/****************************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2013 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless <ilw@linux.intel.com> * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * BSD LICENSE * * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ #include <linux/types.h> #include <linux/slab.h> #include <linux/export.h> #include "iwl-drv.h" #include "iwl-modparams.h" #include "iwl-eeprom-parse.h" /* EEPROM offset definitions */ /* indirect access definitions */ #define ADDRESS_MSK 0x0000FFFF #define INDIRECT_TYPE_MSK 0x000F0000 #define INDIRECT_HOST 0x00010000 #define INDIRECT_GENERAL 0x00020000 #define INDIRECT_REGULATORY 0x00030000 #define INDIRECT_CALIBRATION 0x00040000 #define INDIRECT_PROCESS_ADJST 0x00050000 #define INDIRECT_OTHERS 0x00060000 #define INDIRECT_TXP_LIMIT 0x00070000 #define INDIRECT_TXP_LIMIT_SIZE 0x00080000 #define INDIRECT_ADDRESS 0x00100000 /* corresponding link offsets in EEPROM */ #define EEPROM_LINK_HOST (2*0x64) #define EEPROM_LINK_GENERAL (2*0x65) #define EEPROM_LINK_REGULATORY (2*0x66) #define EEPROM_LINK_CALIBRATION (2*0x67) #define EEPROM_LINK_PROCESS_ADJST (2*0x68) #define EEPROM_LINK_OTHERS (2*0x69) #define EEPROM_LINK_TXP_LIMIT (2*0x6a) #define EEPROM_LINK_TXP_LIMIT_SIZE (2*0x6b) /* General */ #define EEPROM_DEVICE_ID (2*0x08) /* 2 bytes */ #define EEPROM_SUBSYSTEM_ID (2*0x0A) /* 2 bytes */ #define EEPROM_MAC_ADDRESS (2*0x15) /* 6 bytes */ #define EEPROM_BOARD_REVISION (2*0x35) /* 2 bytes */ #define EEPROM_BOARD_PBA_NUMBER (2*0x3B+1) /* 9 bytes */ #define EEPROM_VERSION (2*0x44) /* 2 bytes */ #define EEPROM_SKU_CAP (2*0x45) /* 2 bytes */ #define EEPROM_OEM_MODE (2*0x46) /* 2 bytes */ #define EEPROM_RADIO_CONFIG (2*0x48) /* 2 bytes */ #define EEPROM_NUM_MAC_ADDRESS (2*0x4C) /* 2 bytes */ /* calibration */ struct iwl_eeprom_calib_hdr { u8 version; u8 pa_type; __le16 voltage; } __packed; #define EEPROM_CALIB_ALL (INDIRECT_ADDRESS | INDIRECT_CALIBRATION) #define EEPROM_XTAL ((2*0x128) | EEPROM_CALIB_ALL) /* temperature */ #define EEPROM_KELVIN_TEMPERATURE ((2*0x12A) | EEPROM_CALIB_ALL) #define EEPROM_RAW_TEMPERATURE ((2*0x12B) | EEPROM_CALIB_ALL) /* SKU Capabilities (actual values from EEPROM definition) */ enum eeprom_sku_bits { EEPROM_SKU_CAP_BAND_24GHZ = BIT(4), EEPROM_SKU_CAP_BAND_52GHZ = BIT(5), EEPROM_SKU_CAP_11N_ENABLE = BIT(6), EEPROM_SKU_CAP_AMT_ENABLE = BIT(7), EEPROM_SKU_CAP_IPAN_ENABLE = BIT(8) }; /* radio config bits (actual values from EEPROM definition) */ #define EEPROM_RF_CFG_TYPE_MSK(x) (x & 0x3) /* bits 0-1 */ #define EEPROM_RF_CFG_STEP_MSK(x) ((x >> 2) & 0x3) /* bits 2-3 */ #define EEPROM_RF_CFG_DASH_MSK(x) ((x >> 4) & 0x3) /* bits 4-5 */ #define EEPROM_RF_CFG_PNUM_MSK(x) ((x >> 6) & 0x3) /* bits 6-7 */ #define EEPROM_RF_CFG_TX_ANT_MSK(x) ((x >> 8) & 0xF) /* bits 8-11 */ #define EEPROM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */ /* * EEPROM bands * These are the channel numbers from each band in the order * that they are stored in the EEPROM band information. Note * that EEPROM bands aren't the same as mac80211 bands, and * there are even special "ht40 bands" in the EEPROM. */ static const u8 iwl_eeprom_band_1[14] = { /* 2.4 GHz */ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */ 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16 }; static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */ 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64 }; static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */ 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 }; static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */ 145, 149, 153, 157, 161, 165 }; static const u8 iwl_eeprom_band_6[] = { /* 2.4 ht40 channel */ 1, 2, 3, 4, 5, 6, 7 }; static const u8 iwl_eeprom_band_7[] = { /* 5.2 ht40 channel */ 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157 }; #define IWL_NUM_CHANNELS (ARRAY_SIZE(iwl_eeprom_band_1) + \ ARRAY_SIZE(iwl_eeprom_band_2) + \ ARRAY_SIZE(iwl_eeprom_band_3) + \ ARRAY_SIZE(iwl_eeprom_band_4) + \ ARRAY_SIZE(iwl_eeprom_band_5)) /* rate data (static) */ static struct ieee80211_rate iwl_cfg80211_rates[] = { { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, }, { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, }, { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, }, { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, }, { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, }, { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, }, { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, }, { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, }, { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, }, }; #define RATES_24_OFFS 0 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates) #define RATES_52_OFFS 4 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS) /* EEPROM reading functions */ static u16 iwl_eeprom_query16(const u8 *eeprom, size_t eeprom_size, int offset) { if (WARN_ON(offset + sizeof(u16) > eeprom_size)) return 0; return le16_to_cpup((__le16 *)(eeprom + offset)); } static u32 eeprom_indirect_address(const u8 *eeprom, size_t eeprom_size, u32 address) { u16 offset = 0; if ((address & INDIRECT_ADDRESS) == 0) return address; switch (address & INDIRECT_TYPE_MSK) { case INDIRECT_HOST: offset = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_LINK_HOST); break; case INDIRECT_GENERAL: offset = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_LINK_GENERAL); break; case INDIRECT_REGULATORY: offset = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_LINK_REGULATORY); break; case INDIRECT_TXP_LIMIT: offset = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_LINK_TXP_LIMIT); break; case INDIRECT_TXP_LIMIT_SIZE: offset = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_LINK_TXP_LIMIT_SIZE); break; case INDIRECT_CALIBRATION: offset = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_LINK_CALIBRATION); break; case INDIRECT_PROCESS_ADJST: offset = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_LINK_PROCESS_ADJST); break; case INDIRECT_OTHERS: offset = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_LINK_OTHERS); break; default: WARN_ON(1); break; } /* translate the offset from words to byte */ return (address & ADDRESS_MSK) + (offset << 1); } static const u8 *iwl_eeprom_query_addr(const u8 *eeprom, size_t eeprom_size, u32 offset) { u32 address = eeprom_indirect_address(eeprom, eeprom_size, offset); if (WARN_ON(address >= eeprom_size)) return NULL; return &eeprom[address]; } static int iwl_eeprom_read_calib(const u8 *eeprom, size_t eeprom_size, struct iwl_nvm_data *data) { struct iwl_eeprom_calib_hdr *hdr; hdr = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_CALIB_ALL); if (!hdr) return -ENODATA; data->calib_version = hdr->version; data->calib_voltage = hdr->voltage; return 0; } /** * enum iwl_eeprom_channel_flags - channel flags in EEPROM * @EEPROM_CHANNEL_VALID: channel is usable for this SKU/geo * @EEPROM_CHANNEL_IBSS: usable as an IBSS channel * @EEPROM_CHANNEL_ACTIVE: active scanning allowed * @EEPROM_CHANNEL_RADAR: radar detection