#define USE_PCI_CLOCK static char rcsid[] = "Revision: 3.4.5 Date: 2002/03/07 "; /* * pc300.c Cyclades-PC300(tm) Driver. * * Author: Ivan Passos <ivan@cyclades.com> * Maintainer: PC300 Maintainer <pc300@cyclades.com> * * Copyright: (c) 1999-2003 Cyclades Corp. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Using tabstop = 4. * * $Log: pc300_drv.c,v $ * Revision 3.23 2002/03/20 13:58:40 henrique * Fixed ortographic mistakes * * Revision 3.22 2002/03/13 16:56:56 henrique * Take out the debug messages * * Revision 3.21 2002/03/07 14:17:09 henrique * License data fixed * * Revision 3.20 2002/01/17 17:58:52 ivan * Support for PC300-TE/M (PMC). * * Revision 3.19 2002/01/03 17:08:47 daniela * Enables DMA reception when the SCA-II disables it improperly. * * Revision 3.18 2001/12/03 18:47:50 daniela * Esthetic changes. * * Revision 3.17 2001/10/19 16:50:13 henrique * Patch to kernel 2.4.12 and new generic hdlc. * * Revision 3.16 2001/10/16 15:12:31 regina * clear statistics * * Revision 3.11 to 3.15 2001/10/11 20:26:04 daniela * More DMA fixes for noisy lines. * Return the size of bad frames in dma_get_rx_frame_size, so that the Rx buffer * descriptors can be cleaned by dma_buf_read (called in cpc_net_rx). * Renamed dma_start routine to rx_dma_start. Improved Rx statistics. * Fixed BOF interrupt treatment. Created dma_start routine. * Changed min and max to cpc_min and cpc_max. * * Revision 3.10 2001/08/06 12:01:51 regina * Fixed problem in DSR_DE bit. * * Revision 3.9 2001/07/18 19:27:26 daniela * Added some history comments. * * Revision 3.8 2001/07/12 13:11:19 regina * bug fix - DCD-OFF in pc300 tty driver * * Revision 3.3 to 3.7 2001/07/06 15:00:20 daniela * Removing kernel 2.4.3 and previous support. * DMA transmission bug fix. * MTU check in cpc_net_rx fixed. * Boot messages reviewed. * New configuration parameters (line code, CRC calculation and clock). * * Revision 3.2 2001/06/22 13:13:02 regina * MLPPP implementation. Changed the header of message trace to include * the device name. New format : "hdlcX[R/T]: ". * Default configuration changed. * * Revision 3.1 2001/06/15 regina * in cpc_queue_xmit, netif_stop_queue is called if don't have free descriptor * upping major version number * * Revision 1.1.1.1 2001/06/13 20:25:04 daniela * PC300 initial CVS version (3.4.0-pre1) * * Revision 3.0.1.2 2001/06/08 daniela * Did some changes in the DMA programming implementation to avoid the * occurrence of a SCA-II bug when CDA is accessed during a DMA transfer. * * Revision 3.0.1.1 2001/05/02 daniela * Added kernel 2.4.3 support. * * Revision 3.0.1.0 2001/03/13 daniela, henrique * Added Frame Relay Support. * Driver now uses HDLC generic driver to provide protocol support. * * Revision 3.0.0.8 2001/03/02 daniela * Fixed ram size detection. * Changed SIOCGPC300CONF ioctl, to give hw information to pc300util. * * Revision 3.0.0.7 2001/02/23 daniela * netif_stop_queue called before the SCA-II transmition commands in * cpc_queue_xmit, and with interrupts disabled to avoid race conditions with * transmition interrupts. * Fixed falc_check_status for Unframed E1. * * Revision 3.0.0.6 2000/12/13 daniela * Implemented pc300util support: trace, statistics, status and loopback * tests for the PC300 TE boards. * * Revision 3.0.0.5 2000/12/12 ivan * Added support for Unframed E1. * Implemented monitor mode. * Fixed DCD sensitivity on the second channel. * Driver now complies with new PCI kernel architecture. * * Revision 3.0.0.4 2000/09/28 ivan * Implemented DCD sensitivity. * Moved hardware-specific open to the end of cpc_open, to avoid race * conditions with early reception interrupts. * Included code for [request|release]_mem_region(). * Changed location of pc300.h . * Minor code revision (contrib. of Jeff Garzik). * * Revision 3.0.0.3 2000/07/03 ivan * Previous bugfix for the framing errors with external clock made X21 * boards stop working. This version fixes it. * * Revision 3.0.0.2 2000/06/23 ivan * Revisited cpc_queue_xmit to prevent race conditions on Tx DMA buffer * handling when Tx timeouts occur. * Revisited Rx statistics. * Fixed a bug in the SCA-II programming that would cause framing errors * when external clock was configured. * * Revision 3.0.0.1 2000/05/26 ivan * Added logic in the SCA interrupt handler so that no board can monopolize * the driver. * Request PLX I/O region, although driver doesn't use it, to avoid * problems with other drivers accessing it. * * Revision 3.0.0.0 2000/05/15 ivan * Did some changes in the DMA programming implementation to avoid the * occurrence of a SCA-II bug in the second channel. * Implemented workaround for PLX9050 bug that would cause a system lockup * in certain systems, depending on the MMIO addresses allocated to the * board. * Fixed the FALC chip programming to avoid synchronization problems in the * second channel (TE only). * Implemented a cleaner and faster Tx DMA descriptor cleanup procedure in * cpc_queue_xmit(). * Changed the built-in driver implementation so that the driver can use the * general 'hdlcN' naming convention instead of proprietary device names. * Driver load messages are now device-centric, instead of board-centric. * Dynamic allocation of net_device structures. * Code is now compliant with the new module interface (module_[init|exit]). * Make use of the PCI helper functions to access PCI resources. * * Revision 2.0.0.0 2000/04/15 ivan * Added support for the PC300/TE boards (T1/FT1/E1/FE1). * * Revision 1.1.0.0 2000/02/28 ivan * Major changes in the driver architecture. * Softnet compliancy implemented. * Driver now reports physical instead of virtual memory addresses. * Added cpc_change_mtu function. * * Revision 1.0.0.0 1999/12/16 ivan * First official release. * Support for 1- and 2-channel boards (which use distinct PCI Device ID's). * Support for monolythic installation (i.e., drv built into the kernel). * X.25 additional checking when lapb_[dis]connect_request returns an error. * SCA programming now covers X.21 as well. * * Revision 0.3.1.0 1999/11/18 ivan * Made X.25 support configuration-dependent (as it depends on external * modules to work). * Changed X.25-specific function names to comply with adopted convention. * Fixed typos in X.25 functions that would cause compile errors (Daniela). * Fixed bug in ch_config that would disable interrupts on a previously * enabled channel if the other channel on the same board was enabled later. * * Revision 0.3.0.0 1999/11/16 daniela * X.25 support. * * Revision 0.2.3.0 1999/11/15 ivan * Function cpc_ch_status now provides more detailed information. * Added support for X.21 clock configuration. * Changed TNR1 setting in order to prevent Tx FIFO overaccesses by the SCA. * Now using PCI clock instead of internal oscillator clock for the SCA. * * Revision 0.2.2.0 1999/11/10 ivan * Changed the *_dma_buf_check functions so that they would print only * the useful info instead of the whole buffer descriptor bank. * Fixed bug in cpc_queue_xmit that would eventually crash the system * in case of a packet drop. * Implemented TX underrun handling. * Improved SCA fine tuning to boost up its performance. * * Revision 0.2.1.0 1999/11/03 ivan * Added functions *dma_buf_pt_init to allow independent initialization * of the next-descr. and DMA buffer pointers on the DMA descriptors. * Kernel buffer release and tbusy clearing is now done in the interrupt * handler. * Fixed bug in cpc_open that would cause an interface reopen to fail. * Added a protocol-specific code section in cpc_net_rx. * Removed printk level defs (they might be added back after the beta phase). * * Revision 0.2.0.0 1999/10/28 ivan * Revisited the code so that new protocols can be easily added / supported. * * Revision 0.1.0.1 1999/10/20 ivan * Mostly "esthetic" changes. * * Revision 0.1.0.0 1999/10/11 ivan * Initial version. * */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/ioport.h> #include <linux/pci.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/net.h> #include <linux/skbuff.h> #include <linux/if_arp.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/spinlock.h> #include <linux/if.h> #include <net/arp.h> #include <asm/io.h> #include <asm/uaccess.h> #include "pc300.h" #define CPC_LOCK(card,flags) \ do { \ spin_lock_irqsave(&card->card_lock, flags); \ } while (0) #define CPC_UNLOCK(card,flags) \ do { \ spin_unlock_irqrestore(&card->card_lock, flags); \ } while (0) #undef PC300_DEBUG_PCI #undef PC300_DEBUG_INTR #undef PC300_DEBUG_TX #undef PC300_DEBUG_RX #undef PC300_DEBUG_OTHER static struct pci_device_id cpc_pci_dev_id[] __devinitdata = { /* PC300/RSV or PC300/X21, 2 chan */ {0x120e, 0x300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x300}, /* PC300/RSV or PC300/X21, 1 chan */ {0x120e, 0x301, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x301}, /* PC300/TE, 2 chan */ {0x120e, 0x310, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x310}, /* PC300/TE, 1 chan */ {0x120e, 0x311, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x311}, /* PC300/TE-M, 2 chan */ {0x120e, 0x320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x320}, /* PC300/TE-M, 1 chan */ {0x120e, 0x321, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x321}, /* End of table */ {0,}, }; MODULE_DEVICE_TABLE(pci, cpc_pci_dev_id); #ifndef cpc_min #define cpc_min(a,b) (((a)<(b))?(a):(b)) #endif #ifndef cpc_max #define cpc_max(a,b) (((a)>(b))?(a):(b)) #endif /* prototypes */ static void tx_dma_buf_pt_init(pc300_t *, int); static void tx_dma_buf_init(pc300_t *, int); static void rx_dma_buf_pt_init(pc300_t *, int); static void rx_dma_buf_init(pc300_t *, int); static void tx_dma_buf_check(pc300_t *, int); static void rx_dma_buf_check(pc300_t *, int); static irqreturn_t cpc_intr(int, void *); static int clock_rate_calc(u32, u32, int *); static u32 detect_ram(pc300_t *); static void plx_init(pc300_t *); static void cpc_trace(struct net_device *, struct sk_buff *, char); static int cpc_attach(struct net_device *, unsigned short, unsigned short); static int cpc_close(struct net_device *dev); #ifdef CONFIG_PC300_MLPPP void cpc_tty_init(pc300dev_t * dev); void cpc_tty_unregister_service(pc300dev_t * pc300dev); void cpc_tty_receive(pc300dev_t * pc300dev); void cpc_tty_trigger_poll(pc300dev_t * pc300dev); void cpc_tty_reset_var(void); #endif /************************/ /*** DMA Routines ***/ /************************/ static void tx_dma_buf_pt_init(pc300_t * card, int ch) { int i; int ch_factor = ch * N_DMA_TX_BUF; volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase + DMA_TX_BD_BASE + ch_factor * sizeof(pcsca_bd_t)); for (i = 0; i < N_DMA_TX_BUF; i++, ptdescr++) { cpc_writel(&ptdescr->next, (u32)(DMA_TX_BD_BASE + (ch_factor + ((i + 1) & (N_DMA_TX_BUF - 1))) * sizeof(pcsca_bd_t))); cpc_writel(&ptdescr->ptbuf, (u32)(DMA_TX_BASE + (ch_factor + i) * BD_DEF_LEN)); } } static void tx_dma_buf_init(pc300_t * card, int ch) { int i; int ch_factor = ch * N_DMA_TX_BUF; volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase + DMA_TX_BD_BASE + ch_factor * sizeof(pcsca_bd_t)); for (i = 0; i < N_DMA_TX_BUF; i++, ptdescr++) { memset_io(ptdescr, 0, sizeof(pcsca_bd_t)); cpc_writew(&ptdescr->len, 0); cpc_writeb(&ptdescr->status, DST_OSB); } tx_dma_buf_pt_init(card, ch); } static void rx_dma_buf_pt_init(pc300_t * card, int ch) { int i; int ch_factor = ch * N_DMA_RX_BUF; volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase + DMA_RX_BD_BASE + ch_factor * sizeof(pcsca_bd_t)); for (i = 0; i < N_DMA_RX_BUF; i++, ptdescr++) { cpc_writel(&ptdescr->next, (u32)(DMA_RX_BD_BASE + (ch_factor + ((i + 1) & (N_DMA_RX_BUF - 1))) * sizeof(pcsca_bd_t))); cpc_writel(&ptdescr->ptbuf, (u32)(DMA_RX_BASE + (ch_factor + i) * BD_DEF_LEN)); } } static void rx_dma_buf_init(pc300_t * card, int ch) { int i; int ch_factor = ch * N_DMA_RX_BUF; volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase + DMA_RX_BD_BASE + ch_factor * sizeof(pcsca_bd_t)); for (i = 0; i < N_DMA_RX_BUF; i++, ptdescr++) { memset_io(ptdescr, 0, sizeof(pcsca_bd_t)); cpc_writew(&ptdescr->len, 0); cpc_writeb(&ptdescr->status, 0); } rx_dma_buf_pt_init(card, ch); } static void tx_dma_buf_check(pc300_t * card, int ch) { volatile pcsca_bd_t __iomem *ptdescr; int i; u16 first_bd = card->chan[ch].tx_first_bd; u16 next_bd = card->chan[ch].tx_next_bd; printk("#CH%d: f_bd = %d(0x%08zx), n_bd = %d(0x%08zx)\n", ch, first_bd, TX_BD_ADDR(ch, first_bd), next_bd, TX_BD_ADDR(ch, next_bd)); for (i = first_bd, ptdescr = (card->hw.rambase + TX_BD_ADDR(ch, first_bd)); i != ((next_bd + 1) & (N_DMA_TX_BUF - 1)); i = (i + 1) & (N_DMA_TX_BUF - 1), ptdescr = (card->hw.rambase + TX_BD_ADDR(ch, i))) { printk("\n CH%d TX%d: next=0x%x, ptbuf=0x%x, ST=0x%x, len=%d", ch, i, cpc_readl(&ptdescr->next), cpc_readl(&ptdescr->ptbuf), cpc_readb(&ptdescr->status), cpc_readw(&ptdescr->len)); } printk("\n"); } #ifdef PC300_DEBUG_OTHER /* Show all TX buffer descriptors */ static void tx1_dma_buf_check(pc300_t * card, int ch) { volatile pcsca_bd_t __iomem *ptdescr; int i; u16 first_bd = card->chan[ch].tx_first_bd; u16 next_bd = card->chan[ch].tx_next_bd; u32 scabase = card->hw.scabase; printk ("\nnfree_tx_bd = %d \n", card->chan[ch].nfree_tx_bd); printk("#CH%d: f_bd = %d(0x%08x), n_bd = %d(0x%08x)\n", ch, first_bd, TX_BD_ADDR(ch, first_bd), next_bd, TX_BD_ADDR(ch, next_bd)); printk("TX_CDA=0x%08x, TX_EDA=0x%08x\n", cpc_readl(scabase + DTX_REG(CDAL, ch)), cpc_readl(scabase + DTX_REG(EDAL, ch))); for (i = 0; i < N_DMA_TX_BUF; i++) { ptdescr = (card->hw.rambase + TX_BD_ADDR(ch, i)); printk("\n CH%d TX%d: next=0x%x, ptbuf=0x%x, ST=0x%x, len=%d", ch, i, cpc_readl(&ptdescr->next), cpc_readl(&ptdescr->ptbuf), cpc_readb(&ptdescr->status), cpc_readw(&ptdescr->len)); } printk("\n"); } #endif static void rx_dma_buf_check(pc300_t * card, int ch) { volatile pcsca_bd_t __iomem *ptdescr; int i; u16 first_bd = card->chan[ch].rx_first_bd; u16 last_bd = card->chan[ch].rx_last_bd; int ch_factor; ch_factor = ch * N_DMA_RX_BUF; printk("#CH%d: f_bd = %d, l_bd = %d\n", ch, first_bd, last_bd); for (i = 0, ptdescr = (card->hw.rambase + DMA_RX_BD_BASE + ch_factor * sizeof(pcsca_bd_t)); i < N_DMA_RX_BUF; i++, ptdescr++) { if (cpc_readb(&ptdescr->status) & DST_OSB) printk ("\n CH%d RX%d: next=0x%x, ptbuf=0x%x, ST=0x%x, len=%d", ch, i, cpc_readl(&ptdescr->next), cpc_readl(&ptdescr->ptbuf), cpc_readb(&ptdescr->status), cpc_readw(&ptdescr->len)); } printk("\n"); } static int dma_get_rx_frame_size(pc300_t * card, int ch) { volatile pcsca_bd_t __iomem *ptdescr; u16 first_bd = card->chan[ch].rx_first_bd; int rcvd = 0; volatile u8 status; ptdescr = (card->hw.rambase + RX_BD_ADDR(ch, first_bd)); while ((status = cpc_readb(&ptdescr->status)) & DST_OSB) { rcvd += cpc_readw(&ptdescr->len); first_bd = (first_bd + 1) & (N_DMA_RX_BUF - 1); if ((status & DST_EOM) || (first_bd == card->chan[ch].rx_last_bd)) { /* Return the size of a good frame or incomplete bad frame * (dma_buf_read will clean the buffer descriptors in this case). */ return (rcvd); } ptdescr = (card->hw.rambase + cpc_readl(&ptdescr->next)); } return (-1); } /* * dma_buf_write: writes a frame to the Tx DMA buffers * NOTE: this function writes one frame at a time. */ static int dma_buf_write(pc300_t *card, int ch, u8 *ptdata, int len) { int i, nchar; volatile pcsca_bd_t __iomem *ptdescr; int tosend = len; u8 nbuf = ((len - 1) / BD_DEF_LEN) + 1; if (nbuf >= card->chan[ch].nfree_tx_bd) { return -ENOMEM; } for (i = 0; i < nbuf; i++) { ptdescr = (card->hw.rambase + TX_BD_ADDR(ch, card->chan[ch].tx_next_bd)); nchar = cpc_min(BD_DEF_LEN, tosend); if (cpc_readb(&ptdescr->status) & DST_OSB) { memcpy_toio((card->hw.rambase + cpc_readl(&ptdescr->ptbuf)), &ptdata[len - tosend], nchar); cpc_writew(&ptdescr->len, nchar); card->chan[ch].nfree_tx_bd--; if ((i + 1) == nbuf) { /* This must be the last BD to be used */ cpc_writeb(&ptdescr->status, DST_EOM); } else { cpc_writeb(&ptdescr->status, 0); } } else { return -ENOMEM; } tosend -= nchar; card->chan[ch].tx_next_bd = (card->chan[ch].tx_next_bd + 1) & (N_DMA_TX_BUF - 1); } /* If it gets to here, it means we have sent the whole frame */ return 0; } /* * dma_buf_read: reads a frame from the Rx DMA buffers * NOTE: this function reads one frame at a time. */ static int dma_buf_read(pc300_t * card, int ch, struct sk_buff *skb) { int nchar; pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; volatile pcsca_bd_t __iomem *ptdescr; int rcvd = 0; volatile u8 status; ptdescr = (card->hw.rambase + RX_BD_ADDR(ch, chan->rx_first_bd)); while ((status = cpc_readb(&ptdescr->status)) & DST_OSB) { nchar = cpc_readw(&ptdescr->len); if ((status & (DST_OVR | DST_CRC | DST_RBIT | DST_SHRT | DST_ABT)) || (nchar > BD_DEF_LEN)) { if (nchar > BD_DEF_LEN) status |= DST_RBIT; rcvd = -status; /* Discard remaining descriptors used by the bad frame */ while (chan->rx_first_bd != chan->rx_last_bd) { cpc_writeb(&ptdescr->status, 0); chan->rx_first_bd = (chan->rx_first_bd+1) & (N_DMA_RX_BUF-1); if (status & DST_EOM) break; ptdescr = (card->hw.rambase + cpc_readl(&ptdescr->next)); status = cpc_readb(&ptdescr->status); } break; } if (nchar != 0) { if (skb) { memcpy_fromio(skb_put(skb, nchar), (card->hw.rambase+cpc_readl(&ptdescr->ptbuf)),nchar); } rcvd += nchar; } cpc_writeb(&ptdescr->status, 0); cpc_writeb(&ptdescr->len, 0); chan->rx_first_bd = (chan->rx_first_bd + 1) & (N_DMA_RX_BUF - 1); if (status & DST_EOM) break; ptdescr = (card->hw.rambase + cpc_readl(&ptdescr->next)); } if (rcvd != 0) { /* Update pointer */ chan->rx_last_bd = (chan->rx_first_bd - 1) & (N_DMA_RX_BUF - 1); /* Update EDA */ cpc_writel(card->hw.scabase + DRX_REG(EDAL, ch), RX_BD_ADDR(ch, chan->rx_last_bd)); } return (rcvd); } static void tx_dma_stop(pc300_t * card, int ch) { void __iomem *scabase = card->hw.scabase; u8 drr_ena_bit = 1 << (5 + 2 * ch); u8 drr_rst_bit = 1 << (1 + 2 * ch); /* Disable DMA */ cpc_writeb(scabase + DRR, drr_ena_bit); cpc_writeb(scabase + DRR, drr_rst_bit & ~drr_ena_bit); } static void rx_dma_stop(pc300_t * card, int ch) { void __iomem *scabase = card->hw.scabase; u8 drr_ena_bit = 1 << (4 + 2 * ch); u8 drr_rst_bit = 1 << (2 * ch); /* Disable DMA */ cpc_writeb(scabase + DRR, drr_ena_bit); cpc_writeb(scabase + DRR, drr_rst_bit & ~drr_ena_bit); } static void rx_dma_start(pc300_t * card, int ch) { void __iomem *scabase = card->hw.scabase; pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; /* Start DMA */ cpc_writel(scabase + DRX_REG(CDAL, ch), RX_BD_ADDR(ch, chan->rx_first_bd)); if (cpc_readl(scabase + DRX_REG(CDAL,ch)) != RX_BD_ADDR(ch, chan->rx_first_bd)) { cpc_writel(scabase + DRX_REG(CDAL, ch), RX_BD_ADDR(ch, chan->rx_first_bd)); } cpc_writel(scabase + DRX_REG(EDAL, ch), RX_BD_ADDR(ch, chan->rx_last_bd)); cpc_writew(scabase + DRX_REG(BFLL, ch), BD_DEF_LEN); cpc_writeb(scabase + DSR_RX(ch), DSR_DE); if (!(cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) { cpc_writeb(scabase + DSR_RX(ch), DSR_DE); } } /*************************/ /*** FALC Routines ***/ /*************************/ static void falc_issue_cmd(pc300_t *card, int ch, u8 cmd) { void __iomem *falcbase = card->hw.falcbase; unsigned long i = 0; while (cpc_readb(falcbase + F_REG(SIS, ch)) & SIS_CEC) { if (i++ >= PC300_FALC_MAXLOOP) { printk("%s: FALC command locked(cmd=0x%x).\n", card->chan[ch].d.name, cmd); break; } } cpc_writeb(falcbase + F_REG(CMDR, ch), cmd); } static void falc_intr_enable(pc300_t * card, int ch) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; falc_t *pfalc = (falc_t *) & chan->falc; void __iomem *falcbase = card->hw.falcbase; /* Interrupt pins are open-drain */ cpc_writeb(falcbase + F_REG(IPC, ch), cpc_readb(falcbase + F_REG(IPC, ch)) & ~IPC_IC0); /* Conters updated each second */ cpc_writeb(falcbase + F_REG(FMR1, ch), cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_ECM); /* Enable SEC and ES interrupts */ cpc_writeb(falcbase + F_REG(IMR3, ch), cpc_readb(falcbase + F_REG(IMR3, ch)) & ~(IMR3_SEC | IMR3_ES)); if (conf->fr_mode == PC300_FR_UNFRAMED) { cpc_writeb(falcbase + F_REG(IMR4, ch), cpc_readb(falcbase + F_REG(IMR4, ch)) & ~(IMR4_LOS)); } else { cpc_writeb(falcbase + F_REG(IMR4, ch), cpc_readb(falcbase + F_REG(IMR4, ch)) & ~(IMR4_LFA | IMR4_AIS | IMR4_LOS | IMR4_SLIP)); } if (conf->media == IF_IFACE_T1) { cpc_writeb(falcbase + F_REG(IMR3, ch), cpc_readb(falcbase + F_REG(IMR3, ch)) & ~IMR3_LLBSC); } else { cpc_writeb(falcbase + F_REG(IPC, ch), cpc_readb(falcbase + F_REG(IPC, ch)) | IPC_SCI); if (conf->fr_mode == PC300_FR_UNFRAMED) { cpc_writeb(falcbase + F_REG(IMR2, ch), cpc_readb(falcbase + F_REG(IMR2, ch)) & ~(IMR2_LOS)); } else { cpc_writeb(falcbase + F_REG(IMR2, ch), cpc_readb(falcbase + F_REG(IMR2, ch)) & ~(IMR2_FAR | IMR2_LFA | IMR2_AIS | IMR2_LOS)); if (pfalc->multiframe_mode) { cpc_writeb(falcbase + F_REG(IMR2, ch), cpc_readb(falcbase + F_REG(IMR2, ch)) & ~(IMR2_T400MS | IMR2_MFAR)); } else { cpc_writeb(falcbase + F_REG(IMR2, ch), cpc_readb(falcbase + F_REG(IMR2, ch)) | IMR2_T400MS | IMR2_MFAR); } } } } static void falc_open_timeslot(pc300_t * card, int ch, int timeslot) { void __iomem *falcbase = card->hw.falcbase; u8 tshf = card->chan[ch].falc.offset; cpc_writeb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch), cpc_readb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch)) & ~(0x80 >> ((timeslot - tshf) & 0x07))); cpc_writeb(falcbase + F_REG((TTR1 + timeslot / 8), ch), cpc_readb(falcbase + F_REG((TTR1 + timeslot / 8), ch)) | (0x80 >> (timeslot & 0x07))); cpc_writeb(falcbase + F_REG((RTR1 + timeslot / 8), ch), cpc_readb(falcbase + F_REG((RTR1 + timeslot / 8), ch)) | (0x80 >> (timeslot & 0x07))); } static void falc_close_timeslot(pc300_t * card, int ch, int timeslot) { void __iomem *falcbase = card->hw.falcbase; u8 tshf = card->chan[ch].falc.offset; cpc_writeb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch), cpc_readb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch)) | (0x80 >> ((timeslot - tshf) & 0x07))); cpc_writeb(falcbase + F_REG((TTR1 + timeslot / 8), ch), cpc_readb(falcbase + F_REG((TTR1 + timeslot / 8), ch)) & ~(0x80 >> (timeslot & 0x07))); cpc_writeb(falcbase + F_REG((RTR1 + timeslot / 8), ch), cpc_readb(falcbase + F_REG((RTR1 + timeslot / 8), ch)) & ~(0x80 >> (timeslot & 0x07))); } static void falc_close_all_timeslots(pc300_t * card, int ch) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; void __iomem *falcbase = card->hw.falcbase; cpc_writeb(falcbase + F_REG(ICB1, ch), 0xff); cpc_writeb(falcbase + F_REG(TTR1, ch), 0); cpc_writeb(falcbase + F_REG(RTR1, ch), 0); cpc_writeb(falcbase + F_REG(ICB2, ch), 0xff); cpc_writeb(falcbase + F_REG(TTR2, ch), 0); cpc_writeb(falcbase + F_REG(RTR2, ch), 0); cpc_writeb(falcbase + F_REG(ICB3, ch), 0xff); cpc_writeb(falcbase + F_REG(TTR3, ch), 0); cpc_writeb(falcbase + F_REG(RTR3, ch), 0); if (conf->media == IF_IFACE_E1) { cpc_writeb(falcbase + F_REG(ICB4, ch), 0xff); cpc_writeb(falcbase + F_REG(TTR4, ch), 0); cpc_writeb(falcbase + F_REG(RTR4, ch), 0); } } static void falc_open_all_timeslots(pc300_t * card, int ch) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; void __iomem *falcbase = card->hw.falcbase; cpc_writeb(falcbase + F_REG(ICB1, ch), 0); if (conf->fr_mode == PC300_FR_UNFRAMED) { cpc_writeb(falcbase + F_REG(TTR1, ch), 0xff); cpc_writeb(falcbase + F_REG(RTR1, ch), 0xff); } else { /* Timeslot 0 is never enabled */ cpc_writeb(falcbase + F_REG(TTR1, ch), 0x7f); cpc_writeb(falcbase + F_REG(RTR1, ch), 0x7f); } cpc_writeb(falcbase + F_REG(ICB2, ch), 0); cpc_writeb(falcbase + F_REG(TTR2, ch), 0xff); cpc_writeb(falcbase + F_REG(RTR2, ch), 0xff); cpc_writeb(falcbase + F_REG(ICB3, ch), 0); cpc_writeb(falcbase + F_REG(TTR3, ch), 0xff); cpc_writeb(falcbase + F_REG(RTR3, ch), 0xff); if (conf->media == IF_IFACE_E1) { cpc_writeb(falcbase + F_REG(ICB4, ch), 0); cpc_writeb(falcbase + F_REG(TTR4, ch), 0xff); cpc_writeb(falcbase + F_REG(RTR4, ch), 0xff); } else { cpc_writeb(falcbase + F_REG(ICB4, ch), 0xff); cpc_writeb(falcbase + F_REG(TTR4, ch), 0x80); cpc_writeb(falcbase + F_REG(RTR4, ch), 0x80); } } static void falc_init_timeslot(pc300_t * card, int ch) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; falc_t *pfalc = (falc_t *) & chan->falc; int tslot; for (tslot = 0; tslot < pfalc->num_channels; tslot++) { if (conf->tslot_bitmap & (1 << tslot)) { // Channel enabled falc_open_timeslot(card, ch, tslot + 1); } else { // Channel disabled falc_close_timeslot(card, ch, tslot + 1); } } } static void falc_enable_comm(pc300_t * card, int ch) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; falc_t *pfalc = (falc_t *) & chan->falc; if (pfalc->full_bandwidth) { falc_open_all_timeslots(card, ch); } else { falc_init_timeslot(card, ch); } // CTS/DCD ON cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1, cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) & ~((CPLD_REG1_FALC_DCD | CPLD_REG1_FALC_CTS) << (2 * ch))); } static void falc_disable_comm(pc300_t * card, int ch) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; falc_t *pfalc = (falc_t *) & chan->falc; if (pfalc->loop_active != 2) { falc_close_all_timeslots(card, ch); } // CTS/DCD OFF cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1, cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) | ((CPLD_REG1_FALC_DCD | CPLD_REG1_FALC_CTS) << (2 * ch))); } static void falc_init_t1(pc300_t * card, int ch) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; falc_t *pfalc = (falc_t *) & chan->falc; void __iomem *falcbase = card->hw.falcbase; u8 dja = (ch ? (LIM2_DJA2 | LIM2_DJA1) : 0); /* Switch to T1 mode (PCM 24) */ cpc_writeb(falcbase + F_REG(FMR1, ch), FMR1_PMOD); /* Wait 20 us for setup */ udelay(20); /* Transmit Buffer Size (1 frame) */ cpc_writeb(falcbase + F_REG(SIC1, ch), SIC1_XBS0); /* Clock mode */ if (conf->phys_settings.clock_type == CLOCK_INT) { /* Master mode */ cpc_writeb(falcbase + F_REG(LIM0, ch), cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_MAS); } else { /* Slave mode */ cpc_writeb(falcbase + F_REG(LIM0, ch), cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_MAS); cpc_writeb(falcbase + F_REG(LOOP, ch), cpc_readb(falcbase + F_REG(LOOP, ch)) & ~LOOP_RTM); } cpc_writeb(falcbase + F_REG(IPC, ch), IPC_SCI); cpc_writeb(falcbase + F_REG(FMR0, ch), cpc_readb(falcbase + F_REG(FMR0, ch)) & ~(FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1)); switch (conf->lcode) { case PC300_LC_AMI: cpc_writeb(falcbase + F_REG(FMR0, ch), cpc_readb(falcbase + F_REG(FMR0, ch)) | FMR0_XC1 | FMR0_RC1); /* Clear Channel register to ON for all channels */ cpc_writeb(falcbase + F_REG(CCB1, ch), 0xff); cpc_writeb(falcbase + F_REG(CCB2, ch), 0xff); cpc_writeb(falcbase + F_REG(CCB3, ch), 0xff); break; case PC300_LC_B8ZS: cpc_writeb(falcbase + F_REG(FMR0, ch), cpc_readb(falcbase + F_REG(FMR0, ch)) | FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1); break; case PC300_LC_NRZ: cpc_writeb(falcbase + F_REG(FMR0, ch), cpc_readb(falcbase + F_REG(FMR0, ch)) | 0x00); break; } cpc_writeb(falcbase + F_REG(LIM0, ch), cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_ELOS); cpc_writeb(falcbase + F_REG(LIM0, ch), cpc_readb(falcbase + F_REG(LIM0, ch)) & ~(LIM0_SCL1 | LIM0_SCL0)); /* Set interface mode to 2 MBPS */ cpc_writeb(falcbase + F_REG(FMR1, ch), cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_IMOD); switch (conf->fr_mode) { case PC300_FR_ESF: pfalc->multiframe_mode = 0; cpc_writeb(falcbase + F_REG(FMR4, ch), cpc_readb(falcbase + F_REG(FMR4, ch)) | FMR4_FM1); cpc_writeb(falcbase + F_REG(FMR1, ch), cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_CRC | FMR1_EDL); cpc_writeb(falcbase + F_REG(XDL1, ch), 0); cpc_writeb(falcbase + F_REG(XDL2, ch), 0); cpc_writeb(falcbase + F_REG(XDL3, ch), 0); cpc_writeb(falcbase + F_REG(FMR0, ch), cpc_readb(falcbase + F_REG(FMR0, ch)) & ~FMR0_SRAF); cpc_writeb(falcbase + F_REG(FMR2, ch), cpc_readb(falcbase + F_REG(FMR2,ch)) | FMR2_MCSP | FMR2_SSP); break; case PC300_FR_D4: pfalc->multiframe_mode = 1; cpc_writeb(falcbase + F_REG(FMR4, ch), cpc_readb(falcbase + F_REG(FMR4, ch)) & ~(FMR4_FM1 | FMR4_FM0)); cpc_writeb(falcbase + F_REG(FMR0, ch), cpc_readb(falcbase + F_REG(FMR0, ch)) | FMR0_SRAF); cpc_writeb(falcbase + F_REG(FMR2, ch), cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_SSP); break; } /* Enable Automatic Resynchronization */ cpc_writeb(falcbase + F_REG(FMR4, ch), cpc_readb(falcbase + F_REG(FMR4, ch)) | FMR4_AUTO); /* Transmit Automatic Remote Alarm */ cpc_writeb(falcbase + F_REG(FMR2, ch), cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_AXRA); /* Channel translation mode 1 : one to one */ cpc_writeb(falcbase + F_REG(FMR1, ch), cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_CTM); /* No signaling */ cpc_writeb(falcbase + F_REG(FMR1, ch), cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_SIGM); cpc_writeb(falcbase + F_REG(FMR5, ch), cpc_readb(falcbase + F_REG(FMR5, ch)) & ~(FMR5_EIBR | FMR5_SRS)); cpc_writeb(falcbase + F_REG(CCR1, ch), 0); cpc_writeb(falcbase + F_REG(LIM1, ch), cpc_readb(falcbase + F_REG(LIM1, ch)) | LIM1_RIL0 | LIM1_RIL1); switch (conf->lbo) { /* Provides proper Line Build Out */ case PC300_LBO_0_DB: cpc_writeb(falcbase + F_REG(LIM2, ch), (LIM2_LOS1 | dja)); cpc_writeb(falcbase + F_REG(XPM0, ch), 0x5a); cpc_writeb(falcbase + F_REG(XPM1, ch), 0x8f); cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20); break; case PC300_LBO_7_5_DB: cpc_writeb(falcbase + F_REG(LIM2, ch), (0x40 | LIM2_LOS1 | dja)); cpc_writeb(falcbase + F_REG(XPM0, ch), 0x11); cpc_writeb(falcbase + F_REG(XPM1, ch), 0x02); cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20); break; case PC300_LBO_15_DB: cpc_writeb(falcbase + F_REG(LIM2, ch), (0x80 | LIM2_LOS1 | dja)); cpc_writeb(falcbase + F_REG(XPM0, ch), 0x8e); cpc_writeb(falcbase + F_REG(XPM1, ch), 0x01); cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20); break; case PC300_LBO_22_5_DB: cpc_writeb(falcbase + F_REG(LIM2, ch), (0xc0 | LIM2_LOS1 | dja)); cpc_writeb(falcbase + F_REG(XPM0, ch), 0x09); cpc_writeb(falcbase + F_REG(XPM1, ch), 0x01); cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20); break; } /* Transmit Clock-Slot Offset */ cpc_writeb(falcbase + F_REG(XC0, ch), cpc_readb(falcbase + F_REG(XC0, ch)) | 0x01); /* Transmit Time-slot Offset */ cpc_writeb(falcbase + F_REG(XC1, ch), 0x3e); /* Receive Clock-Slot offset */ cpc_writeb(falcbase + F_REG(RC0, ch), 0x05); /* Receive Time-slot offset */ cpc_writeb(falcbase + F_REG(RC1, ch), 0x00); /* LOS Detection after 176 consecutive 0s */ cpc_writeb(falcbase + F_REG(PCDR, ch), 0x0a); /* LOS Recovery after 22 ones in the time window of PCD */ cpc_writeb(falcbase + F_REG(PCRR, ch), 0x15); cpc_writeb(falcbase + F_REG(IDLE, ch), 0x7f); if (conf->fr_mode == PC300_FR_ESF_JAPAN) { cpc_writeb(falcbase + F_REG(RC1, ch), cpc_readb(falcbase + F_REG(RC1, ch)) | 0x80); } falc_close_all_timeslots(card, ch); } static void falc_init_e1(pc300_t * card, int ch) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; falc_t *pfalc = (falc_t *) & chan->falc; void __iomem *falcbase = card->hw.falcbase; u8 dja = (ch ? (LIM2_DJA2 | LIM2_DJA1) : 0); /* Switch to E1 mode (PCM 30) */ cpc_writeb(falcbase + F_REG(FMR1, ch), cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_PMOD); /* Clock mode */ if (conf->phys_settings.clock_type == CLOCK_INT) { /* Master mode */ cpc_writeb(falcbase + F_REG(LIM0, ch), cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_MAS); } else { /* Slave mode */ cpc_writeb(falcbase + F_REG(LIM0, ch), cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_MAS); } cpc_writeb(falcbase + F_REG(LOOP, ch), cpc_readb(falcbase + F_REG(LOOP, ch)) & ~LOOP_SFM); cpc_writeb(falcbase + F_REG(IPC, ch), IPC_SCI); cpc_writeb(falcbase + F_REG(FMR0, ch), cpc_readb(falcbase + F_REG(FMR0, ch)) & ~(FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1)); switch (conf->lcode) { case PC300_LC_AMI: cpc_writeb(falcbase + F_REG(FMR0, ch), cpc_readb(falcbase + F_REG(FMR0, ch)) | FMR0_XC1 | FMR0_RC1); break; case PC300_LC_HDB3: cpc_writeb(falcbase + F_REG(FMR0, ch), cpc_readb(falcbase + F_REG(FMR0, ch)) | FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1); break; case PC300_LC_NRZ: break; } cpc_writeb(falcbase + F_REG(LIM0, ch), cpc_readb(falcbase + F_REG(LIM0, ch)) & ~(LIM0_SCL1 | LIM0_SCL0)); /* Set interface mode to 2 MBPS */ cpc_writeb(falcbase + F_REG(FMR1, ch), cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_IMOD); cpc_writeb(falcbase + F_REG(XPM0, ch), 0x18); cpc_writeb(falcbase + F_REG(XPM1, ch), 0x03); cpc_writeb(falcbase + F_REG(XPM2, ch), 0x00); switch (conf->fr_mode) { case PC300_FR_MF_CRC4: pfalc->multiframe_mode = 1; cpc_writeb(falcbase + F_REG(FMR1, ch), cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_XFS); cpc_writeb(falcbase + F_REG(FMR2, ch), cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_RFS1); cpc_writeb(falcbase + F_REG(FMR2, ch), cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_RFS0); cpc_writeb(falcbase + F_REG(FMR3, ch), cpc_readb(falcbase + F_REG(FMR3, ch)) & ~FMR3_EXTIW); /* MultiFrame Resynchronization */ cpc_writeb(falcbase + F_REG(FMR1, ch), cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_MFCS); /* Automatic Loss of Multiframe > 914 CRC errors */ cpc_writeb(falcbase + F_REG(FMR2, ch), cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_ALMF); /* S1 and SI1/SI2 spare Bits set to 1 */ cpc_writeb(falcbase + F_REG(XSP, ch), cpc_readb(falcbase + F_REG(XSP, ch)) & ~XSP_AXS); cpc_writeb(falcbase + F_REG(XSP, ch), cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_EBP); cpc_writeb(falcbase + F_REG(XSP, ch), cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_XS13 | XSP_XS15); /* Automatic Force Resynchronization */ cpc_writeb(falcbase + F_REG(FMR1, ch), cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_AFR); /* Transmit Automatic Remote Alarm */ cpc_writeb(falcbase + F_REG(FMR2, ch), cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_AXRA); /* Transmit Spare Bits for National Use (Y, Sn, Sa) */ cpc_writeb(falcbase + F_REG(XSW, ch), cpc_readb(falcbase + F_REG(XSW, ch)) | XSW_XY0 | XSW_XY1 | XSW_XY2 | XSW_XY3 | XSW_XY4); break; case PC300_FR_MF_NON_CRC4: case PC300_FR_D4: pfalc->multiframe_mode = 0; cpc_writeb(falcbase + F_REG(FMR1, ch), cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_XFS); cpc_writeb(falcbase + F_REG(FMR2, ch), cpc_readb(falcbase + F_REG(FMR2, ch)) & ~(FMR2_RFS1 | FMR2_RFS0)); cpc_writeb(falcbase + F_REG(XSW, ch), cpc_readb(falcbase + F_REG(XSW, ch)) | XSW_XSIS); cpc_writeb(falcbase + F_REG(XSP, ch), cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_XSIF); /* Automatic Force Resynchronization */ cpc_writeb(falcbase + F_REG(FMR1, ch), cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_AFR); /* Transmit Automatic Remote Alarm */ cpc_writeb(falcbase + F_REG(FMR2, ch), cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_AXRA); /* Transmit Spare Bits for National Use (Y, Sn, Sa) */ cpc_writeb(falcbase + F_REG(XSW, ch), cpc_readb(falcbase + F_REG(XSW, ch)) | XSW_XY0 | XSW_XY1 | XSW_XY2 | XSW_XY3 | XSW_XY4); break; case PC300_FR_UNFRAMED: pfalc->multiframe_mode = 0; cpc_writeb(falcbase + F_REG(FMR1, ch), cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_XFS); cpc_writeb(falcbase + F_REG(FMR2, ch), cpc_readb(falcbase + F_REG(FMR2, ch)) & ~(FMR2_RFS1 | FMR2_RFS0)); cpc_writeb(falcbase + F_REG(XSP, ch), cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_TT0); cpc_writeb(falcbase + F_REG(XSW, ch), cpc_readb(falcbase + F_REG(XSW, ch)) & ~(XSW_XTM|XSW_XY0|XSW_XY1|XSW_XY2|XSW_XY3|XSW_XY4)); cpc_writeb(falcbase + F_REG(TSWM, ch), 0xff); cpc_writeb(falcbase + F_REG(FMR2, ch), cpc_readb(falcbase + F_REG(FMR2, ch)) | (FMR2_RTM | FMR2_DAIS)); cpc_writeb(falcbase + F_REG(FMR2, ch), cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_AXRA); cpc_writeb(falcbase + F_REG(FMR1, ch), cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_AFR); pfalc->sync = 1; cpc_writeb(falcbase + card->hw.cpld_reg2, cpc_readb(falcbase + card->hw.cpld_reg2) | (CPLD_REG2_FALC_LED2 << (2 * ch))); break; } /* No signaling */ cpc_writeb(falcbase + F_REG(XSP, ch), cpc_readb(falcbase + F_REG(XSP, ch)) & ~XSP_CASEN); cpc_writeb(falcbase + F_REG(CCR1, ch), 0); cpc_writeb(falcbase + F_REG(LIM1, ch), cpc_readb(falcbase + F_REG(LIM1, ch)) | LIM1_RIL0 | LIM1_RIL1); cpc_writeb(falcbase + F_REG(LIM2, ch), (LIM2_LOS1 | dja)); /* Transmit Clock-Slot Offset */ cpc_writeb(falcbase + F_REG(XC0, ch), cpc_readb(falcbase + F_REG(XC0, ch)) | 0x01); /* Transmit Time-slot Offset */ cpc_writeb(falcbase + F_REG(XC1, ch), 0x3e); /* Receive Clock-Slot offset */ cpc_writeb(falcbase + F_REG(RC0, ch), 0x05); /* Receive Time-slot offset */ cpc_writeb(falcbase + F_REG(RC1, ch), 0x00); /* LOS Detection after 176 consecutive 0s */ cpc_writeb(falcbase + F_REG(PCDR, ch), 0x0a); /* LOS Recovery after 22 ones in the time window of PCD */ cpc_writeb(falcbase + F_REG(PCRR, ch), 0x15); cpc_writeb(falcbase + F_REG(IDLE, ch), 0x7f); falc_close_all_timeslots(card, ch); } static void falc_init_hdlc(pc300_t * card, int ch) { void __iomem *falcbase = card->hw.falcbase; pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; /* Enable transparent data transfer */ if (conf->fr_mode == PC300_FR_UNFRAMED) { cpc_writeb(falcbase + F_REG(MODE, ch), 0); } else { cpc_writeb(falcbase + F_REG(MODE, ch), cpc_readb(falcbase + F_REG(MODE, ch)) | (MODE_HRAC | MODE_MDS2)); cpc_writeb(falcbase + F_REG(RAH2, ch), 0xff); cpc_writeb(falcbase + F_REG(RAH1, ch), 0xff); cpc_writeb(falcbase + F_REG(RAL2, ch), 0xff); cpc_writeb(falcbase + F_REG(RAL1, ch), 0xff); } /* Tx/Rx reset */ falc_issue_cmd(card, ch, CMDR_RRES | CMDR_XRES | CMDR_SRES); /* Enable interrupt sources */ falc_intr_enable(card, ch); } static void te_config(pc300_t * card, int ch) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; falc_t *pfalc = (falc_t *) & chan->falc; void __iomem *falcbase = card->hw.falcbase; u8 dummy; unsigned long flags; memset(pfalc, 0, sizeof(falc_t)); switch (conf->media) { case IF_IFACE_T1: pfalc->num_channels = NUM_OF_T1_CHANNELS; pfalc->offset = 1; break; case IF_IFACE_E1: pfalc->num_channels = NUM_OF_E1_CHANNELS; pfalc->offset = 0; break; } if (conf->tslot_bitmap == 0xffffffffUL) pfalc->full_bandwidth = 1; else pfalc->full_bandwidth = 0; CPC_LOCK(card, flags); /* Reset the FALC chip */ cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1, cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) | (CPLD_REG1_FALC_RESET << (2 * ch))); udelay(10000); cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1, cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) & ~(CPLD_REG1_FALC_RESET << (2 * ch))); if (conf->media == IF_IFACE_T1) { falc_init_t1(card, ch); } else { falc_init_e1(card, ch); } falc_init_hdlc(card, ch); if (conf->rx_sens == PC300_RX_SENS_SH) { cpc_writeb(falcbase + F_REG(LIM0, ch), cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_EQON); } else { cpc_writeb(falcbase + F_REG(LIM0, ch), cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_EQON); } cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2, cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) | ((CPLD_REG2_FALC_TX_CLK | CPLD_REG2_FALC_RX_CLK) << (2 * ch))); /* Clear all interrupt registers */ dummy = cpc_readb(falcbase + F_REG(FISR0, ch)) + cpc_readb(falcbase + F_REG(FISR1, ch)) + cpc_readb(falcbase + F_REG(FISR2, ch)) + cpc_readb(falcbase + F_REG(FISR3, ch)); CPC_UNLOCK(card, flags); } static void falc_check_status(pc300_t * card, int ch, unsigned char frs0) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; falc_t *pfalc = (falc_t *) & chan->falc; void __iomem *falcbase = card->hw.falcbase; /* Verify LOS */ if (frs0 & FRS0_LOS) { if (!pfalc->red_alarm) { pfalc->red_alarm = 1; pfalc->los++; if (!pfalc->blue_alarm) { // EVENT_FALC_ABNORMAL if (conf->media == IF_IFACE_T1) { /* Disable this interrupt as it may otherwise interfere * with other working boards. */ cpc_writeb(falcbase + F_REG(IMR0, ch), cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN); } falc_disable_comm(card, ch); // EVENT_FALC_ABNORMAL } } } else { if (pfalc->red_alarm) { pfalc->red_alarm = 0; pfalc->losr++; } } if (conf->fr_mode != PC300_FR_UNFRAMED) { /* Verify AIS alarm */ if (frs0 & FRS0_AIS) { if (!pfalc->blue_alarm) { pfalc->blue_alarm = 1; pfalc->ais++; // EVENT_AIS if (conf->media == IF_IFACE_T1) { /* Disable this interrupt as it may otherwise interfere with other working boards. */ cpc_writeb(falcbase + F_REG(IMR0, ch), cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN); } falc_disable_comm(card, ch); // EVENT_AIS } } else { pfalc->blue_alarm = 0; } /* Verify LFA */ if (frs0 & FRS0_LFA) { if (!pfalc->loss_fa) { pfalc->loss_fa = 1; pfalc->lfa++; if (!pfalc->blue_alarm && !pfalc->red_alarm) { // EVENT_FALC_ABNORMAL if (conf->media == IF_IFACE_T1) { /* Disable this interrupt as it may otherwise * interfere with other working boards. */ cpc_writeb(falcbase + F_REG(IMR0, ch), cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN); } falc_disable_comm(card, ch); // EVENT_FALC_ABNORMAL } } } else { if (pfalc->loss_fa) { pfalc->loss_fa = 0; pfalc->farec++; } } /* Verify LMFA */ if (pfalc->multiframe_mode && (frs0 & FRS0_LMFA)) { /* D4 or CRC4 frame mode */ if (!pfalc->loss_mfa) { pfalc->loss_mfa = 1; pfalc->lmfa++; if (!pfalc->blue_alarm && !pfalc->red_alarm && !pfalc->loss_fa) { // EVENT_FALC_ABNORMAL if (conf->media == IF_IFACE_T1) { /* Disable this interrupt as it may otherwise * interfere with other working boards. */ cpc_writeb(falcbase + F_REG(IMR0, ch), cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN); } falc_disable_comm(card, ch); // EVENT_FALC_ABNORMAL } } } else { pfalc->loss_mfa = 0; } /* Verify Remote Alarm */ if (frs0 & FRS0_RRA) { if (!pfalc->yellow_alarm) { pfalc->yellow_alarm = 1; pfalc->rai++; if (pfalc->sync) { // EVENT_RAI falc_disable_comm(card, ch); // EVENT_RAI } } } else { pfalc->yellow_alarm = 0; } } /* if !PC300_UNFRAMED */ if (pfalc->red_alarm || pfalc->loss_fa || pfalc->loss_mfa || pfalc->blue_alarm) { if (pfalc->sync) { pfalc->sync = 0; chan->d.line_off++; cpc_writeb(falcbase + card->hw.cpld_reg2, cpc_readb(falcbase + card->hw.cpld_reg2) & ~(CPLD_REG2_FALC_LED2 << (2 * ch))); } } else { if (!pfalc->sync) { pfalc->sync = 1; chan->d.line_on++; cpc_writeb(falcbase + card->hw.cpld_reg2, cpc_readb(falcbase + card->hw.cpld_reg2) | (CPLD_REG2_FALC_LED2 << (2 * ch))); } } if (pfalc->sync && !pfalc->yellow_alarm) { if (!pfalc->active) { // EVENT_FALC_NORMAL if (pfalc->loop_active) { return; } if (conf->media == IF_IFACE_T1) { cpc_writeb(falcbase + F_REG(IMR0, ch), cpc_readb(falcbase + F_REG(IMR0, ch)) & ~IMR0_PDEN); } falc_enable_comm(card, ch); // EVENT_FALC_NORMAL pfalc->active = 1; } } else { if (pfalc->active) { pfalc->active = 0; } } } static void falc_update_stats(pc300_t * card, int ch) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; falc_t *pfalc = (falc_t *) & chan->falc; void __iomem *falcbase = card->hw.falcbase; u16 counter; counter = cpc_readb(falcbase + F_REG(FECL, ch)); counter |= cpc_readb(falcbase + F_REG(FECH, ch)) << 8; pfalc->fec += counter; counter = cpc_readb(falcbase + F_REG(CVCL, ch)); counter |= cpc_readb(falcbase + F_REG(CVCH, ch)) << 8; pfalc->cvc += counter; counter = cpc_readb(falcbase + F_REG(CECL, ch)); counter |= cpc_readb(falcbase + F_REG(CECH, ch)) << 8; pfalc->cec += counter; counter = cpc_readb(falcbase + F_REG(EBCL, ch)); counter |= cpc_readb(falcbase + F_REG(EBCH, ch)) << 8; pfalc->ebc += counter; if (cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_EPRM) { mdelay(10); counter = cpc_readb(falcbase + F_REG(BECL, ch)); counter |= cpc_readb(falcbase + F_REG(BECH, ch)) << 8; pfalc->bec += counter; if (((conf->media == IF_IFACE_T1) && (cpc_readb(falcbase + F_REG(FRS1, ch)) & FRS1_LLBAD) && (!(cpc_readb(falcbase + F_REG(FRS1, ch)) & FRS1_PDEN))) || ((conf->media == IF_IFACE_E1) && (cpc_readb(falcbase + F_REG(RSP, ch)) & RSP_LLBAD))) { pfalc->prbs = 2; } else { pfalc->prbs = 1; } } } /*---------------------------------------------------------------------------- * falc_remote_loop *---------------------------------------------------------------------------- * Description: In the remote loopback mode the clock and data recovered * from the line inputs RL1/2 or RDIP/RDIN are routed back * to the line outputs XL1/2 or XDOP/XDON via the analog * transmitter. As in normal mode they are processsed by * the synchronizer and then sent to the system interface. *---------------------------------------------------------------------------- */ static void falc_remote_loop(pc300_t * card, int ch, int loop_on) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; falc_t *pfalc = (falc_t *) & chan->falc; void __iomem *falcbase = card->hw.falcbase; if (loop_on) { // EVENT_FALC_ABNORMAL if (conf->media == IF_IFACE_T1) { /* Disable this interrupt as it may otherwise interfere with * other working boards. */ cpc_writeb(falcbase + F_REG(IMR0, ch), cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN); } falc_disable_comm(card, ch); // EVENT_FALC_ABNORMAL cpc_writeb(falcbase + F_REG(LIM1, ch), cpc_readb(falcbase + F_REG(LIM1, ch)) | LIM1_RL); pfalc->loop_active = 1; } else { cpc_writeb(falcbase + F_REG(LIM1, ch), cpc_readb(falcbase + F_REG(LIM1, ch)) & ~LIM1_RL); pfalc->sync = 0; cpc_writeb(falcbase + card->hw.cpld_reg2, cpc_readb(falcbase + card->hw.cpld_reg2) & ~(CPLD_REG2_FALC_LED2 << (2 * ch))); pfalc->active = 0; falc_issue_cmd(card, ch, CMDR_XRES); pfalc->loop_active = 0; } } /*---------------------------------------------------------------------------- * falc_local_loop *---------------------------------------------------------------------------- * Description: The local loopback mode disconnects the receive lines * RL1/RL2 resp. RDIP/RDIN from the receiver. Instead of the * signals coming from the line the data provided by system * interface are routed through the analog receiver back to * the system interface. The unipolar bit stream will be * undisturbed transmitted on the line. Receiver and transmitter * coding must be identical. *---------------------------------------------------------------------------- */ static void falc_local_loop(pc300_t * card, int ch, int loop_on) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; falc_t *pfalc = (falc_t *) & chan->falc; void __iomem *falcbase = card->hw.falcbase; if (loop_on) { cpc_writeb(falcbase + F_REG(LIM0, ch), cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_LL); pfalc->loop_active = 1; } else { cpc_writeb(falcbase + F_REG(LIM0, ch), cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_LL); pfalc->loop_active = 0; } } /*---------------------------------------------------------------------------- * falc_payload_loop *---------------------------------------------------------------------------- * Description: This routine allows to enable/disable payload loopback. * When the payload loop is activated, the received 192 bits * of payload data will be looped back to the transmit * direction. The framing bits, CRC6 and DL bits are not * looped. They are originated by the FALC-LH transmitter. *---------------------------------------------------------------------------- */ static void falc_payload_loop(pc300_t * card, int ch, int loop_on) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; falc_t *pfalc = (falc_t *) & chan->falc; void __iomem *falcbase = card->hw.falcbase; if (loop_on) { // EVENT_FALC_ABNORMAL if (conf->media == IF_IFACE_T1) { /* Disable this interrupt as it may otherwise interfere with * other working boards. */ cpc_writeb(falcbase + F_REG(IMR0, ch), cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN); } falc_disable_comm(card, ch); // EVENT_FALC_ABNORMAL cpc_writeb(falcbase + F_REG(FMR2, ch), cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_PLB); if (conf->media == IF_IFACE_T1) { cpc_writeb(falcbase + F_REG(FMR4, ch), cpc_readb(falcbase + F_REG(FMR4, ch)) | FMR4_TM); } else { cpc_writeb(falcbase + F_REG(FMR5, ch), cpc_readb(falcbase + F_REG(FMR5, ch)) | XSP_TT0); } falc_open_all_timeslots(card, ch); pfalc->loop_active = 2; } else { cpc_writeb(falcbase + F_REG(FMR2, ch), cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_PLB); if (conf->media == IF_IFACE_T1) { cpc_writeb(falcbase + F_REG(FMR4, ch), cpc_readb(falcbase + F_REG(FMR4, ch)) & ~FMR4_TM); } else { cpc_writeb(falcbase + F_REG(FMR5, ch), cpc_readb(falcbase + F_REG(FMR5, ch)) & ~XSP_TT0); } pfalc->sync = 0; cpc_writeb(falcbase + card->hw.cpld_reg2, cpc_readb(falcbase + card->hw.cpld_reg2) & ~(CPLD_REG2_FALC_LED2 << (2 * ch))); pfalc->active = 0; falc_issue_cmd(card, ch, CMDR_XRES); pfalc->loop_active = 0; } } /*---------------------------------------------------------------------------- * turn_off_xlu *---------------------------------------------------------------------------- * Description: Turns XLU bit off in the proper register *---------------------------------------------------------------------------- */ static void turn_off_xlu(pc300_t * card, int ch) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; void __iomem *falcbase = card->hw.falcbase; if (conf->media == IF_IFACE_T1) { cpc_writeb(falcbase + F_REG(FMR5, ch), cpc_readb(falcbase + F_REG(FMR5, ch)) & ~FMR5_XLU); } else { cpc_writeb(falcbase + F_REG(FMR3, ch), cpc_readb(falcbase + F_REG(FMR3, ch)) & ~FMR3_XLU); } } /*---------------------------------------------------------------------------- * turn_off_xld *---------------------------------------------------------------------------- * Description: Turns XLD bit off in the proper register *---------------------------------------------------------------------------- */ static void turn_off_xld(pc300_t * card, int ch) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; void __iomem *falcbase = card->hw.falcbase; if (conf->media == IF_IFACE_T1) { cpc_writeb(falcbase + F_REG(FMR5, ch), cpc_readb(falcbase + F_REG(FMR5, ch)) & ~FMR5_XLD); } else { cpc_writeb(falcbase + F_REG(FMR3, ch), cpc_readb(falcbase + F_REG(FMR3, ch)) & ~FMR3_XLD); } } /*---------------------------------------------------------------------------- * falc_generate_loop_up_code *---------------------------------------------------------------------------- * Description: This routine writes the proper FALC chip register in order * to generate a LOOP activation code over a T1/E1 line. *---------------------------------------------------------------------------- */ static void falc_generate_loop_up_code(pc300_t * card, int ch) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; falc_t *pfalc = (falc_t *) & chan->falc; void __iomem *falcbase = card->hw.falcbase; if (conf->media == IF_IFACE_T1) { cpc_writeb(falcbase + F_REG(FMR5, ch), cpc_readb(falcbase + F_REG(FMR5, ch)) | FMR5_XLU); } else { cpc_writeb(falcbase + F_REG(FMR3, ch), cpc_readb(falcbase + F_REG(FMR3, ch)) | FMR3_XLU); } // EVENT_FALC_ABNORMAL if (conf->media == IF_IFACE_T1) { /* Disable this interrupt as it may otherwise interfere with * other working boards. */ cpc_writeb(falcbase + F_REG(IMR0, ch), cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN); } falc_disable_comm(card, ch); // EVENT_FALC_ABNORMAL pfalc->loop_gen = 1; } /*---------------------------------------------------------------------------- * falc_generate_loop_down_code *---------------------------------------------------------------------------- * Description: This routine writes the proper FALC chip register in order * to generate a LOOP deactivation code over a T1/E1 line. *---------------------------------------------------------------------------- */ static void falc_generate_loop_down_code(pc300_t * card, int ch) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; falc_t *pfalc = (falc_t *) & chan->falc; void __iomem *falcbase = card->hw.falcbase; if (conf->media == IF_IFACE_T1) { cpc_writeb(falcbase + F_REG(FMR5, ch), cpc_readb(falcbase + F_REG(FMR5, ch)) | FMR5_XLD); } else { cpc_writeb(falcbase + F_REG(FMR3, ch), cpc_readb(falcbase + F_REG(FMR3, ch)) | FMR3_XLD); } pfalc->sync = 0; cpc_writeb(falcbase + card->hw.cpld_reg2, cpc_readb(falcbase + card->hw.cpld_reg2) & ~(CPLD_REG2_FALC_LED2 << (2 * ch))); pfalc->active = 0; //? falc_issue_cmd(card, ch, CMDR_XRES); pfalc->loop_gen = 0; } /*---------------------------------------------------------------------------- * falc_pattern_test *---------------------------------------------------------------------------- * Description: This routine generates a pattern code and checks * it on the reception side. *---------------------------------------------------------------------------- */ static void falc_pattern_test(pc300_t * card, int ch, unsigned int activate) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; falc_t *pfalc = (falc_t *) & chan->falc; void __iomem *falcbase = card->hw.falcbase; if (activate) { pfalc->prbs = 1; pfalc->bec = 0; if (conf->media == IF_IFACE_T1) { /* Disable local loop activation/deactivation detect */ cpc_writeb(falcbase + F_REG(IMR3, ch), cpc_readb(falcbase + F_REG(IMR3, ch)) | IMR3_LLBSC); } else { /* Disable local loop activation/deactivation detect */ cpc_writeb(falcbase + F_REG(IMR1, ch), cpc_readb(falcbase + F_REG(IMR1, ch)) | IMR1_LLBSC); } /* Activates generation and monitoring of PRBS * (Pseudo Random Bit Sequence) */ cpc_writeb(falcbase + F_REG(LCR1, ch), cpc_readb(falcbase + F_REG(LCR1, ch)) | LCR1_EPRM | LCR1_XPRBS); } else { pfalc->prbs = 0; /* Deactivates generation and monitoring of PRBS * (Pseudo Random Bit Sequence) */ cpc_writeb(falcbase + F_REG(LCR1, ch), cpc_readb(falcbase+F_REG(LCR1,ch)) & ~(LCR1_EPRM | LCR1_XPRBS)); if (conf->media == IF_IFACE_T1) { /* Enable local loop activation/deactivation detect */ cpc_writeb(falcbase + F_REG(IMR3, ch), cpc_readb(falcbase + F_REG(IMR3, ch)) & ~IMR3_LLBSC); } else { /* Enable local loop activation/deactivation detect */ cpc_writeb(falcbase + F_REG(IMR1, ch), cpc_readb(falcbase + F_REG(IMR1, ch)) & ~IMR1_LLBSC); } } } /*---------------------------------------------------------------------------- * falc_pattern_test_error *---------------------------------------------------------------------------- * Description: This routine returns the bit error counter value *---------------------------------------------------------------------------- */ static u16 falc_pattern_test_error(pc300_t * card, int ch) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; falc_t *pfalc = (falc_t *) & chan->falc; return (pfalc->bec); } /**********************************/ /*** Net Interface Routines ***/ /**********************************/ static void cpc_trace(struct net_device *dev, struct sk_buff *skb_main, char rx_tx) { struct sk_buff *skb; if ((skb = dev_alloc_skb(10 + skb_main->len)) == NULL) { printk("%s: out of memory\n", dev->name); return; } skb_put(skb, 10 + skb_main->len); skb->dev = dev; skb->protocol = htons(ETH_P_CUST); skb_reset_mac_header(skb); skb->pkt_type = PACKET_HOST; skb->len = 10 + skb_main->len; skb_copy_to_linear_data(skb, dev->name, 5); skb->data[5] = '['; skb->data[6] = rx_tx; skb->data[7] = ']'; skb->data[8] = ':'; skb->data[9] = ' '; skb_copy_from_linear_data(skb_main, &skb->data[10], skb_main->len); netif_rx(skb); } static void cpc_tx_timeout(struct net_device *dev) { pc300dev_t *d = (pc300dev_t *) dev_to_hdlc(dev)->priv; pc300ch_t *chan = (pc300ch_t *) d->chan; pc300_t *card = (pc300_t *) chan->card; int ch = chan->channel; unsigned long flags; u8 ilar; dev->stats.tx_errors++; dev->stats.tx_aborted_errors++; CPC_LOCK(card, flags); if ((ilar = cpc_readb(card->hw.scabase + ILAR)) != 0) { printk("%s: ILAR=0x%x\n", dev->name, ilar); cpc_writeb(card->hw.scabase + ILAR, ilar); cpc_writeb(card->hw.scabase + DMER, 0x80); } if (card->hw.type == PC300_TE) { cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2, cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) & ~(CPLD_REG2_FALC_LED1 << (2 * ch))); } dev->trans_start = jiffies; CPC_UNLOCK(card, flags); netif_wake_queue(dev); } static int cpc_queue_xmit(struct sk_buff *skb, struct net_device *dev) { pc300dev_t *d = (pc300dev_t *) dev_to_hdlc(dev)->priv; pc300ch_t *chan = (pc300ch_t *) d->chan; pc300_t *card = (pc300_t *) chan->card; int ch = chan->channel; unsigned long flags; #ifdef PC300_DEBUG_TX int i; #endif if (!netif_carrier_ok(dev)) { /* DCD must be OFF: drop packet */ dev_kfree_skb(skb); dev->stats.tx_errors++; dev->stats.tx_carrier_errors++; return 0; } else if (cpc_readb(card->hw.scabase + M_REG(ST3, ch)) & ST3_DCD) { printk("%s: DCD is OFF. Going administrative down.\n", dev->name); dev->stats.tx_errors++; dev->stats.tx_carrier_errors++; dev_kfree_skb(skb); netif_carrier_off(dev); CPC_LOCK(card, flags); cpc_writeb(card->hw.scabase + M_REG(CMD, ch), CMD_TX_BUF_CLR); if (card->hw.type == PC300_TE) { cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2, cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) & ~(CPLD_REG2_FALC_LED1 << (2 * ch))); } CPC_UNLOCK(card, flags); netif_wake_queue(dev); return 0; } /* Write buffer to DMA buffers */ if (dma_buf_write(card, ch, (u8 *)skb->data, skb->len) != 0) { // printk("%s: write error. Dropping TX packet.\n", dev->name); netif_stop_queue(dev); dev_kfree_skb(skb); dev->stats.tx_errors++; dev->stats.tx_dropped++; return 0; } #ifdef PC300_DEBUG_TX printk("%s T:", dev->name); for (i = 0; i < skb->len; i++) printk(" %02x", *(skb->data + i)); printk("\n"); #endif if (d->trace_on) { cpc_trace(dev, skb, 'T'); } dev->trans_start = jiffies; /* Start transmission */ CPC_LOCK(card, flags); /* verify if it has more than one free descriptor */ if (card->chan[ch].nfree_tx_bd <= 1) { /* don't have so stop the queue */ netif_stop_queue(dev); } cpc_writel(card->hw.scabase + DTX_REG(EDAL, ch), TX_BD_ADDR(ch, chan->tx_next_bd)); cpc_writeb(card->hw.scabase + M_REG(CMD, ch), CMD_TX_ENA); cpc_writeb(card->hw.scabase + DSR_TX(ch), DSR_DE); if (card->hw.type == PC300_TE) { cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2, cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) | (CPLD_REG2_FALC_LED1 << (2 * ch))); } CPC_UNLOCK(card, flags); dev_kfree_skb(skb); return 0; } static void cpc_net_rx(struct net_device *dev) { pc300dev_t *d = (pc300dev_t *) dev_to_hdlc(dev)->priv; pc300ch_t *chan = (pc300ch_t *) d->chan; pc300_t *card = (pc300_t *) chan->card; int ch = chan->channel; #ifdef PC300_DEBUG_RX int i; #endif int rxb; struct sk_buff *skb; while (1) { if ((rxb = dma_get_rx_frame_size(card, ch)) == -1) return; if (!netif_carrier_ok(dev)) { /* DCD must be OFF: drop packet */ printk("%s : DCD is OFF - drop %d rx bytes\n", dev->name, rxb); skb = NULL; } else { if (rxb > (dev->mtu + 40)) { /* add headers */ printk("%s : MTU exceeded %d\n", dev->name, rxb); skb = NULL; } else { skb = dev_alloc_skb(rxb); if (skb == NULL) { printk("%s: Memory squeeze!!\n", dev->name); return; } skb->dev = dev; } } if (((rxb = dma_buf_read(card, ch, skb)) <= 0) || (skb == NULL)) { #ifdef PC300_DEBUG_RX printk("%s: rxb = %x\n", dev->name, rxb); #endif if ((skb == NULL) && (rxb > 0)) { /* rxb > dev->mtu */ dev->stats.rx_errors++; dev->stats.rx_length_errors++; continue; } if (rxb < 0) { /* Invalid frame */ rxb = -rxb; if (rxb & DST_OVR) { dev->stats.rx_errors++; dev->stats.rx_fifo_errors++; } if (rxb & DST_CRC) { dev->stats.rx_errors++; dev->stats.rx_crc_errors++; } if (rxb & (DST_RBIT | DST_SHRT | DST_ABT)) { dev->stats.rx_errors++; dev->stats.rx_frame_errors++; } } if (skb) { dev_kfree_skb_irq(skb); } continue; } dev->stats.rx_bytes += rxb; #ifdef PC300_DEBUG_RX printk("%s R:", dev->name); for (i = 0; i < skb->len; i++) printk(" %02x", *(skb->data + i)); printk("\n"); #endif if (d->trace_on) { cpc_trace(dev, skb, 'R'); } dev->stats.rx_packets++; skb->protocol = hdlc_type_trans(skb, dev); netif_rx(skb); } } /************************************/ /*** PC300 Interrupt Routines ***/ /************************************/ static void sca_tx_intr(pc300dev_t *dev) { pc300ch_t *chan = (pc300ch_t *)dev->chan; pc300_t *card = (pc300_t *)chan->card; int ch = chan->channel; volatile pcsca_bd_t __iomem * ptdescr; /* Clean up descriptors from previous transmission */ ptdescr = (card->hw.rambase + TX_BD_ADDR(ch,chan->tx_first_bd)); while ((cpc_readl(card->hw.scabase + DTX_REG(CDAL,ch)) != TX_BD_ADDR(ch,chan->tx_first_bd)) && (cpc_readb(&ptdescr->status) & DST_OSB)) { dev->dev->stats.tx_packets++; dev->dev->stats.tx_bytes += cpc_readw(&ptdescr->len); cpc_writeb(&ptdescr->status, DST_OSB); cpc_writew(&ptdescr->len, 0); chan->nfree_tx_bd++; chan->tx_first_bd = (chan->tx_first_bd + 1) & (N_DMA_TX_BUF - 1); ptdescr = (card->hw.rambase + TX_BD_ADDR(ch,chan->tx_first_bd)); } #ifdef CONFIG_PC300_MLPPP if (chan->conf.proto == PC300_PROTO_MLPPP) { cpc_tty_trigger_poll(dev); } else { #endif /* Tell the upper layer we are ready to transmit more packets */ netif_wake_queue(dev->dev); #ifdef CONFIG_PC300_MLPPP } #endif } static void sca_intr(pc300_t * card) { void __iomem *scabase = card->hw.scabase; volatile u32 status; int ch; int intr_count = 0; unsigned char dsr_rx; while ((status = cpc_readl(scabase + ISR0)) != 0) { for (ch = 0; ch < card->hw.nchan; ch++) { pc300ch_t *chan = &card->chan[ch]; pc300dev_t *d = &chan->d; struct net_device *dev = d->dev; spin_lock(&card->card_lock); /**** Reception ****/ if (status & IR0_DRX((IR0_DMIA | IR0_DMIB), ch)) { u8 drx_stat = cpc_readb(scabase + DSR_RX(ch)); /* Clear RX interrupts */ cpc_writeb(scabase + DSR_RX(ch), drx_stat | DSR_DWE); #ifdef PC300_DEBUG_INTR printk ("sca_intr: RX intr chan[%d] (st=0x%08lx, dsr=0x%02x)\n", ch, status, drx_stat); #endif if (status & IR0_DRX(IR0_DMIA, ch)) { if (drx_stat & DSR_BOF) { #ifdef CONFIG_PC300_MLPPP if (chan->conf.proto == PC300_PROTO_MLPPP) { /* verify if driver is TTY */ if ((cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) { rx_dma_stop(card, ch); } cpc_tty_receive(d); rx_dma_start(card, ch); } else #endif { if ((cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) { rx_dma_stop(card, ch); } cpc_net_rx(dev); /* Discard invalid frames */ dev->stats.rx_errors++; dev->stats.rx_over_errors++; chan->rx_first_bd = 0; chan->rx_last_bd = N_DMA_RX_BUF - 1; rx_dma_start(card, ch); } } } if (status & IR0_DRX(IR0_DMIB, ch)) { if (drx_stat & DSR_EOM) { if (card->hw.type == PC300_TE) { cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2, cpc_readb (card->hw.falcbase + card->hw.cpld_reg2) | (CPLD_REG2_FALC_LED1 << (2 * ch))); } #ifdef CONFIG_PC300_MLPPP if (chan->conf.proto == PC300_PROTO_MLPPP) { /* verify if driver is TTY */ cpc_tty_receive(d); } else { cpc_net_rx(dev); } #else cpc_net_rx(dev); #endif if (card->hw.type == PC300_TE) { cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2, cpc_readb (card->hw.falcbase + card->hw.cpld_reg2) & ~ (CPLD_REG2_FALC_LED1 << (2 * ch))); } } } if (!(dsr_rx = cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) { #ifdef PC300_DEBUG_INTR printk("%s: RX intr chan[%d] (st=0x%08lx, dsr=0x%02x, dsr2=0x%02x)\n", dev->name, ch, status, drx_stat, dsr_rx); #endif cpc_writeb(scabase + DSR_RX(ch), (dsr_rx | DSR_DE) & 0xfe); } } /**** Transmission ****/ if (status & IR0_DTX((IR0_EFT | IR0_DMIA | IR0_DMIB), ch)) { u8 dtx_stat = cpc_readb(scabase + DSR_TX(ch)); /* Clear TX interrupts */ cpc_writeb(scabase + DSR_TX(ch), dtx_stat | DSR_DWE); #ifdef PC300_DEBUG_INTR printk ("sca_intr: TX intr chan[%d] (st=0x%08lx, dsr=0x%02x)\n", ch, status, dtx_stat); #endif if (status & IR0_DTX(IR0_EFT, ch)) { if (dtx_stat & DSR_UDRF) { if (cpc_readb (scabase + M_REG(TBN, ch)) != 0) { cpc_writeb(scabase + M_REG(CMD,ch), CMD_TX_BUF_CLR); } if (card->hw.type == PC300_TE) { cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2, cpc_readb (card->hw.falcbase + card->hw.cpld_reg2) & ~ (CPLD_REG2_FALC_LED1 << (2 * ch))); } dev->stats.tx_errors++; dev->stats.tx_fifo_errors++; sca_tx_intr(d); } } if (status & IR0_DTX(IR0_DMIA, ch)) { if (dtx_stat & DSR_BOF) { } } if (status & IR0_DTX(IR0_DMIB, ch)) { if (dtx_stat & DSR_EOM) { if (card->hw.type == PC300_TE) { cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2, cpc_readb (card->hw.falcbase + card->hw.cpld_reg2) & ~ (CPLD_REG2_FALC_LED1 << (2 * ch))); } sca_tx_intr(d); } } } /**** MSCI ****/ if (status & IR0_M(IR0_RXINTA, ch)) { u8 st1 = cpc_readb(scabase + M_REG(ST1, ch)); /* Clear MSCI interrupts */ cpc_writeb(scabase + M_REG(ST1, ch), st1); #ifdef PC300_DEBUG_INTR printk("sca_intr: MSCI intr chan[%d] (st=0x%08lx, st1=0x%02x)\n", ch, status, st1); #endif if (st1 & ST1_CDCD) { /* DCD changed */ if (cpc_readb(scabase + M_REG(ST3, ch)) & ST3_DCD) { printk ("%s: DCD is OFF. Going administrative down.\n", dev->name); #ifdef CONFIG_PC300_MLPPP if (chan->conf.proto != PC300_PROTO_MLPPP) { netif_carrier_off(dev); } #else netif_carrier_off(dev); #endif card->chan[ch].d.line_off++; } else { /* DCD = 1 */ printk ("%s: DCD is ON. Going administrative up.