// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* * Copyright (C) 2012-2014, 2018-2019, 2021 Intel Corporation * Copyright (C) 2013-2015 Intel Mobile Communications GmbH * Copyright (C) 2016-2017 Intel Deutschland GmbH */ #include #include #include "iwl-trans.h" #include "iwl-csr.h" #include "mvm.h" #include "iwl-eeprom-parse.h" #include "iwl-eeprom-read.h" #include "iwl-nvm-parse.h" #include "iwl-prph.h" #include "fw/acpi.h" /* Default NVM size to read */ #define IWL_NVM_DEFAULT_CHUNK_SIZE (2 * 1024) #define NVM_WRITE_OPCODE 1 #define NVM_READ_OPCODE 0 /* load nvm chunk response */ enum { READ_NVM_CHUNK_SUCCEED = 0, READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1 }; /* * prepare the NVM host command w/ the pointers to the nvm buffer * and send it to fw */ static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section, u16 offset, u16 length, const u8 *data) { struct iwl_nvm_access_cmd nvm_access_cmd = { .offset = cpu_to_le16(offset), .length = cpu_to_le16(length), .type = cpu_to_le16(section), .op_code = NVM_WRITE_OPCODE, }; struct iwl_host_cmd cmd = { .id = NVM_ACCESS_CMD, .len = { sizeof(struct iwl_nvm_access_cmd), length }, .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL, .data = { &nvm_access_cmd, data }, /* data may come from vmalloc, so use _DUP */ .dataflags = { 0, IWL_HCMD_DFL_DUP }, }; struct iwl_rx_packet *pkt; struct iwl_nvm_access_resp *nvm_resp; int ret; ret = iwl_mvm_send_cmd(mvm, &cmd); if (ret) return ret; pkt = cmd.resp_pkt; /* Extract & check NVM write response */ nvm_resp = (void *)pkt->data; if (le16_to_cpu(nvm_resp->status) != READ_NVM_CHUNK_SUCCEED) { IWL_ERR(mvm, "NVM access write command failed for section %u (status = 0x%x)\n", section, le16_to_cpu(nvm_resp->status)); ret = -EIO; } iwl_free_resp(&cmd); return ret; } static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section, u16 offset, u16 length, u8 *data) { struct iwl_nvm_access_cmd nvm_access_cmd = { .offset = cpu_to_le16(offset), .length = cpu_to_le16(length), .type = cpu_to_le16(section), .op_code = NVM_READ_OPCODE, }; struct iwl_nvm_access_resp *nvm_resp; struct iwl_rx_packet *pkt; struct iwl_host_cmd cmd = { .id = NVM_ACCESS_CMD, .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL, .data = { &nvm_access_cmd, }, }; int ret, bytes_read, offset_read; u8 *resp_data; cmd.len[0] = sizeof(struct iwl_nvm_access_cmd); ret = iwl_mvm_send_cmd(mvm, &cmd); if (ret) return ret; pkt = cmd.resp_pkt; /* Extract NVM response */ nvm_resp = (void *)pkt->data; ret = le16_to_cpu(nvm_resp->status); bytes_read = le16_to_cpu(nvm_resp->length); offset_read = le16_to_cpu(nvm_resp->offset); resp_data = nvm_resp->data; if (ret) { if ((offset != 0) && (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) { /* * meaning of NOT_VALID_ADDRESS: * driver try to read chunk from address that is * multiple of 2K and got an error since addr is empty. * meaning of (offset != 0): driver already * read valid data from another chunk so this case * is not an error. */ IWL_DEBUG_EEPROM(mvm->trans->dev, "NVM access command failed on offset 0x%x since that section size is multiple 2K\n", offset); ret = 0; } else { IWL_DEBUG_EEPROM(mvm->trans->dev, "NVM access command failed with status %d (device: %s)\n", ret, mvm->trans->name); ret = -ENODATA; } goto exit; } if (offset_read != offset) { IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n", offset_read); ret = -EINVAL; goto exit; } /* Write data to NVM */ memcpy(data + offset, resp_data, bytes_read); ret = bytes_read; exit: iwl_free_resp(&cmd); return ret; } static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section, const u8 *data, u16 length) { int offset = 0; /* copy data in chunks of 2k (and remainder if any) */ while (offset < length) { int