); } static inline u8 rtl8152_get_speed(struct r8152 *tp) { return ocp_read_byte(tp, MCU_TYPE_PLA, PLA_PHYSTATUS); } static void rtl_set_eee_plus(struct r8152 *tp) { u32 ocp_data; u8 speed; speed = rtl8152_get_speed(tp); if (speed & _10bps) { ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR); ocp_data |= EEEP_CR_EEEP_TX; ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR, ocp_data); } else { ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR); ocp_data &= ~EEEP_CR_EEEP_TX; ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR, ocp_data); } } static void rxdy_gated_en(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MISC_1); if (enable) ocp_data |= RXDY_GATED_EN; else ocp_data &= ~RXDY_GATED_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MISC_1, ocp_data); } static int rtl_start_rx(struct r8152 *tp) { struct rx_agg *agg, *agg_next; struct list_head tmp_list; unsigned long flags; int ret = 0, i = 0; INIT_LIST_HEAD(&tmp_list); spin_lock_irqsave(&tp->rx_lock, flags); INIT_LIST_HEAD(&tp->rx_done); INIT_LIST_HEAD(&tp->rx_used); list_splice_init(&tp->rx_info, &tmp_list); spin_unlock_irqrestore(&tp->rx_lock, flags); list_for_each_entry_safe(agg, agg_next, &tmp_list, info_list) { INIT_LIST_HEAD(&agg->list); /* Only RTL8152_MAX_RX rx_agg need to be submitted. */ if (++i > RTL8152_MAX_RX) { spin_lock_irqsave(&tp->rx_lock, flags); list_add_tail(&agg->list, &tp->rx_used); spin_unlock_irqrestore(&tp->rx_lock, flags); } else if (unlikely(ret < 0)) { spin_lock_irqsave(&tp->rx_lock, flags); list_add_tail(&agg->list, &tp->rx_done); spin_unlock_irqrestore(&tp->rx_lock, flags); } else { ret = r8152_submit_rx(tp, agg, GFP_KERNEL); } } spin_lock_irqsave(&tp->rx_lock, flags); WARN_ON(!list_empty(&tp->rx_info)); list_splice(&tmp_list, &tp->rx_info); spin_unlock_irqrestore(&tp->rx_lock, flags); return ret; } static int rtl_stop_rx(struct r8152 *tp) { struct rx_agg *agg, *agg_next; struct list_head tmp_list; unsigned long flags; INIT_LIST_HEAD(&tmp_list); /* The usb_kill_urb() couldn't be used in atomic. * Therefore, move the list of rx_info to a tmp one. * Then, list_for_each_entry_safe could be used without * spin lock. */ spin_lock_irqsave(&tp->rx_lock, flags); list_splice_init(&tp->rx_info, &tmp_list); spin_unlock_irqrestore(&tp->rx_lock, flags); list_for_each_entry_safe(agg, agg_next, &tmp_list, info_list) { /* At least RTL8152_MAX_RX rx_agg have the page_count being * equal to 1, so the other ones could be freed safely. */ if (page_count(agg->page) > 1) free_rx_agg(tp, agg); else usb_kill_urb(agg->urb); } /* Move back the list of temp to the rx_info */ spin_lock_irqsave(&tp->rx_lock, flags); WARN_ON(!list_empty(&tp->rx_info)); list_splice(&tmp_list, &tp->rx_info); spin_unlock_irqrestore(&tp->rx_lock, flags); while (!skb_queue_empty(&tp->rx_queue)) dev_kfree_skb(__skb_dequeue(&tp->rx_queue)); return 0; } static inline void r8153b_rx_agg_chg_indicate(struct r8152 *tp) { ocp_write_byte(tp, MCU_TYPE_USB, USB_UPT_RXDMA_OWN, OWN_UPDATE | OWN_CLEAR); } static int rtl_enable(struct r8152 *tp) { u32 ocp_data; r8152b_reset_packet_filter(tp); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR); ocp_data |= CR_RE | CR_TE; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, ocp_data); switch (tp->version) { case RTL_VER_08: case RTL_VER_09: r8153b_rx_agg_chg_indicate(tp); break; default: break; } rxdy_gated_en(tp, false); return 0; } static int rtl8152_enable(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) return -ENODEV; set_tx_qlen(tp); rtl_set_eee_plus(tp); return rtl_enable(tp); } static void r8153_set_rx_early_timeout(struct r8152 *tp) { u32 ocp_data = tp->coalesce / 8; switch (tp->version) { case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_TIMEOUT, ocp_data); break; case RTL_VER_08: case RTL_VER_09: /* The RTL8153B uses USB_RX_EXTRA_AGGR_TMR for rx timeout * primarily. For USB_RX_EARLY_TIMEOUT, we fix it to 128ns. */ ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_TIMEOUT, 128 / 8); ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EXTRA_AGGR_TMR, ocp_data); break; default: break; } } static void r8153_set_rx_early_size(struct r8152 *tp) { u32 ocp_data = tp->rx_buf_sz - rx_reserved_size(tp->netdev->mtu); switch (tp->version) { case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_SIZE, ocp_data / 4); break; case RTL_VER_08: case RTL_VER_09: ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_SIZE, ocp_data / 8); break; default: WARN_ON_ONCE(1); break; } } static int rtl8153_enable(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) return -ENODEV; set_tx_qlen(tp); rtl_set_eee_plus(tp); r8153_set_rx_early_timeout(tp); r8153_set_rx_early_size(tp); return rtl_enable(tp); } static void rtl_disable(struct r8152 *tp) { u32 ocp_data; int i; if (test_bit(RTL8152_UNPLUG, &tp->flags)) { rtl_drop_queued_tx(tp); return; } ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data &= ~RCR_ACPT_ALL; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); rtl_drop_queued_tx(tp); for (i = 0; i < RTL8152_MAX_TX; i++) usb_kill_urb(tp->tx_info[i].urb); rxdy_gated_en(tp, true); for (i = 0; i < 1000; i++) { ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); if ((ocp_data & FIFO_EMPTY) == FIFO_EMPTY) break; usleep_range(1000, 2000); } for (i = 0; i < 1000; i++) { if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0) & TCR0_TX_EMPTY) break; usleep_range(1000, 2000); } rtl_stop_rx(tp); rtl8152_nic_reset(tp); } static void r8152_power_cut_en(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_UPS_CTRL); if (enable) ocp_data |= POWER_CUT; else ocp_data &= ~POWER_CUT; ocp_write_word(tp, MCU_TYPE_USB, USB_UPS_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_PM_CTRL_STATUS); ocp_data &= ~RESUME_INDICATE; ocp_write_word(tp, MCU_TYPE_USB, USB_PM_CTRL_STATUS, ocp_data); } static void rtl_rx_vlan_en(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CPCR); if (enable) ocp_data |= CPCR_RX_VLAN; else ocp_data &= ~CPCR_RX_VLAN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_CPCR, ocp_data); } static int rtl8152_set_features(struct net_device *dev, netdev_features_t features) { netdev_features_t changed = features ^ dev->features; struct r8152 *tp = netdev_priv(dev); int ret; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out; mutex_lock(&tp->control); if (changed & NETIF_F_HW_VLAN_CTAG_RX) { if (features & NETIF_F_HW_VLAN_CTAG_RX) rtl_rx_vlan_en(tp, true); else rtl_rx_vlan_en(tp, false); } mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out: return ret; } #define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST) static u32 __rtl_get_wol(struct r8152 *tp) { u32 ocp_data; u32 wolopts = 0; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34); if (ocp_data & LINK_ON_WAKE_EN) wolopts |= WAKE_PHY; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG5); if (ocp_data & UWF_EN) wolopts |= WAKE_UCAST; if (ocp_data & BWF_EN) wolopts |= WAKE_BCAST; if (ocp_data & MWF_EN) wolopts |= WAKE_MCAST; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL); if (ocp_data & MAGIC_EN) wolopts |= WAKE_MAGIC; return wolopts; } static void __rtl_set_wol(struct r8152 *tp, u32 wolopts) { u32 ocp_data; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34); ocp_data &= ~LINK_ON_WAKE_EN; if (wolopts & WAKE_PHY) ocp_data |= LINK_ON_WAKE_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG5); ocp_data &= ~(UWF_EN | BWF_EN | MWF_EN); if (wolopts & WAKE_UCAST) ocp_data |= UWF_EN; if (wolopts & WAKE_BCAST) ocp_data |= BWF_EN; if (wolopts & WAKE_MCAST) ocp_data |= MWF_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG5, ocp_data); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL); ocp_data &= ~MAGIC_EN; if (wolopts & WAKE_MAGIC) ocp_data |= MAGIC_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL, ocp_data); if (wolopts & WAKE_ANY) device_set_wakeup_enable(&tp->udev->dev, true); else device_set_wakeup_enable(&tp->udev->dev, false); } static void r8153_mac_clk_spd(struct r8152 *tp, bool enable) { /* MAC clock speed down */ if (enable) { ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL, ALDPS_SPDWN_RATIO); ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2, EEE_SPDWN_RATIO); ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, PKT_AVAIL_SPDWN_EN | SUSPEND_SPDWN_EN | U1U2_SPDWN_EN | L1_SPDWN_EN); ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4, PWRSAVE_SPDWN_EN | RXDV_SPDWN_EN | TX10MIDLE_EN | TP100_SPDWN_EN | TP500_SPDWN_EN | EEE_SPDWN_EN | TP1000_SPDWN_EN); } else { ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL, 0); ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2, 0); ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, 0); ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4, 0); } } static void r8153_u1u2en(struct r8152 *tp, bool enable) { u8 u1u2[8]; if (enable) memset(u1u2, 0xff, sizeof(u1u2)); else memset(u1u2, 0x00, sizeof(u1u2)); usb_ocp_write(tp, USB_TOLERANCE, BYTE_EN_SIX_BYTES, sizeof(u1u2), u1u2); } static void r8153b_u1u2en(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_LPM_CONFIG); if (enable) ocp_data |= LPM_U1U2_EN; else ocp_data &= ~LPM_U1U2_EN; ocp_write_word(tp, MCU_TYPE_USB, USB_LPM_CONFIG, ocp_data); } static void r8153_u2p3en(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_U2P3_CTRL); if (enable) ocp_data |= U2P3_ENABLE; else ocp_data &= ~U2P3_ENABLE; ocp_write_word(tp, MCU_TYPE_USB, USB_U2P3_CTRL, ocp_data); } static void r8153b_ups_flags(struct r8152 *tp) { u32 ups_flags = 0; if (tp->ups_info.green) ups_flags |= UPS_FLAGS_EN_GREEN; if (tp->ups_info.aldps) ups_flags |= UPS_FLAGS_EN_ALDPS; if (tp->ups_info.eee) ups_flags |= UPS_FLAGS_EN_EEE; if (tp->ups_info.flow_control) ups_flags |= UPS_FLAGS_EN_FLOW_CTR; if (tp->ups_info.eee_ckdiv) ups_flags |= UPS_FLAGS_EN_EEE_CKDIV; if (tp->ups_info.eee_cmod_lv) ups_flags |= UPS_FLAGS_EEE_CMOD_LV_EN; if (tp->ups_info._10m_ckdiv) ups_flags |= UPS_FLAGS_EN_10M_CKDIV; if (tp->ups_info.eee_plloff_100) ups_flags |= UPS_FLAGS_EEE_PLLOFF_100; if (tp->ups_info.eee_plloff_giga) ups_flags |= UPS_FLAGS_EEE_PLLOFF_GIGA; if (tp->ups_info._250m_ckdiv) ups_flags |= UPS_FLAGS_250M_CKDIV; if (tp->ups_info.ctap_short_off) ups_flags |= UPS_FLAGS_CTAP_SHORT_DIS; switch (tp->ups_info.speed_duplex) { case NWAY_10M_HALF: ups_flags |= ups_flags_speed(1); break; case NWAY_10M_FULL: ups_flags |= ups_flags_speed(2); break; case NWAY_100M_HALF: ups_flags |= ups_flags_speed(3); break; case NWAY_100M_FULL: ups_flags |= ups_flags_speed(4); break; case NWAY_1000M_FULL: ups_flags |= ups_flags_speed(5); break; case FORCE_10M_HALF: ups_flags |= ups_flags_speed(6); break; case FORCE_10M_FULL: ups_flags |= ups_flags_speed(7); break; case FORCE_100M_HALF: ups_flags |= ups_flags_speed(8); break; case FORCE_100M_FULL: ups_flags |= ups_flags_speed(9); break; default: break; } ocp_write_dword(tp, MCU_TYPE_USB, USB_UPS_FLAGS, ups_flags); } static void r8153b_green_en(struct r8152 *tp, bool enable) { u16 data; if (enable) { sram_write(tp, 0x8045, 0); /* 10M abiq&ldvbias */ sram_write(tp, 0x804d, 0x1222); /* 100M short abiq&ldvbias */ sram_write(tp, 0x805d, 0x0022); /* 1000M short abiq&ldvbias */ } else { sram_write(tp, 0x8045, 0x2444); /* 10M abiq&ldvbias */ sram_write(tp, 0x804d, 0x2444); /* 100M short abiq&ldvbias */ sram_write(tp, 0x805d, 0x2444); /* 1000M short abiq&ldvbias */ } data = sram_read(tp, SRAM_GREEN_CFG); data |= GREEN_ETH_EN; sram_write(tp, SRAM_GREEN_CFG, data); tp->ups_info.green = enable; } static u16 r8153_phy_status(struct r8152 *tp, u16 desired) { u16 