\n", dev->name); #ifdef CONFIG_PC300_MLPPP if (chan->conf.proto != PC300_PROTO_MLPPP) /* verify if driver is not TTY */ #endif netif_carrier_on(dev); card->chan[ch].d.line_on++; } } } spin_unlock(&card->card_lock); } if (++intr_count == 10) /* Too much work at this board. Force exit */ break; } } static void falc_t1_loop_detection(pc300_t *card, int ch, u8 frs1) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; falc_t *pfalc = (falc_t *) & chan->falc; void __iomem *falcbase = card->hw.falcbase; if (((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_XPRBS) == 0) && !pfalc->loop_gen) { if (frs1 & FRS1_LLBDD) { // A Line Loop Back Deactivation signal detected if (pfalc->loop_active) { falc_remote_loop(card, ch, 0); } } else { if ((frs1 & FRS1_LLBAD) && ((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_EPRM) == 0)) { // A Line Loop Back Activation signal detected if (!pfalc->loop_active) { falc_remote_loop(card, ch, 1); } } } } } static void falc_e1_loop_detection(pc300_t *card, int ch, u8 rsp) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; falc_t *pfalc = (falc_t *) & chan->falc; void __iomem *falcbase = card->hw.falcbase; if (((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_XPRBS) == 0) && !pfalc->loop_gen) { if (rsp & RSP_LLBDD) { // A Line Loop Back Deactivation signal detected if (pfalc->loop_active) { falc_remote_loop(card, ch, 0); } } else { if ((rsp & RSP_LLBAD) && ((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_EPRM) == 0)) { // A Line Loop Back Activation signal detected if (!pfalc->loop_active) { falc_remote_loop(card, ch, 1); } } } } } static void falc_t1_intr(pc300_t * card, int ch) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; falc_t *pfalc = (falc_t *) & chan->falc; void __iomem *falcbase = card->hw.falcbase; u8 isr0, isr3, gis; u8 dummy; while ((gis = cpc_readb(falcbase + F_REG(GIS, ch))) != 0) { if (gis & GIS_ISR0) { isr0 = cpc_readb(falcbase + F_REG(FISR0, ch)); if (isr0 & FISR0_PDEN) { /* Read the bit to clear the situation */ if (cpc_readb(falcbase + F_REG(FRS1, ch)) & FRS1_PDEN) { pfalc->pden++; } } } if (gis & GIS_ISR1) { dummy = cpc_readb(falcbase + F_REG(FISR1, ch)); } if (gis & GIS_ISR2) { dummy = cpc_readb(falcbase + F_REG(FISR2, ch)); } if (gis & GIS_ISR3) { isr3 = cpc_readb(falcbase + F_REG(FISR3, ch)); if (isr3 & FISR3_SEC) { pfalc->sec++; falc_update_stats(card, ch); falc_check_status(card, ch, cpc_readb(falcbase + F_REG(FRS0, ch))); } if (isr3 & FISR3_ES) { pfalc->es++; } if (isr3 & FISR3_LLBSC) { falc_t1_loop_detection(card, ch, cpc_readb(falcbase + F_REG(FRS1, ch))); } } } } static void falc_e1_intr(pc300_t * card, int ch) { pc300ch_t *chan = (pc300ch_t *) & card->chan[ch]; falc_t *pfalc = (falc_t *) & chan->falc; void __iomem *falcbase = card->hw.falcbase; u8 isr1, isr2, isr3, gis, rsp; u8 dummy; while ((gis = cpc_readb(falcbase + F_REG(GIS, ch))) != 0) { rsp = cpc_readb(falcbase + F_REG(RSP, ch)); if (gis & GIS_ISR0) { dummy = cpc_readb(falcbase + F_REG(FISR0, ch)); } if (gis & GIS_ISR1) { isr1 = cpc_readb(falcbase + F_REG(FISR1, ch)); if (isr1 & FISR1_XMB) { if ((pfalc->xmb_cause & 2) && pfalc->multiframe_mode) { if (cpc_readb (falcbase + F_REG(FRS0, ch)) & (FRS0_LOS | FRS0_AIS | FRS0_LFA)) { cpc_writeb(falcbase + F_REG(XSP, ch), cpc_readb(falcbase + F_REG(XSP, ch)) & ~XSP_AXS); } else { cpc_writeb(falcbase + F_REG(XSP, ch), cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_AXS); } } pfalc->xmb_cause = 0; cpc_writeb(falcbase + F_REG(IMR1, ch), cpc_readb(falcbase + F_REG(IMR1, ch)) | IMR1_XMB); } if (isr1 & FISR1_LLBSC) { falc_e1_loop_detection(card, ch, rsp); } } if (gis & GIS_ISR2) { isr2 = cpc_readb(falcbase + F_REG(FISR2, ch)); if (isr2 & FISR2_T400MS) { cpc_writeb(falcbase + F_REG(XSW, ch), cpc_readb(falcbase + F_REG(XSW, ch)) | XSW_XRA); } if (isr2 & FISR2_MFAR) { cpc_writeb(falcbase + F_REG(XSW, ch), cpc_readb(falcbase + F_REG(XSW, ch)) & ~XSW_XRA); } if (isr2 & (FISR2_FAR | FISR2_LFA | FISR2_AIS | FISR2_LOS)) { pfalc->xmb_cause |= 2; cpc_writeb(falcbase + F_REG(IMR1, ch), cpc_readb(falcbase + F_REG(IMR1, ch)) & ~IMR1_XMB); } } if (gis & GIS_ISR3) { isr3 = cpc_readb(falcbase + F_REG(FISR3, ch)); if (isr3 & FISR3_SEC) { pfalc->sec++; falc_update_stats(card, ch); falc_check_status(card, ch, cpc_readb(falcbase + F_REG(FRS0, ch))); } if (isr3 & FISR3_ES) { pfalc->es++; } } } } static void falc_intr(pc300_t * card) { int ch; for (ch = 0; ch < card->hw.nchan; ch++) { pc300ch_t *chan = &card->chan[ch]; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; if (conf->media == IF_IFACE_T1) { falc_t1_intr(card, ch); } else { falc_e1_intr(card, ch); } } } static irqreturn_t cpc_intr(int irq, void *dev_id) { pc300_t *card = dev_id; volatile u8 plx_status; if (!card) { #ifdef PC300_DEBUG_INTR printk("cpc_intr: spurious intr %d\n", irq); #endif return IRQ_NONE; /* spurious intr */ } if (!card->hw.rambase) { #ifdef PC300_DEBUG_INTR printk("cpc_intr: spurious intr2 %d\n", irq); #endif return IRQ_NONE; /* spurious intr */ } switch (card->hw.type) { case PC300_RSV: case PC300_X21: sca_intr(card); break; case PC300_TE: while ( (plx_status = (cpc_readb(card->hw.plxbase + card->hw.intctl_reg) & (PLX_9050_LINT1_STATUS | PLX_9050_LINT2_STATUS))) != 0) { if (plx_status & PLX_9050_LINT1_STATUS) { /* SCA Interrupt */ sca_intr(card); } if (plx_status & PLX_9050_LINT2_STATUS) { /* FALC Interrupt */ falc_intr(card); } } break; } return IRQ_HANDLED; } static void cpc_sca_status(pc300_t * card, int ch) { u8 ilar; void __iomem *scabase = card->hw.scabase; unsigned long flags; tx_dma_buf_check(card, ch); rx_dma_buf_check(card, ch); ilar = cpc_readb(scabase + ILAR); printk ("ILAR=0x%02x, WCRL=0x%02x, PCR=0x%02x, BTCR=0x%02x, BOLR=0x%02x\n", ilar, cpc_readb(scabase + WCRL), cpc_readb(scabase + PCR), cpc_readb(scabase + BTCR), cpc_readb(scabase + BOLR)); printk("TX_CDA=0x%08x, TX_EDA=0x%08x\n", cpc_readl(scabase + DTX_REG(CDAL, ch)), cpc_readl(scabase + DTX_REG(EDAL, ch))); printk("RX_CDA=0x%08x, RX_EDA=0x%08x, BFL=0x%04x\n", cpc_readl(scabase + DRX_REG(CDAL, ch)), cpc_readl(scabase + DRX_REG(EDAL, ch)), cpc_readw(scabase + DRX_REG(BFLL, ch))); printk("DMER=0x%02x, DSR_TX=0x%02x, DSR_RX=0x%02x\n", cpc_readb(scabase + DMER), cpc_readb(scabase + DSR_TX(ch)), cpc_readb(scabase + DSR_RX(ch))); printk("DMR_TX=0x%02x, DMR_RX=0x%02x, DIR_TX=0x%02x, DIR_RX=0x%02x\n", cpc_readb(scabase + DMR_TX(ch)), cpc_readb(scabase + DMR_RX(ch)), cpc_readb(scabase + DIR_TX(ch)), cpc_readb(scabase + DIR_RX(ch))); printk("DCR_TX=0x%02x, DCR_RX=0x%02x, FCT_TX=0x%02x, FCT_RX=0x%02x\n", cpc_readb(scabase + DCR_TX(ch)), cpc_readb(scabase + DCR_RX(ch)), cpc_readb(scabase + FCT_TX(ch)), cpc_readb(scabase + FCT_RX(ch))); printk("MD0=0x%02x, MD1=0x%02x, MD2=0x%02x, MD3=0x%02x, IDL=0x%02x\n", cpc_readb(scabase + M_REG(MD0, ch)), cpc_readb(scabase + M_REG(MD1, ch)), cpc_readb(scabase + M_REG(MD2, ch)), cpc_readb(scabase + M_REG(MD3, ch)), cpc_readb(scabase + M_REG(IDL, ch))); printk("CMD=0x%02x, SA0=0x%02x, SA1=0x%02x, TFN=0x%02x, CTL=0x%02x\n", cpc_readb(scabase + M_REG(CMD, ch)), cpc_readb(scabase + M_REG(SA0, ch)), cpc_readb(scabase + M_REG(SA1, ch)), cpc_readb(scabase + M_REG(TFN, ch)), cpc_readb(scabase + M_REG(CTL, ch))); printk("ST0=0x%02x, ST1=0x%02x, ST2=0x%02x, ST3=0x%02x, ST4=0x%02x\n", cpc_readb(scabase + M_REG(ST0, ch)), cpc_readb(scabase + M_REG(ST1, ch)), cpc_readb(scabase + M_REG(ST2, ch)), cpc_readb(scabase + M_REG(ST3, ch)), cpc_readb(scabase + M_REG(ST4, ch))); printk ("CST0=0x%02x, CST1=0x%02x, CST2=0x%02x, CST3=0x%02x, FST=0x%02x\n", cpc_readb(scabase + M_REG(CST0, ch)), cpc_readb(scabase + M_REG(CST1, ch)), cpc_readb(scabase + M_REG(CST2, ch)), cpc_readb(scabase + M_REG(CST3, ch)), cpc_readb(scabase + M_REG(FST, ch))); printk("TRC0=0x%02x, TRC1=0x%02x, RRC=0x%02x, TBN=0x%02x, RBN=0x%02x\n", cpc_readb(scabase + M_REG(TRC0, ch)), cpc_readb(scabase + M_REG(TRC1, ch)), cpc_readb(scabase + M_REG(RRC, ch)), cpc_readb(scabase + M_REG(TBN, ch)), cpc_readb(scabase + M_REG(RBN, ch))); printk("TFS=0x%02x, TNR0=0x%02x, TNR1=0x%02x, RNR=0x%02x\n", cpc_readb(scabase + M_REG(TFS, ch)), cpc_readb(scabase + M_REG(TNR0, ch)), cpc_readb(scabase + M_REG(TNR1, ch)), cpc_readb(scabase + M_REG(RNR, ch))); printk("TCR=0x%02x, RCR=0x%02x, TNR1=0x%02x, RNR=0x%02x\n", cpc_readb(scabase + M_REG(TCR, ch)), cpc_readb(scabase + M_REG(RCR, ch)), cpc_readb(scabase + M_REG(TNR1, ch)), cpc_readb(scabase + M_REG(RNR, ch))); printk("TXS=0x%02x, RXS=0x%02x, EXS=0x%02x, TMCT=0x%02x, TMCR=0x%02x\n", cpc_readb(scabase + M_REG(TXS, ch)), cpc_readb(scabase + M_REG(RXS, ch)), cpc_readb(scabase + M_REG(EXS, ch)), cpc_readb(scabase + M_REG(TMCT, ch)), cpc_readb(scabase + M_REG(TMCR, ch))); printk("IE0=0x%02x, IE1=0x%02x, IE2=0x%02x, IE4=0x%02x, FIE=0x%02x\n", cpc_readb(scabase + M_REG(IE0, ch)), cpc_readb(scabase + M_REG(IE1, ch)), cpc_readb(scabase + M_REG(IE2, ch)), cpc_readb(scabase + M_REG(IE4, ch)), cpc_readb(scabase + M_REG(FIE, ch))); printk("IER0=0x%08x\n", cpc_readl(scabase + IER0)); if (ilar != 0) { CPC_LOCK(card, flags); cpc_writeb(scabase + ILAR, ilar); cpc_writeb(scabase + DMER, 0x80); CPC_UNLOCK(card, flags); } } static void cpc_falc_status(pc300_t * card, int ch) { pc300ch_t *chan = &card->chan[ch]; falc_t *pfalc = (falc_t *) & chan->falc; unsigned long flags; CPC_LOCK(card, flags); printk("CH%d: %s %s %d channels\n", ch, (pfalc->sync ? "SYNC" : ""), (pfalc->active ? "ACTIVE" : ""), pfalc->num_channels); printk(" pden=%d, los=%d, losr=%d, lfa=%d, farec=%d\n", pfalc->pden, pfalc->los, pfalc->losr, pfalc->lfa, pfalc->farec); printk(" lmfa=%d, ais=%d, sec=%d, es=%d, rai=%d\n", pfalc->lmfa, pfalc->ais, pfalc->sec, pfalc->es, pfalc->rai); printk(" bec=%d, fec=%d, cvc=%d, cec=%d, ebc=%d\n", pfalc->bec, pfalc->fec, pfalc->cvc, pfalc->cec, pfalc->ebc); printk("\n"); printk(" STATUS: %s %s %s %s %s %s\n", (pfalc->red_alarm ? "RED" : ""), (pfalc->blue_alarm ? "BLU" : ""), (pfalc->yellow_alarm ? "YEL" : ""), (pfalc->loss_fa ? "LFA" : ""), (pfalc->loss_mfa ? "LMF" : ""), (pfalc->prbs ? "PRB" : "")); CPC_UNLOCK(card, flags); } static int cpc_change_mtu(struct net_device *dev, int new_mtu) { if ((new_mtu < 128) || (new_mtu > PC300_DEF_MTU)) return -EINVAL; dev->mtu = new_mtu; return 0; } static int cpc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { pc300dev_t *d = (pc300dev_t *) dev_to_hdlc(dev)->priv; pc300ch_t *chan = (pc300ch_t *) d->chan; pc300_t *card = (pc300_t *) chan->card; pc300conf_t conf_aux; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; int ch = chan->channel; void __user *arg = ifr->ifr_data; struct if_settings *settings = &ifr->ifr_settings; void __iomem *scabase = card->hw.scabase; if (!capable(CAP_NET_ADMIN)) return -EPERM; switch (cmd) { case SIOCGPC300CONF: #ifdef CONFIG_PC300_MLPPP if (conf->proto != PC300_PROTO_MLPPP) { conf->proto = /* FIXME hdlc->proto.id */ 0; } #else conf->proto = /* FIXME hdlc->proto.id */ 0; #endif memcpy(&conf_aux.conf, conf, sizeof(pc300chconf_t)); memcpy(&conf_aux.hw, &card->hw, sizeof(pc300hw_t)); if (!arg || copy_to_user(arg, &conf_aux, sizeof(pc300conf_t))) return -EINVAL; return 0; case SIOCSPC300CONF: if (!capable(CAP_NET_ADMIN)) return -EPERM; if (!arg || copy_from_user(&conf_aux.conf, arg, sizeof(pc300chconf_t))) return -EINVAL; if (card->hw.cpld_id < 0x02 && conf_aux.conf.fr_mode == PC300_FR_UNFRAMED) { /* CPLD_ID < 0x02 doesn't support Unframed E1 */ return -EINVAL; } #ifdef CONFIG_PC300_MLPPP if (conf_aux.conf.proto == PC300_PROTO_MLPPP) { if (conf->proto != PC300_PROTO_MLPPP) { memcpy(conf, &conf_aux.conf, sizeof(pc300chconf_t)); cpc_tty_init(d); /* init TTY driver */ } } else { if (conf_aux.conf.proto == 0xffff) { if (conf->proto == PC300_PROTO_MLPPP){ /* ifdown interface */ cpc_close(dev); } } else { memcpy(conf, &conf_aux.conf, sizeof(pc300chconf_t)); /* FIXME hdlc->proto.id = conf->proto; */ } } #else memcpy(conf, &conf_aux.conf, sizeof(pc300chconf_t)); /* FIXME hdlc->proto.id = conf->proto; */ #endif return 0; case SIOCGPC300STATUS: cpc_sca_status(card, ch); return 0; case SIOCGPC300FALCSTATUS: cpc_falc_status(card, ch); return 0; case SIOCGPC300UTILSTATS: { if (!arg) { /* clear statistics */ memset(&dev->stats, 0, sizeof(dev->stats)); if (card->hw.type == PC300_TE) { memset(&chan->falc, 0, sizeof(falc_t)); } } else { pc300stats_t pc300stats; memset(&pc300stats, 0, sizeof(pc300stats_t)); pc300stats.hw_type = card->hw.type; pc300stats.line_on = card->chan[ch].d.line_on; pc300stats.line_off = card->chan[ch].d.line_off; memcpy(&pc300stats.gen_stats, &dev->stats, sizeof(dev->stats)); if (card->hw.type == PC300_TE) memcpy(&pc300stats.te_stats,&chan->falc,sizeof(falc_t)); if (copy_to_user(arg, &pc300stats, sizeof(pc300stats_t))) return -EFAULT; } return 0; } case SIOCGPC300UTILSTATUS: { struct pc300status pc300status; pc300status.hw_type = card->hw.type; if (card->hw.type == PC300_TE) { pc300status.te_status.sync = chan->falc.sync; pc300status.te_status.red_alarm = chan->falc.red_alarm; pc300status.te_status.blue_alarm = chan->falc.blue_alarm; pc300status.te_status.loss_fa = chan->falc.loss_fa; pc300status.te_status.yellow_alarm =chan->falc.yellow_alarm; pc300status.te_status.loss_mfa = chan->falc.loss_mfa; pc300status.te_status.prbs = chan->falc.prbs; } else { pc300status.gen_status.dcd = !