required * @EEPROM_CHANNEL_WIDE: 20 MHz channel okay (?) * @EEPROM_CHANNEL_DFS: dynamic freq selection candidate */ enum iwl_eeprom_channel_flags { EEPROM_CHANNEL_VALID = BIT(0), EEPROM_CHANNEL_IBSS = BIT(1), EEPROM_CHANNEL_ACTIVE = BIT(3), EEPROM_CHANNEL_RADAR = BIT(4), EEPROM_CHANNEL_WIDE = BIT(5), EEPROM_CHANNEL_DFS = BIT(7), }; /** * struct iwl_eeprom_channel - EEPROM channel data * @flags: %EEPROM_CHANNEL_* flags * @max_power_avg: max power (in dBm) on this channel, at most 31 dBm */ struct iwl_eeprom_channel { u8 flags; s8 max_power_avg; } __packed; enum iwl_eeprom_enhanced_txpwr_flags { IWL_EEPROM_ENH_TXP_FL_VALID = BIT(0), IWL_EEPROM_ENH_TXP_FL_BAND_52G = BIT(1), IWL_EEPROM_ENH_TXP_FL_OFDM = BIT(2), IWL_EEPROM_ENH_TXP_FL_40MHZ = BIT(3), IWL_EEPROM_ENH_TXP_FL_HT_AP = BIT(4), IWL_EEPROM_ENH_TXP_FL_RES1 = BIT(5), IWL_EEPROM_ENH_TXP_FL_RES2 = BIT(6), IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE = BIT(7), }; /** * iwl_eeprom_enhanced_txpwr structure * @flags: entry flags * @channel: channel number * @chain_a_max_pwr: chain a max power in 1/2 dBm * @chain_b_max_pwr: chain b max power in 1/2 dBm * @chain_c_max_pwr: chain c max power in 1/2 dBm * @delta_20_in_40: 20-in-40 deltas (hi/lo) * @mimo2_max_pwr: mimo2 max power in 1/2 dBm * @mimo3_max_pwr: mimo3 max power in 1/2 dBm * * This structure presents the enhanced regulatory tx power limit layout * in an EEPROM image. */ struct iwl_eeprom_enhanced_txpwr { u8 flags; u8 channel; s8 chain_a_max; s8 chain_b_max; s8 chain_c_max; u8 delta_20_in_40; s8 mimo2_max; s8 mimo3_max; } __packed; static s8 iwl_get_max_txpwr_half_dbm(const struct iwl_nvm_data *data, struct iwl_eeprom_enhanced_txpwr *txp) { s8 result = 0; /* (.5 dBm) */ /* Take the highest tx power from any valid chains */ if (data->valid_tx_ant & ANT_A && txp->chain_a_max > result) result = txp->chain_a_max; if (data->valid_tx_ant & ANT_B && txp->chain_b_max > result) result = txp->chain_b_max; if (data->valid_tx_ant & ANT_C && txp->chain_c_max > result) result = txp->chain_c_max; if ((data->valid_tx_ant == ANT_AB || data->valid_tx_ant == ANT_BC || data->valid_tx_ant == ANT_AC) && txp->mimo2_max > result) result = txp->mimo2_max; if (data->valid_tx_ant == ANT_ABC && txp->mimo3_max > result) result = txp->mimo3_max; return result; } #define EEPROM_TXP_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT) #define EEPROM_TXP_ENTRY_LEN sizeof(struct iwl_eeprom_enhanced_txpwr) #define EEPROM_TXP_SZ_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT_SIZE) #define TXP_CHECK_AND_PRINT(x) \ ((txp->flags & IWL_EEPROM_ENH_TXP_FL_##x) ? # x " " : "") static void iwl_eeprom_enh_txp_read_element(struct iwl_nvm_data *data, struct iwl_eeprom_enhanced_txpwr *txp, int n_channels, s8 max_txpower_avg) { int ch_idx; enum ieee80211_band band; band = txp->flags & IWL_EEPROM_ENH_TXP_FL_BAND_52G ? IEEE80211_BAND_5GHZ : IEEE80211_BAND_2GHZ; for (ch_idx = 0; ch_idx < n_channels; ch_idx++) { struct ieee80211_channel *chan = &data->channels[ch_idx]; /* update matching channel or from common data only */ if (txp->channel != 0 && chan->hw_value != txp->channel) continue; /* update matching band only */ if (band != chan->band) continue; if (chan->max_power < max_txpower_avg && !