// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* Copyright(c) 2020 Realtek Corporation */ #include #include "mac.h" #include "pci.h" #include "reg.h" #include "ser.h" static bool rtw89_pci_disable_clkreq; static bool rtw89_pci_disable_aspm_l1; static bool rtw89_pci_disable_l1ss; module_param_named(disable_clkreq, rtw89_pci_disable_clkreq, bool, 0644); module_param_named(disable_aspm_l1, rtw89_pci_disable_aspm_l1, bool, 0644); module_param_named(disable_aspm_l1ss, rtw89_pci_disable_l1ss, bool, 0644); MODULE_PARM_DESC(disable_clkreq, "Set Y to disable PCI clkreq support"); MODULE_PARM_DESC(disable_aspm_l1, "Set Y to disable PCI ASPM L1 support"); MODULE_PARM_DESC(disable_aspm_l1ss, "Set Y to disable PCI L1SS support"); static int rtw89_pci_rst_bdram_pcie(struct rtw89_dev *rtwdev) { u32 val; int ret; rtw89_write32(rtwdev, R_AX_PCIE_INIT_CFG1, rtw89_read32(rtwdev, R_AX_PCIE_INIT_CFG1) | B_AX_RST_BDRAM); ret = read_poll_timeout_atomic(rtw89_read32, val, !(val & B_AX_RST_BDRAM), 1, RTW89_PCI_POLL_BDRAM_RST_CNT, false, rtwdev, R_AX_PCIE_INIT_CFG1); if (ret) return -EBUSY; return 0; } static u32 rtw89_pci_dma_recalc(struct rtw89_dev *rtwdev, struct rtw89_pci_dma_ring *bd_ring, u32 cur_idx, bool tx) { u32 cnt, cur_rp, wp, rp, len; rp = bd_ring->rp; wp = bd_ring->wp; len = bd_ring->len; cur_rp = FIELD_GET(TXBD_HW_IDX_MASK, cur_idx); if (tx) cnt = cur_rp >= rp ? cur_rp - rp : len - (rp - cur_rp); else cnt = cur_rp >= wp ? cur_rp - wp : len - (wp - cur_rp); bd_ring->rp = cur_rp; return cnt; } static u32 rtw89_pci_txbd_recalc(struct rtw89_dev *rtwdev, struct rtw89_pci_tx_ring *tx_ring) { struct rtw89_pci_dma_ring *bd_ring = &tx_ring->bd_ring; u32 addr_idx = bd_ring->addr.idx; u32 cnt, idx; idx = rtw89_read32(rtwdev, addr_idx); cnt = rtw89_pci_dma_recalc(rtwdev, bd_ring, idx, true); return cnt; } static void rtw89_pci_release_fwcmd(struct rtw89_dev *rtwdev, struct rtw89_pci *rtwpci, u32 cnt, bool release_all) { struct rtw89_pci_tx_data *tx_data; struct sk_buff *skb; u32 qlen; while (cnt--) { skb = skb_dequeue(&rtwpci->h2c_queue); if (!skb) { rtw89_err(rtwdev, "failed to pre-release fwcmd\n"); return; } skb_queue_tail(&rtwpci->h2c_release_queue, skb); } qlen = skb_queue_len(&rtwpci->h2c_release_queue); if (!release_all) qlen = qlen > RTW89_PCI_MULTITAG ? qlen - RTW89_PCI_MULTITAG : 0; while (qlen--) { skb = skb_dequeue(&rtwpci->h2c_release_queue); if (!skb) { rtw89_err(rtwdev, "failed to release fwcmd\n"); return; } tx_data = RTW89_PCI_TX_SKB_CB(skb); dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len, DMA_TO_DEVICE); dev_kfree_skb_any(skb); } } static void rtw89_pci_reclaim_tx_fwcmd(struct rtw89_dev *rtwdev, struct rtw89_pci *rtwpci) { struct rtw89_pci_tx_ring *tx_ring = &rtwpci->tx_rings[RTW89_TXCH_CH12]; u32 cnt; cnt = rtw89_pci_txbd_recalc(rtwdev, tx_ring); if (!cnt) return; rtw89_pci_release_fwcmd(rtwdev, rtwpci, cnt, false); } static u32 rtw89_pci_rxbd_recalc(struct rtw89_dev *rtwdev, struct rtw89_pci_rx_ring *rx_ring) { struct rtw89_pci_dma_ring *bd_ring = &rx_ring->bd_ring; u32 addr_idx = bd_ring->addr.idx; u32 cnt, idx; idx = rtw89_read32(rtwdev, addr_idx); cnt = rtw89_pci_dma_recalc(rtwdev, bd_ring, idx, false); return cnt; } static void rtw89_pci_sync_skb_for_cpu(struct rtw89_dev *rtwdev, struct sk_buff *skb) { struct rtw89_pci_rx_info *rx_info; dma_addr_t dma; rx_info = RTW89_PCI_RX_SKB_CB(skb); dma = rx_info->dma; dma_sync_single_for_cpu(rtwdev->dev, dma, RTW89_PCI_RX_BUF_SIZE, DMA_FROM_DEVICE); } static void rtw89_pci_sync_skb_for_device(struct rtw89_dev *rtwdev, struct sk_buff *skb) { struct rtw89_pci_rx_info *rx_info; dma_addr_t dma; rx_info = RTW89_PCI_RX_SKB_CB(skb); dma = rx_info->dma; dma_sync_single_for_device(rtwdev->dev, dma, RTW89_PCI_RX_BUF_SIZE, DMA_FROM_DEVICE); } static int rtw89_pci_rxbd_info_update(struct rtw89_dev *rtwdev, struct sk_buff *skb) { struct rtw89_pci_rxbd_info *rxbd_info; struct rtw89_pci_rx_info *rx_info = RTW89_PCI_RX_SKB_CB(skb); rxbd_info = (struct rtw89_pci_rxbd_info *)skb->data; rx_info->fs = le32_get_bits(rxbd_info->dword, RTW89_PCI_RXBD_FS); rx_info->ls = le32_get_bits(rxbd_info->dword, RTW89_PCI_RXBD_LS); rx_info->len = le32_get_bits(rxbd_info->dword, RTW89_PCI_RXBD_WRITE_SIZE); rx_info->tag = le32_get_bits(rxbd_info->dword, RTW89_PCI_RXBD_TAG); return 0; } static void rtw89_pci_ctrl_txdma_ch_pcie(struct rtw89_dev *rtwdev, bool enable) { const struct rtw89_pci_info *info = rtwdev->pci_info; const struct rtw89_reg_def *dma_stop1 = &info->dma_stop1; const struct rtw89_reg_def *dma_stop2 = &info->dma_stop2; if (enable) { rtw89_write32_clr(rtwdev, dma_stop1->addr, dma_stop1->mask); if (dma_stop2->addr) rtw89_write32_clr(rtwdev, dma_stop2->addr, dma_stop2->mask); } else { rtw89_write32_set(rtwdev, dma_stop1->addr, dma_stop1->mask); if (dma_stop2->addr) rtw89_write32_set(rtwdev, dma_stop2->addr, dma_stop2->mask); } } static void rtw89_pci_ctrl_txdma_fw_ch_pcie(struct rtw89_dev *rtwdev, bool enable) { const struct rtw89_pci_info *info = rtwdev->pci_info; const struct rtw89_reg_def *dma_stop1 = &info->dma_stop1; if (enable) rtw89_write32_clr(rtwdev, dma_stop1->addr, B_AX_STOP_CH12); else rtw89_write32_set(rtwdev, dma_stop1->addr, B_AX_STOP_CH12); } static bool rtw89_skb_put_rx_data(struct rtw89_dev *rtwdev, bool fs, bool ls, struct sk_buff *new, const struct sk_buff *skb, u32 offset, const struct rtw89_pci_rx_info *rx_info, const struct rtw89_rx_desc_info *desc_info) { u32 copy_len = rx_info->len - offset; if (unlikely(skb_tailroom(new) < copy_len)) { rtw89_debug(rtwdev, RTW89_DBG_TXRX, "invalid rx data length bd_len=%d desc_len=%d offset=%d (fs=%d ls=%d)\n", rx_info->len, desc_info->pkt_size, offset, fs, ls); rtw89_hex_dump(rtwdev, RTW89_DBG_TXRX, "rx_data: ", skb->data, rx_info->len); /* length of a single segment skb is desc_info->pkt_size */ if (fs && ls) { copy_len = desc_info->pkt_size; } else { rtw89_info(rtwdev, "drop rx data due to invalid length\n"); return false; } } skb_put_data(new, skb->data + offset, copy_len); return true; } static u32 rtw89_pci_rxbd_deliver_skbs(struct rtw89_dev *rtwdev, struct rtw89_pci_rx_ring *rx_ring) { struct rtw89_pci_dma_ring *bd_ring = &rx_ring->bd_ring; struct rtw89_pci_rx_info *rx_info; struct rtw89_rx_desc_info *desc_info = &rx_ring->diliver_desc; struct sk_buff *new = rx_ring->diliver_skb; struct sk_buff *skb; u32 rxinfo_size = sizeof(struct rtw89_pci_rxbd_info); u32 offset; u32 cnt = 1; bool fs, ls; int ret; skb = rx_ring->buf[bd_ring->wp]; rtw89_pci_sync_skb_for_cpu(rtwdev, skb); ret = rtw89_pci_rxbd_info_update(rtwdev, skb); if (ret) { rtw89_err(rtwdev, "failed to update %d RXBD info: %d\n", bd_ring->wp, ret); goto err_sync_device; } rx_info = RTW89_PCI_RX_SKB_CB(skb); fs = rx_info->fs; ls = rx_info->ls; if (fs) { if (new) { rtw89_debug(rtwdev, RTW89_DBG_UNEXP, "skb should not be ready before first segment start\n"); goto err_sync_device; } if (desc_info->ready) { rtw89_warn(rtwdev, "desc info should not be ready before first segment start\n"); goto err_sync_device; } rtw89_core_query_rxdesc(rtwdev, desc_info, skb->data, rxinfo_size); new = rtw89_alloc_skb_for_rx(rtwdev, desc_info->pkt_size); if (!new) goto err_sync_device; rx_ring->diliver_skb = new; /* first segment has RX desc */ offset = desc_info->offset; offset += desc_info->long_rxdesc ? sizeof(struct rtw89_rxdesc_long) : sizeof(struct rtw89_rxdesc_short); } else { offset = sizeof(struct rtw89_pci_rxbd_info); if (!new) { rtw89_debug(rtwdev, RTW89_DBG_UNEXP, "no last skb\n"); goto err_sync_device; } } if (!rtw89_skb_put_rx_data(rtwdev, fs, ls, new, skb, offset, rx_info, desc_info)) goto err_sync_device; rtw89_pci_sync_skb_for_device(rtwdev, skb); rtw89_pci_rxbd_increase(rx_ring, 1); if (!desc_info->ready) { rtw89_warn(rtwdev, "no rx desc information\n"); goto err_free_resource; } if (ls) { rtw89_core_rx(rtwdev, desc_info, new); rx_ring->diliver_skb = NULL; desc_info->ready = false; } return cnt; err_sync_device: rtw89_pci_sync_skb_for_device(rtwdev, skb); rtw89_pci_rxbd_increase(rx_ring, 1); err_free_resource: if (new) dev_kfree_skb_any(new); rx_ring->diliver_skb = NULL; desc_info->ready = false; return cnt; } static void rtw89_pci_rxbd_deliver(struct rtw89_dev *rtwdev, struct rtw89_pci_rx_ring *rx_ring, u32 cnt) { struct rtw89_pci_dma_ring *bd_ring = &rx_ring->bd_ring; u32 rx_cnt; while (cnt && rtwdev->napi_budget_countdown > 0) { rx_cnt = rtw89_pci_rxbd_deliver_skbs(rtwdev, rx_ring); if (!rx_cnt) { rtw89_err(rtwdev, "failed to deliver RXBD skb\n"); /* skip the rest RXBD bufs */ rtw89_pci_rxbd_increase(rx_ring, cnt); break; } cnt -= rx_cnt; } rtw89_write16(rtwdev, bd_ring->addr.idx, bd_ring->wp); } static int rtw89_pci_poll_rxq_dma(struct rtw89_dev *rtwdev, struct rtw89_pci *rtwpci, int budget) { struct rtw89_pci_rx_ring *rx_ring; int countdown = rtwdev->napi_budget_countdown; u32 cnt; rx_ring = &rtwpci->rx_rings[RTW89_RXCH_RXQ]; cnt = rtw89_pci_rxbd_recalc(rtwdev, rx_ring); if (!cnt) return 0; cnt = min_t(u32, budget, cnt); rtw89_pci_rxbd_deliver(rtwdev, rx_ring, cnt); /* In case of flushing pending SKBs, the countdown may exceed. */ if (rtwdev->napi_budget_countdown <= 0) return budget; return budget - countdown; } static void rtw89_pci_tx_status(struct rtw89_dev *rtwdev, struct rtw89_pci_tx_ring *tx_ring, struct sk_buff *skb, u8 tx_status) { struct ieee80211_tx_info *info; info = IEEE80211_SKB_CB(skb); ieee80211_tx_info_clear_status(info); if (info->flags & IEEE80211_TX_CTL_NO_ACK) info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED; if (tx_status == RTW89_TX_DONE) { info->flags |= IEEE80211_TX_STAT_ACK; tx_ring->tx_acked++; } else { if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) rtw89_debug(rtwdev, RTW89_DBG_FW, "failed to TX of status %x\n", tx_status); switch (tx_status) { case RTW89_TX_RETRY_LIMIT: tx_ring->tx_retry_lmt++; break; case RTW89_TX_LIFE_TIME: tx_ring->tx_life_time++; break; case RTW89_TX_MACID_DROP: tx_ring->tx_mac_id_drop++; break; default: rtw89_warn(rtwdev, "invalid TX status %x\n", tx_status); break; } } ieee80211_tx_status_ni(rtwdev->hw, skb); } static void rtw89_pci_reclaim_txbd(struct rtw89_dev *rtwdev, struct rtw89_pci_tx_ring *tx_ring) { struct rtw89_pci_tx_wd *txwd; u32 cnt; cnt = rtw89_pci_txbd_recalc(rtwdev, tx_ring); while (cnt--) { txwd = list_first_entry_or_null(&tx_ring->busy_pages, struct rtw89_pci_tx_wd, list); if (!txwd) { rtw89_warn(rtwdev, "No busy txwd pages available\n"); break; } list_del_init(&txwd->list); /* this skb has been freed by RPP */ if (skb_queue_len(&txwd->queue) == 0) rtw89_pci_enqueue_txwd(tx_ring, txwd); } } static void rtw89_pci_release_busy_txwd(struct rtw89_dev *rtwdev, struct rtw89_pci_tx_ring *tx_ring) { struct rtw89_pci_tx_wd_ring *wd_ring = &tx_ring->wd_ring; struct rtw89_pci_tx_wd *txwd; int i; for (i = 0; i < wd_ring->page_num; i++) { txwd = list_first_entry_or_null(&tx_ring->busy_pages, struct rtw89_pci_tx_wd, list); if (!txwd) break; list_del_init(&txwd->list); } } static void rtw89_pci_release_txwd_skb(struct rtw89_dev *rtwdev, struct rtw89_pci_tx_ring *tx_ring, struct rtw89_pci_tx_wd *txwd, u16 seq, u8 tx_status) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct rtw89_pci_tx_data *tx_data; struct sk_buff *skb, *tmp; u8 txch = tx_ring->txch; if (!list_empty(&txwd->list)) { rtw89_pci_reclaim_txbd(rtwdev, tx_ring); /* In low power mode, RPP can receive before updating of TX BD. * In normal mode, it should not happen so give it a warning. */ if (!rtwpci->low_power && !list_empty(&txwd->list)) rtw89_warn(rtwdev, "queue %d txwd %d is not idle\n", txch, seq); } skb_queue_walk_safe(&txwd->queue, skb, tmp) { skb_unlink(skb, &txwd->queue); tx_data = RTW89_PCI_TX_SKB_CB(skb); dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len, DMA_TO_DEVICE); rtw89_pci_tx_status(rtwdev, tx_ring, skb, tx_status); } if (list_empty(&txwd->list)) rtw89_pci_enqueue_txwd(tx_ring, txwd); } static void rtw89_pci_release_rpp(struct rtw89_dev *rtwdev, struct rtw89_pci_rpp_fmt *rpp) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct rtw89_pci_tx_ring *tx_ring; struct rtw89_pci_tx_wd_ring *wd_ring; struct rtw89_pci_tx_wd *txwd; u16 seq; u8 qsel, tx_status, txch; seq = le32_get_bits(rpp->dword, RTW89_PCI_RPP_SEQ); qsel = le32_get_bits(rpp->dword, RTW89_PCI_RPP_QSEL); tx_status = le32_get_bits(rpp->dword, RTW89_PCI_RPP_TX_STATUS); txch = rtw89_core_get_ch_dma(rtwdev, qsel); if (txch == RTW89_TXCH_CH12) { rtw89_warn(rtwdev, "should no fwcmd release report\n"); return; } tx_ring = &rtwpci->tx_rings[txch]; wd_ring = &tx_ring->wd_ring; txwd = &wd_ring->pages[seq]; rtw89_pci_release_txwd_skb(rtwdev, tx_ring, txwd, seq, tx_status); } static void