chunk_size, ret; chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE, length - offset); ret = iwl_nvm_write_chunk(mvm, section, offset, chunk_size, data + offset); if (ret < 0) return ret; offset += chunk_size; } return 0; } /* * Reads an NVM section completely. * NICs prior to 7000 family doesn't have a real NVM, but just read * section 0 which is the EEPROM. Because the EEPROM reading is unlimited * by uCode, we need to manually check in this case that we don't * overflow and try to read more than the EEPROM size. * For 7000 family NICs, we supply the maximal size we can read, and * the uCode fills the response with as much data as we can, * without overflowing, so no check is needed. */ static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section, u8 *data, u32 size_read) { u16 length, offset = 0; int ret; /* Set nvm section read length */ length = IWL_NVM_DEFAULT_CHUNK_SIZE; ret = length; /* Read the NVM until exhausted (reading less than requested) */ while (ret == length) { /* Check no memory assumptions fail and cause an overflow */ if ((size_read + offset + length) > mvm->trans->trans_cfg->base_params->eeprom_size) { IWL_ERR(mvm, "EEPROM size is too small for NVM\n"); return -ENOBUFS; } ret = iwl_nvm_read_chunk(mvm, section, offset, length, data); if (ret < 0) { IWL_DEBUG_EEPROM(mvm->trans->dev, "Cannot read NVM from section %d offset %d, length %d\n", section, offset, length); return ret; } offset += ret; } iwl_nvm_fixups(mvm->trans->hw_id, section, data, offset); IWL_DEBUG_EEPROM(mvm->trans->dev, "NVM section %d read completed\n", section); return offset; } static struct iwl_nvm_data * iwl_parse_nvm_sections(struct iwl_mvm *mvm) { struct iwl_nvm_section *sections = mvm->nvm_sections; const __be16 *hw; const __le16 *sw, *calib, *regulatory, *mac_override, *phy_sku; int regulatory_type; /* Checking for required sections */ if (mvm->trans->cfg->nvm_type == IWL_NVM) { if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data || !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) { IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n"); return NULL; } } else { if (mvm->trans->cfg->nvm_type == IWL_NVM_SDP) regulatory_type = NVM_SECTION_TYPE_REGULATORY_SDP; else regulatory_type = NVM_SECTION_TYPE_REGULATORY; /* SW and REGULATORY sections are mandatory */ if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data || !mvm->nvm_sections[regulatory_type].data) { IWL_ERR(mvm, "Can't parse empty family 8000 OTP/NVM sections\n"); return NULL; } /* MAC_OVERRIDE or at least HW section must exist */ if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data && !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) { IWL_ERR(mvm, "Can't parse mac_address, empty sections\n"); return NULL; } /* PHY_SKU section is mandatory in B0 */ if (mvm->trans->cfg->nvm_type == IWL_NVM_EXT && !mvm->nvm_sections[NVM_SECTION_TYPE_PHY_SKU].data) { IWL_ERR(mvm, "Can't parse phy_sku in B0, empty sections\n"); return NULL; } } hw = (const __be16 *)sections[mvm->cfg->nvm_hw_section_num].data; sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data; calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data; mac_override = (const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data; phy_sku = (const __le16 *)sections[NVM_SECTION_TYPE_PHY_SKU].data; regulatory = mvm->trans->cfg->nvm_type == IWL_NVM_SDP ? (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY_SDP].data : (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data; return iwl_parse_nvm_data(mvm->trans, mvm->cfg, mvm->fw, hw, sw, calib, regulatory, mac_override, phy_sku, mvm->fw->valid_tx_ant, mvm->fw->valid_rx_ant); } /* Loads the NVM data stored in mvm->nvm_sections into the NIC */ int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm) { int i, ret = 0; struct iwl_nvm_section *sections = mvm->nvm_sections; IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n"); for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) { if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length) continue; ret = iwl_nvm_write_section(mvm, i, sections[i].data, sections[i].length); if (ret < 0) { IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret); break; } } return ret; } int iwl_nvm_init(struct iwl_mvm *mvm) { int ret, section; u32 size_read = 0; u8 *nvm_buffer, *temp; const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step; if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS)) return -EINVAL; /* load NVM values from nic */ /* Read From FW NVM */ IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n"); nvm_buffer = kmalloc(mvm->trans->trans_cfg->base_params->eeprom_size, GFP_KERNEL); if (!nvm_buffer) return -ENOMEM; for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) { /* we override the constness for initial read */ ret = iwl_nvm_read_section(mvm, section, nvm_buffer, size_read); if (ret == -ENODATA) { ret = 0; continue; } if (ret < 0) break; size_read += ret; temp = kmemdup(nvm_buffer, ret, GFP_KERNEL); if (!temp) { ret = -ENOMEM; break; } iwl_nvm_fixups(mvm->trans->hw_id, section, temp, ret); mvm->nvm_sections[section].data = temp; mvm->nvm_sections[section].length = ret; #ifdef CONFIG_IWLWIFI_DEBUGFS switch (section) { case NVM_SECTION_TYPE_SW: mvm->nvm_sw_blob.data = temp; mvm->nvm_sw_blob.size = ret; break; case NVM_SECTION_TYPE_CALIBRATION: mvm->nvm_calib_blob.data = temp; mvm->nvm_calib_blob.size = ret; break; case NVM_SECTION_TYPE_PRODUCTION: mvm->nvm_prod_blob.data = temp; mvm->nvm_prod_blob.size = ret; break; case NVM_SECTION_TYPE_PHY_SKU: mvm->nvm_phy_sku_blob.data = temp; mvm->nvm_phy_sku_blob.size = ret; break; case NVM_SECTION_TYPE_REGULATORY_SDP: case NVM_SECTION_TYPE_REGULATORY: mvm->nvm_reg_blob.data = temp; mvm->nvm_reg_blob.size = ret; break; default: if (section == mvm->cfg->nvm_hw_section_num) { mvm->nvm_hw_blob.data = temp; mvm->nvm_hw_blob.size = ret; break; } } #endif } if (!size_read) IWL_ERR(mvm, "OTP is blank\n"); kfree(nvm_buffer); /* Only if PNVM selected in the mod param - load external NVM */ if (mvm->nvm_file_name) { /* read External NVM file from the mod param */ ret = iwl_read_external_nvm(mvm->trans, mvm->nvm_file_name, mvm->nvm_sections); if (ret) { mvm->nvm_file_name = nvm_file_C; if ((ret == -EFAULT || ret == -ENOENT) && mvm->nvm_file_name) { /* in case nvm file was failed try again */ ret = iwl_read_external_nvm(mvm->trans, mvm->nvm_file_name, mvm->nvm_sections); if (ret) return ret; } else { return ret; } } } /* parse the relevant nvm sections */ mvm->nvm_data = iwl_parse_nvm_sections(mvm); if (!mvm->nvm_data) return -ENODATA; IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n", mvm->nvm_data->nvm_version); return ret < 0 ? ret : 0; } struct iwl_mcc_update_resp * iwl_mvm_update_mcc(struct iwl_mvm *mvm, const char *alpha2, enum iwl_mcc_source src_id) { struct iwl_mcc_update_cmd mcc_update_cmd = { .mcc = cpu_to_le16(alpha2[0] << 8 | alpha2[1]), .source_id = (u8)src_id, }; struct iwl_mcc_update_resp *resp_cp; struct iwl_rx_packet *pkt; struct iwl_host_cmd cmd = { .id = MCC_UPDATE_CMD, .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL, .data = { &mcc_update_cmd }, }; int ret; u32 status; int resp_len, n_channels; u16 mcc; if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm))) return ERR_PTR(-EOPNOTSUPP); cmd.len[0] = sizeof(struct iwl_mcc_update_cmd); IWL_DEBUG_LAR(mvm, "send MCC update to FW with '%c%c' src = %d\n", alpha2[0], alpha2[1], src_id); ret = iwl_mvm_send_cmd(mvm, &cmd); if (ret) return ERR_PTR(ret); pkt = cmd.resp_pkt; /* Extract MCC response */ if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_MCC_UPDATE_11AX_SUPPORT)) { struct