data; int i; for (i = 0; i < 500; i++) { data = ocp_reg_read(tp, OCP_PHY_STATUS); data &= PHY_STAT_MASK; if (desired) { if (data == desired) break; } else if (data == PHY_STAT_LAN_ON || data == PHY_STAT_PWRDN || data == PHY_STAT_EXT_INIT) { break; } msleep(20); } return data; } static void r8153b_ups_en(struct r8152 *tp, bool enable) { u32 ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_POWER_CUT); if (enable) { r8153b_ups_flags(tp); ocp_data |= UPS_EN | USP_PREWAKE | PHASE2_EN; ocp_write_byte(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, 0xcfff); ocp_data |= BIT(0); ocp_write_byte(tp, MCU_TYPE_USB, 0xcfff, ocp_data); } else { u16 data; ocp_data &= ~(UPS_EN | USP_PREWAKE); ocp_write_byte(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, 0xcfff); ocp_data &= ~BIT(0); ocp_write_byte(tp, MCU_TYPE_USB, 0xcfff, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0); ocp_data &= ~PCUT_STATUS; ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data); data = r8153_phy_status(tp, 0); switch (data) { case PHY_STAT_PWRDN: case PHY_STAT_EXT_INIT: r8153b_green_en(tp, test_bit(GREEN_ETHERNET, &tp->flags)); data = r8152_mdio_read(tp, MII_BMCR); data &= ~BMCR_PDOWN; data |= BMCR_RESET; r8152_mdio_write(tp, MII_BMCR, data); data = r8153_phy_status(tp, PHY_STAT_LAN_ON); /* fall through */ default: if (data != PHY_STAT_LAN_ON) netif_warn(tp, link, tp->netdev, "PHY not ready"); break; } } } static void r8153_power_cut_en(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_POWER_CUT); if (enable) ocp_data |= PWR_EN | PHASE2_EN; else ocp_data &= ~(PWR_EN | PHASE2_EN); ocp_write_word(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0); ocp_data &= ~PCUT_STATUS; ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data); } static void r8153b_power_cut_en(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_POWER_CUT); if (enable) ocp_data |= PWR_EN | PHASE2_EN; else ocp_data &= ~PWR_EN; ocp_write_word(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0); ocp_data &= ~PCUT_STATUS; ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data); } static void r8153_queue_wake(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_INDICATE_FALG); if (enable) ocp_data |= UPCOMING_RUNTIME_D3; else ocp_data &= ~UPCOMING_RUNTIME_D3; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_INDICATE_FALG, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_SUSPEND_FLAG); ocp_data &= ~LINK_CHG_EVENT; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_SUSPEND_FLAG, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS); ocp_data &= ~LINK_CHANGE_FLAG; ocp_write_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS, ocp_data); } static bool rtl_can_wakeup(struct r8152 *tp) { struct usb_device *udev = tp->udev; return (udev->actconfig->desc.bmAttributes & USB_CONFIG_ATT_WAKEUP); } static void rtl_runtime_suspend_enable(struct r8152 *tp, bool enable) { if (enable) { u32 ocp_data; __rtl_set_wol(tp, WAKE_ANY); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34); ocp_data |= LINK_OFF_WAKE_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML); } else { u32 ocp_data; __rtl_set_wol(tp, tp->saved_wolopts); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34); ocp_data &= ~LINK_OFF_WAKE_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML); } } static void rtl8153_runtime_enable(struct r8152 *tp, bool enable) { if (enable) { r8153_u1u2en(tp, false); r8153_u2p3en(tp, false); r8153_mac_clk_spd(tp, true); rtl_runtime_suspend_enable(tp, true); } else { rtl_runtime_suspend_enable(tp, false); r8153_mac_clk_spd(tp, false); switch (tp->version) { case RTL_VER_03: case RTL_VER_04: break; case RTL_VER_05: case RTL_VER_06: default: r8153_u2p3en(tp, true); break; } r8153_u1u2en(tp, true); } } static void rtl8153b_runtime_enable(struct r8152 *tp, bool enable) { if (enable) { r8153_queue_wake(tp, true); r8153b_u1u2en(tp, false); r8153_u2p3en(tp, false); rtl_runtime_suspend_enable(tp, true); r8153b_ups_en(tp, true); } else { r8153b_ups_en(tp, false); r8153_queue_wake(tp, false); rtl_runtime_suspend_enable(tp, false); r8153_u2p3en(tp, true); r8153b_u1u2en(tp, true); } } static void r8153_teredo_off(struct r8152 *tp) { u32 ocp_data; switch (tp->version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: case RTL_VER_07: ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG); ocp_data &= ~(TEREDO_SEL | TEREDO_RS_EVENT_MASK | OOB_TEREDO_EN); ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, ocp_data); break; case RTL_VER_08: case RTL_VER_09: /* The bit 0 ~ 7 are relative with teredo settings. They are * W1C (write 1 to clear), so set all 1 to disable it. */ ocp_write_byte(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, 0xff); break; default: break; } ocp_write_word(tp, MCU_TYPE_PLA, PLA_WDT6_CTRL, WDT6_SET_MODE); ocp_write_word(tp, MCU_TYPE_PLA, PLA_REALWOW_TIMER, 0); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TEREDO_TIMER, 0); } static void rtl_reset_bmu(struct r8152 *tp) { u32 ocp_data; ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_BMU_RESET); ocp_data &= ~(BMU_RESET_EP_IN | BMU_RESET_EP_OUT); ocp_write_byte(tp, MCU_TYPE_USB, USB_BMU_RESET, ocp_data); ocp_data |= BMU_RESET_EP_IN | BMU_RESET_EP_OUT; ocp_write_byte(tp, MCU_TYPE_USB, USB_BMU_RESET, ocp_data); } /* Clear the bp to stop the firmware before loading a new one */ static void rtl_clear_bp(struct r8152 *tp, u16 type) { switch (tp->version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_07: break; case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: ocp_write_byte(tp, type, PLA_BP_EN, 0); break; case RTL_VER_08: case RTL_VER_09: default: if (type == MCU_TYPE_USB) { ocp_write_byte(tp, MCU_TYPE_USB, USB_BP2_EN, 0); ocp_write_word(tp, MCU_TYPE_USB, USB_BP_8, 0); ocp_write_word(tp, MCU_TYPE_USB, USB_BP_9, 0); ocp_write_word(tp, MCU_TYPE_USB, USB_BP_10, 0); ocp_write_word(tp, MCU_TYPE_USB, USB_BP_11, 0); ocp_write_word(tp, MCU_TYPE_USB, USB_BP_12, 0); ocp_write_word(tp, MCU_TYPE_USB, USB_BP_13, 0); ocp_write_word(tp, MCU_TYPE_USB, USB_BP_14, 0); ocp_write_word(tp, MCU_TYPE_USB, USB_BP_15, 0); } else { ocp_write_byte(tp, MCU_TYPE_PLA, PLA_BP_EN, 0); } break; } ocp_write_word(tp, type, PLA_BP_0, 0); ocp_write_word(tp, type, PLA_BP_1, 0); ocp_write_word(tp, type, PLA_BP_2, 0); ocp_write_word(tp, type, PLA_BP_3, 0); ocp_write_word(tp, type, PLA_BP_4, 0); ocp_write_word(tp, type, PLA_BP_5, 0); ocp_write_word(tp, type, PLA_BP_6, 0); ocp_write_word(tp, type, PLA_BP_7, 0); /* wait 3 ms to make sure the firmware is stopped */ usleep_range(3000, 6000); ocp_write_word(tp, type, PLA_BP_BA, 0); } static int r8153_patch_request(struct r8152 *tp, bool request) { u16 data; int i; data = ocp_reg_read(tp, OCP_PHY_PATCH_CMD); if (request) data |= PATCH_REQUEST; else data &= ~PATCH_REQUEST; ocp_reg_write(tp, OCP_PHY_PATCH_CMD, data); for (i = 0; request && i < 5000; i++) { usleep_range(1000, 2000); if (ocp_reg_read(tp, OCP_PHY_PATCH_STAT) & PATCH_READY) break; } if (request && !(ocp_reg_read(tp, OCP_PHY_PATCH_STAT) & PATCH_READY)) { netif_err(tp, drv, tp->netdev, "patch request fail\n"); r8153_patch_request(tp, false); return -ETIME; } else { return 0; } } static int r8153_pre_ram_code(struct r8152 *tp, u16 key_addr, u16 patch_key) { if (r8153_patch_request(tp, true)) { dev_err(&tp->intf->dev, "patch request fail\n"); return -ETIME; } sram_write(tp, key_addr, patch_key); sram_write(tp, SRAM_PHY_LOCK, PHY_PATCH_LOCK); return 0; } static int r8153_post_ram_code(struct r8152 *tp, u16 key_addr) { u16 data; sram_write(tp, 0x0000, 0x0000); data = ocp_reg_read(tp, OCP_PHY_LOCK); data &= ~PATCH_LOCK; ocp_reg_write(tp, OCP_PHY_LOCK, data); sram_write(tp, key_addr, 0x0000); r8153_patch_request(tp, false); ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, tp->ocp_base); return 0; } static bool rtl8152_is_fw_phy_nc_ok(struct r8152 *tp, struct fw_phy_nc *phy) { u32 length; u16 fw_offset, fw_reg, ba_reg, patch_en_addr, mode_reg, bp_start; bool rc = false; switch (tp->version) { case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: fw_reg = 0xa014; ba_reg = 0xa012; patch_en_addr = 0xa01a; mode_reg = 0xb820; bp_start = 0xa000; break; default: goto out; } fw_offset = __le16_to_cpu(phy->fw_offset); if (fw_offset < sizeof(*phy)) { dev_err(&tp->intf->dev, "fw_offset too small\n"); goto out; } length = __le32_to_cpu(phy->blk_hdr.length); if (length < fw_offset) { dev_err(&tp->intf->dev, "invalid fw_offset\n"); goto out; } length -= __le16_to_cpu(phy->fw_offset); if (!length || (length & 1)) { dev_err(&tp->intf->dev, "invalid block length\n"); goto out; } if (__le16_to_cpu(phy->fw_reg) != fw_reg) { dev_err(&tp->intf->dev, "invalid register to load firmware\n"); goto out; } if (__le16_to_cpu(phy->ba_reg) != ba_reg) { dev_err(&tp->intf->dev, "invalid base address register\n"); goto out; } if (__le16_to_cpu(phy->patch_en_addr) != patch_en_addr) { dev_err(&tp->intf->dev, "invalid patch mode enabled register\n"); goto out; } if (__le16_to_cpu(phy->mode_reg) != mode_reg) { dev_err(&tp->intf->dev, "invalid register to switch the mode\n"); goto out; } if (__le16_to_cpu(phy->bp_start) != bp_start) { dev_err(&tp->intf->dev, "invalid start register of break point\n"); goto out; } if (__le16_to_cpu(phy->bp_num) > 4) { dev_err(&tp->intf->dev, "invalid break point number\n"); goto out; } rc = true; out: return rc; } static bool rtl8152_is_fw_mac_ok(struct r8152 *tp, struct fw_mac *mac) { u16 fw_reg, bp_ba_addr, bp_en_addr, bp_start, fw_offset; bool rc = false; u32 length, type; int i, max_bp; type = __le32_to_cpu(mac->blk_hdr.type); if (type == RTL_FW_PLA) { switch (tp->version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_07: fw_reg = 0xf800; bp_ba_addr = PLA_BP_BA; bp_en_addr = 0; bp_start = PLA_BP_0; max_bp = 8; break; case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: case RTL_VER_08: case RTL_VER_09: fw_reg = 0xf800; bp_ba_addr = PLA_BP_BA; bp_en_addr = PLA_BP_EN; bp_start = PLA_BP_0; max_bp = 8; break; default: goto out; } } else if (type == RTL_FW_USB) { switch (tp->version) { case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: fw_reg = 0xf800; bp_ba_addr = USB_BP_BA; bp_en_addr = USB_BP_EN; bp_start = USB_BP_0; max_bp = 8; break; case RTL_VER_08: case RTL_VER_09: fw_reg = 0xe600; bp_ba_addr = USB_BP_BA; bp_en_addr = USB_BP2_EN; bp_start = USB_BP_0; max_bp = 16; break; case RTL_VER_01: case RTL_VER_02: case RTL_VER_07: default: goto out; } } else { goto out; } fw_offset = __le16_to_cpu(mac->fw_offset); if (fw_offset < sizeof(*mac)) { dev_err(&tp->intf->dev, "fw_offset too small\n"); goto out; } length = __le32_to_cpu(mac->blk_hdr.length); if (length < fw_offset) { dev_err(&tp->intf->dev, "invalid fw_offset\n"); goto out; } length -= fw_offset; if (length < 4 || (length & 3)) { dev_err(&tp->intf->dev, "invalid block length\n"); goto out; } if (__le16_to_cpu(mac->fw_reg) != fw_reg) { dev_err(&tp->intf->dev, "invalid register to load firmware\n"); goto out; } if (__le16_to_cpu(mac->bp_ba_addr) != bp_ba_addr) { dev_err(&tp->intf->dev, "invalid base address register\n"); goto out; } if (__le16_to_cpu(mac->bp_en_addr) != bp_en_addr) { dev_err(&tp->intf->dev, "invalid enabled mask register\n"); goto out; } if (__le16_to_cpu(mac->bp_start) != bp_start) { dev_err(&tp->intf->dev, "invalid start register of break point\n"); goto out; } if (__le16_to_cpu(mac->bp_num) > max_bp) { dev_err(&tp->intf->dev, "invalid break point number\n"); goto out; } for (i = __le16_to_cpu(mac->bp_num); i < max_bp; i++) { if (mac->bp[i]) { dev_err(&tp->intf->dev, "unused bp%u is not zero\n", i); goto out; } } rc = true; out: return rc; } /* Verify the checksum for the firmware file. It is calculated from the version * field to the end of the file. Compare the result with the checksum field to * make sure the file is correct. */ static long rtl8152_fw_verify_checksum(struct r8152 *tp, struct fw_header *fw_hdr, size_t size) { unsigned char checksum[sizeof(fw_hdr->checksum)]; struct crypto_shash *alg; struct shash_desc *sdesc; size_t len; long rc; alg = crypto_alloc_shash("sha256", 0, 0); if (IS_ERR(alg)) { rc = PTR_ERR(alg); goto out; } if (crypto_shash_digestsize(alg) != sizeof(fw_hdr->checksum)) { rc = -EFAULT; dev_err(&tp->intf->dev, "digestsize incorrect (%u)\n", crypto_shash_digestsize(alg)); goto free_shash; } len = sizeof(*sdesc) + crypto_shash_descsize(alg); sdesc = kmalloc(len, GFP_KERNEL); if (!sdesc) { rc = -ENOMEM; goto free_shash; } sdesc->tfm = alg; len = size - sizeof(fw_hdr->checksum); rc = crypto_shash_digest(sdesc, fw_hdr->version, len, checksum); kfree(sdesc); if (rc) goto free_shash; if (memcmp(fw_hdr->checksum, checksum, sizeof(fw_hdr->checksum))) { dev_err(&tp->intf->dev, "checksum fail\n"); rc = -EFAULT; } free_shash: crypto_free_shash(alg); out: return rc; } static long rtl8152_check_firmware(struct r8152 *tp, struct rtl_fw *rtl_fw) { const struct firmware *fw = rtl_fw->fw; struct fw_header *fw_hdr = (struct fw_header *)fw->data; struct fw_mac *pla = NULL, *usb = NULL; struct fw_phy_patch_key *start = NULL; struct fw_phy_nc *phy_nc = NULL; struct fw_block *stop = NULL; long ret = -EFAULT; int i; if (fw->size < sizeof(*fw_hdr)) { dev_err(&tp->intf->dev, "file too small\n"); goto fail; } ret = rtl8152_fw_verify_checksum(tp, fw_hdr, fw->size); if (ret) goto fail; ret = -EFAULT; for (i = sizeof(*fw_hdr); i < fw->size;) { struct fw_block *block = (struct fw_block *)&fw->data[i]; u32 type; if ((i + sizeof(*block)) > fw->size) goto fail; type = __le32_to_cpu(block->type); switch (type) { case RTL_FW_END: if (__le32_to_cpu(block->length) != sizeof(*block)) goto fail; goto fw_end; case RTL_FW_PLA: if (pla) { dev_err(&tp->intf->dev, "multiple PLA firmware encountered"); goto fail; } pla = (struct fw_mac *)block; if (!rtl8152_is_fw_mac_ok(tp, pla)) { dev_err(&tp->intf->dev, "check PLA firmware failed\n"); goto fail; } break; case RTL_FW_USB: if (usb) { dev_err(&tp->intf->dev, "multiple USB firmware encountered"); goto fail; } usb = (struct fw_mac *)block; if (!rtl8152_is_fw_mac_ok(tp, usb)) { dev_err(&tp->intf->dev, "check USB firmware failed\n"); goto fail; } break; case RTL_FW_PHY_START: if (start || phy_nc || stop) { dev_err(&tp->intf->dev, "check PHY_START fail\n"); goto fail; } if (__le32_to_cpu(block->length) != sizeof(*start)) { dev_err(&tp->intf->dev, "Invalid length for PHY_START\n"); goto fail; } start = (struct fw_phy_patch_key *)block; break; case RTL_FW_PHY_STOP: if (stop || !start) { dev_err(&tp->intf->dev, "Check PHY_STOP fail\n"); goto fail; } if (__le32_to_cpu(block->length) != sizeof(*block)) { dev_err(&tp->intf->dev, "Invalid length for PHY_STOP\n"); goto fail; } stop = block; break; case RTL_FW_PHY_NC: if (!start || stop) { dev_err(&tp->intf->dev, "check PHY_NC fail\n"); goto fail; } if (phy_nc) { dev_err(&tp->intf->dev, "multiple PHY NC encountered\n"); goto fail; } phy_nc = (struct fw_phy_nc *)block; if (!rtl8152_is_fw_phy_nc_ok(tp, phy_nc)) { dev_err(&tp->intf->dev, "check PHY NC firmware failed\n"); goto fail; } break; default: dev_warn(&tp->intf->dev, "Unknown type %u is found\n", type); break; } /* next block */ i += ALIGN(__le32_to_cpu(block->length), 8); } fw_end: if ((phy_nc || start) && !stop) { dev_err(&tp->intf->dev, "without PHY_STOP\n"); goto fail; } return 0; fail: return ret; } static void rtl8152_fw_phy_nc_apply(struct r8152 *tp, struct fw_phy_nc *phy) { u16 mode_reg, bp_index; u32 length, i, num; __le16 *data; mode_reg = __le16_to_cpu(phy->mode_reg); sram_write(tp, mode_reg, __le16_to_cpu(phy->mode_pre)); sram_write(tp, __le16_to_cpu(phy->ba_reg), __le16_to_cpu(phy->ba_data)); length = __le32_to_cpu(phy->blk_hdr.length); length -= __le16_to_cpu(phy->fw_offset); num = length / 2; data = (__le16 *)((u8 *)phy + __le16_to_cpu(phy->fw_offset)); ocp_reg_write(tp, OCP_SRAM_ADDR, __le16_to_cpu(phy->fw_reg)); for (i = 0; i < num; i++) ocp_reg_write(tp, OCP_SRAM_DATA, __le16_to_cpu(data[i])); sram_write(tp, __le16_to_cpu(phy->patch_en_addr), __le16_to_cpu(phy->patch_en_value)); bp_index = __le16_to_cpu(phy->bp_start); num = __le16_to_cpu(phy->bp_num); for (i = 0; i < num; i++) { sram_write(tp, bp_index, __le16_to_cpu(phy->bp[i])); bp_index += 2; } sram_write(tp, mode_reg, __le16_to_cpu(phy->mode_post)); dev_dbg(&tp->intf->dev, "successfully applied %s\n", phy->info); } static void rtl8152_fw_mac_apply(struct r8152 *tp, struct fw_mac *mac) { u16 bp_en_addr, bp_index, type, bp_num, fw_ver_reg; u32 length; u8 *data; int i; switch (__le32_to_cpu(mac->blk_hdr.type)) { case RTL_FW_PLA: type = MCU_TYPE_PLA; break; case RTL_FW_USB: type = MCU_TYPE_USB; break; default: return; } rtl_clear_bp(tp, type); /* Enable backup/restore of MACDBG. This is required after clearing PLA * break points and before applying the PLA firmware. */ if (tp->version == RTL_VER_04 && type == MCU_TYPE_PLA && !(ocp_read_word(tp, MCU_TYPE_PLA, PLA_MACDBG_POST) & DEBUG_OE)) { ocp_write_word(tp, MCU_TYPE_PLA, PLA_MACDBG_PRE, DEBUG_LTSSM); ocp_write_word(tp, MCU_TYPE_PLA, PLA_MACDBG_POST, DEBUG_LTSSM); } length = __le32_to_cpu(mac->blk_hdr.length); length -= __le16_to_cpu(mac->fw_offset); data = (u8 *)mac; data += __le16_to_cpu(mac->fw_offset); generic_ocp_write(tp, __le16_to_cpu(mac->fw_reg), 0xff, length, data, type); ocp_write_word(tp, type, __le16_to_cpu(mac->bp_ba_addr), __le16_to_cpu(mac->bp_ba_value)); bp_index = __le16_to_cpu(mac->bp_start); bp_num = __le16_to_cpu(mac->bp_num); for (i = 0; i < bp_num; i++) { ocp_write_word(tp, type, bp_index, __le16_to_cpu(mac->bp[i])); bp_index += 2; } bp_en_addr = __le16_to_cpu(mac->bp_en_addr); if (bp_en_addr) ocp_write_word(tp, type, bp_en_addr, __le16_to_cpu(mac->bp_en_value)); fw_ver_reg = __le16_to_cpu(mac->fw_ver_reg); if (fw_ver_reg) ocp_write_byte(tp, MCU_TYPE_USB, fw_ver_reg, mac->fw_ver_data); dev_dbg(&tp->intf->dev, "successfully applied %s\n", mac->info); } static void rtl8152_apply_firmware(struct r8152 *tp) { struct rtl_fw *rtl_fw = &tp->rtl_fw; const struct firmware *fw; struct fw_header *fw_hdr; struct fw_phy_patch_key *key; u16 key_addr = 0; int i; if (IS_ERR_OR_NULL(rtl_fw->fw)) return; fw = rtl_fw->fw; fw_hdr = (struct fw_header *)fw->data; if (rtl_fw->pre_fw) rtl_fw->pre_fw(tp); for (i = offsetof(struct fw_header, blocks); i < fw->size;) { struct fw_block *block = (struct fw_block *)&fw->data[i]; switch (__le32_to_cpu(block->type)) { case RTL_FW_END: goto post_fw; case RTL_FW_PLA: case RTL_FW_USB: rtl8152_fw_mac_apply(tp, (struct fw_mac *)block); break; case RTL_FW_PHY_START: key = (struct fw_phy_patch_key *)block; key_addr = __le16_to_cpu(key->key_reg); r8153_pre_ram_code(tp, key_addr, __le16_to_cpu(key->key_data)); break; case RTL_FW_PHY_STOP: WARN_ON(!key_addr); r8153_post_ram_code(tp, key_addr); break; case RTL_FW_PHY_NC: rtl8152_fw_phy_nc_apply(tp, (struct fw_phy_nc *)block); break; default: break; } i += ALIGN(__le32_to_cpu(block->length), 8); } post_fw: if (rtl_fw->post_fw) rtl_fw->post_fw(tp); strscpy(rtl_fw->version, fw_hdr->version, RTL_VER_SIZE); dev_info(&tp->intf->dev, "load %s successfully\n", rtl_fw->version); } static void rtl8152_release_firmware(struct r8152 *tp) { struct rtl_fw *rtl_fw = &tp->rtl_fw; if (!IS_ERR_OR_NULL(rtl_fw->fw)) { release_firmware(rtl_fw->fw); rtl_fw->fw = NULL; } } static int rtl8152_request_firmware(struct r8152 *tp) { struct rtl_fw *rtl_fw = &tp->rtl_fw; long rc; if (rtl_fw->fw || !rtl_fw->fw_name) { dev_info(&tp->intf->dev, "skip request firmware\n"); rc = 0; goto result; } rc = request_firmware(&rtl_fw->fw, rtl_fw->fw_name, &tp->intf->dev); if (rc < 0) goto result; rc = rtl8152_check_firmware(tp, rtl_fw); if (rc < 0) release_firmware(rtl_fw->fw); result: if (rc) { rtl_fw->fw = ERR_PTR(rc); dev_warn(&tp->intf->dev, "unable to load firmware patch %s (%ld)\n", rtl_fw->fw_name, rc); } return rc; } static void r8152_aldps_en(struct r8152 *tp, bool enable) { if (enable) { ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPWRSAVE | ENPDNPS | LINKENA | DIS_SDSAVE); } else { ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPDNPS | LINKENA | DIS_SDSAVE); msleep(20); } } static inline void r8152_mmd_indirect(struct r8152 *tp, u16 dev, u16 reg) { ocp_reg_write(tp, OCP_EEE_AR, FUN_ADDR | dev); ocp_reg_write(tp, OCP_EEE_DATA, reg); ocp_reg_write(tp, OCP_EEE_AR, FUN_DATA | dev); } static u16 r8152_mmd_read(struct r8152 *tp, u16 dev, u16 reg) { u16 data; r8152_mmd_indirect(tp, dev, reg); data = ocp_reg_read(tp, OCP_EEE_DATA); ocp_reg_write(tp, OCP_EEE_AR, 0x0000); return data; } static void r8152_mmd_write(struct r8152 *tp, u16 dev, u16 reg, u16 data) { r8152_mmd_indirect(tp, dev, reg); ocp_reg_write(tp, OCP_EEE_DATA, data); ocp_reg_write(tp, OCP_EEE_AR, 0x0000); } static void r8152_eee_en(struct r8152 *tp, bool enable) { u16 config1, config2, config3; u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR); config1 = ocp_reg_read(tp, OCP_EEE_CONFIG1) & ~sd_rise_time_mask; config2 = ocp_reg_read(tp, OCP_EEE_CONFIG2); config3 = ocp_reg_read(tp, OCP_EEE_CONFIG3) & ~fast_snr_mask; if (enable) { ocp_data |= EEE_RX_EN | EEE_TX_EN; config1 |= EEE_10_CAP | EEE_NWAY_EN | TX_QUIET_EN | RX_QUIET_EN; config1 |= sd_rise_time(1); config2 |= RG_DACQUIET_EN | RG_LDVQUIET_EN; config3 |= fast_snr(42); } else { ocp_data &= ~(EEE_RX_EN | EEE_TX_EN); config1 &= ~(EEE_10_CAP | EEE_NWAY_EN | TX_QUIET_EN | RX_QUIET_EN); config1 |= sd_rise_time(7); config2 &= ~(RG_DACQUIET_EN | RG_LDVQUIET_EN); config3 |= fast_snr(511); } ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEE_CR, ocp_data); ocp_reg_write(tp, OCP_EEE_CONFIG1, config1); ocp_reg_write(tp, OCP_EEE_CONFIG2, config2); ocp_reg_write(tp, OCP_EEE_CONFIG3, config3); } static void r8153_eee_en(struct r8152 *tp, bool enable) { u32 ocp_data; u16 config; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR); config = ocp_reg_read(tp, OCP_EEE_CFG); if (enable) { ocp_data |= EEE_RX_EN | EEE_TX_EN; config |= EEE10_EN; } else { ocp_data &= ~(EEE_RX_EN | EEE_TX_EN); config &= ~EEE10_EN; } ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEE_CR, ocp_data); ocp_reg_write(tp, OCP_EEE_CFG, config); tp->ups_info.eee = enable; } static void rtl_eee_enable(struct r8152 *tp, bool enable) { switch (tp->version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_07: if (enable) { r8152_eee_en(tp, true); r8152_mmd_write(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, tp->eee_adv); } else { r8152_eee_en(tp, false); r8152_mmd_write(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 0); } break; case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: case RTL_VER_08: case RTL_VER_09: if (enable) { r8153_eee_en(tp, true); ocp_reg_write(tp, OCP_EEE_ADV, tp->eee_adv); } else { r8153_eee_en(tp, false); ocp_reg_write(tp, OCP_EEE_ADV, 0); } break; default: break; } } static void r8152b_enable_fc(struct r8152 *tp) { u16 anar; anar = r8152_mdio_read(tp, MII_ADVERTISE); anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; r8152_mdio_write(tp, MII_ADVERTISE, anar); tp->ups_info.flow_control = true; } static void rtl8152_disable(struct r8152 *tp) { r8152_aldps_en(tp, false); rtl_disable(tp); r8152_aldps_en(tp, true); } static void r8152b_hw_phy_cfg(struct r8152 *tp) { rtl8152_apply_firmware(tp); rtl_eee_enable(tp, tp->eee_en); r8152_aldps_en(tp, true); r8152b_enable_fc(tp); set_bit(PHY_RESET, &tp->flags); } static void wait_oob_link_list_ready(struct r8152 *tp) { u32 ocp_data; int i; for (i = 0; i < 1000; i++) { ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); if (ocp_data & LINK_LIST_READY) break; usleep_range(1000, 2000); } } static void r8152b_exit_oob(struct r8152 *tp) { u32 ocp_data; ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data &= ~RCR_ACPT_ALL; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); rxdy_gated_en(tp, true); r8153_teredo_off(tp); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, 0x00); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data &= ~NOW_IS_OOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data &= ~MCU_BORW_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); wait_oob_link_list_ready(tp); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data |= RE_INIT_LL; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); wait_oob_link_list_ready(tp); rtl8152_nic_reset(tp); /* rx share fifo credit full threshold */ ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_NORMAL); if (tp->udev->speed == USB_SPEED_FULL || tp->udev->speed == USB_SPEED_LOW) { /* rx share fifo credit near full threshold */ ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_FULL); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_FULL); } else { /* rx share fifo credit near full threshold */ ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_HIGH); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_HIGH); } /* TX share fifo free credit full threshold */ ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TXFIFO_CTRL, TXFIFO_THR_NORMAL); ocp_write_byte(tp, MCU_TYPE_USB, USB_TX_AGG, TX_AGG_MAX_THRESHOLD); ocp_write_dword(tp, MCU_TYPE_USB, USB_RX_BUF_TH, RX_THR_HIGH); ocp_write_dword(tp, MCU_TYPE_USB, USB_TX_DMA, TEST_MODE_DISABLE | TX_SIZE_ADJUST1); rtl_rx_vlan_en(tp, tp->netdev->features & NETIF_F_HW_VLAN_CTAG_RX); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8152_RMS); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0); ocp_data |= TCR0_AUTO_FIFO; ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR0, ocp_data); } static void r8152b_enter_oob(struct r8152 *tp) { u32 ocp_data; ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data &= ~NOW_IS_OOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_OOB); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_OOB); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_OOB); rtl_disable(tp); wait_oob_link_list_ready(tp); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data |= RE_INIT_LL; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); wait_oob_link_list_ready(tp); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8152_RMS); rtl_rx_vlan_en(tp, true); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_BDC_CR); ocp_data |= ALDPS_PROXY_MODE; ocp_write_word(tp, MCU_TYPE_PLA, PLA_BDC_CR, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data |= NOW_IS_OOB | DIS_MCU_CLROOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); rxdy_gated_en(tp, false); ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data |= RCR_APM | RCR_AM | RCR_AB; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); } static int r8153_pre_firmware_1(struct r8152 *tp) { int i; /* Wait till the WTD timer is ready. It would take at most 104 ms. */ for (i = 0; i < 104; i++) { u32 ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_WDT1_CTRL); if (!(ocp_data & WTD1_EN)) break; usleep_range(1000, 2000); } return 0; } static int r8153_post_firmware_1(struct r8152 *tp) { /* set USB_BP_4 to support USB_SPEED_SUPER only */ if (ocp_read_byte(tp, MCU_TYPE_USB, USB_CSTMR) & FORCE_SUPER) ocp_write_word(tp, MCU_TYPE_USB, USB_BP_4, BP4_SUPER_ONLY); /* reset UPHY timer to 36 ms */ ocp_write_word(tp, MCU_TYPE_PLA, PLA_UPHY_TIMER, 36000 / 16); return 0; } static int r8153_pre_firmware_2(struct r8152 *tp) { u32 ocp_data; r8153_pre_firmware_1(tp); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN0); ocp_data &= ~FW_FIX_SUSPEND; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN0, ocp_data); return 0; } static int r8153_post_firmware_2(struct r8152 *tp) { u32 ocp_data; /* enable bp0 if support USB_SPEED_SUPER only */ if (ocp_read_byte(tp, MCU_TYPE_USB, USB_CSTMR) & FORCE_SUPER) { ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_BP_EN); ocp_data |= BIT(0); ocp_write_word(tp, MCU_TYPE_PLA, PLA_BP_EN, ocp_data); } /* reset UPHY timer to 36 ms */ ocp_write_word(tp, MCU_TYPE_PLA, PLA_UPHY_TIMER, 36000 / 16); /* enable U3P3 check, set the counter to 4 */ ocp_write_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS, U3P3_CHECK_EN | 4); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN0); ocp_data |= FW_FIX_SUSPEND; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN0, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_USB2PHY); ocp_data |= USB2PHY_L1 | USB2PHY_SUSPEND; ocp_write_byte(tp, MCU_TYPE_USB, USB_USB2PHY, ocp_data); return 0; } static int r8153_post_firmware_3(struct r8152 *tp) { u32 ocp_data; ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_USB2PHY); ocp_data |= USB2PHY_L1 | USB2PHY_SUSPEND; ocp_write_byte(tp, MCU_TYPE_USB, USB_USB2PHY, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN1); ocp_data |= FW_IP_RESET_EN; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN1, ocp_data); return 0; } static int r8153b_pre_firmware_1(struct r8152 *tp) { /* enable fc timer and set timer to 1 second. */ ocp_write_word(tp, MCU_TYPE_USB, USB_FC_TIMER, CTRL_TIMER_EN | (1000 / 8)); return 0; } static int r8153b_post_firmware_1(struct r8152 *tp) { u32 ocp_data; /* enable bp0 for RTL8153-BND */ ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_MISC_1); if (ocp_data & BND_MASK) { ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_BP_EN); ocp_data |= BIT(0); ocp_write_word(tp, MCU_TYPE_PLA, PLA_BP_EN, ocp_data); } ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_CTRL); ocp_data |= FLOW_CTRL_PATCH_OPT; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_TASK); ocp_data |= FC_PATCH_TASK; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_TASK, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN1); ocp_data |= FW_IP_RESET_EN; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN1, ocp_data); return 0; } static void r8153_aldps_en(struct r8152 *tp, bool enable) { u16 data; data = ocp_reg_read(tp, OCP_POWER_CFG); if (enable) { data |= EN_ALDPS; ocp_reg_write(tp, OCP_POWER_CFG, data); } else { int i; data &= ~EN_ALDPS; ocp_reg_write(tp, OCP_POWER_CFG, data); for (i = 0; i < 20; i++) { usleep_range(1000, 2000); if (ocp_read_word(tp, MCU_TYPE_PLA, 0xe000) & 0x0100) break; } } tp->ups_info.aldps = enable; } static void r8153_hw_phy_cfg(struct r8152 *tp) { u32 ocp_data; u16 data; /* disable ALDPS before updating the PHY parameters */ r8153_aldps_en(tp, false); /* disable EEE before updating the PHY parameters */ rtl_eee_enable(tp, false); rtl8152_apply_firmware(tp); if (tp->version == RTL_VER_03) { data = ocp_reg_read(tp, OCP_EEE_CFG); data &= ~CTAP_SHORT_EN; ocp_reg_write(tp, OCP_EEE_CFG, data); } data = ocp_reg_read(tp, OCP_POWER_CFG); data |= EEE_CLKDIV_EN; ocp_reg_write(tp, OCP_POWER_CFG, data); data = ocp_reg_read(tp, OCP_DOWN_SPEED); data |= EN_10M_BGOFF; ocp_reg_write(tp, OCP_DOWN_SPEED, data); data = ocp_reg_read(tp, OCP_POWER_CFG); data |= EN_10M_PLLOFF; ocp_reg_write(tp, OCP_POWER_CFG, data); sram_write(tp, SRAM_IMPEDANCE, 0x0b13); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR); ocp_data |= PFM_PWM_SWITCH; ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data); /* Enable LPF corner auto tune */ sram_write(tp, SRAM_LPF_CFG, 0xf70f); /* Adjust 10M Amplitude */ sram_write(tp, SRAM_10M_AMP1, 0x00af); sram_write(tp, SRAM_10M_AMP2, 0x0208); if (tp->eee_en) rtl_eee_enable(tp, true); r8153_aldps_en(tp, true); r8152b_enable_fc(tp); switch (tp->version) { case RTL_VER_03: case RTL_VER_04: break; case RTL_VER_05: case RTL_VER_06: default: r8153_u2p3en(tp, true); break; } set_bit(PHY_RESET, &tp->flags); } static u32 r8152_efuse_read(struct r8152 *tp, u8 addr) { u32 ocp_data; ocp_write_word(tp, MCU_TYPE_PLA, PLA_EFUSE_CMD, EFUSE_READ_CMD | addr); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EFUSE_CMD); ocp_data = (ocp_data & EFUSE_DATA_BIT16) << 9; /* data of bit16 */ ocp_data |= ocp_read_word(tp, MCU_TYPE_PLA, PLA_EFUSE_DATA); return ocp_data; } static void r8153b_hw_phy_cfg(struct r8152 *tp) { u32 ocp_data; u16 data; /* disable ALDPS before updating the PHY parameters */ r8153_aldps_en(tp, false); /* disable EEE before updating the PHY parameters */ rtl_eee_enable(tp, false); rtl8152_apply_firmware(tp); r8153b_green_en(tp, test_bit(GREEN_ETHERNET, &tp->flags)); data = sram_read(tp, SRAM_GREEN_CFG); data |= R_TUNE_EN; sram_write(tp, SRAM_GREEN_CFG, data); data = ocp_reg_read(tp, OCP_NCTL_CFG); data |= PGA_RETURN_EN; ocp_reg_write(tp, OCP_NCTL_CFG, data); /* ADC Bias Calibration: * read efuse offset 0x7d to get a 17-bit data. Remove the dummy/fake * bit (bit3) to rebuild the real 16-bit data. Write the data to the * ADC ioffset. */ ocp_data = r8152_efuse_read(tp, 0x7d); data = (u16)(((ocp_data & 0x1fff0) >> 1) | (ocp_data & 0x7)); if (data != 0xffff) ocp_reg_write(tp, OCP_ADC_IOFFSET, data); /* ups mode tx-link-pulse timing adjustment: * rg_saw_cnt = OCP reg 0xC426 Bit[13:0] * swr_cnt_1ms_ini = 16000000 / rg_saw_cnt */ ocp_data = ocp_reg_read(tp, 0xc426); ocp_data &= 0x3fff; if (ocp_data) { u32 swr_cnt_1ms_ini; swr_cnt_1ms_ini = (16000000 / ocp_data) & SAW_CNT_1MS_MASK; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_UPS_CFG); ocp_data = (ocp_data & ~SAW_CNT_1MS_MASK) | swr_cnt_1ms_ini; ocp_write_word(tp, MCU_TYPE_USB, USB_UPS_CFG, ocp_data); } ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR); ocp_data |= PFM_PWM_SWITCH; ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data); /* Advnace EEE */ if (!r8153_patch_request(tp, true)) { data = ocp_reg_read(tp, OCP_POWER_CFG); data |= EEE_CLKDIV_EN; ocp_reg_write(tp, OCP_POWER_CFG, data); tp->ups_info.eee_ckdiv = true; data = ocp_reg_read(tp, OCP_DOWN_SPEED); data |= EN_EEE_CMODE | EN_EEE_1000 | EN_10M_CLKDIV; ocp_reg_write(tp, OCP_DOWN_SPEED, data); tp->ups_info.eee_cmod_lv = true; tp->ups_info._10m_ckdiv = true; tp->ups_info.eee_plloff_giga = true; ocp_reg_write(tp, OCP_SYSCLK_CFG, 0); ocp_reg_write(tp, OCP_SYSCLK_CFG, clk_div_expo(5)); tp->ups_info._250m_ckdiv = true; r8153_patch_request(tp, false); } if (tp->eee_en) rtl_eee_enable(tp, true); r8153_aldps_en(tp, true); r8152b_enable_fc(tp); r8153_u2p3en(tp, true); set_bit(PHY_RESET, &tp->flags); } static void r8153_first_init(struct r8152 *tp) { u32 ocp_data; r8153_mac_clk_spd(tp, false); rxdy_gated_en(tp, true); r8153_teredo_off(tp); ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data &= ~RCR_ACPT_ALL; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); rtl8152_nic_reset(tp); rtl_reset_bmu(tp); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data &= ~NOW_IS_OOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data &= ~MCU_BORW_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); wait_oob_link_list_ready(tp); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data |= RE_INIT_LL; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); wait_oob_link_list_ready(tp); rtl_rx_vlan_en(tp, tp->netdev->features & NETIF_F_HW_VLAN_CTAG_RX); ocp_data = tp->netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, ocp_data); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_MTPS, MTPS_JUMBO); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0); ocp_data |= TCR0_AUTO_FIFO; ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR0, ocp_data); rtl8152_nic_reset(tp); /* rx share fifo credit full threshold */ ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_NORMAL); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_NORMAL); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_NORMAL); /* TX share fifo free credit full threshold */ ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TXFIFO_CTRL, TXFIFO_THR_NORMAL2); } static void r8153_enter_oob(struct r8152 *tp) { u32 ocp_data; r8153_mac_clk_spd(tp, true); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data &= ~NOW_IS_OOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); rtl_disable(tp); rtl_reset_bmu(tp); wait_oob_link_list_ready(tp); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data |= RE_INIT_LL; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); wait_oob_link_list_ready(tp); ocp_data = tp->netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, ocp_data); switch (tp->version) { case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG); ocp_data &= ~TEREDO_WAKE_MASK; ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, ocp_data); break; case RTL_VER_08: case RTL_VER_09: /* Clear teredo wake event. bit[15:8] is the teredo wakeup * type. Set it to zero. bits[7:0] are the W1C bits about * the events. Set them to all 1 to clear them. */ ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_WAKE_BASE, 0x00ff); break; default: break; } rtl_rx_vlan_en(tp, true); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_BDC_CR); ocp_data |= ALDPS_PROXY_MODE; ocp_write_word(tp, MCU_TYPE_PLA, PLA_BDC_CR, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data |= NOW_IS_OOB | DIS_MCU_CLROOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); rxdy_gated_en(tp, false); ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data |= RCR_APM | RCR_AM | RCR_AB; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); } static void rtl8153_disable(struct r8152 *tp) { r8153_aldps_en(tp, false); rtl_disable(tp); rtl_reset_bmu(tp); r8153_aldps_en(tp, true); } static int rtl8152_set_speed(struct r8152 *tp, u8 autoneg, u32 speed, u8 duplex, u32 advertising) { u16 bmcr; int ret = 0; if (autoneg == AUTONEG_DISABLE) { if (duplex != DUPLEX_HALF && duplex != DUPLEX_FULL) return -EINVAL; switch (speed) { case SPEED_10: bmcr = BMCR_SPEED10; if (duplex == DUPLEX_FULL) { bmcr |= BMCR_FULLDPLX; tp->ups_info.speed_duplex = FORCE_10M_FULL; } else { tp->ups_info.speed_duplex = FORCE_10M_HALF; } break; case SPEED_100: bmcr = BMCR_SPEED100; if (duplex == DUPLEX_FULL) { bmcr |= BMCR_FULLDPLX; tp->ups_info.speed_duplex = FORCE_100M_FULL; } else { tp->ups_info.speed_duplex = FORCE_100M_HALF; } break; case SPEED_1000: if (tp->mii.supports_gmii) { bmcr = BMCR_SPEED1000 | BMCR_FULLDPLX; tp->ups_info.speed_duplex = NWAY_1000M_FULL; break; } /* fall through */ default: ret = -EINVAL; goto out; } if (duplex == DUPLEX_FULL) tp->mii.full_duplex = 1; else tp->mii.full_duplex = 0; tp->mii.force_media = 1; } else { u16 anar, tmp1; u32 support; support = RTL_ADVERTISED_10_HALF | RTL_ADVERTISED_10_FULL | RTL_ADVERTISED_100_HALF | RTL_ADVERTISED_100_FULL; if (tp->mii.supports_gmii) support |= RTL_ADVERTISED_1000_FULL; if (!(advertising & support)) return -EINVAL; anar = r8152_mdio_read(tp, MII_ADVERTISE); tmp1 = anar & ~(ADVERTISE_10HALF | ADVERTISE_10FULL | ADVERTISE_100HALF | ADVERTISE_100FULL); if (advertising & RTL_ADVERTISED_10_HALF) { tmp1 |= ADVERTISE_10HALF; tp->ups_info.speed_duplex = NWAY_10M_HALF; } if (advertising & RTL_ADVERTISED_10_FULL) { tmp1 |= ADVERTISE_10FULL; tp->ups_info.speed_duplex = NWAY_10M_FULL; } if (advertising & RTL_ADVERTISED_100_HALF) { tmp1 |= ADVERTISE_100HALF; tp->ups_info.speed_duplex = NWAY_100M_HALF; } if (advertising & RTL_ADVERTISED_100_FULL) { tmp1 |= ADVERTISE_100FULL; tp->ups_info.speed_duplex = NWAY_100M_FULL; } if (anar != tmp1) { r8152_mdio_write(tp, MII_ADVERTISE, tmp1); tp->mii.advertising = tmp1; } if (tp->mii.supports_gmii) { u16 gbcr; gbcr = r8152_mdio_read(tp, MII_CTRL1000); tmp1 = gbcr & ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF); if (advertising & RTL_ADVERTISED_1000_FULL) { tmp1 |= ADVERTISE_1000FULL; tp->ups_info.speed_duplex = NWAY_1000M_FULL; } if (gbcr != tmp1) r8152_mdio_write(tp, MII_CTRL1000, tmp1); } bmcr = BMCR_ANENABLE | BMCR_ANRESTART; tp->mii.force_media = 0; } if (test_and_clear_bit(PHY_RESET, &tp->flags)) bmcr |= BMCR_RESET; r8152_mdio_write(tp, MII_BMCR, bmcr); if (bmcr & BMCR_RESET) { int i; for (i = 0; i < 50; i++) { msleep(20); if ((r8152_mdio_read(tp, MII_BMCR) & BMCR_RESET) == 0) break; } } out: return ret; } static void rtl8152_up(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; r8152_aldps_en(tp, false); r8152b_exit_oob(tp); r8152_aldps_en(tp, true); } static void rtl8152_down(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) { rtl_drop_queued_tx(tp); return; } r8152_power_cut_en(tp, false); r8152_aldps_en(tp, false); r8152b_enter_oob(tp); r8152_aldps_en(tp, true); } static void rtl8153_up(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; r8153_u1u2en(tp, false); r8153_u2p3en(tp, false); r8153_aldps_en(tp, false); r8153_first_init(tp); r8153_aldps_en(tp, true); switch (tp->version) { case RTL_VER_03: case RTL_VER_04: break; case RTL_VER_05: case RTL_VER_06: default: r8153_u2p3en(tp, true); break; } r8153_u1u2en(tp, true); } static void rtl8153_down(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) { rtl_drop_queued_tx(tp); return; } r8153_u1u2en(tp, false); r8153_u2p3en(tp, false); r8153_power_cut_en(tp, false); r8153_aldps_en(tp, false); r8153_enter_oob(tp); r8153_aldps_en(tp, true); } static void rtl8153b_up(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; r8153b_u1u2en(tp, false); r8153_u2p3en(tp, false); r8153_aldps_en(tp, false); r8153_first_init(tp); ocp_write_dword(tp, MCU_TYPE_USB, USB_RX_BUF_TH, RX_THR_B); r8153_aldps_en(tp, true); r8153_u2p3en(tp, true); r8153b_u1u2en(tp, true); } static void rtl8153b_down(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) { rtl_drop_queued_tx(tp); return; } r8153b_u1u2en(tp, false); r8153_u2p3en(tp, false); r8153b_power_cut_en(tp, false); r8153_aldps_en(tp, false); r8153_enter_oob(tp); r8153_aldps_en(tp, true); } static bool rtl8152_in_nway(struct r8152 *tp) { u16 nway_state; ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, 0x2000); tp->ocp_base = 0x2000; ocp_write_byte(tp, MCU_TYPE_PLA, 0xb014, 0x4c); /* phy state */ nway_state = ocp_read_word(tp, MCU_TYPE_PLA, 0xb01a); /* bit 15: TXDIS_STATE, bit 14: ABD_STATE */ if (nway_state & 0xc000) return false; else return true; } static bool rtl8153_in_nway(struct r8152 *tp) { u16 phy_state = ocp_reg_read(tp, OCP_PHY_STATE) & 0xff; if (phy_state == TXDIS_STATE || phy_state == ABD_STATE) return false; else return true; } static void set_carrier(struct r8152 *tp) { struct net_device *netdev = tp->netdev; struct napi_struct *napi = &tp->napi; u8 speed; speed = rtl8152_get_speed(tp); if (speed & LINK_STATUS) { if (!netif_carrier_ok(netdev)) { tp->rtl_ops.enable(tp); netif_stop_queue(netdev); napi_disable(napi); netif_carrier_on(netdev); rtl_start_rx(tp); clear_bit(RTL8152_SET_RX_MODE, &tp->flags); _rtl8152_set_rx_mode(netdev); napi_enable(&tp->napi); netif_wake_queue(netdev); netif_info(tp, link, netdev, "carrier on\n"); } else if (netif_queue_stopped(netdev) && skb_queue_len(&tp->tx_queue) < tp->tx_qlen) { netif_wake_queue(netdev); } } else { if (netif_carrier_ok(netdev)) { netif_carrier_off(netdev); tasklet_disable(&tp->tx_tl); napi_disable(napi); tp->rtl_ops.disable(tp); napi_enable(napi); tasklet_enable(&tp->tx_tl); netif_info(tp, link, netdev, "carrier off\n"); } } } static void rtl_work_func_t(struct work_struct *work) { struct r8152 *tp = container_of(work, struct r8152, schedule.work); /* If the device is unplugged or !netif_running(), the workqueue * doesn't need to wake the device, and could return directly. */ if (test_bit(RTL8152_UNPLUG, &tp->flags) || !netif_running(tp->netdev)) return; if (usb_autopm_get_interface(tp->intf) < 0) return; if (!test_bit(WORK_ENABLE, &tp->flags)) goto out1; if (!mutex_trylock(&tp->control)) { schedule_delayed_work(&tp->schedule, 0); goto out1; } if (test_and_clear_bit(RTL8152_LINK_CHG, &tp->flags)) set_carrier(tp); if (test_and_clear_bit(RTL8152_SET_RX_MODE, &tp->flags)) _rtl8152_set_rx_mode(tp->netdev); /* don't schedule tasket before linking */ if (test_and_clear_bit(SCHEDULE_TASKLET, &tp->flags) && netif_carrier_ok(tp->netdev)) tasklet_schedule(&tp->tx_tl); mutex_unlock(&tp->control); out1: usb_autopm_put_interface(tp->intf); } static void rtl_hw_phy_work_func_t(struct work_struct *work) { struct r8152 *tp = container_of(work, struct r8152, hw_phy_work.work); if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; if (usb_autopm_get_interface(tp->intf) < 0) return; mutex_lock(&tp->control); if (rtl8152_request_firmware(tp) == -ENODEV && tp->rtl_fw.retry) { tp->rtl_fw.retry = false; tp->rtl_fw.fw = NULL; /* Delay execution in case request_firmware() is not ready yet. */ queue_delayed_work(system_long_wq, &tp->hw_phy_work, HZ * 10); goto ignore_once; } tp->rtl_ops.hw_phy_cfg(tp); rtl8152_set_speed(tp, tp->autoneg, tp->speed, tp->duplex, tp->advertising); ignore_once: mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); } #ifdef CONFIG_PM_SLEEP static int rtl_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct r8152 *tp = container_of(nb, struct r8152, pm_notifier); switch (action) { case PM_HIBERNATION_PREPARE: case PM_SUSPEND_PREPARE: usb_autopm_get_interface(tp->intf); break; case PM_POST_HIBERNATION: case PM_POST_SUSPEND: usb_autopm_put_interface(tp->intf); break; case PM_POST_RESTORE: case PM_RESTORE_PREPARE: default: break; } return NOTIFY_DONE; } #endif static int rtl8152_open(struct net_device *netdev) { struct r8152 *tp = netdev_priv(netdev); int res = 0; if (work_busy(&tp->hw_phy_work.work) & WORK_BUSY_PENDING) { cancel_delayed_work_sync(&tp->hw_phy_work); rtl_hw_phy_work_func_t(&tp->hw_phy_work.work); } res = alloc_all_mem(tp); if (res) goto out; res = usb_autopm_get_interface(tp->intf); if (res < 0) goto out_free; mutex_lock(&tp->control); tp->rtl_ops.up(tp); netif_carrier_off(netdev); netif_start_queue(netdev); set_bit(WORK_ENABLE, &tp->flags); res = usb_submit_urb(tp->intr_urb, GFP_KERNEL); if (res) { if (res == -ENODEV) netif_device_detach(tp->netdev); netif_warn(tp, ifup, netdev, "intr_urb submit failed: %d\n", res); goto out_unlock; } napi_enable(&tp->napi); tasklet_enable(&tp->tx_tl); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); #ifdef CONFIG_PM_SLEEP tp->pm_notifier.notifier_call = rtl_notifier; register_pm_notifier(&tp->pm_notifier); #endif return 0; out_unlock: mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out_free: free_all_mem(tp); out: return res; } static int rtl8152_close(struct net_device *netdev) { struct r8152 *tp = netdev_priv(netdev); int res = 0; #ifdef CONFIG_PM_SLEEP unregister_pm_notifier(&tp->pm_notifier); #endif tasklet_disable(&tp->tx_tl); clear_bit(WORK_ENABLE, &tp->flags); usb_kill_urb(tp->intr_urb); cancel_delayed_work_sync(&tp->schedule); napi_disable(&tp->napi); netif_stop_queue(netdev); res = usb_autopm_get_interface(tp->intf); if (res < 0 || test_bit(RTL8152_UNPLUG, &tp->flags)) { rtl_drop_queued_tx(tp); rtl_stop_rx(tp); } else { mutex_lock(&tp->control); tp->rtl_ops.down(tp); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); } free_all_mem(tp); return res; } static void rtl_tally_reset(struct r8152 *tp) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_RSTTALLY); ocp_data |= TALLY_RESET; ocp_write_word(tp, MCU_TYPE_PLA, PLA_RSTTALLY, ocp_data); } static void r8152b_init(struct r8152 *tp) { u32 ocp_data; u16 data; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; data = r8152_mdio_read(tp, MII_BMCR); if (data & BMCR_PDOWN) { data &= ~BMCR_PDOWN; r8152_mdio_write(tp, MII_BMCR, data); } r8152_aldps_en(tp, false); if (tp->version == RTL_VER_01) { ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE); ocp_data &= ~LED_MODE_MASK; ocp_write_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE, ocp_data); } r8152_power_cut_en(tp, false); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR); ocp_data |= TX_10M_IDLE_EN | PFM_PWM_SWITCH; ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data); ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL); ocp_data &= ~MCU_CLK_RATIO_MASK; ocp_data |= MCU_CLK_RATIO | D3_CLK_GATED_EN; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL, ocp_data); ocp_data = GPHY_STS_MSK | SPEED_DOWN_MSK | SPDWN_RXDV_MSK | SPDWN_LINKCHG_MSK; ocp_write_word(tp, MCU_TYPE_PLA, PLA_GPHY_INTR_IMR, ocp_data); rtl_tally_reset(tp); /* enable rx aggregation */ ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL); ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN); ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data); } static void r8153_init(struct r8152 *tp) { u32 ocp_data; u16 data; int i; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; r8153_u1u2en(tp, false); for (i = 0; i < 500; i++) { if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_BOOT_CTRL) & AUTOLOAD_DONE) break; msleep(20); } data = r8153_phy_status(tp, 0); if (tp->version == RTL_VER_03 || tp->version == RTL_VER_04 || tp->version == RTL_VER_05) ocp_reg_write(tp, OCP_ADC_CFG, CKADSEL_L | ADC_EN | EN_EMI_L); data = r8152_mdio_read(tp, MII_BMCR); if (data & BMCR_PDOWN) { data &= ~BMCR_PDOWN; r8152_mdio_write(tp, MII_BMCR, data); } data = r8153_phy_status(tp, PHY_STAT_LAN_ON); r8153_u2p3en(tp, false); if (tp->version == RTL_VER_04) { ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_SSPHYLINK2); ocp_data &= ~pwd_dn_scale_mask; ocp_data |= pwd_dn_scale(96); ocp_write_word(tp, MCU_TYPE_USB, USB_SSPHYLINK2, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_USB2PHY); ocp_data |= USB2PHY_L1 | USB2PHY_SUSPEND; ocp_write_byte(tp, MCU_TYPE_USB, USB_USB2PHY, ocp_data); } else if (tp->version == RTL_VER_05) { ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_DMY_REG0); ocp_data &= ~ECM_ALDPS; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_DMY_REG0, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1); if (ocp_read_word(tp, MCU_TYPE_USB, USB_BURST_SIZE) == 0) ocp_data &= ~DYNAMIC_BURST; else ocp_data |= DYNAMIC_BURST; ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1, ocp_data); } else if (tp->version == RTL_VER_06) { ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1); if (ocp_read_word(tp, MCU_TYPE_USB, USB_BURST_SIZE) == 0) ocp_data &= ~DYNAMIC_BURST; else ocp_data |= DYNAMIC_BURST; ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1, ocp_data); } ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY2); ocp_data |= EP4_FULL_FC; ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY2, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_WDT11_CTRL); ocp_data &= ~TIMER11_EN; ocp_write_word(tp, MCU_TYPE_USB, USB_WDT11_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE); ocp_data &= ~LED_MODE_MASK; ocp_write_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE, ocp_data); ocp_data = FIFO_EMPTY_1FB | ROK_EXIT_LPM; if (tp->version == RTL_VER_04 && tp->udev->speed < USB_SPEED_SUPER) ocp_data |= LPM_TIMER_500MS; else ocp_data |= LPM_TIMER_500US; ocp_write_byte(tp, MCU_TYPE_USB, USB_LPM_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_AFE_CTRL2); ocp_data &= ~SEN_VAL_MASK; ocp_data |= SEN_VAL_NORMAL | SEL_RXIDLE; ocp_write_word(tp, MCU_TYPE_USB, USB_AFE_CTRL2, ocp_data); ocp_write_word(tp, MCU_TYPE_USB, USB_CONNECT_TIMER, 0x0001); r8153_power_cut_en(tp, false); r8153_u1u2en(tp, true); r8153_mac_clk_spd(tp, false); usb_enable_lpm(tp->udev); /* rx aggregation */ ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL); ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN); if (test_bit(DELL_TB_RX_AGG_BUG, &tp->flags)) ocp_data |= RX_AGG_DISABLE; ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data); rtl_tally_reset(tp); switch (tp->udev->speed) { case USB_SPEED_SUPER: case USB_SPEED_SUPER_PLUS: tp->coalesce = COALESCE_SUPER; break; case USB_SPEED_HIGH: tp->coalesce = COALESCE_HIGH; break; default: tp->coalesce = COALESCE_SLOW; break; } } static void r8153b_init(struct r8152 *tp) { u32 ocp_data; u16 data; int i; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; r8153b_u1u2en(tp, false); for (i = 0; i < 500; i++) { if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_BOOT_CTRL) & AUTOLOAD_DONE) break; msleep(20); } data = r8153_phy_status(tp, 0); data = r8152_mdio_read(tp, MII_BMCR); if (data & BMCR_PDOWN) { data &= ~BMCR_PDOWN; r8152_mdio_write(tp, MII_BMCR, data); } data = r8153_phy_status(tp, PHY_STAT_LAN_ON); r8153_u2p3en(tp, false); /* MSC timer = 0xfff * 8ms = 32760 ms */ ocp_write_word(tp, MCU_TYPE_USB, USB_MSC_TIMER, 0x0fff); /* U1/U2/L1 idle timer. 500 us */ ocp_write_word(tp, MCU_TYPE_USB, USB_U1U2_TIMER, 500); r8153b_power_cut_en(tp, false); r8153b_ups_en(tp, false); r8153_queue_wake(tp, false); rtl_runtime_suspend_enable(tp, false); r8153b_u1u2en(tp, true); usb_enable_lpm(tp->udev); /* MAC clock speed down */ ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2); ocp_data |= MAC_CLK_SPDWN_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2, ocp_data); set_bit(GREEN_ETHERNET, &tp->flags); /* rx aggregation */ ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL); ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN); ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data); rtl_tally_reset(tp); tp->coalesce = 15000; /* 15 us */ } static int rtl8152_pre_reset(struct usb_interface *intf) { struct r8152 *tp = usb_get_intfdata(intf); struct net_device *netdev; if (!tp) return 0; netdev = tp->netdev; if (!netif_running(netdev)) return 0; netif_stop_queue(netdev); tasklet_disable(&tp->tx_tl); clear_bit(WORK_ENABLE, &tp->flags); usb_kill_urb(tp->intr_urb); cancel_delayed_work_sync(&tp->schedule); napi_disable(&tp->napi); if (netif_carrier_ok(netdev)) { mutex_lock(&tp->control); tp->rtl_ops.disable(tp); mutex_unlock(&tp->control); } return 0; } static int rtl8152_post_reset(struct usb_interface *intf) { struct r8152 *tp = usb_get_intfdata(intf); struct net_device *netdev; struct sockaddr sa; if (!tp) return 0; /* reset the MAC adddress in case of policy change */ if (determine_ethernet_addr(tp, &sa) >= 0) { rtnl_lock(); dev_set_mac_address (tp->netdev, &sa, NULL); rtnl_unlock(); } netdev = tp->netdev; if (!netif_running(netdev)) return 0; set_bit(WORK_ENABLE, &tp->flags); if (netif_carrier_ok(netdev)) { mutex_lock(&tp->control); tp->rtl_ops.enable(tp); rtl_start_rx(tp); _rtl8152_set_rx_mode(netdev); mutex_unlock(&tp->control); } napi_enable(&tp->napi); tasklet_enable(&tp->tx_tl); netif_wake_queue(netdev); usb_submit_urb(tp->intr_urb, GFP_KERNEL); if (!list_empty(&tp->rx_done)) napi_schedule(&tp->napi); return 0; } static bool delay_autosuspend(struct r8152 *tp) { bool sw_linking = !!netif_carrier_ok(tp->netdev); bool hw_linking = !!(rtl8152_get_speed(tp) & LINK_STATUS); /* This means a linking change occurs and the driver doesn't detect it, * yet. If the driver has disabled tx/rx and hw is linking on, the * device wouldn't wake up by receiving any packet. */ if (work_busy(&tp->schedule.work) || sw_linking != hw_linking) return true; /* If the linking down is occurred by nway, the device may miss the * linking change event. And it wouldn't wake when linking on. */ if (!sw_linking && tp->rtl_ops.in_nway(tp)) return true; else if (!skb_queue_empty(&tp->tx_queue)) return true; else return false; } static int rtl8152_runtime_resume(struct r8152 *tp) { struct net_device *netdev = tp->netdev; if (netif_running(netdev) && netdev->flags & IFF_UP) { struct napi_struct *napi = &tp->napi; tp->rtl_ops.autosuspend_en(tp, false); napi_disable(napi); set_bit(WORK_ENABLE, &tp->flags); if (netif_carrier_ok(netdev)) { if (rtl8152_get_speed(tp) & LINK_STATUS) { rtl_start_rx(tp); } else { netif_carrier_off(netdev); tp->rtl_ops.disable(tp); netif_info(tp, link, netdev, "linking down\n"); } } napi_enable(napi); clear_bit(SELECTIVE_SUSPEND, &tp->flags); smp_mb__after_atomic(); if (!list_empty(&tp->rx_done)) napi_schedule(&tp->napi); usb_submit_urb(tp->intr_urb, GFP_NOIO); } else { if (netdev->flags & IFF_UP) tp->rtl_ops.autosuspend_en(tp, false); clear_bit(SELECTIVE_SUSPEND, &tp->flags); } return 0; } static int rtl8152_system_resume(struct r8152 *tp) { struct net_device *netdev = tp->netdev; netif_device_attach(netdev); if (netif_running(netdev) && (netdev->flags & IFF_UP)) { tp->rtl_ops.up(tp); netif_carrier_off(netdev); set_bit(WORK_ENABLE, &tp->flags); usb_submit_urb(tp->intr_urb, GFP_NOIO); } return 0; } static int rtl8152_runtime_suspend(struct r8152 *tp) { struct net_device *netdev = tp->netdev; int ret = 0; set_bit(SELECTIVE_SUSPEND, &tp->flags); smp_mb__after_atomic(); if (netif_running(netdev) && test_bit(WORK_ENABLE, &tp->flags)) { u32 rcr = 0; if (netif_carrier_ok(netdev)) { u32 ocp_data; rcr = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data = rcr & ~RCR_ACPT_ALL; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); rxdy_gated_en(tp, true); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); if (!