rtw89_pci_release_pending_txwd_skb(struct rtw89_dev *rtwdev, struct rtw89_pci_tx_ring *tx_ring) { struct rtw89_pci_tx_wd_ring *wd_ring = &tx_ring->wd_ring; struct rtw89_pci_tx_wd *txwd; int i; for (i = 0; i < wd_ring->page_num; i++) { txwd = &wd_ring->pages[i]; if (!list_empty(&txwd->list)) continue; rtw89_pci_release_txwd_skb(rtwdev, tx_ring, txwd, i, RTW89_TX_MACID_DROP); } } static u32 rtw89_pci_release_tx_skbs(struct rtw89_dev *rtwdev, struct rtw89_pci_rx_ring *rx_ring, u32 max_cnt) { struct rtw89_pci_dma_ring *bd_ring = &rx_ring->bd_ring; struct rtw89_pci_rx_info *rx_info; struct rtw89_pci_rpp_fmt *rpp; struct rtw89_rx_desc_info desc_info = {}; struct sk_buff *skb; u32 cnt = 0; u32 rpp_size = sizeof(struct rtw89_pci_rpp_fmt); u32 rxinfo_size = sizeof(struct rtw89_pci_rxbd_info); u32 offset; int ret; skb = rx_ring->buf[bd_ring->wp]; rtw89_pci_sync_skb_for_cpu(rtwdev, skb); ret = rtw89_pci_rxbd_info_update(rtwdev, skb); if (ret) { rtw89_err(rtwdev, "failed to update %d RXBD info: %d\n", bd_ring->wp, ret); goto err_sync_device; } rx_info = RTW89_PCI_RX_SKB_CB(skb); if (!rx_info->fs || !rx_info->ls) { rtw89_err(rtwdev, "cannot process RP frame not set FS/LS\n"); return cnt; } rtw89_core_query_rxdesc(rtwdev, &desc_info, skb->data, rxinfo_size); /* first segment has RX desc */ offset = desc_info.offset; offset += desc_info.long_rxdesc ? sizeof(struct rtw89_rxdesc_long) : sizeof(struct rtw89_rxdesc_short); for (; offset + rpp_size <= rx_info->len; offset += rpp_size) { rpp = (struct rtw89_pci_rpp_fmt *)(skb->data + offset); rtw89_pci_release_rpp(rtwdev, rpp); } rtw89_pci_sync_skb_for_device(rtwdev, skb); rtw89_pci_rxbd_increase(rx_ring, 1); cnt++; return cnt; err_sync_device: rtw89_pci_sync_skb_for_device(rtwdev, skb); return 0; } static void rtw89_pci_release_tx(struct rtw89_dev *rtwdev, struct rtw89_pci_rx_ring *rx_ring, u32 cnt) { struct rtw89_pci_dma_ring *bd_ring = &rx_ring->bd_ring; u32 release_cnt; while (cnt) { release_cnt = rtw89_pci_release_tx_skbs(rtwdev, rx_ring, cnt); if (!release_cnt) { rtw89_err(rtwdev, "failed to release TX skbs\n"); /* skip the rest RXBD bufs */ rtw89_pci_rxbd_increase(rx_ring, cnt); break; } cnt -= release_cnt; } rtw89_write16(rtwdev, bd_ring->addr.idx, bd_ring->wp); } static int rtw89_pci_poll_rpq_dma(struct rtw89_dev *rtwdev, struct rtw89_pci *rtwpci, int budget) { struct rtw89_pci_rx_ring *rx_ring; u32 cnt; int work_done; rx_ring = &rtwpci->rx_rings[RTW89_RXCH_RPQ]; spin_lock_bh(&rtwpci->trx_lock); cnt = rtw89_pci_rxbd_recalc(rtwdev, rx_ring); if (cnt == 0) goto out_unlock; rtw89_pci_release_tx(rtwdev, rx_ring, cnt); out_unlock: spin_unlock_bh(&rtwpci->trx_lock); /* always release all RPQ */ work_done = min_t(int, cnt, budget); rtwdev->napi_budget_countdown -= work_done; return work_done; } static void rtw89_pci_isr_rxd_unavail(struct rtw89_dev *rtwdev, struct rtw89_pci *rtwpci) { struct rtw89_pci_rx_ring *rx_ring; struct rtw89_pci_dma_ring *bd_ring; u32 reg_idx; u16 hw_idx, hw_idx_next, host_idx; int i; for (i = 0; i < RTW89_RXCH_NUM; i++) { rx_ring = &rtwpci->rx_rings[i]; bd_ring = &rx_ring->bd_ring; reg_idx = rtw89_read32(rtwdev, bd_ring->addr.idx); hw_idx = FIELD_GET(TXBD_HW_IDX_MASK, reg_idx); host_idx = FIELD_GET(TXBD_HOST_IDX_MASK, reg_idx); hw_idx_next = (hw_idx + 1) % bd_ring->len; if (hw_idx_next == host_idx) rtw89_debug(rtwdev, RTW89_DBG_UNEXP, "%d RXD unavailable\n", i); rtw89_debug(rtwdev, RTW89_DBG_TXRX, "%d RXD unavailable, idx=0x%08x, len=%d\n", i, reg_idx, bd_ring->len); } } void rtw89_pci_recognize_intrs(struct rtw89_dev *rtwdev, struct rtw89_pci *rtwpci, struct rtw89_pci_isrs *isrs) { isrs->halt_c2h_isrs = rtw89_read32(rtwdev, R_AX_HISR0) & rtwpci->halt_c2h_intrs; isrs->isrs[0] = rtw89_read32(rtwdev, R_AX_PCIE_HISR00) & rtwpci->intrs[0]; isrs->isrs[1] = rtw89_read32(rtwdev, R_AX_PCIE_HISR10) & rtwpci->intrs[1]; rtw89_write32(rtwdev, R_AX_HISR0, isrs->halt_c2h_isrs); rtw89_write32(rtwdev, R_AX_PCIE_HISR00, isrs->isrs[0]); rtw89_write32(rtwdev, R_AX_PCIE_HISR10, isrs->isrs[1]); } EXPORT_SYMBOL(rtw89_pci_recognize_intrs); void rtw89_pci_recognize_intrs_v1(struct rtw89_dev *rtwdev, struct rtw89_pci *rtwpci, struct rtw89_pci_isrs *isrs) { isrs->ind_isrs = rtw89_read32(rtwdev, R_AX_PCIE_HISR00_V1) & rtwpci->ind_intrs; isrs->halt_c2h_isrs = isrs->ind_isrs & B_AX_HS0ISR_IND_INT_EN ? rtw89_read32(rtwdev, R_AX_HISR0) & rtwpci->halt_c2h_intrs : 0; isrs->isrs[0] = isrs->ind_isrs & B_AX_HCI_AXIDMA_INT_EN ? rtw89_read32(rtwdev, R_AX_HAXI_HISR00) & rtwpci->intrs[0] : 0; isrs->isrs[1] = isrs->ind_isrs & B_AX_HS1ISR_IND_INT_EN ? rtw89_read32(rtwdev, R_AX_HISR1) & rtwpci->intrs[1] : 0; if (isrs->halt_c2h_isrs) rtw89_write32(rtwdev, R_AX_HISR0, isrs->halt_c2h_isrs); if (isrs->isrs[0]) rtw89_write32(rtwdev, R_AX_HAXI_HISR00, isrs->isrs[0]); if (isrs->isrs[1]) rtw89_write32(rtwdev, R_AX_HISR1, isrs->isrs[1]); } EXPORT_SYMBOL(rtw89_pci_recognize_intrs_v1); static void rtw89_pci_clear_isr0(struct rtw89_dev *rtwdev, u32 isr00) { /* write 1 clear */ rtw89_write32(rtwdev, R_AX_PCIE_HISR00, isr00); } void rtw89_pci_enable_intr(struct rtw89_dev *rtwdev, struct rtw89_pci *rtwpci) { rtw89_write32(rtwdev, R_AX_HIMR0, rtwpci->halt_c2h_intrs); rtw89_write32(rtwdev, R_AX_PCIE_HIMR00, rtwpci->intrs[0]); rtw89_write32(rtwdev, R_AX_PCIE_HIMR10, rtwpci->intrs[1]); } EXPORT_SYMBOL(rtw89_pci_enable_intr); void rtw89_pci_disable_intr(struct rtw89_dev *rtwdev, struct rtw89_pci *rtwpci) { rtw89_write32(rtwdev, R_AX_HIMR0, 0); rtw89_write32(rtwdev, R_AX_PCIE_HIMR00, 0); rtw89_write32(rtwdev, R_AX_PCIE_HIMR10, 0); } EXPORT_SYMBOL(rtw89_pci_disable_intr); void rtw89_pci_enable_intr_v1(struct rtw89_dev *rtwdev, struct rtw89_pci *rtwpci) { rtw89_write32(rtwdev, R_AX_PCIE_HIMR00_V1, rtwpci->ind_intrs); rtw89_write32(rtwdev, R_AX_HIMR0, rtwpci->halt_c2h_intrs); rtw89_write32(rtwdev, R_AX_HAXI_HIMR00, rtwpci->intrs[0]); rtw89_write32(rtwdev, R_AX_HIMR1, rtwpci->intrs[1]); } EXPORT_SYMBOL(rtw89_pci_enable_intr_v1); void rtw89_pci_disable_intr_v1(struct rtw89_dev *rtwdev, struct rtw89_pci *rtwpci) { rtw89_write32(rtwdev, R_AX_PCIE_HIMR00_V1, 0); } EXPORT_SYMBOL(rtw89_pci_disable_intr_v1); static void rtw89_pci_ops_recovery_start(struct rtw89_dev *rtwdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; unsigned long flags; spin_lock_irqsave(&rtwpci->irq_lock, flags); rtw89_chip_disable_intr(rtwdev, rtwpci); rtw89_chip_config_intr_mask(rtwdev, RTW89_PCI_INTR_MASK_RECOVERY_START); rtw89_chip_enable_intr(rtwdev, rtwpci); spin_unlock_irqrestore(&rtwpci->irq_lock, flags); } static void rtw89_pci_ops_recovery_complete(struct rtw89_dev *rtwdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; unsigned long flags; spin_lock_irqsave(&rtwpci->irq_lock, flags); rtw89_chip_disable_intr(rtwdev, rtwpci); rtw89_chip_config_intr_mask(rtwdev, RTW89_PCI_INTR_MASK_RECOVERY_COMPLETE); rtw89_chip_enable_intr(rtwdev, rtwpci); spin_unlock_irqrestore(&rtwpci->irq_lock, flags); } static void rtw89_pci_low_power_interrupt_handler(struct rtw89_dev *rtwdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; int budget = NAPI_POLL_WEIGHT; /* To prevent RXQ get stuck due to run out of budget. */ rtwdev->napi_budget_countdown = budget; rtw89_pci_poll_rpq_dma(rtwdev, rtwpci, budget); rtw89_pci_poll_rxq_dma(rtwdev, rtwpci, budget); } static irqreturn_t rtw89_pci_interrupt_threadfn(int irq, void *dev) { struct rtw89_dev *rtwdev = dev; struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct rtw89_pci_isrs isrs; unsigned long flags; spin_lock_irqsave(&rtwpci->irq_lock, flags); rtw89_chip_recognize_intrs(rtwdev, rtwpci, &isrs); spin_unlock_irqrestore(&rtwpci->irq_lock, flags); if (unlikely(isrs.isrs[0] & B_AX_RDU_INT)) rtw89_pci_isr_rxd_unavail(rtwdev, rtwpci); if (unlikely(isrs.halt_c2h_isrs & B_AX_HALT_C2H_INT_EN)) rtw89_ser_notify(rtwdev, rtw89_mac_get_err_status(rtwdev)); if (unlikely(isrs.halt_c2h_isrs & B_AX_WDT_TIMEOUT_INT_EN)) rtw89_ser_notify(rtwdev, MAC_AX_ERR_L2_ERR_WDT_TIMEOUT_INT); if (unlikely(rtwpci->under_recovery)) goto enable_intr; if (unlikely(rtwpci->low_power)) { rtw89_pci_low_power_interrupt_handler(rtwdev); goto enable_intr; } if (likely(rtwpci->running)) { local_bh_disable(); napi_schedule(&rtwdev->napi); local_bh_enable(); } return IRQ_HANDLED; enable_intr: spin_lock_irqsave(&rtwpci->irq_lock, flags); if (likely(rtwpci->running)) rtw89_chip_enable_intr(rtwdev, rtwpci); spin_unlock_irqrestore(&rtwpci->irq_lock, flags); return IRQ_HANDLED; } static irqreturn_t rtw89_pci_interrupt_handler(int irq, void *dev) { struct rtw89_dev *rtwdev = dev; struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; unsigned long flags; irqreturn_t irqret = IRQ_WAKE_THREAD; spin_lock_irqsave(&rtwpci->irq_lock, flags); /* If interrupt event is on the road, it is still trigger interrupt * even we have done pci_stop() to turn off IMR. */ if (unlikely(!rtwpci->running)) { irqret = IRQ_HANDLED; goto exit; } rtw89_chip_disable_intr(rtwdev, rtwpci); exit: spin_unlock_irqrestore(&rtwpci->irq_lock, flags); return irqret; } #define DEF_TXCHADDRS_TYPE1(info, txch, v...) \ [RTW89_TXCH_##txch] = { \ .num = R_AX_##txch##_TXBD_NUM ##v, \ .idx = R_AX_##txch##_TXBD_IDX ##v, \ .bdram = R_AX_##txch##_BDRAM_CTRL ##v, \ .desa_l = R_AX_##txch##_TXBD_DESA_L ##v, \ .desa_h = R_AX_##txch##_TXBD_DESA_H ##v, \ } #define DEF_TXCHADDRS(info, txch, v...) \ [RTW89_TXCH_##txch] = { \ .num = R_AX_##txch##_TXBD_NUM, \ .idx = R_AX_##txch##_TXBD_IDX, \ .bdram = R_AX_##txch##_BDRAM_CTRL ##v, \ .desa_l = R_AX_##txch##_TXBD_DESA_L ##v, \ .desa_h = R_AX_##txch##_TXBD_DESA_H ##v, \ } #define DEF_RXCHADDRS(info, rxch, v...) \ [RTW89_RXCH_##rxch] = { \ .num = R_AX_##rxch##_RXBD_NUM ##v, \ .idx = R_AX_##rxch##_RXBD_IDX ##v, \ .desa_l = R_AX_##rxch##_RXBD_DESA_L ##v, \ .desa_h = R_AX_##rxch##_RXBD_DESA_H ##v, \ } const struct rtw89_pci_ch_dma_addr_set rtw89_pci_ch_dma_addr_set = { .tx = { DEF_TXCHADDRS(info, ACH0), DEF_TXCHADDRS(info, ACH1), DEF_TXCHADDRS(info, ACH2), DEF_TXCHADDRS(info, ACH3), DEF_TXCHADDRS(info, ACH4), DEF_TXCHADDRS(info, ACH5), DEF_TXCHADDRS(info, ACH6), DEF_TXCHADDRS(info, ACH7), DEF_TXCHADDRS(info, CH8), DEF_TXCHADDRS(info, CH9), DEF_TXCHADDRS_TYPE1(info, CH10), DEF_TXCHADDRS_TYPE1(info, CH11), DEF_TXCHADDRS(info, CH12), }, .rx = { DEF_RXCHADDRS(info, RXQ), DEF_RXCHADDRS(info, RPQ), }, }; EXPORT_SYMBOL(rtw89_pci_ch_dma_addr_set); const struct rtw89_pci_ch_dma_addr_set rtw89_pci_ch_dma_addr_set_v1 = { .tx = { DEF_TXCHADDRS(info, ACH0, _V1), DEF_TXCHADDRS(info, ACH1, _V1), DEF_TXCHADDRS(info, ACH2, _V1), DEF_TXCHADDRS(info, ACH3, _V1), DEF_TXCHADDRS(info, ACH4, _V1), DEF_TXCHADDRS(info, ACH5, _V1), DEF_TXCHADDRS(info, ACH6, _V1), DEF_TXCHADDRS(info, ACH7, _V1), DEF_TXCHADDRS(info, CH8, _V1), DEF_TXCHADDRS(info, CH9, _V1), DEF_TXCHADDRS_TYPE1(info, CH10, _V1), DEF_TXCHADDRS_TYPE1(info, CH11, _V1), DEF_TXCHADDRS(info, CH12, _V1), }, .rx = { DEF_RXCHADDRS(info, RXQ, _V1), DEF_RXCHADDRS(info, RPQ, _V1), }, }; EXPORT_SYMBOL(rtw89_pci_ch_dma_addr_set_v1); #undef DEF_TXCHADDRS_TYPE1 #undef DEF_TXCHADDRS #undef DEF_RXCHADDRS static int rtw89_pci_get_txch_addrs(struct rtw89_dev *rtwdev, enum rtw89_tx_channel txch, const struct rtw89_pci_ch_dma_addr **addr) { const struct rtw89_pci_info *info = rtwdev->pci_info; if (txch >= RTW89_TXCH_NUM) return -EINVAL; *addr = &info->dma_addr_set->tx[txch]; return 0; } static int rtw89_pci_get_rxch_addrs(struct rtw89_dev *rtwdev, enum rtw89_rx_channel rxch, const struct rtw89_pci_ch_dma_addr **addr) { const struct rtw89_pci_info *info = rtwdev->pci_info; if (rxch >= RTW89_RXCH_NUM) return -EINVAL; *addr = &info->dma_addr_set->rx[rxch]; return 0; } static u32 rtw89_pci_get_avail_txbd_num(struct rtw89_pci_tx_ring *ring) { struct rtw89_pci_dma_ring *bd_ring = &ring->bd_ring; /* reserved 1 desc check ring is full or not */ if (bd_ring->rp > bd_ring->wp) return bd_ring->rp - bd_ring->wp - 1; return bd_ring->len - (bd_ring->wp - bd_ring->rp) - 1; } static u32 __rtw89_pci_check_and_reclaim_tx_fwcmd_resource(struct rtw89_dev *rtwdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct rtw89_pci_tx_ring *tx_ring = &rtwpci->tx_rings[RTW89_TXCH_CH12]; u32 cnt; spin_lock_bh(&rtwpci->trx_lock); rtw89_pci_reclaim_tx_fwcmd(rtwdev, rtwpci); cnt = rtw89_pci_get_avail_txbd_num(tx_ring); spin_unlock_bh(&rtwpci->trx_lock); return cnt; } static u32 __rtw89_pci_check_and_reclaim_tx_resource_noio(struct rtw89_dev *rtwdev, u8 txch) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct rtw89_pci_tx_ring *tx_ring = &rtwpci->tx_rings[txch]; struct rtw89_pci_tx_wd_ring *wd_ring = &tx_ring->wd_ring; u32 cnt; spin_lock_bh(&rtwpci->trx_lock); cnt = rtw89_pci_get_avail_txbd_num(tx_ring); cnt = min(cnt, wd_ring->curr_num); spin_unlock_bh(&rtwpci->trx_lock); return