/*************************************************************************** * * Copyright (C) 2007-2008 SMSC * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * *****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include "smsc95xx.h" #define SMSC_CHIPNAME "smsc95xx" #define SMSC_DRIVER_VERSION "1.0.4" #define HS_USB_PKT_SIZE (512) #define FS_USB_PKT_SIZE (64) #define DEFAULT_HS_BURST_CAP_SIZE (16 * 1024 + 5 * HS_USB_PKT_SIZE) #define DEFAULT_FS_BURST_CAP_SIZE (6 * 1024 + 33 * FS_USB_PKT_SIZE) #define DEFAULT_BULK_IN_DELAY (0x00002000) #define MAX_SINGLE_PACKET_SIZE (2048) #define LAN95XX_EEPROM_MAGIC (0x9500) #define EEPROM_MAC_OFFSET (0x01) #define DEFAULT_TX_CSUM_ENABLE (true) #define DEFAULT_RX_CSUM_ENABLE (true) #define SMSC95XX_INTERNAL_PHY_ID (1) #define SMSC95XX_TX_OVERHEAD (8) #define SMSC95XX_TX_OVERHEAD_CSUM (12) struct smsc95xx_priv { u32 mac_cr; spinlock_t mac_cr_lock; bool use_tx_csum; bool use_rx_csum; }; struct usb_context { struct usb_ctrlrequest req; struct usbnet *dev; }; static int turbo_mode = true; module_param(turbo_mode, bool, 0644); MODULE_PARM_DESC(turbo_mode, "Enable multiple frames per Rx transaction"); static int smsc95xx_read_reg(struct usbnet *dev, u32 index, u32 *data) { u32 *buf = kmalloc(4, GFP_KERNEL); int ret; BUG_ON(!dev); if (!buf) return -ENOMEM; ret = usb_control_msg(dev->udev, usb_rcvctrlpipe(dev->udev, 0), USB_VENDOR_REQUEST_READ_REGISTER, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 00, index, buf, 4, USB_CTRL_GET_TIMEOUT); if (unlikely(ret < 0)) devwarn(dev, "Failed to read register index 0x%08x", index); le32_to_cpus(buf); *data = *buf; kfree(buf); return ret; } static int smsc95xx_write_reg(struct usbnet *dev, u32 index, u32 data) { u32 *buf = kmalloc(4, GFP_KERNEL); int ret; BUG_ON(!dev); if (!buf) return -ENOMEM; *buf = data; cpu_to_le32s(buf); ret = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0), USB_VENDOR_REQUEST_WRITE_REGISTER, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 00, index, buf, 4, USB_CTRL_SET_TIMEOUT); if (unlikely(ret < 0)) devwarn(dev, "Failed to write register index 0x%08x", index); kfree(buf); return ret; } /* Loop until the read is completed with timeout * called with phy_mutex held */ static int smsc95xx_phy_wait_not_busy(struct usbnet *dev) { unsigned long start_time = jiffies; u32 val; do { smsc95xx_read_reg(dev, MII_ADDR, &val); if (!(val & MII_BUSY_)) return 0; } while (!time_after(jiffies, start_time + HZ)); return -EIO; } static int smsc95xx_mdio_read(struct net_device *netdev, int phy_id, int idx) { struct usbnet *dev = netdev_priv(netdev); u32 val, addr; mutex_lock(&dev->phy_mutex); /* confirm MII not busy */ if (smsc95xx_phy_wait_not_busy(dev)) { devwarn(dev, "MII is busy in smsc95xx_mdio_read"); mutex_unlock(&dev->phy_mutex); return -EIO; } /* set the address, index & direction (read from PHY) */ phy_id &= dev->mii.phy_id_mask; idx &= dev->mii.reg_num_mask; addr = (phy_id << 11) | (idx << 6) | MII_READ_; smsc95xx_write_reg(dev, MII_ADDR, addr); if (smsc95xx_phy_wait_not_busy(dev)) { devwarn(dev, "Timed out reading MII reg %02X", idx); mutex_unlock(&dev->phy_mutex); return -EIO; } smsc95xx_read_reg(dev, MII_DATA, &val); mutex_unlock(&dev->phy_mutex); return (u16)(val & 0xFFFF); } static void smsc95xx_mdio_write(struct net_device *netdev, int phy_id, int idx, int regval) { struct usbnet *dev = netdev_priv(netdev); u32 val, addr; mutex_lock(&dev->phy_mutex); /* confirm MII not busy */ if (smsc95xx_phy_wait_not_busy(dev)) { devwarn(dev, "MII is busy in smsc95xx_mdio_write"); mutex_unlock(&dev->phy_mutex); return; } val = regval; smsc95xx_write_reg(dev, MII_DATA, val); /* set the address, index & direction (write to PHY) */ phy_id &= dev->mii.phy_id_mask; idx &= dev->mii.reg_num_mask; addr = (phy_id << 11) | (idx << 6) | MII_WRITE_; smsc95xx_write_reg(dev, MII_ADDR, addr); if (smsc95xx_phy_wait_not_busy(dev)) devwarn(dev, "Timed out writing MII reg %02X", idx); mutex_unlock(&dev->phy_mutex); } static int smsc95xx_wait_eeprom(struct usbnet *dev) { unsigned long start_time = jiffies; u32 val; do { smsc95xx_read_reg(dev, E2P_CMD, &val); if (!