(cpc_readb (scabase + M_REG(ST3, ch)) & ST3_DCD); pc300status.gen_status.cts = !(cpc_readb (scabase + M_REG(ST3, ch)) & ST3_CTS); pc300status.gen_status.rts = !(cpc_readb (scabase + M_REG(CTL, ch)) & CTL_RTS); pc300status.gen_status.dtr = !(cpc_readb (scabase + M_REG(CTL, ch)) & CTL_DTR); /* There is no DSR in HD64572 */ } if (!arg || copy_to_user(arg, &pc300status, sizeof(pc300status_t))) return -EINVAL; return 0; } case SIOCSPC300TRACE: /* Sets/resets a trace_flag for the respective device */ if (!arg || copy_from_user(&d->trace_on, arg,sizeof(unsigned char))) return -EINVAL; return 0; case SIOCSPC300LOOPBACK: { struct pc300loopback pc300loop; /* TE boards only */ if (card->hw.type != PC300_TE) return -EINVAL; if (!arg || copy_from_user(&pc300loop, arg, sizeof(pc300loopback_t))) return -EINVAL; switch (pc300loop.loop_type) { case PC300LOCLOOP: /* Turn the local loop on/off */ falc_local_loop(card, ch, pc300loop.loop_on); return 0; case PC300REMLOOP: /* Turn the remote loop on/off */ falc_remote_loop(card, ch, pc300loop.loop_on); return 0; case PC300PAYLOADLOOP: /* Turn the payload loop on/off */ falc_payload_loop(card, ch, pc300loop.loop_on); return 0; case PC300GENLOOPUP: /* Generate loop UP */ if (pc300loop.loop_on) { falc_generate_loop_up_code (card, ch); } else { turn_off_xlu(card, ch); } return 0; case PC300GENLOOPDOWN: /* Generate loop DOWN */ if (pc300loop.loop_on) { falc_generate_loop_down_code (card, ch); } else { turn_off_xld(card, ch); } return 0; default: return -EINVAL; } } case SIOCSPC300PATTERNTEST: /* Turn the pattern test on/off and show the errors counter */ { struct pc300patterntst pc300patrntst; /* TE boards only */ if (card->hw.type != PC300_TE) return -EINVAL; if (card->hw.cpld_id < 0x02) { /* CPLD_ID < 0x02 doesn't support pattern test */ return -EINVAL; } if (!arg || copy_from_user(&pc300patrntst,arg,sizeof(pc300patterntst_t))) return -EINVAL; if (pc300patrntst.patrntst_on == 2) { if (chan->falc.prbs == 0) { falc_pattern_test(card, ch, 1); } pc300patrntst.num_errors = falc_pattern_test_error(card, ch); if (copy_to_user(arg, &pc300patrntst, sizeof(pc300patterntst_t))) return -EINVAL; } else { falc_pattern_test(card, ch, pc300patrntst.patrntst_on); } return 0; } case SIOCWANDEV: switch (ifr->ifr_settings.type) { case IF_GET_IFACE: { const size_t size = sizeof(sync_serial_settings); ifr->ifr_settings.type = conf->media; if (ifr->ifr_settings.size < size) { /* data size wanted */ ifr->ifr_settings.size = size; return -ENOBUFS; } if (copy_to_user(settings->ifs_ifsu.sync, &conf->phys_settings, size)) { return -EFAULT; } return 0; } case IF_IFACE_V35: case IF_IFACE_V24: case IF_IFACE_X21: { const size_t size = sizeof(sync_serial_settings); if (!capable(CAP_NET_ADMIN)) { return -EPERM; } /* incorrect data len? */ if (ifr->ifr_settings.size != size) { return -ENOBUFS; } if (copy_from_user(&conf->phys_settings, settings->ifs_ifsu.sync, size)) { return -EFAULT; } if (conf->phys_settings.loopback) { cpc_writeb(card->hw.scabase + M_REG(MD2, ch), cpc_readb(card->hw.scabase + M_REG(MD2, ch)) | MD2_LOOP_MIR); } conf->media = ifr->ifr_settings.type; return 0; } case IF_IFACE_T1: case IF_IFACE_E1: { const size_t te_size = sizeof(te1_settings); const size_t size = sizeof(sync_serial_settings); if (!capable(CAP_NET_ADMIN)) { return -EPERM; } /* incorrect data len? */ if (ifr->ifr_settings.size != te_size) { return -ENOBUFS; } if (copy_from_user(&conf->phys_settings, settings->ifs_ifsu.te1, size)) { return -EFAULT; }/* Ignoring HDLC slot_map for a while */ if (conf->phys_settings.loopback) { cpc_writeb(card->hw.scabase + M_REG(MD2, ch), cpc_readb(card->hw.scabase + M_REG(MD2, ch)) | MD2_LOOP_MIR); } conf->media = ifr->ifr_settings.type; return 0; } default: return hdlc_ioctl(dev, ifr, cmd); } default: return hdlc_ioctl(dev, ifr, cmd); } } static int clock_rate_calc(u32 rate, u32 clock, int *br_io) { int br, tc; int br_pwr, error; *br_io = 0; if (rate == 0) return (0); for (br = 0, br_pwr = 1; br <= 9; br++, br_pwr <<= 1) { if ((tc = clock / br_pwr / rate) <= 0xff) { *br_io = br; break; } } if (tc <= 0xff) { error = ((rate - (clock / br_pwr / rate)) / rate) * 1000; /* Errors bigger than +/- 1% won't be tolerated */ if (error < -10 || error > 10) return (-1); else return (tc); } else { return (-1); } } static int ch_config(pc300dev_t * d) { pc300ch_t *chan = (pc300ch_t *) d->chan; pc300chconf_t *conf = (pc300chconf_t *) & chan->conf; pc300_t *card = (pc300_t *) chan->card; void __iomem *scabase = card->hw.scabase; void __iomem *plxbase = card->hw.plxbase; int ch = chan->channel; u32 clkrate = chan->conf.phys_settings.clock_rate; u32 clktype = chan->conf.phys_settings.clock_type; u16 encoding = chan->conf.proto_settings.encoding; u16 parity = chan->conf.proto_settings.parity; u8 md0, md2; /* Reset the channel */ cpc_writeb(scabase + M_REG(CMD, ch), CMD_CH_RST); /* Configure the SCA registers */ switch (parity) { case PARITY_NONE: md0 = MD0_BIT_SYNC; break; case PARITY_CRC16_PR0: md0 = MD0_CRC16_0|MD0_CRCC0|MD0_BIT_SYNC; break; case PARITY_CRC16_PR1: md0 = MD0_CRC16_1|MD0_CRCC0|MD0_BIT_SYNC; break; case PARITY_CRC32_PR1_CCITT: md0 = MD0_CRC32|MD0_CRCC0|MD0_BIT_SYNC; break; case PARITY_CRC16_PR1_CCITT: default: md0 = MD0_CRC_CCITT|MD0_CRCC0|MD0_BIT_SYNC; break; } switch (encoding) { case ENCODING_NRZI: md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_NRZI; break; case ENCODING_FM_MARK: /* FM1 */ md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_FM|MD2_FM1; break; case ENCODING_FM_SPACE: /* FM0 */ md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_FM|MD2_FM0; break; case ENCODING_MANCHESTER: /* It's not working... */ md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_FM|MD2_MANCH; break; case ENCODING_NRZ: default: md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_NRZ; break; } cpc_writeb(scabase + M_REG(MD0, ch), md0); cpc_writeb(scabase + M_REG(MD1, ch), 0); cpc_writeb(scabase + M_REG(MD2, ch), md2); cpc_writeb(scabase + M_REG(IDL, ch), 0x7e); cpc_writeb(scabase + M_REG(CTL, ch), CTL_URSKP | CTL_IDLC); /* Configure HW media */ switch (card->hw.type) { case PC300_RSV: if (conf->media == IF_IFACE_V35) { cpc_writel((plxbase + card->hw.gpioc_reg), cpc_readl(plxbase + card->hw.gpioc_reg) | PC300_CHMEDIA_MASK(ch)); } else { cpc_writel((plxbase + card->hw.gpioc_reg), cpc_readl(plxbase + card->hw.gpioc_reg) & ~PC300_CHMEDIA_MASK(ch)); } break; case PC300_X21: break; case PC300_TE: te_config(card, ch); break; } switch (card->hw.type) { case PC300_RSV: case PC300_X21: if (clktype == CLOCK_INT || clktype == CLOCK_TXINT) { int tmc, br; /* Calculate the clkrate parameters */ tmc = clock_rate_calc(clkrate, card->hw.clock, &br); if (tmc < 0) return -EIO; cpc_writeb(scabase + M_REG(TMCT, ch), tmc); cpc_writeb(scabase + M_REG(TXS, ch), (TXS_DTRXC | TXS_IBRG | br)); if (clktype == CLOCK_INT) { cpc_writeb(scabase + M_REG(TMCR, ch), tmc); cpc_writeb(scabase + M_REG(RXS, ch), (RXS_IBRG | br)); } else { cpc_writeb(scabase + M_REG(TMCR, ch), 1); cpc_writeb(scabase + M_REG(RXS, ch), 0); } if (card->hw.type == PC300_X21) { cpc_writeb(scabase + M_REG(GPO, ch), 1); cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1 | EXS_RES1); } else { cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1); } } else { cpc_writeb(scabase + M_REG(TMCT, ch), 1); if (clktype == CLOCK_EXT) { cpc_writeb(scabase + M_REG(TXS, ch), TXS_DTRXC); } else { cpc_writeb(scabase + M_REG(TXS, ch), TXS_DTRXC|TXS_RCLK); } cpc_writeb(scabase + M_REG(TMCR, ch), 1); cpc_writeb(scabase + M_REG(RXS, ch), 0); if (card->hw.type == PC300_X21) { cpc_writeb(scabase + M_REG(GPO, ch), 0); cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1 | EXS_RES1); } else { cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1); } } break; case PC300_TE: /* SCA always receives clock from the FALC chip */ cpc_writeb(scabase + M_REG(TMCT, ch), 1); cpc_writeb(scabase + M_REG(TXS, ch), 0); cpc_writeb(scabase + M_REG(TMCR, ch), 1); cpc_writeb(scabase + M_REG(RXS, ch), 0); cpc_writeb(scabase + M_REG(EXS, ch), 0); break; } /* Enable Interrupts */ cpc_writel(scabase + IER0, cpc_readl(scabase + IER0) | IR0_M(IR0_RXINTA, ch) | IR0_DRX(IR0_EFT | IR0_DMIA | IR0_DMIB, ch) | IR0_DTX(IR0_EFT | IR0_DMIA | IR0_DMIB, ch)); cpc_writeb(scabase + M_REG(IE0, ch), cpc_readl(scabase + M_REG(IE0, ch)) | IE0_RXINTA); cpc_writeb(scabase + M_REG(IE1, ch), cpc_readl(scabase + M_REG(IE1, ch)) | IE1_CDCD); return 0; } static int rx_config(pc300dev_t * d) { pc300ch_t *chan = (pc300ch_t *) d->chan; pc300_t *card = (pc300_t *) chan->card; void __iomem *scabase = card->hw.scabase; int ch = chan->channel; cpc_writeb(scabase + DSR_RX(ch), 0); /* General RX settings */ cpc_writeb(scabase + M_REG(RRC, ch), 0); cpc_writeb(scabase + M_REG(RNR, ch), 16); /* Enable reception */ cpc_writeb(scabase + M_REG(CMD, ch), CMD_RX_CRC_INIT); cpc_writeb(scabase + M_REG(CMD, ch), CMD_RX_ENA); /* Initialize DMA stuff */ chan->rx_first_bd = 0; chan->rx_last_bd = N_DMA_RX_BUF - 1; rx_dma_buf_init(card, ch); cpc_writeb(scabase + DCR_RX(ch), DCR_FCT_CLR); cpc_writeb(scabase + DMR_RX(ch), (DMR_TMOD | DMR_NF)); cpc_writeb(scabase + DIR_RX(ch), (DIR_EOM | DIR_BOF)); /* Start DMA */ rx_dma_start(card, ch); return 0; } static int tx_config(pc300dev_t * d) { pc300ch_t *chan = (pc300ch_t *) d->chan; pc300_t *card = (pc300_t *) chan->card; void __iomem *scabase = card->hw.scabase; int ch = chan->channel; cpc_writeb(scabase + DSR_TX(ch), 0); /* General TX settings */ cpc_writeb(scabase + M_REG(TRC0, ch), 0); cpc_writeb(scabase + M_REG(TFS, ch), 32); cpc_writeb(scabase + M_REG(TNR0, ch), 20); cpc_writeb(scabase + M_REG(TNR1, ch), 48); cpc_writeb(scabase + M_REG(TCR, ch), 8); /* Enable transmission */ cpc_writeb(scabase + M_REG(CMD, ch), CMD_TX_CRC_INIT); /* Initialize DMA stuff */ chan->tx_first_bd = 0; chan->tx_next_bd = 0; tx_dma_buf_init(card, ch); cpc_writeb(scabase + DCR_TX(ch), DCR_FCT_CLR); cpc_writeb(scabase + DMR_TX(ch), (DMR_TMOD | DMR_NF)); cpc_writeb(scabase + DIR_TX(ch), (DIR_EOM | DIR_BOF | DIR_UDRF)); cpc_writel(scabase + DTX_REG(CDAL, ch), TX_BD_ADDR(ch, chan->tx_first_bd)); cpc_writel(scabase + DTX_REG(EDAL, ch), TX_BD_ADDR(ch, chan->tx_next_bd)); return 0; } static int cpc_attach(struct net_device *dev, unsigned short encoding, unsigned short parity) { pc300dev_t *d = (pc300dev_t *)dev_to_hdlc(dev)->priv; pc300ch_t *chan = (pc300ch_t *)d->chan; pc300_t *card = (pc300_t *)chan->card; pc300chconf_t *conf = (pc300chconf_t *)&chan->conf; if (card->hw.type == PC300_TE) { if (encoding != ENCODING_NRZ && encoding != ENCODING_NRZI) { return -EINVAL; } } else { if (encoding != ENCODING_NRZ && encoding != ENCODING_NRZI && encoding != ENCODING_FM_MARK && encoding != ENCODING_FM_SPACE) { /* Driver doesn't support ENCODING_MANCHESTER yet */ return -EINVAL; } } if (parity != PARITY_NONE && parity != PARITY_CRC16_PR0 && parity != PARITY_CRC16_PR1 && parity != PARITY_CRC32_PR1_CCITT && parity != PARITY_CRC16_PR1_CCITT) { return -EINVAL; } conf->proto_settings.encoding = encoding; conf->proto_settings.parity = parity; return 0; } static int cpc_opench(pc300dev_t * d) { pc300ch_t *chan = (pc300ch_t *) d->chan; pc300_t *card = (pc300_t *) chan->card; int ch = chan->channel, rc; void __iomem *scabase = card->hw.scabase; rc = ch_config(d); if (rc) return rc; rx_config(d); tx_config(d); /* Assert RTS and DTR */ cpc_writeb(scabase + M_REG(CTL, ch), cpc_readb(scabase + M_REG(CTL, ch)) & ~(CTL_RTS | CTL_DTR)); return 0; } static void cpc_closech(pc300dev_t * d) { pc300ch_t *chan = (pc300ch_t *) d->chan; pc300_t *card = (pc300_t *) chan->card; falc_t *pfalc = (falc_t *) & chan->falc; int ch = chan->channel; cpc_writeb(card->hw.scabase + M_REG(CMD, ch), CMD_CH_RST); rx_dma_stop(card, ch); tx_dma_stop(card, ch); if (card->hw.type == PC300_TE) { memset(pfalc, 0, sizeof(falc_t)); cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2, cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) & ~((CPLD_REG2_FALC_TX_CLK | CPLD_REG2_FALC_RX_CLK | CPLD_REG2_FALC_LED2) << (2 * ch))); /* Reset the FALC chip */ cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1, cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) | (CPLD_REG1_FALC_RESET << (2 * ch))); udelay(10000); cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1, cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) & ~(CPLD_REG1_FALC_RESET << (2 * ch))); } } int cpc_open(struct net_device *dev) { pc300dev_t *d = (pc300dev_t *) dev_to_hdlc(dev)->priv; struct ifreq ifr; int result; #ifdef PC300_DEBUG_OTHER printk("pc300: cpc_open"); #endif result = hdlc_open(dev); if (result) return result; sprintf(ifr.ifr_name, "%s", dev->name); result = cpc_opench(d); if (result) goto