cnt; } static u32 __rtw89_pci_check_and_reclaim_tx_resource(struct rtw89_dev *rtwdev, u8 txch) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct rtw89_pci_tx_ring *tx_ring = &rtwpci->tx_rings[txch]; struct rtw89_pci_tx_wd_ring *wd_ring = &tx_ring->wd_ring; const struct rtw89_chip_info *chip = rtwdev->chip; u32 bd_cnt, wd_cnt, min_cnt = 0; struct rtw89_pci_rx_ring *rx_ring; enum rtw89_debug_mask debug_mask; u32 cnt; rx_ring = &rtwpci->rx_rings[RTW89_RXCH_RPQ]; spin_lock_bh(&rtwpci->trx_lock); bd_cnt = rtw89_pci_get_avail_txbd_num(tx_ring); wd_cnt = wd_ring->curr_num; if (wd_cnt == 0 || bd_cnt == 0) { cnt = rtw89_pci_rxbd_recalc(rtwdev, rx_ring); if (cnt) rtw89_pci_release_tx(rtwdev, rx_ring, cnt); else if (wd_cnt == 0) goto out_unlock; bd_cnt = rtw89_pci_get_avail_txbd_num(tx_ring); if (bd_cnt == 0) rtw89_pci_reclaim_txbd(rtwdev, tx_ring); } bd_cnt = rtw89_pci_get_avail_txbd_num(tx_ring); wd_cnt = wd_ring->curr_num; min_cnt = min(bd_cnt, wd_cnt); if (min_cnt == 0) { /* This message can be frequently shown in low power mode or * high traffic with 8852B, and we have recognized it as normal * behavior, so print with mask RTW89_DBG_TXRX in these situations. */ if (rtwpci->low_power || chip->chip_id == RTL8852B) debug_mask = RTW89_DBG_TXRX; else debug_mask = RTW89_DBG_UNEXP; rtw89_debug(rtwdev, debug_mask, "still no tx resource after reclaim: wd_cnt=%d bd_cnt=%d\n", wd_cnt, bd_cnt); } out_unlock: spin_unlock_bh(&rtwpci->trx_lock); return min_cnt; } static u32 rtw89_pci_check_and_reclaim_tx_resource(struct rtw89_dev *rtwdev, u8 txch) { if (rtwdev->hci.paused) return __rtw89_pci_check_and_reclaim_tx_resource_noio(rtwdev, txch); if (txch == RTW89_TXCH_CH12) return __rtw89_pci_check_and_reclaim_tx_fwcmd_resource(rtwdev); return __rtw89_pci_check_and_reclaim_tx_resource(rtwdev, txch); } static void __rtw89_pci_tx_kick_off(struct rtw89_dev *rtwdev, struct rtw89_pci_tx_ring *tx_ring) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct rtw89_pci_dma_ring *bd_ring = &tx_ring->bd_ring; u32 host_idx, addr; spin_lock_bh(&rtwpci->trx_lock); addr = bd_ring->addr.idx; host_idx = bd_ring->wp; rtw89_write16(rtwdev, addr, host_idx); spin_unlock_bh(&rtwpci->trx_lock); } static void rtw89_pci_tx_bd_ring_update(struct rtw89_dev *rtwdev, struct rtw89_pci_tx_ring *tx_ring, int n_txbd) { struct rtw89_pci_dma_ring *bd_ring = &tx_ring->bd_ring; u32 host_idx, len; len = bd_ring->len; host_idx = bd_ring->wp + n_txbd; host_idx = host_idx < len ? host_idx : host_idx - len; bd_ring->wp = host_idx; } static void rtw89_pci_ops_tx_kick_off(struct rtw89_dev *rtwdev, u8 txch) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct rtw89_pci_tx_ring *tx_ring = &rtwpci->tx_rings[txch]; if (rtwdev->hci.paused) { set_bit(txch, rtwpci->kick_map); return; } __rtw89_pci_tx_kick_off(rtwdev, tx_ring); } static void rtw89_pci_tx_kick_off_pending(struct rtw89_dev *rtwdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct rtw89_pci_tx_ring *tx_ring; int txch; for (txch = 0; txch < RTW89_TXCH_NUM; txch++) { if (!test_and_clear_bit(txch, rtwpci->kick_map)) continue; tx_ring = &rtwpci->tx_rings[txch]; __rtw89_pci_tx_kick_off(rtwdev, tx_ring); } } static void __pci_flush_txch(struct rtw89_dev *rtwdev, u8 txch, bool drop) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct rtw89_pci_tx_ring *tx_ring = &rtwpci->tx_rings[txch]; struct rtw89_pci_dma_ring *bd_ring = &tx_ring->bd_ring; u32 cur_idx, cur_rp; u8 i; /* Because the time taked by the I/O is a bit dynamic, it's hard to * define a reasonable fixed total timeout to use read_poll_timeout* * helper. Instead, we can ensure a reasonable polling times, so we * just use for loop with udelay here. */ for (i = 0; i < 60; i++) { cur_idx = rtw89_read32(rtwdev, bd_ring->addr.idx); cur_rp = FIELD_GET(TXBD_HW_IDX_MASK, cur_idx); if (cur_rp == bd_ring->wp) return; udelay(1); } if (!drop) rtw89_info(rtwdev, "timed out to flush pci txch: %d\n", txch); } static void __rtw89_pci_ops_flush_txchs(struct rtw89_dev *rtwdev, u32 txchs, bool drop) { const struct rtw89_pci_info *info = rtwdev->pci_info; u8 i; for (i = 0; i < RTW89_TXCH_NUM; i++) { /* It may be unnecessary to flush FWCMD queue. */ if (i == RTW89_TXCH_CH12) continue; if (info->tx_dma_ch_mask & BIT(i)) continue; if (txchs & BIT(i)) __pci_flush_txch(rtwdev, i, drop); } } static void rtw89_pci_ops_flush_queues(struct rtw89_dev *rtwdev, u32 queues, bool drop) { __rtw89_pci_ops_flush_txchs(rtwdev, BIT(RTW89_TXCH_NUM) - 1, drop); } u32 rtw89_pci_fill_txaddr_info(struct rtw89_dev *rtwdev, void *txaddr_info_addr, u32 total_len, dma_addr_t dma, u8 *add_info_nr) { struct rtw89_pci_tx_addr_info_32 *txaddr_info = txaddr_info_addr; txaddr_info->length = cpu_to_le16(total_len); txaddr_info->option = cpu_to_le16(RTW89_PCI_ADDR_MSDU_LS | RTW89_PCI_ADDR_NUM(1)); txaddr_info->dma = cpu_to_le32(dma); *add_info_nr = 1; return sizeof(*txaddr_info); } EXPORT_SYMBOL(rtw89_pci_fill_txaddr_info); u32 rtw89_pci_fill_txaddr_info_v1(struct rtw89_dev *rtwdev, void *txaddr_info_addr, u32 total_len, dma_addr_t dma, u8 *add_info_nr) { struct rtw89_pci_tx_addr_info_32_v1 *txaddr_info = txaddr_info_addr; u32 remain = total_len; u32 len; u16 length_option; int n; for (n = 0; n < RTW89_TXADDR_INFO_NR_V1 && remain; n++) { len = remain >= TXADDR_INFO_LENTHG_V1_MAX ? TXADDR_INFO_LENTHG_V1_MAX : remain; remain -= len; length_option = FIELD_PREP(B_PCIADDR_LEN_V1_MASK, len) | FIELD_PREP(B_PCIADDR_HIGH_SEL_V1_MASK, 0) | FIELD_PREP(B_PCIADDR_LS_V1_MASK, remain == 0); txaddr_info->length_opt = cpu_to_le16(length_option); txaddr_info->dma_low_lsb = cpu_to_le16(FIELD_GET(GENMASK(15, 0), dma)); txaddr_info->dma_low_msb = cpu_to_le16(FIELD_GET(GENMASK(31, 16), dma)); dma += len; txaddr_info++; } WARN_ONCE(remain, "length overflow remain=%u total_len=%u", remain, total_len); *add_info_nr = n; return n * sizeof(*txaddr_info); } EXPORT_SYMBOL(rtw89_pci_fill_txaddr_info_v1); static int rtw89_pci_txwd_submit(struct rtw89_dev *rtwdev, struct rtw89_pci_tx_ring *tx_ring, struct rtw89_pci_tx_wd *txwd, struct rtw89_core_tx_request *tx_req) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; const struct rtw89_chip_info *chip = rtwdev->chip; struct rtw89_tx_desc_info *desc_info = &tx_req->desc_info; struct rtw89_txwd_info *txwd_info; struct rtw89_pci_tx_wp_info *txwp_info; void *txaddr_info_addr; struct pci_dev *pdev = rtwpci->pdev; struct sk_buff *skb = tx_req->skb; struct rtw89_pci_tx_data *tx_data = RTW89_PCI_TX_SKB_CB(skb); bool en_wd_info = desc_info->en_wd_info; u32 txwd_len; u32 txwp_len; u32 txaddr_info_len; dma_addr_t dma; int ret; dma = dma_map_single(&pdev->dev, skb->data, skb->len, DMA_TO_DEVICE); if (dma_mapping_error(&pdev->dev, dma)) { rtw89_err(rtwdev, "failed to map skb dma data\n"); ret = -EBUSY; goto err; } tx_data->dma = dma; txwp_len = sizeof(*txwp_info); txwd_len = chip->txwd_body_size; txwd_len += en_wd_info ? sizeof(*txwd_info) : 0; txwp_info = txwd->vaddr + txwd_len; txwp_info->seq0 = cpu_to_le16(txwd->seq | RTW89_PCI_TXWP_VALID); txwp_info->seq1 = 0; txwp_info->seq2 = 0; txwp_info->seq3 = 0; tx_ring->tx_cnt++; txaddr_info_addr = txwd->vaddr + txwd_len + txwp_len; txaddr_info_len = rtw89_chip_fill_txaddr_info(rtwdev, txaddr_info_addr, skb->len, dma, &desc_info->addr_info_nr); txwd->len = txwd_len + txwp_len + txaddr_info_len; rtw89_chip_fill_txdesc(rtwdev, desc_info, txwd->vaddr); skb_queue_tail(&txwd->queue, skb); return 0; err: return ret; } static int rtw89_pci_fwcmd_submit(struct rtw89_dev *rtwdev, struct rtw89_pci_tx_ring *tx_ring, struct rtw89_pci_tx_bd_32 *txbd, struct rtw89_core_tx_request *tx_req) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; const struct rtw89_chip_info *chip = rtwdev->chip; struct rtw89_tx_desc_info *desc_info = &tx_req->desc_info; void *txdesc; int txdesc_size = chip->h2c_desc_size; struct pci_dev *pdev = rtwpci->pdev; struct sk_buff *skb = tx_req->skb; struct rtw89_pci_tx_data *tx_data = RTW89_PCI_TX_SKB_CB(skb); dma_addr_t dma; txdesc = skb_push(skb, txdesc_size); memset(txdesc, 0, txdesc_size); rtw89_chip_fill_txdesc_fwcmd(rtwdev, desc_info, txdesc); dma = dma_map_single(&pdev->dev, skb->data, skb->len, DMA_TO_DEVICE); if (dma_mapping_error(&pdev->dev, dma)) { rtw89_err(rtwdev, "failed to map fwcmd dma data\n"); return -EBUSY; } tx_data->dma = dma; txbd->option = cpu_to_le16(RTW89_PCI_TXBD_OPTION_LS); txbd->length = cpu_to_le16(skb->len); txbd->dma = cpu_to_le32(tx_data->dma); skb_queue_tail(&rtwpci->h2c_queue, skb); rtw89_pci_tx_bd_ring_update(rtwdev, tx_ring, 1); return 0; } static int rtw89_pci_txbd_submit(struct rtw89_dev *rtwdev, struct rtw89_pci_tx_ring *tx_ring, struct rtw89_pci_tx_bd_32 *txbd, struct rtw89_core_tx_request *tx_req) { struct rtw89_pci_tx_wd *txwd; int ret; /* FWCMD queue doesn't have wd pages. Instead, it submits the CMD * buffer with WD BODY only. So here we don't need to check the free * pages of the wd ring. */ if (tx_ring->txch == RTW89_TXCH_CH12) return rtw89_pci_fwcmd_submit(rtwdev, tx_ring, txbd, tx_req); txwd = rtw89_pci_dequeue_txwd(tx_ring); if (!txwd) { rtw89_err(rtwdev, "no available TXWD\n"); ret = -ENOSPC; goto err; } ret = rtw89_pci_txwd_submit(rtwdev, tx_ring, txwd, tx_req); if (ret) { rtw89_err(rtwdev, "failed to submit TXWD %d\n", txwd->seq); goto err_enqueue_wd; } list_add_tail(&txwd->list, &tx_ring->busy_pages); txbd->option = cpu_to_le16(RTW89_PCI_TXBD_OPTION_LS); txbd->length = cpu_to_le16(txwd->len); txbd->dma = cpu_to_le32(txwd->paddr); rtw89_pci_tx_bd_ring_update(rtwdev, tx_ring, 1); return 0; err_enqueue_wd: rtw89_pci_enqueue_txwd(tx_ring, txwd); err: return ret; } static int rtw89_pci_tx_write(struct rtw89_dev *rtwdev, struct rtw89_core_tx_request *tx_req, u8 txch) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct rtw89_pci_tx_ring *tx_ring; struct rtw89_pci_tx_bd_32 *txbd; u32 n_avail_txbd; int ret = 0; /* check the tx type and dma channel for fw cmd queue */ if ((txch == RTW89_TXCH_CH12 || tx_req->tx_type == RTW89_CORE_TX_TYPE_FWCMD) && (txch != RTW89_TXCH_CH12 || tx_req->tx_type != RTW89_CORE_TX_TYPE_FWCMD)) { rtw89_err(rtwdev, "only fw cmd uses dma channel 12\n"); return -EINVAL; } tx_ring = &rtwpci->tx_rings[txch]; spin_lock_bh(&rtwpci->trx_lock); n_avail_txbd = rtw89_pci_get_avail_txbd_num(tx_ring); if (n_avail_txbd == 0) { rtw89_err(rtwdev, "no available TXBD\n"); ret = -ENOSPC; goto err_unlock; } txbd = rtw89_pci_get_next_txbd(tx_ring); ret = rtw89_pci_txbd_submit(rtwdev, tx_ring, txbd, tx_req); if (ret) { rtw89_err(rtwdev, "failed to submit TXBD\n"); goto err_unlock; } spin_unlock_bh(&rtwpci->trx_lock); return 0; err_unlock: spin_unlock_bh(&rtwpci->trx_lock); return ret; } static int rtw89_pci_ops_tx_write(struct rtw89_dev *rtwdev, struct rtw89_core_tx_request *tx_req) { struct rtw89_tx_desc_info *desc_info = &tx_req->desc_info; int ret; ret = rtw89_pci_tx_write(rtwdev, tx_req, desc_info->ch_dma); if (ret) { rtw89_err(rtwdev, "failed to TX Queue %d\n", desc_info->ch_dma); return ret; } return 0; } const struct rtw89_pci_bd_ram rtw89_bd_ram_table_dual[RTW89_TXCH_NUM] = { [RTW89_TXCH_ACH0] = {.start_idx = 0, .max_num = 5, .min_num = 2}, [RTW89_TXCH_ACH1] = {.start_idx = 5, .max_num = 5, .min_num = 2}, [RTW89_TXCH_ACH2] = {.start_idx = 10, .max_num = 5, .min_num = 2}, [RTW89_TXCH_ACH3] = {.start_idx = 15, .max_num = 5, .min_num = 2}, [RTW89_TXCH_ACH4] = {.start_idx = 20, .max_num = 5, .min_num = 2}, [RTW89_TXCH_ACH5] = {.start_idx = 25, .max_num = 5, .min_num = 2}, [RTW89_TXCH_ACH6] = {.start_idx = 30, .max_num = 5, .min_num = 2}, [RTW89_TXCH_ACH7] = {.start_idx = 35, .max_num = 5, .min_num = 2}, [RTW89_TXCH_CH8] = {.start_idx = 40, .max_num = 5, .min_num = 1}, [RTW89_TXCH_CH9] = {.start_idx = 45, .max_num = 5, .min_num = 1}, [RTW89_TXCH_CH10] = {.start_idx = 50, .max_num = 5, .min_num = 1}, [RTW89_TXCH_CH11] = {.start_idx = 55, .max_num = 5, .min_num = 1}, [RTW89_TXCH_CH12] = {.start_idx = 60, .max_num = 4, .min_num = 1}, }; EXPORT_SYMBOL(rtw89_bd_ram_table_dual); const struct rtw89_pci_bd_ram rtw89_bd_ram_table_single[RTW89_TXCH_NUM] = { [RTW89_TXCH_ACH0] = {.start_idx = 0, .max_num = 5, .min_num = 2}, [RTW89_TXCH_ACH1] = {.start_idx = 5, .max_num = 5, .min_num = 2}, [RTW89_TXCH_ACH2] = {.start_idx = 10, .max_num = 5, .min_num = 2}, [RTW89_TXCH_ACH3] = {.start_idx = 15, .max_num = 5, .min_num = 2}, [RTW89_TXCH_CH8] = {.start_idx = 20, .max_num = 4, .min_num = 1}, [RTW89_TXCH_CH9] = {.start_idx = 24, .max_num = 4, .min_num = 1}, [RTW89_TXCH_CH12] = {.start_idx = 28, .max_num = 4, .min_num = 1}, }; EXPORT_SYMBOL(rtw89_bd_ram_table_single); static void rtw89_pci_reset_trx_rings(struct rtw89_dev *rtwdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; const struct rtw89_pci_info *info = rtwdev->pci_info; const struct rtw89_pci_bd_ram *bd_ram_table = *info->bd_ram_table; struct rtw89_pci_tx_ring *tx_ring; struct rtw89_pci_rx_ring *rx_ring; struct rtw89_pci_dma_ring *bd_ring; const struct rtw89_pci_bd_ram *bd_ram; u32 addr_num; u32 addr_bdram; u32 addr_desa_l; u32 val32; int i; for (i = 0; i < RTW89_TXCH_NUM; i++) { if (info->tx_dma_ch_mask & BIT(i)) continue; tx_ring = &rtwpci->tx_rings[i]; bd_ring = &tx_ring->bd_ring; bd_ram = &bd_ram_table[i]; addr_num = bd_ring->addr.num; addr_bdram = bd_ring->addr.bdram; addr_desa_l = bd_ring->addr.desa_l; bd_ring->wp = 0; bd_ring->rp = 0; val32 = FIELD_PREP(BDRAM_SIDX_MASK, bd_ram->start_idx) | FIELD_PREP(BDRAM_MAX_MASK, bd_ram->max_num) | FIELD_PREP(BDRAM_MIN_MASK, bd_ram->min_num); rtw89_write16(rtwdev, addr_num, bd_ring->len); rtw89_write32(rtwdev, addr_bdram, val32); rtw89_write32(rtwdev, addr_desa_l, bd_ring->dma); } for (i = 0; i < RTW89_RXCH_NUM; i++) { rx_ring = &rtwpci->rx_rings[i]; bd_ring = &rx_ring->bd_ring; addr_num = bd_ring->addr.num; addr_desa_l = bd_ring->addr.desa_l; bd_ring->wp = 0; bd_ring->rp = 0; rx_ring->diliver_skb = NULL; rx_ring->diliver_desc.ready = false; rtw89_write16(rtwdev, addr_num, bd_ring->len); rtw89_write32(rtwdev, addr_desa_l, bd_ring->dma); } } static void rtw89_pci_release_tx_ring(struct rtw89_dev *rtwdev, struct rtw89_pci_tx_ring *tx_ring) { rtw89_pci_release_busy_txwd(rtwdev, tx_ring); rtw89_pci_release_pending_txwd_skb(rtwdev, tx_ring); } static void rtw89_pci_ops_reset(struct rtw89_dev *rtwdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; const struct rtw89_pci_info *info = rtwdev->pci_info; int txch; rtw89_pci_reset_trx_rings(rtwdev); spin_lock_bh(&rtwpci->trx_lock); for (txch = 0; txch < RTW89_TXCH_NUM; txch++) { if (info->tx_dma_ch_mask & BIT(txch)) continue; if (txch == RTW89_TXCH_CH12) { rtw89_pci_release_fwcmd(rtwdev, rtwpci, skb_queue_len(&rtwpci->h2c_queue), true); continue; } rtw89_pci_release_tx_ring(rtwdev, &rtwpci->tx_rings[txch]); } spin_unlock_bh(&rtwpci->trx_lock); } static void rtw89_pci_enable_intr_lock(struct rtw89_dev *rtwdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; unsigned long flags; spin_lock_irqsave(&rtwpci->irq_lock, flags); rtwpci->running = true; rtw89_chip_enable_intr(rtwdev, rtwpci); spin_unlock_irqrestore(&rtwpci->irq_lock, flags); } static void rtw89_pci_disable_intr_lock(struct rtw89_dev *rtwdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; unsigned long flags; spin_lock_irqsave(&rtwpci->irq_lock, flags); rtwpci->running = false; rtw89_chip_disable_intr(rtwdev, rtwpci); spin_unlock_irqrestore(&rtwpci->irq_lock, flags); } static int rtw89_pci_ops_start(struct rtw89_dev *rtwdev) { rtw89_core_napi_start(rtwdev); rtw89_pci_enable_intr_lock(rtwdev); return 0; } static void rtw89_pci_ops_stop(struct rtw89_dev *rtwdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct pci_dev *pdev = rtwpci->pdev; rtw89_pci_disable_intr_lock(rtwdev); synchronize_irq(pdev->irq); rtw89_core_napi_stop(rtwdev); } static void rtw89_pci_ops_pause(struct rtw89_dev *rtwdev, bool pause) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct pci_dev *pdev = rtwpci->pdev; if (pause) { rtw89_pci_disable_intr_lock(rtwdev); synchronize_irq(pdev->irq); if (test_bit(RTW89_FLAG_NAPI_RUNNING, rtwdev->flags)) napi_synchronize(&rtwdev->napi); } else { rtw89_pci_enable_intr_lock(rtwdev); rtw89_pci_tx_kick_off_pending(rtwdev); } } static void rtw89_pci_switch_bd_idx_addr(struct rtw89_dev *rtwdev, bool low_power) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; const struct rtw89_pci_info *info = rtwdev->pci_info; const struct rtw89_pci_bd_idx_addr *bd_idx_addr = info->bd_idx_addr_low_power; const struct rtw89_pci_ch_dma_addr_set *dma_addr_set = info->dma_addr_set; struct rtw89_pci_tx_ring *tx_ring; struct rtw89_pci_rx_ring *rx_ring; int i; if (WARN(!bd_idx_addr, "only HCI with low power mode needs this\n")) return; for (i = 0; i < RTW89_TXCH_NUM; i++) { tx_ring = &rtwpci->tx_rings[i]; tx_ring->bd_ring.addr.idx = low_power ? bd_idx_addr->tx_bd_addrs[i] : dma_addr_set->tx[i].idx; } for (i = 0; i < RTW89_RXCH_NUM; i++) { rx_ring = &rtwpci->rx_rings[i]; rx_ring->bd_ring.addr.idx = low_power ? bd_idx_addr->rx_bd_addrs[i] : dma_addr_set->rx[i].idx; } } static void rtw89_pci_ops_switch_mode(struct rtw89_dev *rtwdev, bool low_power) { enum rtw89_pci_intr_mask_cfg cfg; WARN(!rtwdev->hci.paused, "HCI isn't paused\n"); cfg = low_power ? RTW89_PCI_INTR_MASK_LOW_POWER : RTW89_PCI_INTR_MASK_NORMAL; rtw89_chip_config_intr_mask(rtwdev, cfg); rtw89_pci_switch_bd_idx_addr(rtwdev, low_power); } static void rtw89_pci_ops_write32(struct rtw89_dev *rtwdev, u32 addr, u32 data); static u32 rtw89_pci_ops_read32_cmac(struct rtw89_dev *rtwdev, u32 addr) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; u32 val = readl(rtwpci->mmap + addr); int count; for (count = 0; ; count++) { if (val != RTW89_R32_DEAD) return val; if (count >= MAC_REG_POOL_COUNT) { rtw89_warn(rtwdev, "addr %#x = %#x\n", addr, val); return RTW89_R32_DEAD; } rtw89_pci_ops_write32(rtwdev, R_AX_CK_EN, B_AX_CMAC_ALLCKEN); val = readl(rtwpci->mmap + addr); } return val; } static u8 rtw89_pci_ops_read8(struct rtw89_dev *rtwdev, u32 addr) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; u32 addr32, val32, shift; if (!ACCESS_CMAC(addr)) return readb(rtwpci->mmap + addr); addr32 = addr & ~0x3; shift = (addr & 0x3) * 8; val32 = rtw89_pci_ops_read32_cmac(rtwdev, addr32); return val32 >> shift; } static u16 rtw89_pci_ops_read16(struct rtw89_dev *rtwdev, u32 addr) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; u32 addr32, val32, shift; if (!ACCESS_CMAC(addr)) return readw(rtwpci->mmap + addr); addr32 = addr & ~0x3; shift = (addr & 0x3) * 8; val32 = rtw89_pci_ops_read32_cmac(rtwdev, addr32); return val32 >> shift; } static u32 rtw89_pci_ops_read32(struct rtw89_dev *rtwdev, u32 addr) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; if (!ACCESS_CMAC(addr)) return readl(rtwpci->mmap + addr); return rtw89_pci_ops_read32_cmac(rtwdev, addr); } static void rtw89_pci_ops_write8(struct rtw89_dev *rtwdev, u32 addr, u8 data) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; writeb(data, rtwpci->mmap + addr); } static void rtw89_pci_ops_write16(struct rtw89_dev *rtwdev, u32 addr, u16 data) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; writew(data, rtwpci->mmap + addr); } static void rtw89_pci_ops_write32(struct rtw89_dev *rtwdev, u32 addr, u32 data) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; writel(data, rtwpci->mmap + addr); } static void rtw89_pci_ctrl_dma_trx(struct rtw89_dev *rtwdev, bool enable) { const struct rtw89_pci_info *info = rtwdev->pci_info; if (enable) rtw89_write32_set(rtwdev, info->init_cfg_reg, info->rxhci_en_bit | info->txhci_en_bit); else rtw89_write32_clr(rtwdev, info->init_cfg_reg, info->rxhci_en_bit | info->txhci_en_bit); } static void rtw89_pci_ctrl_dma_io(struct rtw89_dev *rtwdev, bool enable) { enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id; u32 reg, mask; if (chip_id == RTL8852C) { reg = R_AX_HAXI_INIT_CFG1; mask = B_AX_STOP_AXI_MST; } else { reg = R_AX_PCIE_DMA_STOP1; mask = B_AX_STOP_PCIEIO; } if (enable) rtw89_write32_clr(rtwdev, reg, mask); else rtw89_write32_set(rtwdev, reg, mask); } static void rtw89_pci_ctrl_dma_all(struct rtw89_dev *rtwdev, bool enable) { rtw89_pci_ctrl_dma_io(rtwdev, enable); rtw89_pci_ctrl_dma_trx(rtwdev, enable); } static int rtw89_pci_check_mdio(struct rtw89_dev *rtwdev, u8 addr, u8 speed, u16 rw_bit) { u16 val; rtw89_write8(rtwdev, R_AX_MDIO_CFG, addr & 0x1F); val = rtw89_read16(rtwdev, R_AX_MDIO_CFG); switch (speed) { case PCIE_PHY_GEN1: if (addr < 0x20) val = u16_replace_bits(val, MDIO_PG0_G1, B_AX_MDIO_PHY_ADDR_MASK); else val = u16_replace_bits(val, MDIO_PG1_G1, B_AX_MDIO_PHY_ADDR_MASK); break; case PCIE_PHY_GEN2: if (addr < 0x20) val = u16_replace_bits(val, MDIO_PG0_G2, B_AX_MDIO_PHY_ADDR_MASK); else val = u16_replace_bits(val, MDIO_PG1_G2, B_AX_MDIO_PHY_ADDR_MASK); break; default: rtw89_err(rtwdev, "[ERR]Error Speed %d!\n", speed); return -EINVAL; } rtw89_write16(rtwdev, R_AX_MDIO_CFG, val); rtw89_write16_set(rtwdev, R_AX_MDIO_CFG, rw_bit); return read_poll_timeout(rtw89_read16, val, !(val & rw_bit), 10, 2000, false, rtwdev, R_AX_MDIO_CFG); } static int rtw89_read16_mdio(struct rtw89_dev *rtwdev, u8 addr, u8 speed, u16 *val) { int ret; ret = rtw89_pci_check_mdio(rtwdev, addr, speed, B_AX_MDIO_RFLAG); if (ret) { rtw89_err(rtwdev, "[ERR]MDIO R16 0x%X fail ret=%d!\n", addr, ret); return ret; } *val = rtw89_read16(rtwdev, R_AX_MDIO_RDATA); return 0; } static int rtw89_write16_mdio(struct rtw89_dev *rtwdev, u8 addr, u16 data, u8 speed) { int ret; rtw89_write16(rtwdev, R_AX_MDIO_WDATA, data); ret = rtw89_pci_check_mdio(rtwdev, addr, speed, B_AX_MDIO_WFLAG); if (ret) { rtw89_err(rtwdev, "[ERR]MDIO W16 0x%X = %x fail ret=%d!\n", addr, data, ret); return ret; } return 0; } static int rtw89_write16_mdio_mask(struct rtw89_dev *rtwdev, u8 addr, u16 mask, u16 data, u8 speed) { u32 shift; int ret; u16 val; ret = rtw89_read16_mdio(rtwdev, addr, speed, &val); if (ret) return ret; shift = __ffs(mask); val &= ~mask; val |= ((data << shift) & mask); ret = rtw89_write16_mdio(rtwdev, addr, val, speed); if (ret) return ret; return 0; } static int rtw89_write16_mdio_set(struct rtw89_dev *rtwdev, u8 addr, u16 mask, u8 speed) { int ret; u16 val; ret = rtw89_read16_mdio(rtwdev, addr, speed, &val); if (ret) return ret; ret = rtw89_write16_mdio(rtwdev, addr, val | mask, speed); if (ret) return ret; return 0; } static int rtw89_write16_mdio_clr(struct rtw89_dev *rtwdev, u8 addr, u16 mask, u8 speed) { int ret; u16 val; ret = rtw89_read16_mdio(rtwdev, addr, speed, &val); if (ret) return ret; ret = rtw89_write16_mdio(rtwdev, addr, val & ~mask, speed); if (ret) return ret; return 0; } static int rtw89_pci_write_config_byte(struct rtw89_dev *rtwdev, u16 addr, u8 data) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct pci_dev *pdev = rtwpci->pdev; return pci_write_config_byte(pdev, addr, data); } static int rtw89_pci_read_config_byte(struct rtw89_dev *rtwdev, u16 addr, u8 *value) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct pci_dev *pdev = rtwpci->pdev; return pci_read_config_byte(pdev, addr, value); } static int rtw89_pci_config_byte_set(struct rtw89_dev *rtwdev, u16 addr, u8 bit) { u8 value; int ret; ret = rtw89_pci_read_config_byte(rtwdev, addr, &value); if (ret) return ret; value |= bit; ret = rtw89_pci_write_config_byte(rtwdev, addr, value); return ret; } static int rtw89_pci_config_byte_clr(struct rtw89_dev *rtwdev, u16 addr, u8 bit) { u8 value; int ret; ret = rtw89_pci_read_config_byte(rtwdev, addr, &value); if (ret) return ret; value &= ~bit; ret = rtw89_pci_write_config_byte(rtwdev, addr, value); return ret; } static int __get_target(struct rtw89_dev *rtwdev, u16 *target, enum rtw89_pcie_phy phy_rate) { u16 val, tar; int ret; /* Enable counter */ ret = rtw89_read16_mdio(rtwdev, RAC_CTRL_PPR_V1, phy_rate, &val); if (ret) return ret; ret = rtw89_write16_mdio(rtwdev, RAC_CTRL_PPR_V1, val & ~B_AX_CLK_CALIB_EN, phy_rate); if (ret) return ret; ret = rtw89_write16_mdio(rtwdev, RAC_CTRL_PPR_V1, val | B_AX_CLK_CALIB_EN, phy_rate); if (ret) return ret; fsleep(300); ret = rtw89_read16_mdio(rtwdev, RAC_CTRL_PPR_V1, phy_rate, &tar); if (ret) return ret; ret = rtw89_write16_mdio(rtwdev, RAC_CTRL_PPR_V1, val & ~B_AX_CLK_CALIB_EN, phy_rate); if (ret) return ret; tar = tar & 0x0FFF; if (tar == 0 || tar == 0x0FFF) { rtw89_err(rtwdev, "[ERR]Get target failed.