(val & E2P_CMD_BUSY_) || (val & E2P_CMD_TIMEOUT_)) break; udelay(40); } while (!time_after(jiffies, start_time + HZ)); if (val & (E2P_CMD_TIMEOUT_ | E2P_CMD_BUSY_)) { devwarn(dev, "EEPROM read operation timeout"); return -EIO; } return 0; } static int smsc95xx_eeprom_confirm_not_busy(struct usbnet *dev) { unsigned long start_time = jiffies; u32 val; do { smsc95xx_read_reg(dev, E2P_CMD, &val); if (!(val & E2P_CMD_LOADED_)) { devwarn(dev, "No EEPROM present"); return -EIO; } if (!(val & E2P_CMD_BUSY_)) return 0; udelay(40); } while (!time_after(jiffies, start_time + HZ)); devwarn(dev, "EEPROM is busy"); return -EIO; } static int smsc95xx_read_eeprom(struct usbnet *dev, u32 offset, u32 length, u8 *data) { u32 val; int i, ret; BUG_ON(!dev); BUG_ON(!data); ret = smsc95xx_eeprom_confirm_not_busy(dev); if (ret) return ret; for (i = 0; i < length; i++) { val = E2P_CMD_BUSY_ | E2P_CMD_READ_ | (offset & E2P_CMD_ADDR_); smsc95xx_write_reg(dev, E2P_CMD, val); ret = smsc95xx_wait_eeprom(dev); if (ret < 0) return ret; smsc95xx_read_reg(dev, E2P_DATA, &val); data[i] = val & 0xFF; offset++; } return 0; } static int smsc95xx_write_eeprom(struct usbnet *dev, u32 offset, u32 length, u8 *data) { u32 val; int i, ret; BUG_ON(!dev); BUG_ON(!data); ret = smsc95xx_eeprom_confirm_not_busy(dev); if (ret) return ret; /* Issue write/erase enable command */ val = E2P_CMD_BUSY_ | E2P_CMD_EWEN_; smsc95xx_write_reg(dev, E2P_CMD, val); ret = smsc95xx_wait_eeprom(dev); if (ret < 0) return ret; for (i = 0; i < length; i++) { /* Fill data register */ val = data[i]; smsc95xx_write_reg(dev, E2P_DATA, val); /* Send "write" command */ val = E2P_CMD_BUSY_ | E2P_CMD_WRITE_ | (offset & E2P_CMD_ADDR_); smsc95xx_write_reg(dev, E2P_CMD, val); ret = smsc95xx_wait_eeprom(dev); if (ret < 0) return ret; offset++; } return 0; } static void smsc95xx_async_cmd_callback(struct urb *urb) { struct usb_context *usb_context = urb->context; struct usbnet *dev = usb_context->dev; int status = urb->status; if (status < 0) devwarn(dev, "async callback failed with %d", status); kfree(usb_context); usb_free_urb(urb); } static int smsc95xx_write_reg_async(struct usbnet *dev, u16 index, u32 *data) { struct usb_context *usb_context; int status; struct urb *urb; const u16 size = 4; urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) { devwarn(dev, "Error allocating URB"); return -ENOMEM; } usb_context = kmalloc(sizeof(struct usb_context), GFP_ATOMIC); if (usb_context == NULL) { devwarn(dev, "Error allocating control msg"); usb_free_urb(urb); return -ENOMEM; } usb_context->req.bRequestType = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE; usb_context->req.bRequest = USB_VENDOR_REQUEST_WRITE_REGISTER; usb_context->req.wValue = 00; usb_context->req.wIndex = cpu_to_le16(index); usb_context->req.wLength = cpu_to_le16(size); usb_fill_control_urb(urb, dev->udev, usb_sndctrlpipe(dev->udev, 0), (void *)&usb_context->req, data, size, smsc95xx_async_cmd_callback, (void *)usb_context); status = usb_submit_urb(urb, GFP_ATOMIC); if (status < 0) { devwarn(dev, "Error submitting control msg, sts=%d", status); kfree(usb_context); usb_free_urb(urb); } return status; } /* returns hash bit number for given