iwl_mcc_update_resp *mcc_resp = (void *)pkt->data; n_channels = __le32_to_cpu(mcc_resp->n_channels); resp_len = sizeof(struct iwl_mcc_update_resp) + n_channels * sizeof(__le32); resp_cp = kmemdup(mcc_resp, resp_len, GFP_KERNEL); if (!resp_cp) { resp_cp = ERR_PTR(-ENOMEM); goto exit; } } else { struct iwl_mcc_update_resp_v3 *mcc_resp_v3 = (void *)pkt->data; n_channels = __le32_to_cpu(mcc_resp_v3->n_channels); resp_len = sizeof(struct iwl_mcc_update_resp) + n_channels * sizeof(__le32); resp_cp = kzalloc(resp_len, GFP_KERNEL); if (!resp_cp) { resp_cp = ERR_PTR(-ENOMEM); goto exit; } resp_cp->status = mcc_resp_v3->status; resp_cp->mcc = mcc_resp_v3->mcc; resp_cp->cap = cpu_to_le16(mcc_resp_v3->cap); resp_cp->source_id = mcc_resp_v3->source_id; resp_cp->time = mcc_resp_v3->time; resp_cp->geo_info = mcc_resp_v3->geo_info; resp_cp->n_channels = mcc_resp_v3->n_channels; memcpy(resp_cp->channels, mcc_resp_v3->channels, n_channels * sizeof(__le32)); } status = le32_to_cpu(resp_cp->status); mcc = le16_to_cpu(resp_cp->mcc); /* W/A for a FW/NVM issue - returns 0x00 for the world domain */ if (mcc == 0) { mcc = 0x3030; /* "00" - world */ resp_cp->mcc = cpu_to_le16(mcc); } IWL_DEBUG_LAR(mvm, "MCC response status: 0x%x. new MCC: 0x%x ('%c%c') n_chans: %d\n", status, mcc, mcc >> 8, mcc & 0xff, n_channels); exit: iwl_free_resp(&cmd); return resp_cp; } int iwl_mvm_init_mcc(struct iwl_mvm *mvm) { bool tlv_lar; bool nvm_lar; int retval; struct ieee80211_regdomain *regd; char mcc[3]; if (mvm->cfg->nvm_type == IWL_NVM_EXT) { tlv_lar = fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT); nvm_lar = mvm->nvm_data->lar_enabled; if (tlv_lar != nvm_lar) IWL_INFO(mvm, "Conflict between TLV & NVM regarding enabling LAR (TLV = %s NVM =%s)\n", tlv_lar ? "enabled" : "disabled", nvm_lar ? "enabled" : "disabled"); } if (!iwl_mvm_is_lar_supported(mvm)) return 0; /* * try to replay the last set MCC to FW. If it doesn't exist, * queue an update to cfg80211 to retrieve the default alpha2 from FW. */ retval = iwl_mvm_init_fw_regd(mvm); if (retval != -ENOENT) return retval; /* * Driver regulatory hint for initial update, this also informs the * firmware we support wifi location updates. * Disallow scans that might crash the FW while the LAR regdomain * is not set. */ mvm->lar_regdom_set = false; regd = iwl_mvm_get_current_regdomain(mvm, NULL); if (IS_ERR_OR_NULL(regd)) return -EIO; if (iwl_mvm_is_wifi_mcc_supported(mvm) && !iwl_acpi_get_mcc(mvm->dev, mcc)) { kfree(regd); regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, MCC_SOURCE_BIOS, NULL); if (IS_ERR_OR_NULL(regd)) return -EIO; } retval = regulatory_set_wiphy_regd_sync(mvm->hw->wiphy, regd); kfree(regd); return retval; } void iwl_mvm_rx_chub_update_mcc(struct iwl_mvm *mvm, struct iwl_rx_cmd_buffer *rxb) { struct iwl_rx_packet *pkt = rxb_addr(rxb); struct iwl_mcc_chub_notif *notif = (void *)pkt->data; enum iwl_mcc_source src; char mcc[3]; struct ieee80211_regdomain *regd; int wgds_tbl_idx; lockdep_assert_held(&mvm->mutex); if (iwl_mvm_is_vif_assoc(mvm) && notif->source_id == MCC_SOURCE_WIFI) { IWL_DEBUG_LAR(mvm, "Ignore mcc update while associated\n"); return; } if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm))) return; mcc[0] = le16_to_cpu(notif->mcc) >> 8; mcc[1] = le16_to_cpu(notif->mcc) & 0xff; mcc[2] = '\0'; src = notif->source_id; IWL_DEBUG_LAR(mvm, "RX: received chub update mcc cmd (mcc '%s' src %d)\n", mcc, src); regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, src, NULL); if (IS_ERR_OR_NULL(regd)) return; wgds_tbl_idx = iwl_mvm_get_sar_geo_profile(mvm); if (wgds_tbl_idx < 0) IWL_DEBUG_INFO(mvm, "SAR WGDS is disabled (%d)\n", wgds_tbl_idx); else IWL_DEBUG_INFO(mvm, "SAR WGDS: geo profile %d is configured\n", wgds_tbl_idx); regulatory_set_wiphy_regd(mvm->hw->wiphy, regd); kfree(regd); }