(ocp_data & RXFIFO_EMPTY)) { rxdy_gated_en(tp, false); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, rcr); clear_bit(SELECTIVE_SUSPEND, &tp->flags); smp_mb__after_atomic(); ret = -EBUSY; goto out1; } } clear_bit(WORK_ENABLE, &tp->flags); usb_kill_urb(tp->intr_urb); tp->rtl_ops.autosuspend_en(tp, true); if (netif_carrier_ok(netdev)) { struct napi_struct *napi = &tp->napi; napi_disable(napi); rtl_stop_rx(tp); rxdy_gated_en(tp, false); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, rcr); napi_enable(napi); } if (delay_autosuspend(tp)) { rtl8152_runtime_resume(tp); ret = -EBUSY; } } out1: return ret; } static int rtl8152_system_suspend(struct r8152 *tp) { struct net_device *netdev = tp->netdev; netif_device_detach(netdev); if (netif_running(netdev) && test_bit(WORK_ENABLE, &tp->flags)) { struct napi_struct *napi = &tp->napi; clear_bit(WORK_ENABLE, &tp->flags); usb_kill_urb(tp->intr_urb); tasklet_disable(&tp->tx_tl); napi_disable(napi); cancel_delayed_work_sync(&tp->schedule); tp->rtl_ops.down(tp); napi_enable(napi); tasklet_enable(&tp->tx_tl); } return 0; } static int rtl8152_suspend(struct usb_interface *intf, pm_message_t message) { struct r8152 *tp = usb_get_intfdata(intf); int ret; mutex_lock(&tp->control); if (PMSG_IS_AUTO(message)) ret = rtl8152_runtime_suspend(tp); else ret = rtl8152_system_suspend(tp); mutex_unlock(&tp->control); return ret; } static int rtl8152_resume(struct usb_interface *intf) { struct r8152 *tp = usb_get_intfdata(intf); int ret; mutex_lock(&tp->control); if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) ret = rtl8152_runtime_resume(tp); else ret = rtl8152_system_resume(tp); mutex_unlock(&tp->control); return ret; } static int rtl8152_reset_resume(struct usb_interface *intf) { struct r8152 *tp = usb_get_intfdata(intf); clear_bit(SELECTIVE_SUSPEND, &tp->flags); tp->rtl_ops.init(tp); queue_delayed_work(system_long_wq, &tp->hw_phy_work, 0); set_ethernet_addr(tp); return rtl8152_resume(intf); } static void rtl8152_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct r8152 *tp = netdev_priv(dev); if (usb_autopm_get_interface(tp->intf) < 0) return; if (!rtl_can_wakeup(tp)) { wol->supported = 0; wol->wolopts = 0; } else { mutex_lock(&tp->control); wol->supported = WAKE_ANY; wol->wolopts = __rtl_get_wol(tp); mutex_unlock(&tp->control); } usb_autopm_put_interface(tp->intf); } static int rtl8152_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct r8152 *tp = netdev_priv(dev); int ret; if (!rtl_can_wakeup(tp)) return -EOPNOTSUPP; if (wol->wolopts & ~WAKE_ANY) return -EINVAL; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out_set_wol; mutex_lock(&tp->control); __rtl_set_wol(tp, wol->wolopts); tp->saved_wolopts = wol->wolopts & WAKE_ANY; mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out_set_wol: return ret; } static u32 rtl8152_get_msglevel(struct net_device *dev) { struct r8152 *tp = netdev_priv(dev); return tp->msg_enable; } static void rtl8152_set_msglevel(struct net_device *dev, u32 value) { struct r8152 *tp = netdev_priv(dev); tp->msg_enable = value; } static void rtl8152_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *info) { struct r8152 *tp = netdev_priv(netdev); strlcpy(info->driver, MODULENAME, sizeof(info->driver)); strlcpy(info->version, DRIVER_VERSION, sizeof(info->version)); usb_make_path(tp->udev, info->bus_info, sizeof(info->bus_info)); if (!IS_ERR_OR_NULL(tp->rtl_fw.fw)) strlcpy(info->fw_version, tp->rtl_fw.version, sizeof(info->fw_version)); } static int rtl8152_get_link_ksettings(struct net_device *netdev, struct ethtool_link_ksettings *cmd) { struct r8152 *tp = netdev_priv(netdev); int ret; if (!tp->mii.mdio_read) return -EOPNOTSUPP; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out; mutex_lock(&tp->control); mii_ethtool_get_link_ksettings(&tp->mii, cmd); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out: return ret; } static int rtl8152_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct r8152 *tp = netdev_priv(dev); u32 advertising = 0; int ret; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out; if (test_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, cmd->link_modes.advertising)) advertising |= RTL_ADVERTISED_10_HALF; if (test_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, cmd->link_modes.advertising)) advertising |= RTL_ADVERTISED_10_FULL; if (test_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, cmd->link_modes.advertising)) advertising |= RTL_ADVERTISED_100_HALF; if (test_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, cmd->link_modes.advertising)) advertising |= RTL_ADVERTISED_100_FULL; if (test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, cmd->link_modes.advertising)) advertising |= RTL_ADVERTISED_1000_HALF; if (test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, cmd->link_modes.advertising)) advertising |= RTL_ADVERTISED_1000_FULL; mutex_lock(&tp->control); ret = rtl8152_set_speed(tp, cmd->base.autoneg, cmd->base.speed, cmd->base.duplex, advertising); if (!ret) { tp->autoneg = cmd->base.autoneg; tp->speed = cmd->base.speed; tp->duplex = cmd->base.duplex; tp->advertising = advertising; } mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out: return ret; } static const char rtl8152_gstrings[][ETH_GSTRING_LEN] = { "tx_packets", "rx_packets", "tx_errors", "rx_errors", "rx_missed", "align_errors", "tx_single_collisions", "tx_multi_collisions", "rx_unicast", "rx_broadcast", "rx_multicast", "tx_aborted", "tx_underrun", }; static int rtl8152_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(rtl8152_gstrings); default: return -EOPNOTSUPP; } } static void rtl8152_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct r8152 *tp = netdev_priv(dev); struct tally_counter tally; if (usb_autopm_get_interface(tp->intf) < 0) return; generic_ocp_read(tp, PLA_TALLYCNT, sizeof(tally), &tally, MCU_TYPE_PLA); usb_autopm_put_interface(tp->intf); data[0] = le64_to_cpu(tally.tx_packets); data[1] = le64_to_cpu(tally.rx_packets); data[2] = le64_to_cpu(tally.tx_errors); data[3] = le32_to_cpu(tally.rx_errors); data[4] = le16_to_cpu(tally.rx_missed); data[5] = le16_to_cpu(tally.align_errors); data[6] = le32_to_cpu(tally.tx_one_collision); data[7] = le32_to_cpu(tally.tx_multi_collision); data[8] = le64_to_cpu(tally.rx_unicast); data[9] = le64_to_cpu(tally.rx_broadcast); data[10] = le32_to_cpu(tally.rx_multicast); data[11] = le16_to_cpu(tally.tx_aborted); data[12] = le16_to_cpu(tally.tx_underrun); } static void rtl8152_get_strings(struct net_device *dev, u32 stringset, u8 *data) { switch (stringset) { case ETH_SS_STATS: memcpy(data, *rtl8152_gstrings, sizeof(rtl8152_gstrings)); break; } } static int r8152_get_eee(struct r8152 *tp, struct ethtool_eee *eee) { u32 lp, adv, supported = 0; u16 val; val = r8152_mmd_read(tp, MDIO_MMD_PCS, MDIO_PCS_EEE_ABLE); supported = mmd_eee_cap_to_ethtool_sup_t(val); val = r8152_mmd_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV); adv = mmd_eee_adv_to_ethtool_adv_t(val); val = r8152_mmd_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_LPABLE); lp = mmd_eee_adv_to_ethtool_adv_t(val); eee->eee_enabled = tp->eee_en; eee->eee_active = !!(supported & adv & lp); eee->supported = supported; eee->advertised = tp->eee_adv; eee->lp_advertised = lp; return 0; } static int r8152_set_eee(struct r8152 *tp, struct ethtool_eee *eee) { u16 val = ethtool_adv_to_mmd_eee_adv_t(eee->advertised); tp->eee_en = eee->eee_enabled; tp->eee_adv = val; rtl_eee_enable(tp, tp->eee_en); return 0; } static int r8153_get_eee(struct r8152 *tp, struct ethtool_eee *eee) { u32 lp, adv, supported = 0; u16 val; val = ocp_reg_read(tp, OCP_EEE_ABLE); supported = mmd_eee_cap_to_ethtool_sup_t(val); val = ocp_reg_read(tp, OCP_EEE_ADV); adv = mmd_eee_adv_to_ethtool_adv_t(val); val = ocp_reg_read(tp, OCP_EEE_LPABLE); lp = mmd_eee_adv_to_ethtool_adv_t(val); eee->eee_enabled = tp->eee_en; eee->eee_active = !!(supported & adv & lp); eee->supported = supported; eee->advertised = tp->eee_adv; eee->lp_advertised = lp; return 0; } static int rtl_ethtool_get_eee(struct net_device *net, struct ethtool_eee *edata) { struct r8152 *tp = netdev_priv(net); int ret; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out; mutex_lock(&tp->control); ret = tp->rtl_ops.eee_get(tp, edata); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out: return ret; } static int rtl_ethtool_set_eee(struct net_device *net, struct ethtool_eee *edata) { struct r8152 *tp = netdev_priv(net); int ret; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out; mutex_lock(&tp->control); ret = tp->rtl_ops.eee_set(tp, edata); if (!ret) ret = mii_nway_restart(&tp->mii); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out: return ret; } static int rtl8152_nway_reset(struct net_device *dev) { struct r8152 *tp = netdev_priv(dev); int ret; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out; mutex_lock(&tp->control); ret = mii_nway_restart(&tp->mii); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out: return ret; } static int rtl8152_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *coalesce) { struct r8152 *tp = netdev_priv(netdev); switch (tp->version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_07: return -EOPNOTSUPP; default: break; } coalesce->rx_coalesce_usecs = tp->coalesce; return 0; } static int rtl8152_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *coalesce) { struct r8152 *tp = netdev_priv(netdev); int ret; switch (tp->version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_07: return -EOPNOTSUPP; default: break; } if (coalesce->rx_coalesce_usecs > COALESCE_SLOW) return -EINVAL; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) return ret; mutex_lock(&tp->control); if (tp->coalesce != coalesce->rx_coalesce_usecs) { tp->coalesce = coalesce->rx_coalesce_usecs; if (netif_running(netdev) && netif_carrier_ok(netdev)) { netif_stop_queue(netdev); napi_disable(&tp->napi); tp->rtl_ops.disable(tp); tp->rtl_ops.enable(tp); rtl_start_rx(tp); clear_bit(RTL8152_SET_RX_MODE, &tp->flags); _rtl8152_set_rx_mode(netdev); napi_enable(&tp->napi); netif_wake_queue(netdev); } } mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); return ret; } static int rtl8152_get_tunable(struct net_device *netdev, const struct ethtool_tunable *tunable, void *d) { struct r8152 *tp = netdev_priv(netdev); switch (tunable->id) { case ETHTOOL_RX_COPYBREAK: *(u32 *)d = tp->rx_copybreak; break; default: return -EOPNOTSUPP; } return 0; } static int rtl8152_set_tunable(struct net_device *netdev, const struct ethtool_tunable *tunable, const void *d) { struct r8152 *tp = netdev_priv(netdev); u32 val; switch (tunable->id) { case ETHTOOL_RX_COPYBREAK: val = *(u32 *)d; if (val < ETH_ZLEN) { netif_err(tp, rx_err, netdev, "Invalid rx copy break value\n"); return -EINVAL; } if (tp->rx_copybreak != val) { if (netdev->flags & IFF_UP) { mutex_lock(&tp->control); napi_disable(&tp->napi); tp->rx_copybreak = val; napi_enable(&tp->napi); mutex_unlock(&tp->control); } else { tp->rx_copybreak = val; } } break; default: return -EOPNOTSUPP; } return 0; } static void rtl8152_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) { struct r8152 *tp = netdev_priv(netdev); ring->rx_max_pending = RTL8152_RX_MAX_PENDING; ring->rx_pending = tp->rx_pending; } static int rtl8152_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) { struct r8152 *tp = netdev_priv(netdev); if (ring->rx_pending < (RTL8152_MAX_RX * 2)) return -EINVAL; if (tp->rx_pending != ring->rx_pending) { if (netdev->flags & IFF_UP) { mutex_lock(&tp->control); napi_disable(&tp->napi); tp->rx_pending = ring->rx_pending; napi_enable(&tp->napi); mutex_unlock(&tp->control); } else { tp->rx_pending = ring->rx_pending; } } return 0; } static const struct ethtool_ops ops = { .get_drvinfo = rtl8152_get_drvinfo, .get_link = ethtool_op_get_link, .nway_reset = rtl8152_nway_reset, .get_msglevel = rtl8152_get_msglevel, .set_msglevel = rtl8152_set_msglevel, .get_wol = rtl8152_get_wol, .set_wol = rtl8152_set_wol, .get_strings = rtl8152_get_strings, .get_sset_count = rtl8152_get_sset_count, .get_ethtool_stats = rtl8152_get_ethtool_stats, .get_coalesce = rtl8152_get_coalesce, .set_coalesce = rtl8152_set_coalesce, .get_eee = rtl_ethtool_get_eee, .set_eee = rtl_ethtool_set_eee, .get_link_ksettings = rtl8152_get_link_ksettings, .set_link_ksettings = rtl8152_set_link_ksettings, .get_tunable = rtl8152_get_tunable, .set_tunable = rtl8152_set_tunable, .get_ringparam = rtl8152_get_ringparam, .set_ringparam = rtl8152_set_ringparam, }; static int rtl8152_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd) { struct r8152 *tp = netdev_priv(netdev); struct mii_ioctl_data *data = if_mii(rq); int res; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return -ENODEV; res = usb_autopm_get_interface(tp->intf); if (res < 0) goto out; switch (cmd) { case SIOCGMIIPHY: data->phy_id = R8152_PHY_ID; /* Internal PHY */ break; case SIOCGMIIREG: mutex_lock(&tp->control); data->val_out = r8152_mdio_read(tp, data->reg_num); mutex_unlock(&tp->control); break; case