MAC address * example: * 01 00 5E 00 00 01 -> returns bit number 31 */ static unsigned int smsc95xx_hash(char addr[ETH_ALEN]) { return (ether_crc(ETH_ALEN, addr) >> 26) & 0x3f; } static void smsc95xx_set_multicast(struct net_device *netdev) { struct usbnet *dev = netdev_priv(netdev); struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); u32 hash_hi = 0; u32 hash_lo = 0; unsigned long flags; spin_lock_irqsave(&pdata->mac_cr_lock, flags); if (dev->net->flags & IFF_PROMISC) { if (netif_msg_drv(dev)) devdbg(dev, "promiscuous mode enabled"); pdata->mac_cr |= MAC_CR_PRMS_; pdata->mac_cr &= ~(MAC_CR_MCPAS_ | MAC_CR_HPFILT_); } else if (dev->net->flags & IFF_ALLMULTI) { if (netif_msg_drv(dev)) devdbg(dev, "receive all multicast enabled"); pdata->mac_cr |= MAC_CR_MCPAS_; pdata->mac_cr &= ~(MAC_CR_PRMS_ | MAC_CR_HPFILT_); } else if (dev->net->mc_count > 0) { struct dev_mc_list *mc_list = dev->net->mc_list; int count = 0; pdata->mac_cr |= MAC_CR_HPFILT_; pdata->mac_cr &= ~(MAC_CR_PRMS_ | MAC_CR_MCPAS_); while (mc_list) { count++; if (mc_list->dmi_addrlen == ETH_ALEN) { u32 bitnum = smsc95xx_hash(mc_list->dmi_addr); u32 mask = 0x01 << (bitnum & 0x1F); if (bitnum & 0x20) hash_hi |= mask; else hash_lo |= mask; } else { devwarn(dev, "dmi_addrlen != 6"); } mc_list = mc_list->next; } if (count != ((u32)dev->net->mc_count)) devwarn(dev, "mc_count != dev->mc_count"); if (netif_msg_drv(dev)) devdbg(dev, "HASHH=0x%08X, HASHL=0x%08X", hash_hi, hash_lo); } else { if (netif_msg_drv(dev)) devdbg(dev, "receive own packets only"); pdata->mac_cr &= ~(MAC_CR_PRMS_ | MAC_CR_MCPAS_ | MAC_CR_HPFILT_); } spin_unlock_irqrestore(&pdata->mac_cr_lock, flags); /* Initiate async writes, as we can't wait for completion here */ smsc95xx_write_reg_async(dev, HASHH, &hash_hi); smsc95xx_write_reg_async(dev, HASHL, &hash_lo); smsc95xx_write_reg_async(dev, MAC_CR, &pdata->mac_cr); } static void smsc95xx_phy_update_flowcontrol(struct usbnet *dev, u8 duplex, u16 lcladv, u16 rmtadv) { u32 flow, afc_cfg = 0; int ret = smsc95xx_read_reg(dev, AFC_CFG, &afc_cfg); if (ret < 0) { devwarn(dev, "error reading AFC_CFG"); return; } if (duplex == DUPLEX_FULL) { u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv); if (cap & FLOW_CTRL_RX) flow = 0xFFFF0002; else flow = 0; if (cap & FLOW_CTRL_TX) afc_cfg |= 0xF; else afc_cfg &= ~0xF; if (netif_msg_link(dev)) devdbg(dev, "rx pause %s, tx pause %s", (cap & FLOW_CTRL_RX ? "enabled" : "disabled"), (cap & FLOW_CTRL_TX ? "enabled" : "disabled")); } else { if (netif_msg_link(dev)) devdbg(dev, "half duplex"); flow = 0; afc_cfg |= 0xF; } smsc95xx_write_reg(dev, FLOW, flow); smsc95xx_write_reg(dev, AFC_CFG, afc_cfg); } static int smsc95xx_link_reset(struct usbnet *dev) { struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); struct mii_if_info *mii = &dev->mii; struct ethtool_cmd ecmd; unsigned long flags; u16 lcladv, rmtadv; u32 intdata; /* clear interrupt status */ smsc95xx_mdio_read(dev->net, mii->phy_id, PHY_INT_SRC); intdata = 0xFFFFFFFF; smsc95xx_write_reg(dev, INT_STS, intdata); mii_check_media(mii, 1, 1); mii_ethtool_gset(&dev->mii, &ecmd); lcladv = smsc95xx_mdio_read(dev->net, mii->phy_id, MII_ADVERTISE); rmtadv = smsc95xx_mdio_read(dev->net, mii->phy_id, MII_LPA); if (netif_msg_link(dev)) devdbg(dev, "speed: %d duplex: %d lcladv: %04x rmtadv: %04x", ecmd.speed, ecmd.duplex, lcladv, rmtadv); spin_lock_irqsave(&pdata->mac_cr_lock, flags); if (ecmd.duplex != DUPLEX_FULL) { pdata->mac_cr &= ~MAC_CR_FDPX_; pdata->mac_cr |= MAC_CR_RCVOWN_; } else { pdata->mac_cr &= ~MAC_CR_RCVOWN_; pdata->mac_cr |= MAC_CR_FDPX_; } spin_unlock_irqrestore(&pdata->mac_cr_lock, flags); smsc95xx_write_reg(dev, MAC_CR, pdata->mac_cr); smsc95xx_phy_update_flowcontrol(dev, ecmd.duplex, lcladv, rmtadv); return 0; } static void smsc95xx_status(struct usbnet *dev, struct urb *urb) { u32 intdata; if (urb->actual_length != 4) { devwarn(dev, "unexpected urb length %d", urb->actual_length); return; } memcpy(&intdata, urb->transfer_buffer, 4); le32_to_cpus(&intdata); if (netif_msg_link(dev)) devdbg(dev, "intdata: 0x%08X", intdata); if (intdata & INT_ENP_PHY_INT_) usbnet_defer_kevent(dev, EVENT_LINK_RESET); else devwarn(dev, "unexpected interrupt, intdata=0x%08X", intdata); } /* Enable or disable Tx & Rx checksum offload engines */ static int smsc95xx_set_csums(struct usbnet *dev) { struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); u32 read_buf; int ret = smsc95xx_read_reg(dev, COE_CR, &read_buf); if (ret < 0) { devwarn(dev, "Failed to read COE_CR: %d", ret); return ret; } if (pdata->use_tx_csum) read_buf |= Tx_COE_EN_; else read_buf &= ~Tx_COE_EN_; if (pdata->use_rx_csum) read_buf |= Rx_COE_EN_; else read_buf &= ~Rx_COE_EN_; ret = smsc95xx_write_reg(dev, COE_CR, read_buf); if (ret < 0) { devwarn(dev, "Failed to write COE_CR: %d", ret); return ret; } if (netif_msg_hw(dev)) devdbg(dev, "COE_CR = 0x%08x", read_buf); return 0; } static int smsc95xx_ethtool_get_eeprom_len(struct net_device *net) { return MAX_EEPROM_SIZE; } static int smsc95xx_ethtool_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *ee, u8 *data) { struct usbnet *dev = netdev_priv(netdev); ee->magic = LAN95XX_EEPROM_MAGIC; return smsc95xx_read_eeprom(dev, ee->offset, ee->len, data); } static int smsc95xx_ethtool_set_eeprom(struct net_device *netdev, struct ethtool_eeprom *ee, u8 *data) { struct usbnet *dev = netdev_priv(netdev); if (ee->magic != LAN95XX_EEPROM_MAGIC) { devwarn(dev, "EEPROM: magic value mismatch, magic = 0x%x", ee->magic); return -EINVAL; } return smsc95xx_write_eeprom(dev, ee->offset, ee->len, data); } static u32 smsc95xx_ethtool_get_rx_csum(struct net_device *netdev) { struct usbnet *dev = netdev_priv(netdev); struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); return pdata->use_rx_csum; } static int smsc95xx_ethtool_set_rx_csum(struct net_device *netdev, u32 val) { struct usbnet *dev = netdev_priv(netdev); struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); pdata->use_rx_csum = !!val; return smsc95xx_set_csums(dev); } static u32 smsc95xx_ethtool_get_tx_csum(struct net_device *netdev) { struct usbnet *dev = netdev_priv(netdev); struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); return pdata->use_tx_csum; } static int smsc95xx_ethtool_set_tx_csum(struct net_device *netdev, u32 val) { struct usbnet *dev = netdev_priv(netdev); struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); pdata->use_tx_csum = !!val; ethtool_op_set_tx_hw_csum(netdev, pdata->use_tx_csum); return smsc95xx_set_csums(dev); } static struct ethtool_ops smsc95xx_ethtool_ops = { .get_link = usbnet_get_link, .nway_reset = usbnet_nway_reset, .get_drvinfo = usbnet_get_drvinfo, .get_msglevel = usbnet_get_msglevel, .set_msglevel = usbnet_set_msglevel, .get_settings = usbnet_get_settings, .set_settings = usbnet_set_settings, .get_eeprom_len = smsc95xx_ethtool_get_eeprom_len, .get_eeprom = smsc95xx_ethtool_get_eeprom, .set_eeprom = smsc95xx_ethtool_set_eeprom, .get_tx_csum = smsc95xx_ethtool_get_tx_csum, .set_tx_csum = smsc95xx_ethtool_set_tx_csum, .get_rx_csum = smsc95xx_ethtool_get_rx_csum, .set_rx_csum = smsc95xx_ethtool_set_rx_csum, }; static int smsc95xx_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd) { struct usbnet *dev = netdev_priv(netdev); if (!netif_running(netdev)) return -EINVAL; return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL); } static void smsc95xx_init_mac_address(struct usbnet *dev) { /* try reading mac address from EEPROM */ if (smsc95xx_read_eeprom(dev, EEPROM_MAC_OFFSET, ETH_ALEN, dev->net->dev_addr) == 0) { if (is_valid_ether_addr(dev->net->dev_addr)) { /* eeprom values are valid so use them */ if (netif_msg_ifup(dev)) devdbg(dev, "MAC address read from EEPROM"); return; } } /* no eeprom, or eeprom values are invalid. generate random MAC */ random_ether_addr(dev->net->dev_addr); if (netif_msg_ifup(dev)) devdbg(dev, "MAC address set to random_ether_addr"); } static int smsc95xx_set_mac_address(struct usbnet *dev) { u32 addr_lo = dev->net->dev_addr[0] | dev->net->dev_addr[1] << 8 | dev->net->dev_addr[2] << 16 | dev->net->dev_addr[3] << 24; u32 addr_hi = dev->net->dev_addr[4] | dev->net->dev_addr[5] << 8; int ret; ret = smsc95xx_write_reg(dev, ADDRL, addr_lo); if (ret < 0) { devwarn(dev, "Failed to write ADDRL: %d", ret); return ret; } ret = smsc95xx_write_reg(dev, ADDRH, addr_hi); if (ret < 0) { devwarn(dev, "Failed to write ADDRH: %d", ret); return ret; } return 0; } /* starts the TX path */ static void smsc95xx_start_tx_path(struct usbnet *dev) { struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); unsigned long flags; u32 reg_val; /* Enable Tx at MAC */ spin_lock_irqsave(&pdata->mac_cr_lock, flags); pdata->mac_cr |= MAC_CR_TXEN_; spin_unlock_irqrestore(&pdata->mac_cr_lock, flags); smsc95xx_write_reg(dev, MAC_CR, pdata->mac_cr); /* Enable Tx at SCSRs */ reg_val = TX_CFG_ON_; smsc95xx_write_reg(dev, TX_CFG, reg_val); } /* Starts the Receive path */ static void smsc95xx_start_rx_path(struct usbnet *dev) { struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); unsigned long flags; spin_lock_irqsave(&pdata->mac_cr_lock, flags); pdata->mac_cr |= MAC_CR_RXEN_; spin_unlock_irqrestore(&pdata->mac_cr_lock, flags); smsc95xx_write_reg(dev, MAC_CR, pdata->mac_cr); } static int smsc95xx_phy_initialize(struct usbnet *dev) { /* Initialize MII structure */ dev->mii.dev = dev->net; dev->mii.mdio_read = smsc95xx_mdio_read; dev->mii.mdio_write = smsc95xx_mdio_write; dev->mii.phy_id_mask = 0x1f; dev->mii.reg_num_mask = 0x1f; dev->mii.phy_id = SMSC95XX_INTERNAL_PHY_ID; smsc95xx_mdio_write(dev->net, dev->mii.phy_id, MII_BMCR, BMCR_RESET); smsc95xx_mdio_write(dev->net, dev->mii.phy_id, MII_ADVERTISE, ADVERTISE_ALL | ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); /* read to clear */ smsc95xx_mdio_read(dev->net, dev->mii.phy_id, PHY_INT_SRC); smsc95xx_mdio_write(dev->net, dev->mii.phy_id, PHY_INT_MASK, PHY_INT_MASK_DEFAULT_); mii_nway_restart(&dev->mii); if (netif_msg_ifup(dev)) devdbg(dev, "phy initialised succesfully"); return 0; } static int smsc95xx_reset(struct usbnet *dev) { struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); struct net_device *netdev = dev->net; u32 read_buf, write_buf, burst_cap; int ret = 0, timeout; if (netif_msg_ifup(dev)) devdbg(dev, "entering smsc95xx_reset"); write_buf = HW_CFG_LRST_; ret = smsc95xx_write_reg(dev, HW_CFG, write_buf); if (ret < 0) { devwarn(dev, "Failed to write HW_CFG_LRST_ bit in HW_CFG " "register, ret = %d", ret); return ret; } timeout = 0; do { ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf); if (ret < 0) { devwarn(dev, "Failed to read HW_CFG: %d", ret); return ret; } msleep(10); timeout++; } while ((read_buf & HW_CFG_LRST_) && (timeout < 100)); if (timeout >= 100) { devwarn(dev, "timeout waiting for completion of Lite Reset"); return ret; } write_buf = PM_CTL_PHY_RST_; ret = smsc95xx_write_reg(dev, PM_CTRL, write_buf); if (ret < 0) { devwarn(dev, "Failed to write PM_CTRL: %d", ret); return ret; } timeout = 0; do { ret = smsc95xx_read_reg(dev, PM_CTRL, &read_buf); if (ret < 0) { devwarn(dev, "Failed to read PM_CTRL: %d", ret); return ret; } msleep(10); timeout++; } while ((read_buf & PM_CTL_PHY_RST_) && (timeout < 100)); if (timeout >= 100) { devwarn(dev, "timeout waiting for PHY Reset"); return ret; } smsc95xx_init_mac_address(dev); ret = smsc95xx_set_mac_address(dev); if (ret < 0) return ret; if (netif_msg_ifup(dev)) devdbg(dev, "MAC Address: %pM", dev->net->dev_addr); ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf); if (ret < 0) { devwarn(dev, "Failed to read HW_CFG: %d", ret); return ret; } if (netif_msg_ifup(dev)) devdbg(dev, "Read Value from HW_CFG : 0x%08x", read_buf); read_buf |= HW_CFG_BIR_; ret = smsc95xx_write_reg(dev, HW_CFG, read_buf); if (ret < 0) { devwarn(dev, "Failed to write HW_CFG_BIR_ bit in HW_CFG " "register, ret = %d", ret); return ret; } ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf); if (ret < 0) { devwarn(dev, "Failed to read HW_CFG: %d", ret); return ret; } if (netif_msg_ifup(dev)) devdbg(dev, "Read Value from HW_CFG after writing " "HW_CFG_BIR_: 0x%08x", read_buf); if (!turbo_mode) { burst_cap = 0; dev->rx_urb_size = MAX_SINGLE_PACKET_SIZE; } else if (dev->udev->speed == USB_SPEED_HIGH) { burst_cap = DEFAULT_HS_BURST_CAP_SIZE / HS_USB_PKT_SIZE; dev->rx_urb_size = DEFAULT_HS_BURST_CAP_SIZE; } else { burst_cap = DEFAULT_FS_BURST_CAP_SIZE / FS_USB_PKT_SIZE; dev->rx_urb_size = DEFAULT_FS_BURST_CAP_SIZE; } if (netif_msg_ifup(dev)) devdbg(dev, "rx_urb_size=%ld", (ulong)dev->rx_urb_size); ret = smsc95xx_write_reg(dev, BURST_CAP, burst_cap); if (ret < 0) { devwarn(dev, "Failed to write BURST_CAP: %d", ret); return ret; } ret = smsc95xx_read_reg(dev, BURST_CAP, &read_buf); if (ret < 0) { devwarn(dev, "Failed to read BURST_CAP: %d", ret); return ret; } if (netif_msg_ifup(dev)) devdbg(dev, "Read Value from BURST_CAP after writing: 0x%08x", read_buf); read_buf = DEFAULT_BULK_IN_DELAY; ret = smsc95xx_write_reg(dev, BULK_IN_DLY, read_buf); if (ret < 0) { devwarn(dev, "ret = %d", ret); return ret; } ret = smsc95xx_read_reg(dev, BULK_IN_DLY, &read_buf); if (ret < 0) { devwarn(dev, "Failed to read BULK_IN_DLY: %d", ret); return ret; } if (netif_msg_ifup(dev)) devdbg(dev, "Read Value from BULK_IN_DLY after writing: " "0x%08x", read_buf); ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf); if (ret < 0) { devwarn(dev, "Failed to read HW_CFG: %d", ret); return ret; } if (netif_msg_ifup(dev)) devdbg(dev, "Read Value from HW_CFG: 0x%08x", read_buf); if (turbo_mode) read_buf |= (HW_CFG_MEF_ | HW_CFG_BCE_); read_buf &= ~HW_CFG_RXDOFF_; /* set Rx data offset=2, Make IP header aligns on word boundary. */ read_buf |= NET_IP_ALIGN << 9; ret = smsc95xx_write_reg(dev, HW_CFG, read_buf); if (ret < 0) { devwarn(dev, "Failed to write HW_CFG register, ret=%d", ret); return ret; } ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf); if (ret < 0) { devwarn(dev, "Failed to read HW_CFG: %d", ret); return ret; } if (netif_msg_ifup(dev)) devdbg(dev, "Read Value from HW_CFG after writing: 0x%08x", read_buf); write_buf = 0xFFFFFFFF; ret = smsc95xx_write_reg(dev, INT_STS, write_buf); if (ret < 0) { devwarn(dev, "Failed to write INT_STS register, ret=%d", ret); return ret; } ret = smsc95xx_read_reg(dev, ID_REV, &read_buf); if (ret < 0) { devwarn(dev, "Failed to read ID_REV: %d", ret); return ret; } if (netif_msg_ifup(dev)) devdbg(dev, "ID_REV = 0x%08x", read_buf); /* Configure GPIO pins as LED outputs */ write_buf = LED_GPIO_CFG_SPD_LED | LED_GPIO_CFG_LNK_LED | LED_GPIO_CFG_FDX_LED; ret = smsc95xx_write_reg(dev, LED_GPIO_CFG, write_buf); if (ret < 0) { devwarn(dev, "Failed