\n"); return -EINVAL; } *target = tar; return 0; } static int rtw89_pci_autok_x(struct rtw89_dev *rtwdev) { int ret; if (rtwdev->chip->chip_id != RTL8852B) return 0; ret = rtw89_write16_mdio_mask(rtwdev, RAC_REG_FLD_0, BAC_AUTOK_N_MASK, PCIE_AUTOK_4, PCIE_PHY_GEN1); return ret; } static int rtw89_pci_auto_refclk_cal(struct rtw89_dev *rtwdev, bool autook_en) { enum rtw89_pcie_phy phy_rate; u16 val16, mgn_set, div_set, tar; u8 val8, bdr_ori; bool l1_flag = false; int ret = 0; if (rtwdev->chip->chip_id != RTL8852B) return 0; ret = rtw89_pci_read_config_byte(rtwdev, RTW89_PCIE_PHY_RATE, &val8); if (ret) { rtw89_err(rtwdev, "[ERR]pci config read %X\n", RTW89_PCIE_PHY_RATE); return ret; } if (FIELD_GET(RTW89_PCIE_PHY_RATE_MASK, val8) == 0x1) { phy_rate = PCIE_PHY_GEN1; } else if (FIELD_GET(RTW89_PCIE_PHY_RATE_MASK, val8) == 0x2) { phy_rate = PCIE_PHY_GEN2; } else { rtw89_err(rtwdev, "[ERR]PCIe PHY rate %#x not support\n", val8); return -EOPNOTSUPP; } /* Disable L1BD */ ret = rtw89_pci_read_config_byte(rtwdev, RTW89_PCIE_L1_CTRL, &bdr_ori); if (ret) { rtw89_err(rtwdev, "[ERR]pci config read %X\n", RTW89_PCIE_L1_CTRL); return ret; } if (bdr_ori & RTW89_PCIE_BIT_L1) { ret = rtw89_pci_write_config_byte(rtwdev, RTW89_PCIE_L1_CTRL, bdr_ori & ~RTW89_PCIE_BIT_L1); if (ret) { rtw89_err(rtwdev, "[ERR]pci config write %X\n", RTW89_PCIE_L1_CTRL); return ret; } l1_flag = true; } ret = rtw89_read16_mdio(rtwdev, RAC_CTRL_PPR_V1, phy_rate, &val16); if (ret) { rtw89_err(rtwdev, "[ERR]mdio_r16_pcie %X\n", RAC_CTRL_PPR_V1); goto end; } if (val16 & B_AX_CALIB_EN) { ret = rtw89_write16_mdio(rtwdev, RAC_CTRL_PPR_V1, val16 & ~B_AX_CALIB_EN, phy_rate); if (ret) { rtw89_err(rtwdev, "[ERR]mdio_w16_pcie %X\n", RAC_CTRL_PPR_V1); goto end; } } if (!autook_en) goto end; /* Set div */ ret = rtw89_write16_mdio_clr(rtwdev, RAC_CTRL_PPR_V1, B_AX_DIV, phy_rate); if (ret) { rtw89_err(rtwdev, "[ERR]mdio_w16_pcie %X\n", RAC_CTRL_PPR_V1); goto end; } /* Obtain div and margin */ ret = __get_target(rtwdev, &tar, phy_rate); if (ret) { rtw89_err(rtwdev, "[ERR]1st get target fail %d\n", ret); goto end; } mgn_set = tar * INTF_INTGRA_HOSTREF_V1 / INTF_INTGRA_MINREF_V1 - tar; if (mgn_set >= 128) { div_set = 0x0003; mgn_set = 0x000F; } else if (mgn_set >= 64) { div_set = 0x0003; mgn_set >>= 3; } else if (mgn_set >= 32) { div_set = 0x0002; mgn_set >>= 2; } else if (mgn_set >= 16) { div_set = 0x0001; mgn_set >>= 1; } else if (mgn_set == 0) { rtw89_err(rtwdev, "[ERR]cal mgn is 0,tar = %d\n", tar); goto end; } else { div_set = 0x0000; } ret = rtw89_read16_mdio(rtwdev, RAC_CTRL_PPR_V1, phy_rate, &val16); if (ret) { rtw89_err(rtwdev, "[ERR]mdio_r16_pcie %X\n", RAC_CTRL_PPR_V1); goto end; } val16 |= u16_encode_bits(div_set, B_AX_DIV); ret = rtw89_write16_mdio(rtwdev, RAC_CTRL_PPR_V1, val16, phy_rate); if (ret) { rtw89_err(rtwdev, "[ERR]mdio_w16_pcie %X\n", RAC_CTRL_PPR_V1); goto end; } ret = __get_target(rtwdev, &tar, phy_rate); if (ret) { rtw89_err(rtwdev, "[ERR]2nd get target fail %d\n", ret); goto end; } rtw89_debug(rtwdev, RTW89_DBG_HCI, "[TRACE]target = 0x%X, div = 0x%X, margin = 0x%X\n", tar, div_set, mgn_set); ret = rtw89_write16_mdio(rtwdev, RAC_SET_PPR_V1, (tar & 0x0FFF) | (mgn_set << 12), phy_rate); if (ret) { rtw89_err(rtwdev, "[ERR]mdio_w16_pcie %X\n", RAC_SET_PPR_V1); goto end; } /* Enable function */ ret = rtw89_write16_mdio_set(rtwdev, RAC_CTRL_PPR_V1, B_AX_CALIB_EN, phy_rate); if (ret) { rtw89_err(rtwdev, "[ERR]mdio_w16_pcie %X\n", RAC_CTRL_PPR_V1); goto end; } /* CLK delay = 0 */ ret = rtw89_pci_write_config_byte(rtwdev, RTW89_PCIE_CLK_CTRL, PCIE_CLKDLY_HW_0); end: /* Set L1BD to ori */ if (l1_flag) { ret = rtw89_pci_write_config_byte(rtwdev, RTW89_PCIE_L1_CTRL, bdr_ori); if (ret) { rtw89_err(rtwdev, "[ERR]pci config write %X\n", RTW89_PCIE_L1_CTRL); return ret; } } return ret; } static int rtw89_pci_deglitch_setting(struct rtw89_dev *rtwdev) { enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id; int ret; if (chip_id == RTL8852A) { ret = rtw89_write16_mdio_clr(rtwdev, RAC_ANA24, B_AX_DEGLITCH, PCIE_PHY_GEN1); if (ret) return ret; ret = rtw89_write16_mdio_clr(rtwdev, RAC_ANA24, B_AX_DEGLITCH, PCIE_PHY_GEN2); if (ret) return ret; } else if (chip_id == RTL8852C) { rtw89_write16_clr(rtwdev, R_RAC_DIRECT_OFFSET_G1 + RAC_ANA24 * 2, B_AX_DEGLITCH); rtw89_write16_clr(rtwdev, R_RAC_DIRECT_OFFSET_G2 + RAC_ANA24 * 2, B_AX_DEGLITCH); } return 0; } static void rtw89_pci_rxdma_prefth(struct rtw89_dev *rtwdev) { if (rtwdev->chip->chip_id != RTL8852A) return; rtw89_write32_set(rtwdev, R_AX_PCIE_INIT_CFG1, B_AX_DIS_RXDMA_PRE); } static void rtw89_pci_l1off_pwroff(struct rtw89_dev *rtwdev) { if (rtwdev->chip->chip_id != RTL8852A && rtwdev->chip->chip_id != RTL8852B) return; rtw89_write32_clr(rtwdev, R_AX_PCIE_PS_CTRL, B_AX_L1OFF_PWR_OFF_EN); } static u32 rtw89_pci_l2_rxen_lat(struct rtw89_dev *rtwdev) { int ret; if (rtwdev->chip->chip_id != RTL8852A) return 0; ret = rtw89_write16_mdio_clr(rtwdev, RAC_ANA26, B_AX_RXEN, PCIE_PHY_GEN1); if (ret) return ret; ret = rtw89_write16_mdio_clr(rtwdev, RAC_ANA26, B_AX_RXEN, PCIE_PHY_GEN2); if (ret) return ret; return 0; } static void rtw89_pci_aphy_pwrcut(struct rtw89_dev *rtwdev) { if (rtwdev->chip->chip_id != RTL8852A && rtwdev->chip->chip_id != RTL8852B) return; rtw89_write32_clr(rtwdev, R_AX_SYS_PW_CTRL, B_AX_PSUS_OFF_CAPC_EN); } static void rtw89_pci_hci_ldo(struct rtw89_dev *rtwdev) { if (rtwdev->chip->chip_id == RTL8852A || rtwdev->chip->chip_id == RTL8852B) { rtw89_write32_set(rtwdev, R_AX_SYS_SDIO_CTRL, B_AX_PCIE_DIS_L2_CTRL_LDO_HCI); rtw89_write32_clr(rtwdev, R_AX_SYS_SDIO_CTRL, B_AX_PCIE_DIS_WLSUS_AFT_PDN); } else if (rtwdev->chip->chip_id == RTL8852C) { rtw89_write32_clr(rtwdev, R_AX_SYS_SDIO_CTRL, B_AX_PCIE_DIS_L2_CTRL_LDO_HCI); } } static int rtw89_pci_dphy_delay(struct rtw89_dev *rtwdev) { if (rtwdev->chip->chip_id != RTL8852B) return 0; return rtw89_write16_mdio_mask(rtwdev, RAC_REG_REV2, BAC_CMU_EN_DLY_MASK, PCIE_DPHY_DLY_25US, PCIE_PHY_GEN1); } static void rtw89_pci_power_wake(struct rtw89_dev *rtwdev, bool pwr_up) { if (pwr_up) rtw89_write32_set(rtwdev, R_AX_HCI_OPT_CTRL, BIT_WAKE_CTRL); else rtw89_write32_clr(rtwdev, R_AX_HCI_OPT_CTRL, BIT_WAKE_CTRL); } static void rtw89_pci_autoload_hang(struct rtw89_dev *rtwdev) { if (rtwdev->chip->chip_id != RTL8852C) return; rtw89_write32_set(rtwdev, R_AX_PCIE_BG_CLR, B_AX_BG_CLR_ASYNC_M3); rtw89_write32_clr(rtwdev, R_AX_PCIE_BG_CLR, B_AX_BG_CLR_ASYNC_M3); } static void rtw89_pci_l12_vmain(struct rtw89_dev *rtwdev) { if (!(rtwdev->chip->chip_id == RTL8852C && rtwdev->hal.cv == CHIP_CAV)) return; rtw89_write32_set(rtwdev, R_AX_SYS_SDIO_CTRL, B_AX_PCIE_FORCE_PWR_NGAT); } static void rtw89_pci_gen2_force_ib(struct rtw89_dev *rtwdev) { if (!(rtwdev->chip->chip_id == RTL8852C && rtwdev->hal.cv == CHIP_CAV)) return; rtw89_write32_set(rtwdev, R_AX_PMC_DBG_CTRL2, B_AX_SYSON_DIS_PMCR_AX_WRMSK); rtw89_write32_set(rtwdev, R_AX_HCI_BG_CTRL, B_AX_BG_CLR_ASYNC_M3); rtw89_write32_clr(rtwdev, R_AX_PMC_DBG_CTRL2, B_AX_SYSON_DIS_PMCR_AX_WRMSK); } static void rtw89_pci_l1_ent_lat(struct rtw89_dev *rtwdev) { if (rtwdev->chip->chip_id != RTL8852C) return; rtw89_write32_clr(rtwdev, R_AX_PCIE_PS_CTRL_V1, B_AX_SEL_REQ_ENTR_L1); } static void rtw89_pci_wd_exit_l1(struct rtw89_dev *rtwdev) { if (rtwdev->chip->chip_id != RTL8852C) return; rtw89_write32_set(rtwdev, R_AX_PCIE_PS_CTRL_V1, B_AX_DMAC0_EXIT_L1_EN); } static void rtw89_pci_set_sic(struct rtw89_dev *rtwdev) { if (rtwdev->chip->chip_id == RTL8852C) return; rtw89_write32_clr(rtwdev, R_AX_PCIE_EXP_CTRL, B_AX_SIC_EN_FORCE_CLKREQ); } static void rtw89_pci_set_lbc(struct rtw89_dev *rtwdev) { const struct rtw89_pci_info *info = rtwdev->pci_info; u32 lbc; if (rtwdev->chip->chip_id == RTL8852C) return; lbc = rtw89_read32(rtwdev, R_AX_LBC_WATCHDOG); if (info->lbc_en == MAC_AX_PCIE_ENABLE) { lbc = u32_replace_bits(lbc, info->lbc_tmr, B_AX_LBC_TIMER); lbc |= B_AX_LBC_FLAG | B_AX_LBC_EN; rtw89_write32(rtwdev, R_AX_LBC_WATCHDOG, lbc); } else { lbc &= ~B_AX_LBC_EN; } rtw89_write32_set(rtwdev, R_AX_LBC_WATCHDOG, lbc); } static void rtw89_pci_set_io_rcy(struct rtw89_dev *rtwdev) { const struct rtw89_pci_info *info = rtwdev->pci_info; u32 val32; if (rtwdev->chip->chip_id != RTL8852C) return; if (info->io_rcy_en == MAC_AX_PCIE_ENABLE) { val32 = FIELD_PREP(B_AX_PCIE_WDT_TIMER_M1_MASK, info->io_rcy_tmr); rtw89_write32(rtwdev, R_AX_PCIE_WDT_TIMER_M1, val32); rtw89_write32(rtwdev, R_AX_PCIE_WDT_TIMER_M2, val32); rtw89_write32(rtwdev, R_AX_PCIE_WDT_TIMER_E0, val32); rtw89_write32_set(rtwdev, R_AX_PCIE_IO_RCY_M1, B_AX_PCIE_IO_RCY_WDT_MODE_M1); rtw89_write32_set(rtwdev, R_AX_PCIE_IO_RCY_M2, B_AX_PCIE_IO_RCY_WDT_MODE_M2); rtw89_write32_set(rtwdev, R_AX_PCIE_IO_RCY_E0, B_AX_PCIE_IO_RCY_WDT_MODE_E0); } else { rtw89_write32_clr(rtwdev, R_AX_PCIE_IO_RCY_M1, B_AX_PCIE_IO_RCY_WDT_MODE_M1); rtw89_write32_clr(rtwdev, R_AX_PCIE_IO_RCY_M2, B_AX_PCIE_IO_RCY_WDT_MODE_M2); rtw89_write32_clr(rtwdev, R_AX_PCIE_IO_RCY_E0, B_AX_PCIE_IO_RCY_WDT_MODE_E0); } rtw89_write32_clr(rtwdev, R_AX_PCIE_IO_RCY_S1, B_AX_PCIE_IO_RCY_WDT_MODE_S1); } static void rtw89_pci_set_dbg(struct rtw89_dev *rtwdev) { if (rtwdev->chip->chip_id == RTL8852C) return; rtw89_write32_set(rtwdev, R_AX_PCIE_DBG_CTRL, B_AX_ASFF_FULL_NO_STK | B_AX_EN_STUCK_DBG); if (rtwdev->chip->chip_id == RTL8852A) rtw89_write32_set(rtwdev, R_AX_PCIE_EXP_CTRL, B_AX_EN_CHKDSC_NO_RX_STUCK); } static void rtw89_pci_set_keep_reg(struct rtw89_dev *rtwdev) { if (rtwdev->chip->chip_id == RTL8852C) return; rtw89_write32_set(rtwdev, R_AX_PCIE_INIT_CFG1, B_AX_PCIE_TXRST_KEEP_REG | B_AX_PCIE_RXRST_KEEP_REG); } static void rtw89_pci_clr_idx_all(struct rtw89_dev *rtwdev) { const struct rtw89_pci_info *info = rtwdev->pci_info; enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id; u32 val = B_AX_CLR_ACH0_IDX | B_AX_CLR_ACH1_IDX | B_AX_CLR_ACH2_IDX | B_AX_CLR_ACH3_IDX | B_AX_CLR_CH8_IDX | B_AX_CLR_CH9_IDX | B_AX_CLR_CH12_IDX; u32 rxbd_rwptr_clr = info->rxbd_rwptr_clr_reg; u32 txbd_rwptr_clr2 = info->txbd_rwptr_clr2_reg; if (chip_id == RTL8852A || chip_id == RTL8852C) val |= B_AX_CLR_ACH4_IDX | B_AX_CLR_ACH5_IDX | B_AX_CLR_ACH6_IDX | B_AX_CLR_ACH7_IDX; /* clear DMA indexes */ rtw89_write32_set(rtwdev, R_AX_TXBD_RWPTR_CLR1, val); if (chip_id == RTL8852A || chip_id == RTL8852C) rtw89_write32_set(rtwdev, txbd_rwptr_clr2, B_AX_CLR_CH10_IDX | B_AX_CLR_CH11_IDX); rtw89_write32_set(rtwdev, rxbd_rwptr_clr, B_AX_CLR_RXQ_IDX | B_AX_CLR_RPQ_IDX); } static int rtw89_poll_txdma_ch_idle_pcie(struct rtw89_dev *rtwdev) { const struct rtw89_pci_info *info = rtwdev->pci_info; u32 ret, check, dma_busy; u32 dma_busy1 = info->dma_busy1.addr; u32 dma_busy2 = info->dma_busy2_reg; check = info->dma_busy1.mask; ret = read_poll_timeout(rtw89_read32, dma_busy, (dma_busy & check) == 0, 10, 100, false, rtwdev, dma_busy1); if (ret) return ret; if (!dma_busy2) return 0; check = B_AX_CH10_BUSY | B_AX_CH11_BUSY; ret = read_poll_timeout(rtw89_read32, dma_busy, (dma_busy & check) == 0, 10, 100, false, rtwdev, dma_busy2); if (ret) return ret; return 0; } static int rtw89_poll_rxdma_ch_idle_pcie(struct rtw89_dev *rtwdev) { const struct rtw89_pci_info *info = rtwdev->pci_info; u32 ret, check, dma_busy; u32 dma_busy3 = info->dma_busy3_reg; check = B_AX_RXQ_BUSY | B_AX_RPQ_BUSY; ret = read_poll_timeout(rtw89_read32, dma_busy, (dma_busy & check) == 0, 10, 100, false, rtwdev, dma_busy3); if (ret) return ret; return 0; } static int rtw89_pci_poll_dma_all_idle(struct rtw89_dev *rtwdev) { u32 ret; ret = rtw89_poll_txdma_ch_idle_pcie(rtwdev); if (ret) { rtw89_err(rtwdev, "txdma ch busy\n"); return ret; } ret = rtw89_poll_rxdma_ch_idle_pcie(rtwdev); if (ret) { rtw89_err(rtwdev, "rxdma ch busy\n"); return ret; } return 0; } static int rtw89_pci_mode_op(struct rtw89_dev *rtwdev) { const struct rtw89_pci_info *info = rtwdev->pci_info; enum mac_ax_bd_trunc_mode txbd_trunc_mode = info->txbd_trunc_mode; enum mac_ax_bd_trunc_mode rxbd_trunc_mode = info->rxbd_trunc_mode; enum mac_ax_rxbd_mode rxbd_mode = info->rxbd_mode; enum mac_ax_tag_mode tag_mode = info->tag_mode; enum mac_ax_wd_dma_intvl wd_dma_idle_intvl = info->wd_dma_idle_intvl; enum mac_ax_wd_dma_intvl wd_dma_act_intvl = info->wd_dma_act_intvl; enum mac_ax_tx_burst tx_burst = info->tx_burst; enum mac_ax_rx_burst rx_burst = info->rx_burst; enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id; u8 cv = rtwdev->hal.cv; u32 val32; if (txbd_trunc_mode == MAC_AX_BD_TRUNC) { if (chip_id == RTL8852A && cv == CHIP_CBV) rtw89_write32_set(rtwdev, R_AX_PCIE_INIT_CFG1, B_AX_TX_TRUNC_MODE); } else if (txbd_trunc_mode == MAC_AX_BD_NORM) { if (chip_id == RTL8852A || chip_id == RTL8852B) rtw89_write32_clr(rtwdev, R_AX_PCIE_INIT_CFG1, B_AX_TX_TRUNC_MODE); } if (rxbd_trunc_mode == MAC_AX_BD_TRUNC) { if (chip_id == RTL8852A && cv == CHIP_CBV) rtw89_write32_set(rtwdev, R_AX_PCIE_INIT_CFG1, B_AX_RX_TRUNC_MODE); } else if (rxbd_trunc_mode == MAC_AX_BD_NORM) { if (chip_id == RTL8852A || chip_id == RTL8852B) rtw89_write32_clr(rtwdev, R_AX_PCIE_INIT_CFG1, B_AX_RX_TRUNC_MODE); } if (rxbd_mode == MAC_AX_RXBD_PKT) { rtw89_write32_clr(rtwdev, info->init_cfg_reg, info->rxbd_mode_bit); } else if (rxbd_mode == MAC_AX_RXBD_SEP) { rtw89_write32_set(rtwdev, info->init_cfg_reg, info->rxbd_mode_bit); if (chip_id == RTL8852A || chip_id == RTL8852B) rtw89_write32_mask(rtwdev, R_AX_PCIE_INIT_CFG2, B_AX_PCIE_RX_APPLEN_MASK, 0); } if (chip_id == RTL8852A || chip_id == RTL8852B) { rtw89_write32_mask(rtwdev, R_AX_PCIE_INIT_CFG1, B_AX_PCIE_MAX_TXDMA_MASK, tx_burst); rtw89_write32_mask(rtwdev, R_AX_PCIE_INIT_CFG1, B_AX_PCIE_MAX_RXDMA_MASK, rx_burst); } else if (chip_id == RTL8852C) { rtw89_write32_mask(rtwdev, R_AX_HAXI_INIT_CFG1, B_AX_HAXI_MAX_TXDMA_MASK, tx_burst); rtw89_write32_mask(rtwdev, R_AX_HAXI_INIT_CFG1, B_AX_HAXI_MAX_RXDMA_MASK, rx_burst); } if (chip_id == RTL8852A || chip_id == RTL8852B) { if (tag_mode == MAC_AX_TAG_SGL) { val32 = rtw89_read32(rtwdev, R_AX_PCIE_INIT_CFG1) & ~B_AX_LATENCY_CONTROL; rtw89_write32(rtwdev, R_AX_PCIE_INIT_CFG1, val32); } else if (tag_mode == MAC_AX_TAG_MULTI) { val32 = rtw89_read32(rtwdev, R_AX_PCIE_INIT_CFG1) | B_AX_LATENCY_CONTROL; rtw89_write32(rtwdev, R_AX_PCIE_INIT_CFG1, val32); } } rtw89_write32_mask(rtwdev, info->exp_ctrl_reg, info->max_tag_num_mask, info->multi_tag_num); if (chip_id == RTL8852A || chip_id == RTL8852B) { rtw89_write32_mask(rtwdev, R_AX_PCIE_INIT_CFG2, B_AX_WD_ITVL_IDLE, wd_dma_idle_intvl); rtw89_write32_mask(rtwdev, R_AX_PCIE_INIT_CFG2, B_AX_WD_ITVL_ACT, wd_dma_act_intvl); } else if (chip_id == RTL8852C) { rtw89_write32_mask(rtwdev, R_AX_HAXI_INIT_CFG1, B_AX_WD_ITVL_IDLE_V1_MASK, wd_dma_idle_intvl); rtw89_write32_mask(rtwdev, R_AX_HAXI_INIT_CFG1, B_AX_WD_ITVL_ACT_V1_MASK, wd_dma_act_intvl); } if (txbd_trunc_mode == MAC_AX_BD_TRUNC) { rtw89_write32_set(rtwdev, R_AX_TX_ADDRESS_INFO_MODE_SETTING, B_AX_HOST_ADDR_INFO_8B_SEL); rtw89_write32_clr(rtwdev, R_AX_PKTIN_SETTING, B_AX_WD_ADDR_INFO_LENGTH); } else if (txbd_trunc_mode == MAC_AX_BD_NORM) { rtw89_write32_clr(rtwdev, R_AX_TX_ADDRESS_INFO_MODE_SETTING, B_AX_HOST_ADDR_INFO_8B_SEL); rtw89_write32_set(rtwdev, R_AX_PKTIN_SETTING, B_AX_WD_ADDR_INFO_LENGTH); } return 0; } static int rtw89_pci_ops_deinit(struct rtw89_dev *rtwdev) { const struct rtw89_pci_info *info = rtwdev->pci_info; if (rtwdev->chip->chip_id == RTL8852A) { /* ltr sw trigger */ rtw89_write32_set(rtwdev, R_AX_LTR_CTRL_0, B_AX_APP_LTR_IDLE); } info->ltr_set(rtwdev, false); rtw89_pci_ctrl_dma_all(rtwdev, false); rtw89_pci_clr_idx_all(rtwdev); return 0; } static int rtw89_pci_ops_mac_pre_init(struct rtw89_dev *rtwdev) { const struct rtw89_pci_info *info = rtwdev->pci_info; int ret; rtw89_pci_rxdma_prefth(rtwdev); rtw89_pci_l1off_pwroff(rtwdev); rtw89_pci_deglitch_setting(rtwdev); ret = rtw89_pci_l2_rxen_lat(rtwdev); if (ret) { rtw89_err(rtwdev, "[ERR] pcie l2 rxen lat %d\n", ret); return ret; } rtw89_pci_aphy_pwrcut(rtwdev); rtw89_pci_hci_ldo(rtwdev); rtw89_pci_dphy_delay(rtwdev); ret = rtw89_pci_autok_x(rtwdev); if (ret) { rtw89_err(rtwdev, "[ERR] pcie autok_x fail %d\n", ret); return ret; } ret = rtw89_pci_auto_refclk_cal(rtwdev, false); if (ret) { rtw89_err(rtwdev, "[ERR] pcie autok fail %d\n", ret); return ret; } rtw89_pci_power_wake(rtwdev, true); rtw89_pci_autoload_hang(rtwdev); rtw89_pci_l12_vmain(rtwdev); rtw89_pci_gen2_force_ib(rtwdev); rtw89_pci_l1_ent_lat(rtwdev); rtw89_pci_wd_exit_l1(rtwdev); rtw89_pci_set_sic(rtwdev); rtw89_pci_set_lbc(rtwdev); rtw89_pci_set_io_rcy(rtwdev); rtw89_pci_set_dbg(rtwdev); rtw89_pci_set_keep_reg(rtwdev); rtw89_write32_set(rtwdev, info->dma_stop1.addr, B_AX_STOP_WPDMA); /* stop DMA activities */ rtw89_pci_ctrl_dma_all(rtwdev, false); ret = rtw89_pci_poll_dma_all_idle(rtwdev); if (ret) { rtw89_err(rtwdev, "[ERR] poll pcie dma all idle\n"); return ret; } rtw89_pci_clr_idx_all(rtwdev); rtw89_pci_mode_op(rtwdev); /* fill TRX BD indexes */ rtw89_pci_ops_reset(rtwdev); ret = rtw89_pci_rst_bdram_pcie(rtwdev); if (ret) { rtw89_warn(rtwdev, "reset bdram busy\n"); return ret; } /* disable all channels except to FW CMD channel to download firmware */ rtw89_pci_ctrl_txdma_ch_pcie(rtwdev, false); rtw89_pci_ctrl_txdma_fw_ch_pcie(rtwdev, true); /* start DMA activities */ rtw89_pci_ctrl_dma_all(rtwdev, true); return 0; } int rtw89_pci_ltr_set(struct rtw89_dev *rtwdev, bool en) { u32 val; if (!en) return 0; val = rtw89_read32(rtwdev, R_AX_LTR_CTRL_0); if (rtw89_pci_ltr_is_err_reg_val(val)) return -EINVAL; val = rtw89_read32(rtwdev, R_AX_LTR_CTRL_1); if (rtw89_pci_ltr_is_err_reg_val(val)) return -EINVAL; val = rtw89_read32(rtwdev, R_AX_LTR_IDLE_LATENCY); if (rtw89_pci_ltr_is_err_reg_val(val)) return -EINVAL; val = rtw89_read32(rtwdev, R_AX_LTR_ACTIVE_LATENCY); if (rtw89_pci_ltr_is_err_reg_val(val)) return -EINVAL; rtw89_write32_set(rtwdev, R_AX_LTR_CTRL_0, B_AX_LTR_HW_EN | B_AX_LTR_EN | B_AX_LTR_WD_NOEMP_CHK); rtw89_write32_mask(rtwdev, R_AX_LTR_CTRL_0, B_AX_LTR_SPACE_IDX_MASK, PCI_LTR_SPC_500US); rtw89_write32_mask(rtwdev, R_AX_LTR_CTRL_0, B_AX_LTR_IDLE_TIMER_IDX_MASK, PCI_LTR_IDLE_TIMER_3_2MS); rtw89_write32_mask(rtwdev, R_AX_LTR_CTRL_1, B_AX_LTR_RX0_TH_MASK, 0x28); rtw89_write32_mask(rtwdev, R_AX_LTR_CTRL_1, B_AX_LTR_RX1_TH_MASK, 0x28); rtw89_write32(rtwdev, R_AX_LTR_IDLE_LATENCY, 0x90039003); rtw89_write32(rtwdev, R_AX_LTR_ACTIVE_LATENCY, 0x880b880b); return 0; } EXPORT_SYMBOL(rtw89_pci_ltr_set); int rtw89_pci_ltr_set_v1(struct rtw89_dev *rtwdev, bool en) { u32 dec_ctrl; u32 val32; val32 = rtw89_read32(rtwdev, R_AX_LTR_CTRL_0); if (rtw89_pci_ltr_is_err_reg_val(val32)) return -EINVAL; val32 = rtw89_read32(rtwdev, R_AX_LTR_CTRL_1); if (rtw89_pci_ltr_is_err_reg_val(val32)) return -EINVAL; dec_ctrl = rtw89_read32(rtwdev, R_AX_LTR_DEC_CTRL); if (rtw89_pci_ltr_is_err_reg_val(dec_ctrl)) return -EINVAL; val32 = rtw89_read32(rtwdev, R_AX_LTR_LATENCY_IDX3); if (rtw89_pci_ltr_is_err_reg_val(val32)) return -EINVAL; val32 = rtw89_read32(rtwdev, R_AX_LTR_LATENCY_IDX0); if (rtw89_pci_ltr_is_err_reg_val(val32)) return -EINVAL; if (!en) { dec_ctrl &= ~(LTR_EN_BITS | B_AX_LTR_IDX_DRV_MASK | B_AX_LTR_HW_DEC_EN); dec_ctrl |= FIELD_PREP(B_AX_LTR_IDX_DRV_MASK, PCIE_LTR_IDX_IDLE) | B_AX_LTR_REQ_DRV; } else { dec_ctrl |= B_AX_LTR_HW_DEC_EN; } dec_ctrl &= ~B_AX_LTR_SPACE_IDX_V1_MASK; dec_ctrl |= FIELD_PREP(B_AX_LTR_SPACE_IDX_V1_MASK, PCI_LTR_SPC_500US); if (en) rtw89_write32_set(rtwdev, R_AX_LTR_CTRL_0, B_AX_LTR_WD_NOEMP_CHK_V1 | B_AX_LTR_HW_EN); rtw89_write32_mask(rtwdev, R_AX_LTR_CTRL_0, B_AX_LTR_IDLE_TIMER_IDX_MASK, PCI_LTR_IDLE_TIMER_3_2MS); rtw89_write32_mask(rtwdev, R_AX_LTR_CTRL_1, B_AX_LTR_RX0_TH_MASK, 0x28); rtw89_write32_mask(rtwdev, R_AX_LTR_CTRL_1, B_AX_LTR_RX1_TH_MASK, 0x28); rtw89_write32(rtwdev, R_AX_LTR_DEC_CTRL, dec_ctrl); rtw89_write32(rtwdev, R_AX_LTR_LATENCY_IDX3, 0x90039003); rtw89_write32(rtwdev, R_AX_LTR_LATENCY_IDX0, 0x880b880b); return 0; } EXPORT_SYMBOL(rtw89_pci_ltr_set_v1); static int rtw89_pci_ops_mac_post_init(struct rtw89_dev *rtwdev) { const struct rtw89_pci_info *info = rtwdev->pci_info; enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id; int ret; ret = info->ltr_set(rtwdev, true); if (ret) { rtw89_err(rtwdev, "pci ltr set fail\n"); return ret; } if (chip_id == RTL8852A) { /* ltr sw trigger */ rtw89_write32_set(rtwdev, R_AX_LTR_CTRL_0, B_AX_APP_LTR_ACT); } if (chip_id == RTL8852A || chip_id == RTL8852B) { /* ADDR info 8-byte mode */ rtw89_write32_set(rtwdev, R_AX_TX_ADDRESS_INFO_MODE_SETTING, B_AX_HOST_ADDR_INFO_8B_SEL); rtw89_write32_clr(rtwdev, R_AX_PKTIN_SETTING, B_AX_WD_ADDR_INFO_LENGTH); } /* enable DMA for all queues */ rtw89_pci_ctrl_txdma_ch_pcie(rtwdev, true); /* Release PCI IO */ rtw89_write32_clr(rtwdev, info->dma_stop1.addr, B_AX_STOP_WPDMA | B_AX_STOP_PCIEIO); return 0; } static int rtw89_pci_claim_device(struct rtw89_dev *rtwdev, struct pci_dev *pdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; int ret; ret = pci_enable_device(pdev); if (ret) { rtw89_err(rtwdev, "failed to enable pci device\n"); return ret; } pci_set_master(pdev); pci_set_drvdata(pdev, rtwdev->hw); rtwpci->pdev = pdev; return 0; } static void rtw89_pci_declaim_device(struct rtw89_dev *rtwdev, struct pci_dev *pdev) { pci_disable_device(pdev); } static int rtw89_pci_setup_mapping(struct rtw89_dev *rtwdev, struct pci_dev *pdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; unsigned long resource_len; u8 bar_id = 2; int ret; ret = pci_request_regions(pdev, KBUILD_MODNAME); if (ret) { rtw89_err(rtwdev, "failed to request pci regions\n"); goto err; } ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); if (ret) { rtw89_err(rtwdev, "failed to set dma mask to 32-bit\n"); goto err_release_regions; } ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); if (ret) { rtw89_err(rtwdev, "failed to set consistent dma mask to 32-bit\n"); goto err_release_regions; } resource_len = pci_resource_len(pdev, bar_id); rtwpci->mmap = pci_iomap(pdev, bar_id, resource_len); if (!rtwpci->mmap) { rtw89_err(rtwdev, "failed to map pci io\n"); ret = -EIO; goto err_release_regions; } return 0; err_release_regions: pci_release_regions(pdev); err: return ret; } static void rtw89_pci_clear_mapping(struct rtw89_dev *rtwdev, struct pci_dev *pdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; if (rtwpci->mmap) { pci_iounmap(pdev, rtwpci->mmap); pci_release_regions(pdev); } } static void rtw89_pci_free_tx_wd_ring(struct rtw89_dev *rtwdev, struct pci_dev *pdev, struct rtw89_pci_tx_ring *tx_ring) { struct rtw89_pci_tx_wd_ring *wd_ring = &tx_ring->wd_ring; u8 *head = wd_ring->head; dma_addr_t dma = wd_ring->dma; u32 page_size = wd_ring->page_size; u32 page_num = wd_ring->page_num; u32 ring_sz = page_size * page_num; dma_free_coherent(&pdev->dev, ring_sz, head, dma); wd_ring->head = NULL; } static void rtw89_pci_free_tx_ring(struct rtw89_dev *rtwdev, struct pci_dev *pdev, struct rtw89_pci_tx_ring *tx_ring) { int ring_sz; u8 *head; dma_addr_t dma; head = tx_ring->bd_ring.head; dma = tx_ring->bd_ring.dma; ring_sz = tx_ring->bd_ring.desc_size * tx_ring->bd_ring.len; dma_free_coherent(&pdev->dev, ring_sz, head, dma); tx_ring->bd_ring.head = NULL; } static void rtw89_pci_free_tx_rings(struct rtw89_dev *rtwdev, struct pci_dev *pdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; const struct rtw89_pci_info *info = rtwdev->pci_info; struct rtw89_pci_tx_ring *tx_ring; int i; for (i = 0; i < RTW89_TXCH_NUM; i++) { if (info->tx_dma_ch_mask & BIT(i)) continue; tx_ring = &rtwpci->tx_rings[i]; rtw89_pci_free_tx_wd_ring(rtwdev, pdev, tx_ring); rtw89_pci_free_tx_ring(rtwdev, pdev, tx_ring); } } static void rtw89_pci_free_rx_ring(struct rtw89_dev *rtwdev, struct pci_dev *pdev, struct rtw89_pci_rx_ring *rx_ring) { struct rtw89_pci_rx_info *rx_info; struct sk_buff *skb; dma_addr_t dma; u32 buf_sz; u8 *head; int ring_sz = rx_ring->bd_ring.desc_size * rx_ring->bd_ring.len; int i; buf_sz = rx_ring->buf_sz; for (i = 0; i < rx_ring->bd_ring.len; i++) { skb = rx_ring->buf[i]; if (!skb) continue; rx_info = RTW89_PCI_RX_SKB_CB(skb); dma = rx_info->dma; dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE); dev_kfree_skb(skb); rx_ring->buf[i] = NULL; } head = rx_ring->bd_ring.head; dma = rx_ring->bd_ring.dma; dma_free_coherent(&pdev->dev, ring_sz, head, dma); rx_ring->bd_ring.head = NULL; } static void rtw89_pci_free_rx_rings(struct rtw89_dev *rtwdev, struct pci_dev *pdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct rtw89_pci_rx_ring *rx_ring; int i; for (i = 0; i < RTW89_RXCH_NUM; i++) { rx_ring = &rtwpci->rx_rings[i]; rtw89_pci_free_rx_ring(rtwdev, pdev, rx_ring); } } static void rtw89_pci_free_trx_rings(struct rtw89_dev *rtwdev, struct pci_dev *pdev) { rtw89_pci_free_rx_rings(rtwdev, pdev); rtw89_pci_free_tx_rings(rtwdev, pdev); } static int rtw89_pci_init_rx_bd(struct rtw89_dev *rtwdev, struct pci_dev *pdev, struct rtw89_pci_rx_ring *rx_ring, struct sk_buff *skb, int buf_sz, u32 idx) { struct rtw89_pci_rx_info *rx_info; struct rtw89_pci_rx_bd_32 *rx_bd; dma_addr_t dma; if (!skb) return -EINVAL; dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE); if (dma_mapping_error(&pdev->dev, dma)) return -EBUSY; rx_info = RTW89_PCI_RX_SKB_CB(skb); rx_bd = RTW89_PCI_RX_BD(rx_ring, idx); memset(rx_bd, 0, sizeof(*rx_bd)); rx_bd->buf_size = cpu_to_le16(buf_sz); rx_bd->dma = cpu_to_le32(dma); rx_info->dma = dma; return 0; } static int rtw89_pci_alloc_tx_wd_ring(struct rtw89_dev *rtwdev, struct pci_dev *pdev, struct rtw89_pci_tx_ring *tx_ring, enum rtw89_tx_channel txch) { struct rtw89_pci_tx_wd_ring *wd_ring = &tx_ring->wd_ring; struct rtw89_pci_tx_wd *txwd; dma_addr_t dma; dma_addr_t cur_paddr; u8 *head; u8 *cur_vaddr; u32 page_size = RTW89_PCI_TXWD_PAGE_SIZE; u32 page_num = RTW89_PCI_TXWD_NUM_MAX; u32 ring_sz = page_size * page_num; u32 page_offset; int i; /* FWCMD queue doesn't use txwd as pages */ if (txch == RTW89_TXCH_CH12) return 0; head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL); if (!head) return -ENOMEM; INIT_LIST_HEAD(&wd_ring->free_pages); wd_ring->head = head; wd_ring->dma = dma; wd_ring->page_size = page_size; wd_ring->page_num = page_num; page_offset = 0; for (i = 0; i < page_num; i++) { txwd = &wd_ring->pages[i]; cur_paddr = dma + page_offset; cur_vaddr = head + page_offset; skb_queue_head_init(&txwd->queue); INIT_LIST_HEAD(&txwd->list); txwd->paddr = cur_paddr; txwd->vaddr = cur_vaddr; txwd->len = page_size; txwd->seq = i; rtw89_pci_enqueue_txwd(tx_ring, txwd); page_offset += page_size; } return 0; } static int rtw89_pci_alloc_tx_ring(struct rtw89_dev *rtwdev, struct pci_dev *pdev, struct rtw89_pci_tx_ring *tx_ring, u32 desc_size, u32 len, enum rtw89_tx_channel txch) { const struct rtw89_pci_ch_dma_addr *txch_addr; int ring_sz = desc_size * len; u8 *head; dma_addr_t dma; int ret; ret = rtw89_pci_alloc_tx_wd_ring(rtwdev, pdev, tx_ring, txch); if (ret) { rtw89_err(rtwdev, "failed to alloc txwd ring of txch %d\n", txch); goto err; } ret = rtw89_pci_get_txch_addrs(rtwdev, txch, &txch_addr); if (ret) { rtw89_err(rtwdev, "failed to get address of txch %d", txch); goto err_free_wd_ring; } head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL); if (!head) { ret = -ENOMEM; goto err_free_wd_ring; } INIT_LIST_HEAD(&tx_ring->busy_pages); tx_ring->bd_ring.head = head; tx_ring->bd_ring.dma = dma; tx_ring->bd_ring.len = len; tx_ring->bd_ring.desc_size = desc_size; tx_ring->bd_ring.addr = *txch_addr; tx_ring->bd_ring.wp = 0; tx_ring->bd_ring.rp = 0; tx_ring->txch = txch; return 0; err_free_wd_ring: rtw89_pci_free_tx_wd_ring(rtwdev, pdev, tx_ring); err: return ret; } static int rtw89_pci_alloc_tx_rings(struct rtw89_dev *rtwdev, struct pci_dev *pdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; const struct rtw89_pci_info *info = rtwdev->pci_info; struct rtw89_pci_tx_ring *tx_ring; u32 desc_size; u32 len; u32 i, tx_allocated; int ret; for (i = 0; i < RTW89_TXCH_NUM; i++) { if (info->tx_dma_ch_mask & BIT(i)) continue; tx_ring = &rtwpci->tx_rings[i]; desc_size = sizeof(struct rtw89_pci_tx_bd_32); len = RTW89_PCI_TXBD_NUM_MAX; ret = rtw89_pci_alloc_tx_ring(rtwdev, pdev, tx_ring, desc_size, len, i); if (ret) { rtw89_err(rtwdev, "failed to alloc tx ring %d\n", i); goto err_free; } } return 0; err_free: tx_allocated = i; for (i = 0; i < tx_allocated; i++) { tx_ring = &rtwpci->tx_rings[i]; rtw89_pci_free_tx_ring(rtwdev, pdev, tx_ring); } return ret; } static int rtw89_pci_alloc_rx_ring(struct rtw89_dev *rtwdev, struct pci_dev *pdev, struct rtw89_pci_rx_ring *rx_ring, u32 desc_size, u32 len, u32 rxch) { const struct rtw89_pci_ch_dma_addr *rxch_addr; struct sk_buff *skb; u8 *head; dma_addr_t dma; int ring_sz = desc_size * len; int buf_sz = RTW89_PCI_RX_BUF_SIZE; int i, allocated; int ret; ret = rtw89_pci_get_rxch_addrs(rtwdev, rxch, &rxch_addr); if (ret) { rtw89_err(rtwdev, "failed to get address of rxch %d", rxch); return ret; } head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL); if (!head) { ret = -ENOMEM; goto err; } rx_ring->bd_ring.head = head; rx_ring->bd_ring.dma = dma; rx_ring->bd_ring.len = len; rx_ring->bd_ring.desc_size = desc_size; rx_ring->bd_ring.addr = *rxch_addr; rx_ring->bd_ring.wp = 0; rx_ring->bd_ring.rp = 0; rx_ring->buf_sz = buf_sz; rx_ring->diliver_skb = NULL; rx_ring->diliver_desc.ready = false; for (i = 0; i < len; i++) { skb = dev_alloc_skb(buf_sz); if (!skb) { ret = -ENOMEM; goto err_free; } memset(skb->data, 0, buf_sz); rx_ring->buf[i] = skb; ret = rtw89_pci_init_rx_bd(rtwdev, pdev, rx_ring, skb, buf_sz, i); if (ret) { rtw89_err(rtwdev, "failed to init rx buf %d\n", i); dev_kfree_skb_any(skb); rx_ring->buf[i] = NULL; goto err_free; } } return 0; err_free: allocated = i; for (i = 0; i < allocated; i++) { skb = rx_ring->buf[i]; if (!skb) continue; dma = *((dma_addr_t *)skb->cb); dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE); dev_kfree_skb(skb); rx_ring->buf[i] = NULL; } head = rx_ring->bd_ring.head; dma = rx_ring->bd_ring.dma; dma_free_coherent(&pdev->dev, ring_sz, head, dma); rx_ring->bd_ring.head = NULL; err: return ret; } static int rtw89_pci_alloc_rx_rings(struct rtw89_dev *rtwdev, struct pci_dev *pdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct rtw89_pci_rx_ring *rx_ring; u32 desc_size; u32 len; int i, rx_allocated; int ret; for (i = 0; i < RTW89_RXCH_NUM; i++) { rx_ring = &rtwpci->rx_rings[i]; desc_size = sizeof(struct rtw89_pci_rx_bd_32); len = RTW89_PCI_RXBD_NUM_MAX; ret = rtw89_pci_alloc_rx_ring(rtwdev, pdev, rx_ring, desc_size, len, i); if (ret) { rtw89_err(rtwdev, "failed to alloc rx ring %d\n", i); goto err_free; } } return 0; err_free: rx_allocated = i; for (i = 0; i < rx_allocated; i++) { rx_ring = &rtwpci->rx_rings[i]; rtw89_pci_free_rx_ring(rtwdev, pdev, rx_ring); } return ret; } static int rtw89_pci_alloc_trx_rings(struct rtw89_dev *rtwdev, struct pci_dev *pdev) { int ret; ret = rtw89_pci_alloc_tx_rings(rtwdev, pdev); if (ret) { rtw89_err(rtwdev, "failed to alloc dma tx rings\n"); goto err; } ret = rtw89_pci_alloc_rx_rings(rtwdev, pdev); if (ret) { rtw89_err(rtwdev, "failed to alloc dma rx rings\n"); goto err_free_tx_rings; } return 0; err_free_tx_rings: rtw89_pci_free_tx_rings(rtwdev, pdev); err: return ret; } static void rtw89_pci_h2c_init(struct rtw89_dev *rtwdev, struct rtw89_pci *rtwpci) { skb_queue_head_init(&rtwpci->h2c_queue); skb_queue_head_init(&rtwpci->h2c_release_queue); } static int rtw89_pci_setup_resource(struct rtw89_dev *rtwdev, struct pci_dev *pdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; int ret; ret = rtw89_pci_setup_mapping(rtwdev, pdev); if (ret) { rtw89_err(rtwdev, "failed to setup pci mapping\n"); goto err; } ret = rtw89_pci_alloc_trx_rings(rtwdev, pdev); if (ret) { rtw89_err(rtwdev, "failed to alloc pci trx rings\n"); goto err_pci_unmap; } rtw89_pci_h2c_init(rtwdev, rtwpci); spin_lock_init(&rtwpci->irq_lock); spin_lock_init(&rtwpci->trx_lock); return 0; err_pci_unmap: rtw89_pci_clear_mapping(rtwdev, pdev); err: return ret; } static void rtw89_pci_clear_resource(struct rtw89_dev *rtwdev, struct pci_dev *pdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; rtw89_pci_free_trx_rings(rtwdev, pdev); rtw89_pci_clear_mapping(rtwdev, pdev); rtw89_pci_release_fwcmd(rtwdev, rtwpci, skb_queue_len(&rtwpci->h2c_queue), true); } void rtw89_pci_config_intr_mask(struct rtw89_dev *rtwdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; rtwpci->halt_c2h_intrs = B_AX_HALT_C2H_INT_EN | 0; if (rtwpci->under_recovery) { rtwpci->intrs[0] = B_AX_HS0ISR_IND_INT_EN; rtwpci->intrs[1] = 0; } else { rtwpci->intrs[0] = B_AX_TXDMA_STUCK_INT_EN | B_AX_RXDMA_INT_EN | B_AX_RXP1DMA_INT_EN | B_AX_RPQDMA_INT_EN | B_AX_RXDMA_STUCK_INT_EN | B_AX_RDU_INT_EN | B_AX_RPQBD_FULL_INT_EN | B_AX_HS0ISR_IND_INT_EN; rtwpci->intrs[1] = B_AX_HC10ISR_IND_INT_EN; } } EXPORT_SYMBOL(rtw89_pci_config_intr_mask); static void rtw89_pci_recovery_intr_mask_v1(struct rtw89_dev *rtwdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; rtwpci->ind_intrs = B_AX_HS0ISR_IND_INT_EN; rtwpci->halt_c2h_intrs = B_AX_HALT_C2H_INT_EN | B_AX_WDT_TIMEOUT_INT_EN; rtwpci->intrs[0] = 0; rtwpci->intrs[1] = 0; } static void rtw89_pci_default_intr_mask_v1(struct rtw89_dev *rtwdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; rtwpci->ind_intrs = B_AX_HCI_AXIDMA_INT_EN | B_AX_HS1ISR_IND_INT_EN | B_AX_HS0ISR_IND_INT_EN; rtwpci->halt_c2h_intrs = B_AX_HALT_C2H_INT_EN | B_AX_WDT_TIMEOUT_INT_EN; rtwpci->intrs[0] = B_AX_TXDMA_STUCK_INT_EN | B_AX_RXDMA_INT_EN | B_AX_RXP1DMA_INT_EN | B_AX_RPQDMA_INT_EN | B_AX_RXDMA_STUCK_INT_EN | B_AX_RDU_INT_EN | B_AX_RPQBD_FULL_INT_EN; rtwpci->intrs[1] = B_AX_GPIO18_INT_EN; } static void rtw89_pci_low_power_intr_mask_v1(struct rtw89_dev *rtwdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; rtwpci->ind_intrs = B_AX_HS1ISR_IND_INT_EN | B_AX_HS0ISR_IND_INT_EN; rtwpci->halt_c2h_intrs = B_AX_HALT_C2H_INT_EN | B_AX_WDT_TIMEOUT_INT_EN; rtwpci->intrs[0] = 0; rtwpci->intrs[1] = B_AX_GPIO18_INT_EN; } void rtw89_pci_config_intr_mask_v1(struct rtw89_dev *rtwdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; if (rtwpci->under_recovery) rtw89_pci_recovery_intr_mask_v1(rtwdev); else if (rtwpci->low_power) rtw89_pci_low_power_intr_mask_v1(rtwdev); else rtw89_pci_default_intr_mask_v1(rtwdev); } EXPORT_SYMBOL(rtw89_pci_config_intr_mask_v1); static int rtw89_pci_request_irq(struct rtw89_dev *rtwdev, struct pci_dev *pdev) { unsigned long flags = 0; int ret; flags |= PCI_IRQ_LEGACY | PCI_IRQ_MSI; ret = pci_alloc_irq_vectors(pdev, 1, 1, flags); if (ret < 0) { rtw89_err(rtwdev, "failed to alloc irq vectors, ret %d\n", ret); goto err; } ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq, rtw89_pci_interrupt_handler, rtw89_pci_interrupt_threadfn, IRQF_SHARED, KBUILD_MODNAME, rtwdev); if (ret) { rtw89_err(rtwdev, "failed to request threaded irq\n"); goto err_free_vector; } rtw89_chip_config_intr_mask(rtwdev, RTW89_PCI_INTR_MASK_RESET); return 0; err_free_vector: pci_free_irq_vectors(pdev); err: return ret; } static void rtw89_pci_free_irq(struct rtw89_dev *rtwdev, struct pci_dev *pdev) { devm_free_irq(rtwdev->dev, pdev->irq, rtwdev); pci_free_irq_vectors(pdev); } static u16 gray_code_to_bin(u16 gray_code, u32 bit_num) { u16 bin = 0, gray_bit; u32 bit_idx; for (bit_idx = 0; bit_idx < bit_num; bit_idx++) { gray_bit = (gray_code >> bit_idx) & 0x1; if (bit_num - bit_idx > 1) gray_bit ^= (gray_code >> (bit_idx + 1)) & 0x1; bin |= (gray_bit << bit_idx); } return bin; } static int rtw89_pci_filter_out(struct rtw89_dev *rtwdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct pci_dev *pdev = rtwpci->pdev; u16 val16, filter_out_val; u32 val, phy_offset; int ret; if (rtwdev->chip->chip_id != RTL8852C) return 0; val = rtw89_read32_mask(rtwdev, R_AX_PCIE_MIX_CFG_V1, B_AX_ASPM_CTRL_MASK); if (val == B_AX_ASPM_CTRL_L1) return 0; ret = pci_read_config_dword(pdev, RTW89_PCIE_L1_STS_V1, &val); if (ret) return ret; val = FIELD_GET(RTW89_BCFG_LINK_SPEED_MASK, val); if (val == RTW89_PCIE_GEN1_SPEED) { phy_offset = R_RAC_DIRECT_OFFSET_G1; } else if (val == RTW89_PCIE_GEN2_SPEED) { phy_offset = R_RAC_DIRECT_OFFSET_G2; val16 = rtw89_read16(rtwdev, phy_offset + RAC_ANA10 * RAC_MULT); rtw89_write16_set(rtwdev, phy_offset + RAC_ANA10 * RAC_MULT, val16 | B_PCIE_BIT_PINOUT_DIS); rtw89_write16_set(rtwdev, phy_offset + RAC_ANA19 * RAC_MULT, val16 & ~B_PCIE_BIT_RD_SEL); val16 = rtw89_read16_mask(rtwdev, phy_offset + RAC_ANA1F * RAC_MULT, FILTER_OUT_EQ_MASK); val16 = gray_code_to_bin(val16, hweight16(val16)); filter_out_val = rtw89_read16(rtwdev, phy_offset + RAC_ANA24 * RAC_MULT); filter_out_val &= ~REG_FILTER_OUT_MASK; filter_out_val |= FIELD_PREP(REG_FILTER_OUT_MASK, val16); rtw89_write16(rtwdev, phy_offset + RAC_ANA24 * RAC_MULT, filter_out_val); rtw89_write16_set(rtwdev, phy_offset + RAC_ANA0A * RAC_MULT, B_BAC_EQ_SEL); rtw89_write16_set(rtwdev, R_RAC_DIRECT_OFFSET_G1 + RAC_ANA0C * RAC_MULT, B_PCIE_BIT_PSAVE); } else { return -EOPNOTSUPP; } rtw89_write16_set(rtwdev, phy_offset + RAC_ANA0C * RAC_MULT, B_PCIE_BIT_PSAVE); return 0; } static void rtw89_pci_clkreq_set(struct rtw89_dev *rtwdev, bool enable) { enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id; int ret; if (rtw89_pci_disable_clkreq) return; ret = rtw89_pci_write_config_byte(rtwdev, RTW89_PCIE_CLK_CTRL, PCIE_CLKDLY_HW_30US); if (ret) rtw89_err(rtwdev, "failed to set CLKREQ Delay\n"); if (chip_id == RTL8852A || chip_id == RTL8852B) { if (enable) ret = rtw89_pci_config_byte_set(rtwdev, RTW89_PCIE_L1_CTRL, RTW89_PCIE_BIT_CLK); else ret = rtw89_pci_config_byte_clr(rtwdev, RTW89_PCIE_L1_CTRL, RTW89_PCIE_BIT_CLK); if (ret) rtw89_err(rtwdev, "failed to %s CLKREQ_L1, ret=%d", enable ? "set" : "unset", ret); } else if (chip_id == RTL8852C) { rtw89_write32_set(rtwdev, R_AX_PCIE_LAT_CTRL, B_AX_CLK_REQ_SEL_OPT | B_AX_CLK_REQ_SEL); if (enable) rtw89_write32_set(rtwdev, R_AX_L1_CLK_CTRL, B_AX_CLK_REQ_N); else rtw89_write32_clr(rtwdev, R_AX_L1_CLK_CTRL, B_AX_CLK_REQ_N); } } static void rtw89_pci_aspm_set(struct rtw89_dev *rtwdev, bool enable) { enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id; u8 value = 0; int ret; if (rtw89_pci_disable_aspm_l1) return; ret = rtw89_pci_read_config_byte(rtwdev, RTW89_PCIE_ASPM_CTRL, &value); if (ret) rtw89_err(rtwdev, "failed to read ASPM Delay\n"); value &= ~(RTW89_L1DLY_MASK | RTW89_L0DLY_MASK); value |= FIELD_PREP(RTW89_L1DLY_MASK, PCIE_L1DLY_16US) | FIELD_PREP(RTW89_L0DLY_MASK, PCIE_L0SDLY_4US); ret = rtw89_pci_write_config_byte(rtwdev, RTW89_PCIE_ASPM_CTRL, value); if (ret) rtw89_err(rtwdev, "failed to read ASPM Delay\n"); if (chip_id == RTL8852A || chip_id == RTL8852B) { if (enable) ret = rtw89_pci_config_byte_set(rtwdev, RTW89_PCIE_L1_CTRL, RTW89_PCIE_BIT_L1); else ret = rtw89_pci_config_byte_clr(rtwdev, RTW89_PCIE_L1_CTRL, RTW89_PCIE_BIT_L1); } else if (chip_id == RTL8852C) { if (enable) rtw89_write32_set(rtwdev, R_AX_PCIE_MIX_CFG_V1, B_AX_ASPM_CTRL_L1); else rtw89_write32_clr(rtwdev, R_AX_PCIE_MIX_CFG_V1, B_AX_ASPM_CTRL_L1); } if (ret) rtw89_err(rtwdev, "failed to %s ASPM L1, ret=%d", enable ? "set" : "unset", ret); } static void rtw89_pci_recalc_int_mit(struct rtw89_dev *rtwdev) { struct