(txp->flags & IWL_EEPROM_ENH_TXP_FL_40MHZ)) chan->max_power = max_txpower_avg; } } static void iwl_eeprom_enhanced_txpower(struct device *dev, struct iwl_nvm_data *data, const u8 *eeprom, size_t eeprom_size, int n_channels) { struct iwl_eeprom_enhanced_txpwr *txp_array, *txp; int idx, entries; __le16 *txp_len; s8 max_txp_avg_halfdbm; BUILD_BUG_ON(sizeof(struct iwl_eeprom_enhanced_txpwr) != 8); /* the length is in 16-bit words, but we want entries */ txp_len = (__le16 *)iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_TXP_SZ_OFFS); entries = le16_to_cpup(txp_len) * 2 / EEPROM_TXP_ENTRY_LEN; txp_array = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_TXP_OFFS); for (idx = 0; idx < entries; idx++) { txp = &txp_array[idx]; /* skip invalid entries */ if (!(txp->flags & IWL_EEPROM_ENH_TXP_FL_VALID)) continue; IWL_DEBUG_EEPROM(dev, "%s %d:\t %s%s%s%s%s%s%s%s (0x%02x)\n", (txp->channel && (txp->flags & IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE)) ? "Common " : (txp->channel) ? "Channel" : "Common", (txp->channel), TXP_CHECK_AND_PRINT(VALID), TXP_CHECK_AND_PRINT(BAND_52G), TXP_CHECK_AND_PRINT(OFDM), TXP_CHECK_AND_PRINT(40MHZ), TXP_CHECK_AND_PRINT(HT_AP), TXP_CHECK_AND_PRINT(RES1), TXP_CHECK_AND_PRINT(RES2), TXP_CHECK_AND_PRINT(COMMON_TYPE), txp->flags); IWL_DEBUG_EEPROM(dev, "\t\t chain_A: 0x%02x chain_B: 0X%02x chain_C: 0X%02x\n", txp->chain_a_max, txp->chain_b_max, txp->chain_c_max); IWL_DEBUG_EEPROM(dev, "\t\t MIMO2: 0x%02x MIMO3: 0x%02x High 20_on_40: 0x%02x Low 20_on_40: 0x%02x\n", txp->mimo2_max, txp->mimo3_max, ((txp->delta_20_in_40 & 0xf0) >> 4), (txp->delta_20_in_40 & 0x0f)); max_txp_avg_halfdbm = iwl_get_max_txpwr_half_dbm(data, txp); iwl_eeprom_enh_txp_read_element(data, txp, n_channels, DIV_ROUND_UP(max_txp_avg_halfdbm, 2)); if (max_txp_avg_halfdbm > data->max_tx_pwr_half_dbm) data->max_tx_pwr_half_dbm = max_txp_avg_halfdbm; } } static void iwl_init_band_reference(const struct iwl_cfg *cfg, const u8 *eeprom, size_t eeprom_size, int eeprom_band, int *eeprom_ch_count, const struct iwl_eeprom_channel **ch_info, const u8 **eeprom_ch_array) { u32 offset = cfg->eeprom_params->regulatory_bands[eeprom_band - 1]; offset |= INDIRECT_ADDRESS | INDIRECT_REGULATORY; *ch_info = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size, offset); switch (eeprom_band) { case 1: /* 2.4GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1); *eeprom_ch_array = iwl_eeprom_band_1; break; case 2: /* 4.9GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2); *eeprom_ch_array = iwl_eeprom_band_2; break; case 3: /* 5.2GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3); *eeprom_ch_array = iwl_eeprom_band_3; break; case 4: /* 5.5GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4); *eeprom_ch_array = iwl_eeprom_band_4; break; case 5: /* 5.7GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5); *eeprom_ch_array = iwl_eeprom_band_5; break; case 6: /* 2.4GHz ht40 channels */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6); *eeprom_ch_array = iwl_eeprom_band_6; break; case 7: /* 5 GHz ht40 channels */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7); *eeprom_ch_array = iwl_eeprom_band_7; break; default: *eeprom_ch_count = 0; *eeprom_ch_array = NULL; WARN_ON(1); } } #define CHECK_AND_PRINT(x) \ ((eeprom_ch->flags & EEPROM_CHANNEL_##x) ? # x " " : "") static void iwl_mod_ht40_chan_info(struct device *dev, struct iwl_nvm_data *data, int n_channels, enum ieee80211_band band, u16 channel, const struct iwl_eeprom_channel *eeprom_ch, u8 clear_ht40_extension_channel) { struct ieee80211_channel *chan = NULL; int i; for (i = 0; i < n_channels; i++) { if (data->channels[i].band != band) continue; if (data->channels[i].hw_value != channel) continue; chan = &data->channels[i]; break; } if (!chan) return; IWL_DEBUG_EEPROM(dev, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n", channel, band == IEEE80211_BAND_5GHZ ? "5.2" : "2.4", CHECK_AND_PRINT(IBSS), CHECK_AND_PRINT(ACTIVE), CHECK_AND_PRINT(RADAR), CHECK_AND_PRINT(WIDE), CHECK_AND_PRINT(DFS), eeprom_ch->flags, eeprom_ch->max_power_avg, ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? "" : "not "); if (eeprom_ch->flags & EEPROM_CHANNEL_VALID) chan->flags &= ~clear_ht40_extension_channel; } #define CHECK_AND_PRINT_I(x) \ ((eeprom_ch_info[ch_idx].flags & EEPROM_CHANNEL_##x) ? # x " " : "") static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg, struct iwl_nvm_data *data, const u8 *eeprom, size_t eeprom_size) { int band, ch_idx; const struct iwl_eeprom_channel *eeprom_ch_info; const u8 *eeprom_ch_array; int eeprom_ch_count; int n_channels = 0; /* * Loop through the 5 EEPROM bands and add them to the parse list */ for (band = 1; band <= 5; band++) { struct ieee80211_channel *channel; iwl_init_band_reference(cfg, eeprom, eeprom_size, band, &eeprom_ch_count, &eeprom_ch_info, &eeprom_ch_array); /* Loop through each band adding each of the channels */ for (ch_idx = 0; ch_idx < eeprom_ch_count; ch_idx++) { const struct iwl_eeprom_channel *eeprom_ch; eeprom_ch = &eeprom_ch_info[ch_idx]; if (!(eeprom_ch->flags & EEPROM_CHANNEL_VALID)) { IWL_DEBUG_EEPROM(dev, "Ch. %d Flags %x [%sGHz] - No traffic\n", eeprom_ch_array[ch_idx], eeprom_ch_info[ch_idx].flags, (band != 1) ? "5.2" : "2.4"); continue; } channel = &data->channels[n_channels]; n_channels++; channel->hw_value = eeprom_ch_array[ch_idx]; channel->band = (band == 1) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; channel->center_freq = ieee80211_channel_to_frequency( channel->hw_value, channel->band); /* set no-HT40, will enable as appropriate later */ channel->flags = IEEE80211_CHAN_NO_HT40; if (!(eeprom_ch->flags & EEPROM_CHANNEL_IBSS)) channel->flags |= IEEE80211_CHAN_NO_IBSS; if (!(eeprom_ch->flags & EEPROM_CHANNEL_ACTIVE)) channel->flags |= IEEE80211_CHAN_PASSIVE_SCAN; if (eeprom_ch->flags & EEPROM_CHANNEL_RADAR) channel->flags |= IEEE80211_CHAN_RADAR; /* Initialize regulatory-based run-time data */ channel->max_power = eeprom_ch_info[ch_idx].max_power_avg; IWL_DEBUG_EEPROM(dev, "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n", channel->hw_value, (band != 1) ? "5.2" : "2.4", CHECK_AND_PRINT_I(VALID), CHECK_AND_PRINT_I(IBSS), CHECK_AND_PRINT_I(ACTIVE), CHECK_AND_PRINT_I(RADAR), CHECK_AND_PRINT_I(WIDE), CHECK_AND_PRINT_I(DFS), eeprom_ch_info[ch_idx].flags, eeprom_ch_info[ch_idx].max_power_avg, ((eeprom_ch_info[ch_idx].flags & EEPROM_CHANNEL_IBSS) && !(eeprom_ch_info[ch_idx].flags & EEPROM_CHANNEL_RADAR)) ? "" : "not "); } } if (cfg->eeprom_params->enhanced_txpower) { /* * for newer device (6000 series and up) * EEPROM contain enhanced tx power information * driver need to process addition information * to determine the max channel tx power limits */ iwl_eeprom_enhanced_txpower(dev, data, eeprom, eeprom_size, n_channels); } else { /* All others use data from channel map */ int i; data->max_tx_pwr_half_dbm = -128; for (i = 0; i < n_channels; i++) data->max_tx_pwr_half_dbm = max_t(s8, data->max_tx_pwr_half_dbm, data->channels[i].max_power * 2); } /* Check if we do have HT40 channels */ if (cfg->eeprom_params->regulatory_bands[5] == EEPROM_REGULATORY_BAND_NO_HT40 && cfg->eeprom_params->regulatory_bands[6] == EEPROM_REGULATORY_BAND_NO_HT40) return n_channels; /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */ for (band = 6; band <= 7; band++) { enum ieee80211_band