to write LED_GPIO_CFG register, ret=%d", ret); return ret; } /* Init Tx */ write_buf = 0; ret = smsc95xx_write_reg(dev, FLOW, write_buf); if (ret < 0) { devwarn(dev, "Failed to write FLOW: %d", ret); return ret; } read_buf = AFC_CFG_DEFAULT; ret = smsc95xx_write_reg(dev, AFC_CFG, read_buf); if (ret < 0) { devwarn(dev, "Failed to write AFC_CFG: %d", ret); return ret; } /* Don't need mac_cr_lock during initialisation */ ret = smsc95xx_read_reg(dev, MAC_CR, &pdata->mac_cr); if (ret < 0) { devwarn(dev, "Failed to read MAC_CR: %d", ret); return ret; } /* Init Rx */ /* Set Vlan */ write_buf = (u32)ETH_P_8021Q; ret = smsc95xx_write_reg(dev, VLAN1, write_buf); if (ret < 0) { devwarn(dev, "Failed to write VAN1: %d", ret); return ret; } /* Enable or disable checksum offload engines */ ethtool_op_set_tx_hw_csum(netdev, pdata->use_tx_csum); ret = smsc95xx_set_csums(dev); if (ret < 0) { devwarn(dev, "Failed to set csum offload: %d", ret); return ret; } smsc95xx_set_multicast(dev->net); if (smsc95xx_phy_initialize(dev) < 0) return -EIO; ret = smsc95xx_read_reg(dev, INT_EP_CTL, &read_buf); if (ret < 0) { devwarn(dev, "Failed to read INT_EP_CTL: %d", ret); return ret; } /* enable PHY interrupts */ read_buf |= INT_EP_CTL_PHY_INT_; ret = smsc95xx_write_reg(dev, INT_EP_CTL, read_buf); if (ret < 0) { devwarn(dev, "Failed to write INT_EP_CTL: %d", ret); return ret; } smsc95xx_start_tx_path(dev); smsc95xx_start_rx_path(dev); if (netif_msg_ifup(dev)) devdbg(dev, "smsc95xx_reset, return 0"); return 0; } static const struct net_device_ops smsc95xx_netdev_ops = { .ndo_open = usbnet_open, .ndo_stop = usbnet_stop, .ndo_start_xmit = usbnet_start_xmit, .ndo_tx_timeout = usbnet_tx_timeout, .ndo_change_mtu = usbnet_change_mtu, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_do_ioctl = smsc95xx_ioctl, .ndo_set_multicast_list = smsc95xx_set_multicast, }; static int smsc95xx_bind(struct usbnet *dev, struct usb_interface *intf) { struct smsc95xx_priv *pdata = NULL; int ret; printk(KERN_INFO SMSC_CHIPNAME " v" SMSC_DRIVER_VERSION "\n"); ret = usbnet_get_endpoints(dev, intf); if (ret < 0) { devwarn(dev, "usbnet_get_endpoints failed: %d", ret); return ret; } dev->data[0] = (unsigned long)kzalloc(sizeof(struct smsc95xx_priv), GFP_KERNEL); pdata = (struct smsc95xx_priv *)(dev->data[0]); if (!pdata) { devwarn(dev, "Unable to allocate struct smsc95xx_priv"); return -ENOMEM; } spin_lock_init(&pdata->mac_cr_lock); pdata->use_tx_csum = DEFAULT_TX_CSUM_ENABLE; pdata->use_rx_csum = DEFAULT_RX_CSUM_ENABLE; /* Init all registers */ ret = smsc95xx_reset(dev); dev->net->netdev_ops = &smsc95xx_netdev_ops; dev->net->ethtool_ops = &smsc95xx_ethtool_ops; dev->net->flags |= IFF_MULTICAST; dev->net->hard_header_len += SMSC95XX_TX_OVERHEAD; return 0; } static void smsc95xx_unbind(struct usbnet *dev, struct usb_interface *intf) { struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); if (pdata) { if (netif_msg_ifdown(dev)) devdbg(dev, "free pdata"); kfree(pdata); pdata = NULL; dev->data[0] = 0; } } static void smsc95xx_rx_csum_offload(struct sk_buff *skb) { skb->csum = *(u16 *)(skb_tail_pointer(skb) - 2); skb->ip_summed = CHECKSUM_COMPLETE; skb_trim(skb, skb->len - 2); } static int smsc95xx_rx_fixup(struct usbnet *dev, struct sk_buff *skb) { struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); while (skb->len > 0) { u32 header, align_count; struct sk_buff *ax_skb; unsigned char *packet; u16 size; memcpy(&header, skb->data, sizeof(header)); le32_to_cpus(&header); skb_pull(skb, 4 + NET_IP_ALIGN); packet = skb->data; /* get the packet length */ size = (u16)((header & RX_STS_FL_) >> 16); align_count = (4 - ((size + NET_IP_ALIGN) % 4)) % 4; if (unlikely(header & RX_STS_ES_)) { if (netif_msg_rx_err(dev)) devdbg(dev, "Error header=0x%08x", header); dev->stats.rx_errors++; dev->stats.rx_dropped++; if (header & RX_STS_CRC_) { dev->stats.rx_crc_errors++; } else { if (header & (RX_STS_TL_ | RX_STS_RF_)) dev->stats.rx_frame_errors++; if ((header & RX_STS_LE_) && (!