/* * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2015 Intel Corporation. All rights reserved. * Copyright(c) 2017 T-Platforms. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * BSD LICENSE * * Copyright(c) 2015 Intel Corporation. All rights reserved. * Copyright(c) 2017 T-Platforms. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copy * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * PCIe NTB Perf Linux driver */ /* * How to use this tool, by example. * * Assuming $DBG_DIR is something like: * '/sys/kernel/debug/ntb_perf/0000:00:03.0' * Suppose aside from local device there is at least one remote device * connected to NTB with index 0. *----------------------------------------------------------------------------- * Eg: install driver with specified chunk/total orders and dma-enabled flag * * root@self# insmod ntb_perf.ko chunk_order=19 total_order=28 use_dma *----------------------------------------------------------------------------- * Eg: check NTB ports (index) and MW mapping information * * root@self# cat $DBG_DIR/info *----------------------------------------------------------------------------- * Eg: start performance test with peer (index 0) and get the test metrics * * root@self# echo 0 > $DBG_DIR/run * root@self# cat $DBG_DIR/run */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "ntb_perf" #define DRIVER_VERSION "2.0" MODULE_LICENSE("Dual BSD/GPL"); MODULE_VERSION(DRIVER_VERSION); MODULE_AUTHOR("Dave Jiang "); MODULE_DESCRIPTION("PCIe NTB Performance Measurement Tool"); #define MAX_THREADS_CNT 32 #define DEF_THREADS_CNT 1 #define MAX_CHUNK_SIZE SZ_1M #define MAX_CHUNK_ORDER 20 /* no larger than 1M */ #define DMA_TRIES 100 #define DMA_MDELAY 10 #define MSG_TRIES 500 #define MSG_UDELAY_LOW 1000 #define MSG_UDELAY_HIGH 2000 #define PERF_BUF_LEN 1024 static unsigned long max_mw_size; module_param(max_mw_size, ulong, 0644); MODULE_PARM_DESC(max_mw_size, "Upper limit of memory window size"); static unsigned char chunk_order = 19; /* 512K */ module_param(chunk_order, byte, 0644); MODULE_PARM_DESC(chunk_order, "Data chunk order [2^n] to transfer"); static unsigned char total_order = 30; /* 1G */ module_param(total_order, byte, 0644); MODULE_PARM_DESC(total_order, "Total data order [2^n] to transfer"); static bool use_dma; /* default to 0 */ module_param(use_dma, bool, 0644); MODULE_PARM_DESC(use_dma, "Use DMA engine to measure performance"); /*============================================================================== * Perf driver data definition *============================================================================== */ enum perf_cmd { PERF_CMD_INVAL = -1,/* invalid spad command */ PERF_CMD_SSIZE = 0, /* send out buffer size */ PERF_CMD_RSIZE = 1, /* recv in buffer size */ PERF_CMD_SXLAT = 2, /* send in buffer xlat */ PERF_CMD_RXLAT = 3, /* recv out buffer xlat */ PERF_CMD_CLEAR = 4, /* clear allocated memory */ PERF_STS_DONE = 5, /* init is done */ PERF_STS_LNKUP = 6, /* link up state flag */ }; struct perf_ctx; struct perf_peer { struct perf_ctx *perf; int pidx; int gidx; /* Outbound MW params */ u64 outbuf_xlat; resource_size_t outbuf_size; void __iomem *outbuf; /* Inbound MW params */ dma_addr_t inbuf_xlat; resource_size_t inbuf_size; void *inbuf; /* NTB connection setup service */ struct work_struct service; unsigned long sts; }; #define to_peer_service(__work) \ container_of(__work, struct perf_peer, service) struct perf_thread { struct perf_ctx *perf; int tidx; /* DMA-based test sync parameters */ atomic_t dma_sync; wait_queue_head_t dma_wait; struct dma_chan *dma_chan; /* Data source and measured statistics */ void *src; u64 copied; ktime_t duration; int status; struct work_struct work; }; #define to_thread_work(__work) \ container_of(__work, struct perf_thread, work) struct perf_ctx { struct ntb_dev *ntb; /* Global device index and peers descriptors */ int gidx; int pcnt; struct perf_peer *peers; /* Performance measuring work-threads