SIOCSMIIREG: if (!capable(CAP_NET_ADMIN)) { res = -EPERM; break; } mutex_lock(&tp->control); r8152_mdio_write(tp, data->reg_num, data->val_in); mutex_unlock(&tp->control); break; default: res = -EOPNOTSUPP; } usb_autopm_put_interface(tp->intf); out: return res; } static int rtl8152_change_mtu(struct net_device *dev, int new_mtu) { struct r8152 *tp = netdev_priv(dev); int ret; switch (tp->version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_07: dev->mtu = new_mtu; return 0; default: break; } ret = usb_autopm_get_interface(tp->intf); if (ret < 0) return ret; mutex_lock(&tp->control); dev->mtu = new_mtu; if (netif_running(dev)) { u32 rms = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, rms); if (netif_carrier_ok(dev)) r8153_set_rx_early_size(tp); } mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); return ret; } static const struct net_device_ops rtl8152_netdev_ops = { .ndo_open = rtl8152_open, .ndo_stop = rtl8152_close, .ndo_do_ioctl = rtl8152_ioctl, .ndo_start_xmit = rtl8152_start_xmit, .ndo_tx_timeout = rtl8152_tx_timeout, .ndo_set_features = rtl8152_set_features, .ndo_set_rx_mode = rtl8152_set_rx_mode, .ndo_set_mac_address = rtl8152_set_mac_address, .ndo_change_mtu = rtl8152_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_features_check = rtl8152_features_check, }; static void rtl8152_unload(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; if (tp->version != RTL_VER_01) r8152_power_cut_en(tp, true); } static void rtl8153_unload(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; r8153_power_cut_en(tp, false); } static void rtl8153b_unload(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; r8153b_power_cut_en(tp, false); } static int rtl_ops_init(struct r8152 *tp) { struct rtl_ops *ops = &tp->rtl_ops; int ret = 0; switch (tp->version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_07: ops->init = r8152b_init; ops->enable = rtl8152_enable; ops->disable = rtl8152_disable; ops->up = rtl8152_up; ops->down = rtl8152_down; ops->unload = rtl8152_unload; ops->eee_get = r8152_get_eee; ops->eee_set = r8152_set_eee; ops->in_nway = rtl8152_in_nway; ops->hw_phy_cfg = r8152b_hw_phy_cfg; ops->autosuspend_en = rtl_runtime_suspend_enable; tp->rx_buf_sz = 16 * 1024; tp->eee_en = true; tp->eee_adv = MDIO_EEE_100TX; break; case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: ops->init = r8153_init; ops->enable = rtl8153_enable; ops->disable = rtl8153_disable; ops->up = rtl8153_up; ops->down = rtl8153_down; ops->unload = rtl8153_unload; ops->eee_get = r8153_get_eee; ops->eee_set = r8152_set_eee; ops->in_nway = rtl8153_in_nway; ops->hw_phy_cfg = r8153_hw_phy_cfg; ops->autosuspend_en = rtl8153_runtime_enable; tp->rx_buf_sz = 32 * 1024; tp->eee_en = true; tp->eee_adv = MDIO_EEE_1000T | MDIO_EEE_100TX; break; case RTL_VER_08: case RTL_VER_09: ops->init = r8153b_init; ops->enable = rtl8153_enable; ops->disable = rtl8153_disable; ops->up = rtl8153b_up; ops->down = rtl8153b_down; ops->unload = rtl8153b_unload; ops->eee_get = r8153_get_eee; ops->eee_set = r8152_set_eee; ops->in_nway = rtl8153_in_nway; ops->hw_phy_cfg = r8153b_hw_phy_cfg; ops->autosuspend_en = rtl8153b_runtime_enable; tp->rx_buf_sz = 32 * 1024; tp->eee_en = true; tp->eee_adv = MDIO_EEE_1000T | MDIO_EEE_100TX; break; default: ret = -ENODEV; netif_err(tp, probe, tp->netdev, "Unknown Device\n"); break; } return ret; } #define FIRMWARE_8153A_2 "rtl_nic/rtl8153a-2.fw" #define FIRMWARE_8153A_3 "rtl_nic/rtl8153a-3.fw" #define FIRMWARE_8153A_4 "rtl_nic/rtl8153a-4.fw" #define FIRMWARE_8153B_2 "rtl_nic/rtl8153b-2.fw" MODULE_FIRMWARE(FIRMWARE_8153A_2); MODULE_FIRMWARE(FIRMWARE_8153A_3); MODULE_FIRMWARE(FIRMWARE_8153A_4); MODULE_FIRMWARE(FIRMWARE_8153B_2); static int rtl_fw_init(struct r8152 *tp) { struct rtl_fw *rtl_fw = &tp->rtl_fw; switch (tp->version) { case RTL_VER_04: rtl_fw->fw_name = FIRMWARE_8153A_2; rtl_fw->pre_fw = r8153_pre_firmware_1; rtl_fw->post_fw = r8153_post_firmware_1; break; case RTL_VER_05: rtl_fw->fw_name = FIRMWARE_8153A_3; rtl_fw->pre_fw = r8153_pre_firmware_2; rtl_fw->post_fw = r8153_post_firmware_2; break; case RTL_VER_06: rtl_fw->fw_name = FIRMWARE_8153A_4; rtl_fw->post_fw = r8153_post_firmware_3; break; case RTL_VER_09: rtl_fw->fw_name = FIRMWARE_8153B_2; rtl_fw->pre_fw = r8153b_pre_firmware_1; rtl_fw->post_fw = r8153b_post_firmware_1; break; default: break; } return 0; } static u8 rtl_get_version(struct usb_interface *intf) { struct usb_device *udev = interface_to_usbdev(intf); u32 ocp_data = 0; __le32 *tmp; u8 version; int ret; tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); if (!tmp) return 0; ret = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), RTL8152_REQ_GET_REGS, RTL8152_REQT_READ, PLA_TCR0, MCU_TYPE_PLA, tmp, sizeof(*tmp), 500); if (ret > 0) ocp_data = (__le32_to_cpu(*tmp) >> 16) & VERSION_MASK; kfree(tmp); switch (ocp_data) { case 0x4c00: version = RTL_VER_01; break; case 0x4c10: version = RTL_VER_02; break; case 0x5c00: version = RTL_VER_03; break; case 0x5c10: version = RTL_VER_04; break; case 0x5c20: version = RTL_VER_05; break; case 0x5c30: version = RTL_VER_06; break; case 0x4800: version = RTL_VER_07; break; case 0x6000: version = RTL_VER_08; break; case 0x6010: version = RTL_VER_09; break; default: version = RTL_VER_UNKNOWN; dev_info(&intf->dev, "Unknown version 0x%04x\n", ocp_data); break; } dev_dbg(&intf->dev, "Detected version 0x%04x\n", version); return version; } static int rtl8152_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); u8 version = rtl_get_version(intf); struct r8152 *tp; struct net_device *netdev; int ret; if (version == RTL_VER_UNKNOWN) return -ENODEV; if (udev->actconfig->desc.bConfigurationValue != 1) { usb_driver_set_configuration(udev, 1); return -ENODEV; } usb_reset_device(udev); netdev = alloc_etherdev(sizeof(struct r8152)); if (!netdev) { dev_err(&intf->dev, "Out of memory\n"); return -ENOMEM; } SET_NETDEV_DEV(netdev, &intf->dev); tp = netdev_priv(netdev); tp->msg_enable = 0x7FFF; tp->udev = udev; tp->netdev = netdev; tp->intf = intf; tp->version = version; switch (version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_07: tp->mii.supports_gmii = 0; break; default: tp->mii.supports_gmii = 1; break; } ret = rtl_ops_init(tp); if (ret) goto out; rtl_fw_init(tp); mutex_init(&tp->control); INIT_DELAYED_WORK(&tp->schedule, rtl_work_func_t); INIT_DELAYED_WORK(&tp->hw_phy_work, rtl_hw_phy_work_func_t); tasklet_init(&tp->tx_tl, bottom_half, (unsigned long)tp); tasklet_disable(&tp->tx_tl); netdev->netdev_ops = &rtl8152_netdev_ops; netdev->watchdog_timeo = RTL8152_TX_TIMEOUT; netdev->features |= NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_FRAGLIST | NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_FRAGLIST | NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | NETIF_F_IPV6_CSUM | NETIF_F_TSO6; if (tp->version == RTL_VER_01) { netdev->features &= ~NETIF_F_RXCSUM; netdev->hw_features &= ~NETIF_F_RXCSUM; } if (le16_to_cpu(udev->descriptor.idVendor) == VENDOR_ID_LENOVO && le16_to_cpu(udev->descriptor.idProduct) == 0x3082) set_bit(LENOVO_MACPASSTHRU, &tp->flags); if (le16_to_cpu(udev->descriptor.bcdDevice) == 0x3011 && udev->serial && (!strcmp(udev->serial, "000001000000") || !strcmp(udev->serial, "000002000000"))) { dev_info(&udev->dev, "Dell TB16 Dock, disable RX aggregation"); set_bit(DELL_TB_RX_AGG_BUG, &tp->flags); } netdev->ethtool_ops = &ops; netif_set_gso_max_size(netdev, RTL_LIMITED_TSO_SIZE); /* MTU range: 68 - 1500 or 9194 */ netdev->min_mtu = ETH_MIN_MTU; switch (tp->version) { case RTL_VER_01: case RTL_VER_02: netdev->max_mtu = ETH_DATA_LEN; break; default: netdev->max_mtu = RTL8153_MAX_MTU; break; } tp->mii.dev = netdev; tp->mii.mdio_read = read_mii_word; tp->mii.mdio_write = write_mii_word; tp->mii.phy_id_mask = 0x3f; tp->mii.reg_num_mask = 0x1f; tp->mii.phy_id = R8152_PHY_ID; tp->autoneg = AUTONEG_ENABLE; tp->speed = SPEED_100; tp->advertising = RTL_ADVERTISED_10_HALF | RTL_ADVERTISED_10_FULL | RTL_ADVERTISED_100_HALF | RTL_ADVERTISED_100_FULL; if (tp->mii.supports_gmii) { tp->speed = SPEED_1000; tp->advertising |= RTL_ADVERTISED_1000_FULL; } tp->duplex = DUPLEX_FULL; tp->rx_copybreak = RTL8152_RXFG_HEADSZ; tp->rx_pending = 10 * RTL8152_MAX_RX; intf->needs_remote_wakeup = 1; tp->rtl_ops.init(tp); #if IS_BUILTIN(CONFIG_USB_RTL8152) /* Retry in case request_firmware() is not ready yet. */ tp->rtl_fw.retry = true; #endif queue_delayed_work(system_long_wq, &tp->hw_phy_work, 0); set_ethernet_addr(tp); usb_set_intfdata(intf, tp); netif_napi_add(netdev, &tp->napi, r8152_poll, RTL8152_NAPI_WEIGHT); ret = register_netdev(netdev); if (ret != 0) { netif_err(tp, probe, netdev, "couldn't register the device\n"); goto out1; } if (!rtl_can_wakeup(tp)) __rtl_set_wol(tp, 0); tp->saved_wolopts = __rtl_get_wol(tp); if (tp->saved_wolopts) device_set_wakeup_enable(&udev->dev, true); else device_set_wakeup_enable(&udev->dev, false); netif_info(tp, probe, netdev, "%s\n", DRIVER_VERSION); return 0; out1: tasklet_kill(&tp->tx_tl); usb_set_intfdata(intf, NULL); out: free_netdev(netdev); return ret; } static void rtl8152_disconnect(struct usb_interface *intf) { struct r8152 *tp = usb_get_intfdata(intf); usb_set_intfdata(intf, NULL); if (tp) { rtl_set_unplug(tp); unregister_netdev(tp->netdev); tasklet_kill(&tp->tx_tl); cancel_delayed_work_sync(&tp->hw_phy_work); tp->rtl_ops.unload(tp); rtl8152_release_firmware(tp); free_netdev(tp->netdev); } } #define REALTEK_USB_DEVICE(vend, prod) \ .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ USB_DEVICE_ID_MATCH_INT_CLASS, \ .idVendor = (vend), \ .idProduct = (prod), \ .bInterfaceClass = USB_CLASS_VENDOR_SPEC \ }, \ { \ .match_flags = USB_DEVICE_ID_MATCH_INT_INFO | \ USB_DEVICE_ID_MATCH_DEVICE, \ .idVendor = (vend), \ .idProduct = (prod), \ .bInterfaceClass = USB_CLASS_COMM, \ .bInterfaceSubClass = USB_CDC_SUBCLASS_ETHERNET, \ .bInterfaceProtocol = USB_CDC_PROTO_NONE /* table of devices that work with this driver */ static const struct usb_device_id rtl8152_table[] = { {REALTEK_USB_DEVICE(VENDOR_ID_REALTEK, 0x8050)}, {REALTEK_USB_DEVICE(VENDOR_ID_REALTEK, 0x8152)}, {REALTEK_USB_DEVICE(VENDOR_ID_REALTEK, 0x8153)}, {REALTEK_USB_DEVICE(VENDOR_ID_MICROSOFT, 0x07ab)}, {REALTEK_USB_DEVICE(VENDOR_ID_MICROSOFT, 0x07c6)}, {REALTEK_USB_DEVICE(VENDOR_ID_SAMSUNG, 0xa101)}, {REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x304f)}, {REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x3062)}, {REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x3069)}, {REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x3082)}, {REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x7205)}, {REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x720c)}, {REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x7214)}, {REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0xa387)}, {REALTEK_USB_DEVICE(VENDOR_ID_LINKSYS, 0x0041)}, {REALTEK_USB_DEVICE(VENDOR_ID_NVIDIA, 0x09ff)}, {REALTEK_USB_DEVICE(VENDOR_ID_TPLINK, 0x0601)}, {} }; MODULE_DEVICE_TABLE(usb, rtl8152_table); static struct usb_driver rtl8152_driver = { .name = MODULENAME, .id_table = rtl8152_table, .probe = rtl8152_probe, .disconnect = rtl8152_disconnect, .suspend = rtl8152_suspend, .resume = rtl8152_resume, .reset_resume = rtl8152_reset_resume, .pre_reset = rtl8152_pre_reset, .post_reset = rtl8152_post_reset, .supports_autosuspend = 1, .disable_hub_initiated_lpm = 1, }; module_usb_driver(rtl8152_driver); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL"); MODULE_VERSION(DRIVER_VERSION);