err_out; netif_start_queue(dev); return 0; err_out: hdlc_close(dev); return result; } static int cpc_close(struct net_device *dev) { pc300dev_t *d = (pc300dev_t *) dev_to_hdlc(dev)->priv; pc300ch_t *chan = (pc300ch_t *) d->chan; pc300_t *card = (pc300_t *) chan->card; unsigned long flags; #ifdef PC300_DEBUG_OTHER printk("pc300: cpc_close"); #endif netif_stop_queue(dev); CPC_LOCK(card, flags); cpc_closech(d); CPC_UNLOCK(card, flags); hdlc_close(dev); #ifdef CONFIG_PC300_MLPPP if (chan->conf.proto == PC300_PROTO_MLPPP) { cpc_tty_unregister_service(d); chan->conf.proto = 0xffff; } #endif return 0; } static u32 detect_ram(pc300_t * card) { u32 i; u8 data; void __iomem *rambase = card->hw.rambase; card->hw.ramsize = PC300_RAMSIZE; /* Let's find out how much RAM is present on this board */ for (i = 0; i < card->hw.ramsize; i++) { data = (u8)(i & 0xff); cpc_writeb(rambase + i, data); if (cpc_readb(rambase + i) != data) { break; } } return (i); } static void plx_init(pc300_t * card) { struct RUNTIME_9050 __iomem *plx_ctl = card->hw.plxbase; /* Reset PLX */ cpc_writel(&plx_ctl->init_ctrl, cpc_readl(&plx_ctl->init_ctrl) | 0x40000000); udelay(10000L); cpc_writel(&plx_ctl->init_ctrl, cpc_readl(&plx_ctl->init_ctrl) & ~0x40000000); /* Reload Config. Registers from EEPROM */ cpc_writel(&plx_ctl->init_ctrl, cpc_readl(&plx_ctl->init_ctrl) | 0x20000000); udelay(10000L); cpc_writel(&plx_ctl->init_ctrl, cpc_readl(&plx_ctl->init_ctrl) & ~0x20000000); } static inline void show_version(void) { char *rcsvers, *rcsdate, *tmp; rcsvers = strchr(rcsid, ' '); rcsvers++; tmp = strchr(rcsvers, ' '); *tmp++ = '\0'; rcsdate = strchr(tmp, ' '); rcsdate++; tmp = strrchr(rcsdate, ' '); *tmp = '\0'; printk(KERN_INFO "Cyclades-PC300 driver %s %s (built %s %s)\n", rcsvers, rcsdate, __DATE__, __TIME__); } /* show_version */ static const struct net_device_ops cpc_netdev_ops = { .ndo_open = cpc_open, .ndo_stop = cpc_close, .ndo_tx_timeout = cpc_tx_timeout, .ndo_set_mac_address = NULL, .ndo_change_mtu = cpc_change_mtu, .ndo_do_ioctl = cpc_ioctl, .ndo_validate_addr = eth_validate_addr, }; static void cpc_init_card(pc300_t * card) { int i, devcount = 0; static int board_nbr = 1; /* Enable interrupts on the PCI bridge */ plx_init(card); cpc_writew(card->hw.plxbase + card->hw.intctl_reg, cpc_readw(card->hw.plxbase + card->hw.intctl_reg) | 0x0040); #ifdef USE_PCI_CLOCK /* Set board clock to PCI clock */ cpc_writel(card->hw.plxbase + card->hw.gpioc_reg, cpc_readl(card->hw.plxbase + card->hw.gpioc_reg) | 0x00000004UL); card->hw.clock = PC300_PCI_CLOCK; #else /* Set board clock to internal oscillator clock */ cpc_writel(card->hw.plxbase + card->hw.gpioc_reg, cpc_readl(card->hw.plxbase + card->hw.gpioc_reg) & ~0x00000004UL); card->hw.clock = PC300_OSC_CLOCK; #endif /* Detect actual on-board RAM size */ card->hw.ramsize = detect_ram(card); /* Set Global SCA-II registers */ cpc_writeb(card->hw.scabase + PCR, PCR_PR2); cpc_writeb(card->hw.scabase + BTCR, 0x10); cpc_writeb(card->hw.scabase + WCRL, 0); cpc_writeb(card->hw.scabase + DMER, 0x80); if (card->hw.type == PC300_TE) { u8 reg1; /* Check CPLD version */ reg1 = cpc_readb(card->hw.falcbase + CPLD_REG1); cpc_writeb(card->hw.falcbase + CPLD_REG1, (reg1 + 0x5a)); if (cpc_readb(card->hw.falcbase + CPLD_REG1) == reg1) { /* New CPLD */ card->hw.cpld_id = cpc_readb(card->hw.falcbase + CPLD_ID_REG); card->hw.cpld_reg1 = CPLD_V2_REG1; card->hw.cpld_reg2 = CPLD_V2_REG2; } else { /* old CPLD */ card->hw.cpld_id = 0; card->hw.cpld_reg1 = CPLD_REG1; card->hw.cpld_reg2 = CPLD_REG2; cpc_writeb(card->hw.falcbase + CPLD_REG1, reg1); } /* Enable the board's global clock */ cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1, cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) | CPLD_REG1_GLOBAL_CLK); } for (i = 0; i < card->hw.nchan; i++) { pc300ch_t *chan = &card->chan[i]; pc300dev_t *d = &chan->d; hdlc_device *hdlc; struct net_device *dev; chan->card = card; chan->channel = i; chan->conf.phys_settings.clock_rate = 0; chan->conf.phys_settings.clock_type = CLOCK_EXT; chan->conf.proto_settings.encoding = ENCODING_NRZ; chan->conf.proto_settings.parity = PARITY_CRC16_PR1_CCITT; switch (card->hw.type) { case PC300_TE: chan->conf.media = IF_IFACE_T1; chan->conf.lcode = PC300_LC_B8ZS; chan->conf.fr_mode = PC300_FR_ESF; chan->conf.lbo = PC300_LBO_0_DB; chan->conf.rx_sens = PC300_RX_SENS_SH; chan->conf.tslot_bitmap = 0xffffffffUL; break; case PC300_X21: chan->conf.media = IF_IFACE_X21; break; case PC300_RSV: default: chan->conf.media = IF_IFACE_V35; break; } chan->conf.proto = IF_PROTO_PPP; chan->tx_first_bd = 0; chan->tx_next_bd = 0; chan->rx_first_bd = 0; chan->rx_last_bd = N_DMA_RX_BUF - 1; chan->nfree_tx_bd = N_DMA_TX_BUF; d->chan = chan; d->trace_on = 0; d->line_on = 0; d->line_off = 0; dev = alloc_hdlcdev(d); if (dev == NULL) continue; hdlc = dev_to_hdlc(dev); hdlc->xmit = cpc_queue_xmit; hdlc->attach = cpc_attach; d->dev = dev; dev->mem_start = card->hw.ramphys; dev->mem_end = card->hw.ramphys + card->hw.ramsize - 1; dev->irq = card->hw.irq; dev->tx_queue_len = PC300_TX_QUEUE_LEN; dev->mtu = PC300_DEF_MTU; dev->netdev_ops = &cpc_netdev_ops; dev->watchdog_timeo = PC300_TX_TIMEOUT; if (register_hdlc_device(dev) == 0) { printk("%s: Cyclades-PC300/", dev->name); switch (card->hw.type) { case PC300_TE: if (card->hw.bus == PC300_PMC) { printk("TE-M"); } else { printk("TE "); } break; case PC300_X21: printk("X21 "); break; case PC300_RSV: default: printk("RSV "); break; } printk (" #%d, %dKB of RAM at 0x%08x, IRQ%d, channel %d.\n", board_nbr, card->hw.ramsize / 1024, card->hw.ramphys, card->hw.irq, i + 1); devcount++; } else { printk ("Dev%d on card(0x%08x): unable to allocate i/f name.\n", i + 1, card->hw.ramphys); free_netdev(dev); continue; } } spin_lock_init(&card->card_lock); board_nbr++; } static int __devinit cpc_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { static int first_time = 1; int err, eeprom_outdated = 0; u16 device_id; pc300_t *card; if (first_time) { first_time = 0; show_version(); #ifdef CONFIG_PC300_MLPPP cpc_tty_reset_var(); #endif } if ((err = pci_enable_device(pdev)) < 0) return err; card = kzalloc(sizeof(pc300_t), GFP_KERNEL); if (card == NULL) { printk("PC300 found at RAM 0x%016llx, " "but could not allocate card structure.\n", (unsigned long long)pci_resource_start(pdev, 3)); err = -ENOMEM; goto err_disable_dev; } err = -ENODEV; /* read PCI configuration area */ device_id = ent->device; card->hw.irq = pdev->irq; card->hw.iophys = pci_resource_start(pdev, 1); card->hw.iosize = pci_resource_len(pdev, 1); card->hw.scaphys = pci_resource_start(pdev, 2); card->hw.scasize = pci_resource_len(pdev, 2); card->hw.ramphys = pci_resource_start(pdev, 3); card->hw.alloc_ramsize = pci_resource_len(pdev, 3); card->hw.falcphys = pci_resource_start(pdev, 4); card->hw.falcsize = pci_resource_len(pdev, 4); card->hw.plxphys = pci_resource_start(pdev, 5); card->hw.plxsize = pci_resource_len(pdev, 5); switch (device_id) { case PCI_DEVICE_ID_PC300_RX_1: case PCI_DEVICE_ID_PC300_TE_1: case PCI_DEVICE_ID_PC300_TE_M_1: card->hw.nchan = 1; break; case PCI_DEVICE_ID_PC300_RX_2: case PCI_DEVICE_ID_PC300_TE_2: case PCI_DEVICE_ID_PC300_TE_M_2: default: card->hw.nchan = PC300_MAXCHAN; break; } #ifdef PC300_DEBUG_PCI printk("cpc (bus=0x0%x,pci_id=0x%x,", pdev->bus->number, pdev->devfn); printk("rev_id=%d) IRQ%d\n", pdev->revision, card->hw.irq); printk("cpc:found ramaddr=0x%08lx plxaddr=0x%08lx " "ctladdr=0x%08lx falcaddr=0x%08lx\n", card->hw.ramphys, card->hw.plxphys, card->hw.scaphys, card->hw.falcphys); #endif /* Although we don't use this I/O region, we should * request it from the kernel anyway, to avoid problems * with other drivers accessing it. */ if (!request_region(card->hw.iophys, card->hw.iosize, "PLX Registers")) { /* In case we can't allocate it, warn user */ printk("WARNING: couldn't allocate I/O region for PC300 board " "at 0x%08x!\n", card->hw.ramphys); } if (card->hw.plxphys) { pci_write_config_dword(pdev, PCI_BASE_ADDRESS_0, card->hw.plxphys); } else { eeprom_outdated = 1; card->hw.plxphys = pci_resource_start(pdev, 0); card->hw.plxsize = pci_resource_len(pdev, 0); } if (!request_mem_region(card->hw.plxphys, card->hw.plxsize, "PLX Registers")) { printk("PC300 found at RAM 0x%08x, " "but could not allocate PLX mem region.\n", card->hw.ramphys); goto err_release_io; } if (!request_mem_region(card->hw.ramphys, card->hw.alloc_ramsize, "On-board RAM")) { printk("PC300 found at RAM 0x%08x, " "but could not allocate RAM mem region.\n", card->hw.ramphys); goto err_release_plx; } if (!request_mem_region(card->hw.scaphys, card->hw.scasize, "SCA-II Registers")) { printk("PC300 found at RAM 0x%08x, " "but could not allocate SCA mem region.\n", card->hw.ramphys); goto err_release_ram; } card->hw.plxbase = ioremap(card->hw.plxphys, card->hw.plxsize); card->hw.rambase = ioremap(card->hw.ramphys, card->hw.alloc_ramsize); card->hw.scabase = ioremap(card->hw.scaphys, card->hw.scasize); switch (device_id) { case PCI_DEVICE_ID_PC300_TE_1: case PCI_DEVICE_ID_PC300_TE_2: case PCI_DEVICE_ID_PC300_TE_M_1: case PCI_DEVICE_ID_PC300_TE_M_2: request_mem_region(card->hw.falcphys, card->hw.falcsize, "FALC Registers"); card->hw.falcbase = ioremap(card->hw.falcphys, card->hw.falcsize); break; case PCI_DEVICE_ID_PC300_RX_1: case PCI_DEVICE_ID_PC300_RX_2: default: card->hw.falcbase = NULL; break; } #ifdef PC300_DEBUG_PCI printk("cpc: relocate ramaddr=0x%08lx plxaddr=0x%08lx " "ctladdr=0x%08lx falcaddr=0x%08lx\n", card->hw.rambase, card->hw.plxbase, card->hw.scabase, card->hw.falcbase); #endif /* Set PCI drv pointer to the card structure */ pci_set_drvdata(pdev, card); /* Set board type */ switch (device_id) { case PCI_DEVICE_ID_PC300_TE_1: case PCI_DEVICE_ID_PC300_TE_2: case PCI_DEVICE_ID_PC300_TE_M_1: case PCI_DEVICE_ID_PC300_TE_M_2: card->hw.type = PC300_TE; if ((device_id == PCI_DEVICE_ID_PC300_TE_M_1) || (device_id == PCI_DEVICE_ID_PC300_TE_M_2)) { card->hw.bus = PC300_PMC; /* Set PLX register offsets */ card->hw.gpioc_reg = 0x54; card->hw.intctl_reg = 0x4c; } else { card->hw.bus = PC300_PCI; /* Set PLX register offsets */ card->hw.gpioc_reg = 0x50; card->hw.intctl_reg = 0x4c; } break; case PCI_DEVICE_ID_PC300_RX_1: case PCI_DEVICE_ID_PC300_RX_2: default: card->hw.bus = PC300_PCI; /* Set PLX register offsets */ card->hw.gpioc_reg = 0x50; card->hw.intctl_reg = 0x4c; if ((cpc_readl(card->hw.plxbase + card->hw.gpioc_reg) & PC300_CTYPE_MASK)) { card->hw.type = PC300_X21; } else { card->hw.type = PC300_RSV; } break; } /* Allocate IRQ */ if (request_irq(card->hw.irq, cpc_intr, IRQF_SHARED, "Cyclades-PC300", card)) { printk ("PC300 found at RAM 0x%08x, but could not allocate IRQ%d.\n", card->hw.ramphys, card->hw.irq); goto err_io_unmap; } cpc_init_card(card); if (eeprom_outdated) printk("WARNING: PC300 with outdated EEPROM.\n"); return 0; err_io_unmap: iounmap(card->hw.plxbase); iounmap(card->hw.scabase); iounmap(card->hw.rambase); if (card->hw.type == PC300_TE) { iounmap(card->hw.falcbase); release_mem_region(card->hw.falcphys, card->hw.falcsize); } release_mem_region(card->hw.scaphys, card->hw.scasize); err_release_ram: release_mem_region(card->hw.ramphys, card->hw.alloc_ramsize); err_release_plx: release_mem_region(card->hw.plxphys, card->hw.plxsize); err_release_io: release_region(card->hw.iophys, card->hw.iosize); kfree(card); err_disable_dev: pci_disable_device(pdev); return err; } static void __devexit cpc_remove_one(struct pci_dev *pdev) { pc300_t *card = pci_get_drvdata(pdev); if (card->hw.rambase) { int i; /* Disable interrupts on the PCI bridge */ cpc_writew(card->hw.plxbase + card->hw.intctl_reg, cpc_readw(card->hw.plxbase + card->hw.intctl_reg) & ~(0x0040)); for (i = 0; i < card->hw.nchan; i++) { unregister_hdlc_device(card->chan[i].d.dev); } iounmap(card->hw.plxbase); iounmap(card->hw.scabase); iounmap(card->hw.rambase); release_mem_region(card->hw.plxphys, card->hw.plxsize); release_mem_region(card->hw.ramphys, card->hw.alloc_ramsize); release_mem_region(card->hw.scaphys, card->hw.scasize); release_region(card->hw.iophys, card->hw.iosize); if (card->hw.type == PC300_TE) { iounmap(card->hw.falcbase); release_mem_region(card->hw.falcphys, card->hw.falcsize); } for (i = 0; i < card->hw.nchan; i++) if (card->chan[i].d.dev) free_netdev(card->chan[i].d.dev); if (card->hw.irq) free_irq(card->hw.irq, card); kfree(card); pci_disable_device(pdev); } } static struct pci_driver cpc_driver = { .name = "pc300", .id_table = cpc_pci_dev_id, .probe = cpc_init_one, .remove = __devexit_p(cpc_remove_one), }; static int __init cpc_init(void) { return pci_register_driver(&cpc_driver); } static void __exit cpc_cleanup_module(void) { pci_unregister_driver(&cpc_driver); } module_init(cpc_init); module_exit(cpc_cleanup_module); MODULE_DESCRIPTION("Cyclades-PC300 cards driver"); MODULE_AUTHOR( "Author: Ivan Passos <ivan@cyclades.com>\r\n" "Maintainer: PC300 Maintainer <pc300@cyclades.com"); MODULE_LICENSE("GPL");