interface */ unsigned long busy_flag; wait_queue_head_t twait; atomic_t tsync; u8 tcnt; struct perf_peer *test_peer; struct perf_thread threads[MAX_THREADS_CNT]; /* Scratchpad/Message IO operations */ int (*cmd_send)(struct perf_peer *peer, enum perf_cmd cmd, u64 data); int (*cmd_recv)(struct perf_ctx *perf, int *pidx, enum perf_cmd *cmd, u64 *data); struct dentry *dbgfs_dir; }; /* * Scratchpads-base commands interface */ #define PERF_SPAD_CNT(_pcnt) \ (3*((_pcnt) + 1)) #define PERF_SPAD_CMD(_gidx) \ (3*(_gidx)) #define PERF_SPAD_LDATA(_gidx) \ (3*(_gidx) + 1) #define PERF_SPAD_HDATA(_gidx) \ (3*(_gidx) + 2) #define PERF_SPAD_NOTIFY(_gidx) \ (BIT_ULL(_gidx)) /* * Messages-base commands interface */ #define PERF_MSG_CNT 3 #define PERF_MSG_CMD 0 #define PERF_MSG_LDATA 1 #define PERF_MSG_HDATA 2 /*============================================================================== * Static data declarations *============================================================================== */ static struct dentry *perf_dbgfs_topdir; static struct workqueue_struct *perf_wq __read_mostly; /*============================================================================== * NTB cross-link commands execution service *============================================================================== */ static void perf_terminate_test(struct perf_ctx *perf); static inline bool perf_link_is_up(struct perf_peer *peer) { u64 link; link = ntb_link_is_up(peer->perf->ntb, NULL, NULL); return !!(link & BIT_ULL_MASK(peer->pidx)); } static int perf_spad_cmd_send(struct perf_peer *peer, enum perf_cmd cmd, u64 data) { struct perf_ctx *perf = peer->perf; int try; u32 sts; dev_dbg(&perf->ntb->dev, "CMD send: %d 0x%llx\n", cmd, data); /* * Perform predefined number of attempts before give up. * We are sending the data to the port specific scratchpad, so * to prevent a multi-port access race-condition. Additionally * there is no need in local locking since only thread-safe * service work is using this method. */ for (try = 0; try < MSG_TRIES; try++) { if (!perf_link_is_up(peer)) return -ENOLINK; sts = ntb_peer_spad_read(perf->ntb, peer->pidx, PERF_SPAD_CMD(perf->gidx)); if (le32_to_cpu(sts) != PERF_CMD_INVAL) { usleep_range(MSG_UDELAY_LOW, MSG_UDELAY_HIGH); continue; } ntb_peer_spad_write(perf->ntb, peer->pidx, PERF_SPAD_LDATA(perf->gidx), cpu_to_le32(lower_32_bits(data))); ntb_peer_spad_write(perf->ntb, peer->pidx, PERF_SPAD_HDATA(perf->gidx), cpu_to_le32(upper_32_bits(data))); mmiowb(); ntb_peer_spad_write(perf->ntb, peer->pidx, PERF_SPAD_CMD(perf->gidx), cpu_to_le32(cmd)); mmiowb(); ntb_peer_db_set(perf->ntb, PERF_SPAD_NOTIFY(peer->gidx)); dev_dbg(&perf->ntb->dev, "DB ring peer %#llx\n", PERF_SPAD_NOTIFY(peer->gidx)); break; } return try < MSG_TRIES ? 0 : -EAGAIN; } static int perf_spad_cmd_recv(struct perf_ctx *perf, int *pidx, enum perf_cmd *cmd, u64 *data) { struct perf_peer *peer; u32 val; ntb_db_clear(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx)); /* * We start scanning all over, since cleared DB may have been set * by any peer. Yes, it makes peer with smaller index being * serviced with greater priority, but it's convenient for spad * and message code unification and simplicity. */ for (*pidx = 0; *pidx < perf->pcnt; (*pidx)++) { peer = &perf->peers[*pidx]; if (!perf_link_is_up(peer)) continue; val = ntb_spad_read(perf->ntb, PERF_SPAD_CMD(peer->gidx)); val = le32_to_cpu(val); if (val == PERF_CMD_INVAL) continue; *cmd = val; val = ntb_spad_read(perf->ntb, PERF_SPAD_LDATA(peer->gidx)); *data = le32_to_cpu(val); val = ntb_spad_read(perf->ntb, PERF_SPAD_HDATA(peer->gidx)); *data |= (u64)le32_to_cpu(val) << 32; /* Next command can be retrieved from now */ ntb_spad_write(perf->ntb, PERF_SPAD_CMD(peer->gidx), cpu_to_le32(PERF_CMD_INVAL)); dev_dbg(&perf->ntb->dev, "CMD recv: %d 0x%llx\n", *cmd, *data); return 0; } return -ENODATA; } static int perf_msg_cmd_send(struct perf_peer *peer, enum perf_cmd cmd, u64 data) { struct