(header & RX_STS_FT_))) dev->stats.rx_length_errors++; } } else { /* ETH_FRAME_LEN + 4(CRC) + 2(COE) + 4(Vlan) */ if (unlikely(size > (ETH_FRAME_LEN + 12))) { if (netif_msg_rx_err(dev)) devdbg(dev, "size err header=0x%08x", header); return 0; } /* last frame in this batch */ if (skb->len == size) { if (pdata->use_rx_csum) smsc95xx_rx_csum_offload(skb); skb->truesize = size + sizeof(struct sk_buff); return 1; } ax_skb = skb_clone(skb, GFP_ATOMIC); if (unlikely(!ax_skb)) { devwarn(dev, "Error allocating skb"); return 0; } ax_skb->len = size; ax_skb->data = packet; skb_set_tail_pointer(ax_skb, size); if (pdata->use_rx_csum) smsc95xx_rx_csum_offload(ax_skb); ax_skb->truesize = size + sizeof(struct sk_buff); usbnet_skb_return(dev, ax_skb); } skb_pull(skb, size); /* padding bytes before the next frame starts */ if (skb->len) skb_pull(skb, align_count); } if (unlikely(skb->len < 0)) { devwarn(dev, "invalid rx length<0 %d", skb->len); return 0; } return 1; } static u32 smsc95xx_calc_csum_preamble(struct sk_buff *skb) { int len = skb->data - skb->head; u16 high_16 = (u16)(skb->csum_offset + skb->csum_start - len); u16 low_16 = (u16)(skb->csum_start - len); return (high_16 << 16) | low_16; } static struct sk_buff *smsc95xx_tx_fixup(struct usbnet *dev, struct sk_buff *skb, gfp_t flags) { struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); bool csum = pdata->use_tx_csum && (skb->ip_summed == CHECKSUM_PARTIAL); int overhead = csum ? SMSC95XX_TX_OVERHEAD_CSUM : SMSC95XX_TX_OVERHEAD; u32 tx_cmd_a, tx_cmd_b; /* We do not advertise SG, so skbs should be already linearized */ BUG_ON(skb_shinfo(skb)->nr_frags); if (skb_headroom(skb) < overhead) { struct sk_buff *skb2 = skb_copy_expand(skb, overhead, 0, flags); dev_kfree_skb_any(skb); skb = skb2; if (!skb) return NULL; } if (csum) { u32 csum_preamble = smsc95xx_calc_csum_preamble(skb); skb_push(skb, 4); memcpy(skb->data, &csum_preamble, 4); } skb_push(skb, 4); tx_cmd_b = (u32)(skb->len - 4); if (csum) tx_cmd_b |= TX_CMD_B_CSUM_ENABLE; cpu_to_le32s(&tx_cmd_b); memcpy(skb->data, &tx_cmd_b, 4); skb_push(skb, 4); tx_cmd_a = (u32)(skb->len - 8) | TX_CMD_A_FIRST_SEG_ | TX_CMD_A_LAST_SEG_; cpu_to_le32s(&tx_cmd_a); memcpy(skb->data, &tx_cmd_a, 4); return skb; } static const struct driver_info smsc95xx_info = { .description = "smsc95xx USB 2.0 Ethernet", .bind = smsc95xx_bind, .unbind = smsc95xx_unbind, .link_reset = smsc95xx_link_reset, .reset = smsc95xx_reset, .rx_fixup = smsc95xx_rx_fixup, .tx_fixup = smsc95xx_tx_fixup, .status = smsc95xx_status, .flags = FLAG_ETHER, }; static const struct usb_device_id products[] = { { /* SMSC9500 USB Ethernet Device */ USB_DEVICE(0x0424, 0x9500), .driver_info = (unsigned long) &smsc95xx_info, }, { }, /* END */ }; MODULE_DEVICE_TABLE(usb, products); static struct usb_driver smsc95xx_driver = { .name = "smsc95xx", .id_table = products, .probe = usbnet_probe, .suspend = usbnet_suspend, .resume = usbnet_resume, .disconnect = usbnet_disconnect, }; static int __init smsc95xx_init(void) { return usb_register(&smsc95xx_driver); } module_init(smsc95xx_init); static void __exit smsc95xx_exit(void) { usb_deregister(&smsc95xx_driver); } module_exit(smsc95xx_exit); MODULE_AUTHOR("Nancy Lin"); MODULE_AUTHOR("Steve Glendinning "); MODULE_DESCRIPTION("SMSC95XX USB 2.0 Ethernet Devices"); MODULE_LICENSE("GPL");