rtw89_traffic_stats *stats = &rtwdev->stats; enum rtw89_tfc_lv tx_tfc_lv = stats->tx_tfc_lv; enum rtw89_tfc_lv rx_tfc_lv = stats->rx_tfc_lv; u32 val = 0; if (!rtwdev->scanning && (tx_tfc_lv >= RTW89_TFC_HIGH || rx_tfc_lv >= RTW89_TFC_HIGH)) val = B_AX_RXMIT_RXP2_SEL | B_AX_RXMIT_RXP1_SEL | FIELD_PREP(B_AX_RXCOUNTER_MATCH_MASK, RTW89_PCI_RXBD_NUM_MAX / 2) | FIELD_PREP(B_AX_RXTIMER_UNIT_MASK, AX_RXTIMER_UNIT_64US) | FIELD_PREP(B_AX_RXTIMER_MATCH_MASK, 2048 / 64); rtw89_write32(rtwdev, R_AX_INT_MIT_RX, val); } static void rtw89_pci_link_cfg(struct rtw89_dev *rtwdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct pci_dev *pdev = rtwpci->pdev; u16 link_ctrl; int ret; /* Though there is standard PCIE configuration space to set the * link control register, but by Realtek's design, driver should * check if host supports CLKREQ/ASPM to enable the HW module. * * These functions are implemented by two HW modules associated, * one is responsible to access PCIE configuration space to * follow the host settings, and another is in charge of doing * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes * the host does not support it, and due to some reasons or wrong * settings (ex. CLKREQ# not Bi-Direction), it could lead to device * loss if HW misbehaves on the link. * * Hence it's designed that driver should first check the PCIE * configuration space is sync'ed and enabled, then driver can turn * on the other module that is actually working on the mechanism. */ ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl); if (ret) { rtw89_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret); return; } if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN) rtw89_pci_clkreq_set(rtwdev, true); if (link_ctrl & PCI_EXP_LNKCTL_ASPM_L1) rtw89_pci_aspm_set(rtwdev, true); } static void rtw89_pci_l1ss_set(struct rtw89_dev *rtwdev, bool enable) { enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id; int ret; if (chip_id == RTL8852A || chip_id == RTL8852B) { if (enable) ret = rtw89_pci_config_byte_set(rtwdev, RTW89_PCIE_TIMER_CTRL, RTW89_PCIE_BIT_L1SUB); else ret = rtw89_pci_config_byte_clr(rtwdev, RTW89_PCIE_TIMER_CTRL, RTW89_PCIE_BIT_L1SUB); if (ret) rtw89_err(rtwdev, "failed to %s L1SS, ret=%d", enable ? "set" : "unset", ret); } else if (chip_id == RTL8852C) { ret = rtw89_pci_config_byte_clr(rtwdev, RTW89_PCIE_L1SS_STS_V1, RTW89_PCIE_BIT_ASPM_L11 | RTW89_PCIE_BIT_PCI_L11); if (ret) rtw89_warn(rtwdev, "failed to unset ASPM L1.1, ret=%d", ret); if (enable) rtw89_write32_clr(rtwdev, R_AX_PCIE_MIX_CFG_V1, B_AX_L1SUB_DISABLE); else rtw89_write32_set(rtwdev, R_AX_PCIE_MIX_CFG_V1, B_AX_L1SUB_DISABLE); } } static void rtw89_pci_l1ss_cfg(struct rtw89_dev *rtwdev) { struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; struct pci_dev *pdev = rtwpci->pdev; u32 l1ss_cap_ptr, l1ss_ctrl; if (rtw89_pci_disable_l1ss) return; l1ss_cap_ptr = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_L1SS); if (!l1ss_cap_ptr) return; pci_read_config_dword(pdev, l1ss_cap_ptr + PCI_L1SS_CTL1, &l1ss_ctrl); if (l1ss_ctrl & PCI_L1SS_CTL1_L1SS_MASK) rtw89_pci_l1ss_set(rtwdev, true); } static int rtw89_pci_poll_io_idle(struct rtw89_dev *rtwdev) { int ret = 0; u32 sts; u32 busy = B_AX_PCIEIO_BUSY | B_AX_PCIEIO_TX_BUSY | B_AX_PCIEIO_RX_BUSY; ret = read_poll_timeout_atomic(rtw89_read32, sts, (sts & busy) == 0x0, 10, 1000, false, rtwdev, R_AX_PCIE_DMA_BUSY1); if (ret) { rtw89_err(rtwdev, "pci dmach busy1 0x%X\n", rtw89_read32(rtwdev, R_AX_PCIE_DMA_BUSY1)); return -EINVAL; } return ret; } static int rtw89_pci_lv1rst_stop_dma(struct rtw89_dev *rtwdev) { u32 val; int ret; if (rtwdev->chip->chip_id == RTL8852C) return 0; rtw89_pci_ctrl_dma_all(rtwdev, false); ret = rtw89_pci_poll_io_idle(rtwdev); if (ret) { val = rtw89_read32(rtwdev, R_AX_DBG_ERR_FLAG); rtw89_debug(rtwdev, RTW89_DBG_HCI, "[PCIe] poll_io_idle fail, before 0x%08x: 0x%08x\n", R_AX_DBG_ERR_FLAG, val); if (val & B_AX_TX_STUCK || val & B_AX_PCIE_TXBD_LEN0) rtw89_mac_ctrl_hci_dma_tx(rtwdev, false); if (val & B_AX_RX_STUCK) rtw89_mac_ctrl_hci_dma_rx(rtwdev, false); rtw89_mac_ctrl_hci_dma_trx(rtwdev, true); ret = rtw89_pci_poll_io_idle(rtwdev); val = rtw89_read32(rtwdev, R_AX_DBG_ERR_FLAG); rtw89_debug(rtwdev, RTW89_DBG_HCI, "[PCIe] poll_io_idle fail, after 0x%08x: 0x%08x\n", R_AX_DBG_ERR_FLAG, val); } return ret; } static int rtw89_pci_rst_bdram(struct rtw89_dev *rtwdev) { int ret = 0; u32 val32, sts; val32 = B_AX_RST_BDRAM; rtw89_write32_set(rtwdev, R_AX_PCIE_INIT_CFG1, val32); ret = read_poll_timeout_atomic(rtw89_read32, sts, (sts & B_AX_RST_BDRAM) == 0x0, 1, 100, true, rtwdev, R_AX_PCIE_INIT_CFG1); return ret; } static int rtw89_pci_lv1rst_start_dma(struct rtw89_dev *rtwdev) { u32 ret; if (rtwdev->chip->chip_id == RTL8852C) return 0; rtw89_mac_ctrl_hci_dma_trx(rtwdev, false); rtw89_mac_ctrl_hci_dma_trx(rtwdev, true); rtw89_pci_clr_idx_all(rtwdev); ret = rtw89_pci_rst_bdram(rtwdev); if (ret) return ret; rtw89_pci_ctrl_dma_all(rtwdev, true); return ret; } static int rtw89_pci_ops_mac_lv1_recovery(struct rtw89_dev *rtwdev, enum rtw89_lv1_rcvy_step step) { int ret; switch (step) { case RTW89_LV1_RCVY_STEP_1: ret = rtw89_pci_lv1rst_stop_dma(rtwdev); if (ret) rtw89_err(rtwdev, "lv1 rcvy pci stop dma fail\n"); break; case RTW89_LV1_RCVY_STEP_2: ret = rtw89_pci_lv1rst_start_dma(rtwdev); if (ret) rtw89_err(rtwdev, "lv1 rcvy pci start dma fail\n"); break; default: return -EINVAL; } return ret; } static void rtw89_pci_ops_dump_err_status(struct rtw89_dev *rtwdev) { rtw89_info(rtwdev, "R_AX_RPQ_RXBD_IDX =0x%08x\n", rtw89_read32(rtwdev, R_AX_RPQ_RXBD_IDX)); rtw89_info(rtwdev, "R_AX_DBG_ERR_FLAG=0x%08x\n", rtw89_read32(rtwdev, R_AX_DBG_ERR_FLAG)); rtw89_info(rtwdev, "R_AX_LBC_WATCHDOG=0x%08x\n", rtw89_read32(rtwdev, R_AX_LBC_WATCHDOG)); } static int rtw89_pci_napi_poll(struct napi_struct *napi, int budget) { struct rtw89_dev *rtwdev = container_of(napi, struct rtw89_dev, napi); struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv; unsigned long flags; int work_done; rtwdev->napi_budget_countdown = budget; rtw89_pci_clear_isr0(rtwdev, B_AX_RPQDMA_INT | B_AX_RPQBD_FULL_INT); work_done = rtw89_pci_poll_rpq_dma(rtwdev, rtwpci, rtwdev->napi_budget_countdown); if (work_done == budget) return budget; rtw89_pci_clear_isr0(rtwdev, B_AX_RXP1DMA_INT | B_AX_RXDMA_INT | B_AX_RDU_INT); work_done += rtw89_pci_poll_rxq_dma(rtwdev, rtwpci, rtwdev->napi_budget_countdown); if (work_done < budget && napi_complete_done(napi, work_done)) { spin_lock_irqsave(&rtwpci->irq_lock, flags); if (likely(rtwpci->running)) rtw89_chip_enable_intr(rtwdev, rtwpci); spin_unlock_irqrestore(&rtwpci->irq_lock, flags); } return work_done; } static int __maybe_unused rtw89_pci_suspend(struct device *dev) { struct ieee80211_hw *hw = dev_get_drvdata(dev); struct rtw89_dev *rtwdev = hw->priv; enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id; rtw89_write32_set(rtwdev, R_AX_RSV_CTRL, B_AX_WLOCK_1C_BIT6); rtw89_write32_set(rtwdev, R_AX_RSV_CTRL, B_AX_R_DIS_PRST); rtw89_write32_clr(rtwdev, R_AX_RSV_CTRL, B_AX_WLOCK_1C_BIT6); if (chip_id == RTL8852A || chip_id == RTL8852B) { rtw89_write32_clr(rtwdev, R_AX_SYS_SDIO_CTRL, B_AX_PCIE_DIS_L2_CTRL_LDO_HCI); rtw89_write32_set(rtwdev, R_AX_PCIE_INIT_CFG1, B_AX_PCIE_PERST_KEEP_REG | B_AX_PCIE_TRAIN_KEEP_REG); } else { rtw89_write32_clr(rtwdev, R_AX_PCIE_PS_CTRL_V1, B_AX_CMAC_EXIT_L1_EN | B_AX_DMAC0_EXIT_L1_EN); } return 0; } static void rtw89_pci_l2_hci_ldo(struct rtw89_dev *rtwdev) { if (rtwdev->chip->chip_id == RTL8852C) return; /* Hardware need write the reg twice to ensure the setting work */ rtw89_pci_write_config_byte(rtwdev, RTW89_PCIE_RST_MSTATE, RTW89_PCIE_BIT_CFG_RST_MSTATE); rtw89_pci_write_config_byte(rtwdev, RTW89_PCIE_RST_MSTATE, RTW89_PCIE_BIT_CFG_RST_MSTATE); } static int __maybe_unused rtw89_pci_resume(struct device *dev) { struct ieee80211_hw *hw = dev_get_drvdata(dev); struct rtw89_dev *rtwdev = hw->priv; enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id; rtw89_write32_set(rtwdev, R_AX_RSV_CTRL, B_AX_WLOCK_1C_BIT6); rtw89_write32_clr(rtwdev, R_AX_RSV_CTRL, B_AX_R_DIS_PRST); rtw89_write32_clr(rtwdev, R_AX_RSV_CTRL, B_AX_WLOCK_1C_BIT6); if (chip_id == RTL8852A || chip_id == RTL8852B) { rtw89_write32_set(rtwdev, R_AX_SYS_SDIO_CTRL, B_AX_PCIE_DIS_L2_CTRL_LDO_HCI); rtw89_write32_clr(rtwdev, R_AX_PCIE_INIT_CFG1, B_AX_PCIE_PERST_KEEP_REG | B_AX_PCIE_TRAIN_KEEP_REG); } else { rtw89_write32_set(rtwdev, R_AX_PCIE_PS_CTRL_V1, B_AX_CMAC_EXIT_L1_EN | B_AX_DMAC0_EXIT_L1_EN); rtw89_write32_clr(rtwdev, R_AX_PCIE_PS_CTRL_V1, B_AX_SEL_REQ_ENTR_L1); } rtw89_pci_l2_hci_ldo(rtwdev); rtw89_pci_filter_out(rtwdev); rtw89_pci_link_cfg(rtwdev); rtw89_pci_l1ss_cfg(rtwdev); return 0; } SIMPLE_DEV_PM_OPS(rtw89_pm_ops, rtw89_pci_suspend, rtw89_pci_resume); EXPORT_SYMBOL(rtw89_pm_ops); static const struct rtw89_hci_ops rtw89_pci_ops = { .tx_write = rtw89_pci_ops_tx_write, .tx_kick_off = rtw89_pci_ops_tx_kick_off, .flush_queues = rtw89_pci_ops_flush_queues, .reset = rtw89_pci_ops_reset, .start = rtw89_pci_ops_start, .stop = rtw89_pci_ops_stop, .pause = rtw89_pci_ops_pause, .switch_mode = rtw89_pci_ops_switch_mode, .recalc_int_mit = rtw89_pci_recalc_int_mit, .read8 = rtw89_pci_ops_read8, .read16 = rtw89_pci_ops_read16, .read32 = rtw89_pci_ops_read32, .write8 = rtw89_pci_ops_write8, .write16 = rtw89_pci_ops_write16, .write32 = rtw89_pci_ops_write32, .mac_pre_init = rtw89_pci_ops_mac_pre_init, .mac_post_init = rtw89_pci_ops_mac_post_init, .deinit = rtw89_pci_ops_deinit, .check_and_reclaim_tx_resource = rtw89_pci_check_and_reclaim_tx_resource, .mac_lv1_rcvy = rtw89_pci_ops_mac_lv1_recovery, .dump_err_status = rtw89_pci_ops_dump_err_status, .napi_poll = rtw89_pci_napi_poll, .recovery_start = rtw89_pci_ops_recovery_start, .recovery_complete = rtw89_pci_ops_recovery_complete, .ctrl_txdma_ch = rtw89_pci_ctrl_txdma_ch_pcie, .ctrl_txdma_fw_ch = rtw89_pci_ctrl_txdma_fw_ch_pcie, .ctrl_trxhci = rtw89_pci_ctrl_dma_trx, .poll_txdma_ch = rtw89_poll_txdma_ch_idle_pcie, .clr_idx_all = rtw89_pci_clr_idx_all, .clear = rtw89_pci_clear_resource, .disable_intr = rtw89_pci_disable_intr_lock, .enable_intr = rtw89_pci_enable_intr_lock, .rst_bdram = rtw89_pci_rst_bdram_pcie, }; int rtw89_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct rtw89_dev *rtwdev; const struct rtw89_driver_info *info; const struct rtw89_pci_info *pci_info; int ret; info = (const struct rtw89_driver_info *)id->driver_data; rtwdev = rtw89_alloc_ieee80211_hw(&pdev->dev, sizeof(struct rtw89_pci), info->chip); if (!rtwdev) { dev_err(&pdev->dev, "failed to allocate hw\n"); return -ENOMEM; } pci_info = info->bus.pci; rtwdev->pci_info = info->bus.pci; rtwdev->hci.ops = &rtw89_pci_ops; rtwdev->hci.type = RTW89_HCI_TYPE_PCIE; rtwdev->hci.rpwm_addr = pci_info->rpwm_addr; rtwdev->hci.cpwm_addr = pci_info->cpwm_addr; SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev); ret = rtw89_core_init(rtwdev); if (ret) { rtw89_err(rtwdev, "failed to initialise core\n"); goto err_release_hw; } ret = rtw89_pci_claim_device(rtwdev, pdev); if (ret) { rtw89_err(rtwdev, "failed to claim pci device\n"); goto err_core_deinit; } ret = rtw89_pci_setup_resource(rtwdev, pdev); if (ret) { rtw89_err(rtwdev, "failed to setup pci resource\n"); goto err_declaim_pci; } ret = rtw89_chip_info_setup(rtwdev); if (ret) { rtw89_err(rtwdev, "failed to setup chip information\n"); goto err_clear_resource; } rtw89_pci_filter_out(rtwdev); rtw89_pci_link_cfg(rtwdev); rtw89_pci_l1ss_cfg(rtwdev); rtw89_core_napi_init(rtwdev); ret = rtw89_pci_request_irq(rtwdev, pdev); if (ret) { rtw89_err(rtwdev, "failed to request pci irq\n"); goto err_deinit_napi; } ret = rtw89_core_register(rtwdev); if (ret) { rtw89_err(rtwdev, "failed to register core\n"); goto err_free_irq; } return 0; err_free_irq: rtw89_pci_free_irq(rtwdev, pdev); err_deinit_napi: rtw89_core_napi_deinit(rtwdev); err_clear_resource: rtw89_pci_clear_resource(rtwdev, pdev); err_declaim_pci: rtw89_pci_declaim_device(rtwdev, pdev); err_core_deinit: rtw89_core_deinit(rtwdev); err_release_hw: rtw89_free_ieee80211_hw(rtwdev); return ret; } EXPORT_SYMBOL(rtw89_pci_probe); void rtw89_pci_remove(struct pci_dev *pdev) { struct ieee80211_hw *hw = pci_get_drvdata(pdev); struct rtw89_dev *rtwdev; rtwdev = hw->priv; rtw89_pci_free_irq(rtwdev, pdev); rtw89_core_napi_deinit(rtwdev); rtw89_core_unregister(rtwdev); rtw89_pci_clear_resource(rtwdev, pdev); rtw89_pci_declaim_device(rtwdev, pdev); rtw89_core_deinit(rtwdev); rtw89_free_ieee80211_hw(rtwdev); } EXPORT_SYMBOL(rtw89_pci_remove); MODULE_AUTHOR("Realtek Corporation"); MODULE_DESCRIPTION("Realtek 802.11ax wireless PCI driver"); MODULE_LICENSE("Dual BSD/GPL");