ieeeband; iwl_init_band_reference(cfg, eeprom, eeprom_size, band, &eeprom_ch_count, &eeprom_ch_info, &eeprom_ch_array); /* EEPROM band 6 is 2.4, band 7 is 5 GHz */ ieeeband = (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; /* Loop through each band adding each of the channels */ for (ch_idx = 0; ch_idx < eeprom_ch_count; ch_idx++) { /* Set up driver's info for lower half */ iwl_mod_ht40_chan_info(dev, data, n_channels, ieeeband, eeprom_ch_array[ch_idx], &eeprom_ch_info[ch_idx], IEEE80211_CHAN_NO_HT40PLUS); /* Set up driver's info for upper half */ iwl_mod_ht40_chan_info(dev, data, n_channels, ieeeband, eeprom_ch_array[ch_idx] + 4, &eeprom_ch_info[ch_idx], IEEE80211_CHAN_NO_HT40MINUS); } } return n_channels; } int iwl_init_sband_channels(struct iwl_nvm_data *data, struct ieee80211_supported_band *sband, int n_channels, enum ieee80211_band band) { struct ieee80211_channel *chan = &data->channels[0]; int n = 0, idx = 0; while (chan->band != band && idx < n_channels) chan = &data->channels[++idx]; sband->channels = &data->channels[idx]; while (chan->band == band && idx < n_channels) { chan = &data->channels[++idx]; n++; } sband->n_channels = n; return n; } #define MAX_BIT_RATE_40_MHZ 150 /* Mbps */ #define MAX_BIT_RATE_20_MHZ 72 /* Mbps */ void iwl_init_ht_hw_capab(const struct iwl_cfg *cfg, struct iwl_nvm_data *data, struct ieee80211_sta_ht_cap *ht_info, enum ieee80211_band band, u8 tx_chains, u8 rx_chains) { int max_bit_rate = 0; tx_chains = hweight8(tx_chains); if (cfg->rx_with_siso_diversity) rx_chains = 1; else rx_chains = hweight8(rx_chains); if (!(data->sku_cap_11n_enable) || !cfg->ht_params) { ht_info->ht_supported = false; return; } ht_info->ht_supported = true; ht_info->cap = IEEE80211_HT_CAP_DSSSCCK40; if (iwlwifi_mod_params.amsdu_size_8K) ht_info->cap |= IEEE80211_HT_CAP_MAX_AMSDU; ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_4; ht_info->mcs.rx_mask[0] = 0xFF; if (rx_chains >= 2) ht_info->mcs.rx_mask[1] = 0xFF; if (rx_chains >= 3) ht_info->mcs.rx_mask[2] = 0xFF; if (cfg->ht_params->ht_greenfield_support) ht_info->cap |= IEEE80211_HT_CAP_GRN_FLD; ht_info->cap |= IEEE80211_HT_CAP_SGI_20; max_bit_rate = MAX_BIT_RATE_20_MHZ; if (cfg->ht_params->ht40_bands & BIT(band)) { ht_info->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40; ht_info->cap |= IEEE80211_HT_CAP_SGI_40; ht_info->mcs.rx_mask[4] = 0x01; max_bit_rate = MAX_BIT_RATE_40_MHZ; } /* Highest supported Rx data rate */ max_bit_rate *= rx_chains; WARN_ON(max_bit_rate & ~IEEE80211_HT_MCS_RX_HIGHEST_MASK); ht_info->mcs.rx_highest = cpu_to_le16(max_bit_rate); /* Tx MCS capabilities */ ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; if (tx_chains != rx_chains) { ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF; ht_info->mcs.tx_params |= ((tx_chains - 1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT); } } static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg, struct iwl_nvm_data *data, const u8 *eeprom, size_t eeprom_size) { int n_channels = iwl_init_channel_map(dev, cfg, data, eeprom, eeprom_size); int n_used = 0; struct ieee80211_supported_band *sband; sband = &data->bands[IEEE80211_BAND_2GHZ]; sband->band = IEEE80211_BAND_2GHZ; sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS]; sband->n_bitrates = N_RATES_24; n_used += iwl_init_sband_channels(data, sband, n_channels, IEEE80211_BAND_2GHZ); iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_2GHZ, data->valid_tx_ant, data->valid_rx_ant); sband = &data->bands[IEEE80211_BAND_5GHZ]; sband->band = IEEE80211_BAND_5GHZ; sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; sband->n_bitrates = N_RATES_52; n_used += iwl_init_sband_channels(data, sband, n_channels, IEEE80211_BAND_5GHZ); iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_5GHZ, data->valid_tx_ant, data->valid_rx_ant); if (n_channels != n_used) IWL_ERR_DEV(dev, "EEPROM: used only %d of %d channels\n", n_used, n_channels); } /* EEPROM data functions */ struct iwl_nvm_data * iwl_parse_eeprom_data(struct device *dev, const struct iwl_cfg *cfg, const u8 *eeprom, size_t eeprom_size) { struct iwl_nvm_data *data; const void *tmp; u16 radio_cfg, sku; if (WARN_ON(!cfg || !cfg->eeprom_params)) return NULL; data = kzalloc(sizeof(*data) + sizeof(struct ieee80211_channel) * IWL_NUM_CHANNELS, GFP_KERNEL); if (!data) return NULL; /* get MAC address(es) */ tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_MAC_ADDRESS); if (!tmp) goto err_free; memcpy(data->hw_addr, tmp, ETH_ALEN); data->n_hw_addrs = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_NUM_MAC_ADDRESS); if (iwl_eeprom_read_calib(eeprom, eeprom_size, data)) goto err_free; tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_XTAL); if (!tmp) goto err_free; memcpy(data->xtal_calib, tmp, sizeof(data->xtal_calib)); tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_RAW_TEMPERATURE); if (!tmp) goto err_free; data->raw_temperature = *(__le16 *)tmp; tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_KELVIN_TEMPERATURE); if (!tmp) goto err_free; data->kelvin_temperature = *(__le16 *)tmp; data->kelvin_voltage = *((__le16 *)tmp + 1); radio_cfg = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_RADIO_CONFIG); data->radio_cfg_dash = EEPROM_RF_CFG_DASH_MSK(radio_cfg); data->radio_cfg_pnum = EEPROM_RF_CFG_PNUM_MSK(radio_cfg); data->radio_cfg_step = EEPROM_RF_CFG_STEP_MSK(radio_cfg); data->radio_cfg_type = EEPROM_RF_CFG_TYPE_MSK(radio_cfg); data->valid_rx_ant = EEPROM_RF_CFG_RX_ANT_MSK(radio_cfg); data->valid_tx_ant = EEPROM_RF_CFG_TX_ANT_MSK(radio_cfg); sku = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_SKU_CAP); data->sku_cap_11n_enable = sku & EEPROM_SKU_CAP_11N_ENABLE; data->sku_cap_amt_enable = sku & EEPROM_SKU_CAP_AMT_ENABLE; data->sku_cap_band_24GHz_enable = sku & EEPROM_SKU_CAP_BAND_24GHZ; data->sku_cap_band_52GHz_enable = sku & EEPROM_SKU_CAP_BAND_52GHZ; data->sku_cap_ipan_enable = sku & EEPROM_SKU_CAP_IPAN_ENABLE; if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) data->sku_cap_11n_enable = false; data->nvm_version = iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_VERSION); /* check overrides (some devices have wrong EEPROM) */ if (cfg->valid_tx_ant) data->valid_tx_ant = cfg->valid_tx_ant; if (cfg->valid_rx_ant) data->valid_rx_ant = cfg->valid_rx_ant; if (!data->valid_tx_ant || !data->valid_rx_ant) { IWL_ERR_DEV(dev, "invalid antennas (0x%x, 0x%x)\n", data->valid_tx_ant, data->valid_rx_ant); goto err_free; } iwl_init_sbands(dev, cfg, data, eeprom, eeprom_size); return data; err_free: kfree(data); return NULL; } IWL_EXPORT_SYMBOL(iwl_parse_eeprom_data); /* helper functions */ int iwl_nvm_check_version(struct iwl_nvm_data *data, struct iwl_trans *trans) { if (data->nvm_version >= trans->cfg->nvm_ver || data->calib_version >= trans->cfg->nvm_calib_ver) { IWL_DEBUG_INFO(trans, "device EEPROM VER=0x%x, CALIB=0x%x\n", data->nvm_version, data->calib_version); return 0; } IWL_ERR(trans, "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n", data->nvm_version, trans->cfg->nvm_ver, data->calib_version, trans->cfg->nvm_calib_ver); return -EINVAL; } IWL_EXPORT_SYMBOL(iwl_nvm_check_version);