perf_ctx *perf = peer->perf; int try, ret; u64 outbits; dev_dbg(&perf->ntb->dev, "CMD send: %d 0x%llx\n", cmd, data); /* * Perform predefined number of attempts before give up. Message * registers are free of race-condition problem when accessed * from different ports, so we don't need splitting registers * by global device index. We also won't have local locking, * since the method is used from service work only. */ outbits = ntb_msg_outbits(perf->ntb); for (try = 0; try < MSG_TRIES; try++) { if (!perf_link_is_up(peer)) return -ENOLINK; ret = ntb_msg_clear_sts(perf->ntb, outbits); if (ret) return ret; ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_LDATA, cpu_to_le32(lower_32_bits(data))); if (ntb_msg_read_sts(perf->ntb) & outbits) { usleep_range(MSG_UDELAY_LOW, MSG_UDELAY_HIGH); continue; } ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_HDATA, cpu_to_le32(upper_32_bits(data))); mmiowb(); /* This call shall trigger peer message event */ ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_CMD, cpu_to_le32(cmd)); break; } return try < MSG_TRIES ? 0 : -EAGAIN; } static int perf_msg_cmd_recv(struct perf_ctx *perf, int *pidx, enum perf_cmd *cmd, u64 *data) { u64 inbits; u32 val; inbits = ntb_msg_inbits(perf->ntb); if (hweight64(ntb_msg_read_sts(perf->ntb) & inbits) < 3) return -ENODATA; val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_CMD); *cmd = le32_to_cpu(val); val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_LDATA); *data = le32_to_cpu(val); val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_HDATA); *data |= (u64)le32_to_cpu(val) << 32; /* Next command can be retrieved from now */ ntb_msg_clear_sts(perf->ntb, inbits); dev_dbg(&perf->ntb->dev, "CMD recv: %d 0x%llx\n", *cmd, *data); return 0; } static int perf_cmd_send(struct perf_peer *peer, enum perf_cmd cmd, u64 data) { struct perf_ctx *perf = peer->perf; if (cmd == PERF_CMD_SSIZE || cmd == PERF_CMD_SXLAT) return perf->cmd_send(peer, cmd, data); dev_err(&perf->ntb->dev, "Send invalid command\n"); return -EINVAL; } static int perf_cmd_exec(struct perf_peer *peer, enum perf_cmd cmd) { switch (cmd) { case PERF_CMD_SSIZE: case PERF_CMD_RSIZE: case PERF_CMD_SXLAT: case PERF_CMD_RXLAT: case PERF_CMD_CLEAR: break; default: dev_err(&peer->perf->ntb->dev, "Exec invalid command\n"); return -EINVAL; } /* No need of memory barrier, since bit ops have invernal lock */ set_bit(cmd, &peer->sts); dev_dbg(&peer->perf->ntb->dev, "CMD exec: %d\n", cmd); (void)queue_work(system_highpri_wq, &peer->service); return 0; } static int perf_cmd_recv(struct perf_ctx *perf) { struct perf_peer *peer; int ret, pidx, cmd; u64 data; while (!(ret = perf->cmd_recv(perf, &pidx, &cmd, &data))) { peer = &perf->peers[pidx]; switch (cmd) { case PERF_CMD_SSIZE: peer->inbuf_size = data; return perf_cmd_exec(peer, PERF_CMD_RSIZE); case PERF_CMD_SXLAT: peer->outbuf_xlat = data; return perf_cmd_exec(peer, PERF_CMD_RXLAT); default: dev_err(&perf->ntb->dev, "Recv invalid command\n"); return -EINVAL; } } /* Return 0 if no data left to process, otherwise an error */ return ret == -ENODATA ? 0 : ret; } static void perf_link_event(void *ctx) { struct perf_ctx *perf = ctx; struct perf_peer *peer; bool lnk_up; int pidx; for (pidx = 0; pidx < perf->pcnt; pidx++) { peer = &perf->peers[pidx]; lnk_up = perf_link_is_up(peer); if (lnk_up && !test_and_set_bit(PERF_STS_LNKUP, &peer->sts)) { perf_cmd_exec(peer, PERF_CMD_SSIZE); } else if (!lnk_up && test_and_clear_bit(PERF_STS_LNKUP, &peer->sts)) { perf_cmd_exec(peer, PERF_CMD_CLEAR); } } } static void perf_db_event(void *ctx, int vec) { struct perf_ctx *perf = ctx; dev_dbg(&perf->ntb->dev, "DB vec %d mask %#llx bits %#llx\n", vec, ntb_db_vector_mask(perf->ntb, vec), ntb_db_read(perf->ntb)); /* Just receive all available commands */ (void)perf_cmd_recv(perf); } static void perf_msg_event(void *ctx) { struct perf_ctx *perf = ctx; dev_dbg(&perf->ntb->dev, "Msg status bits %#llx\n", ntb_msg_read_sts(perf->ntb)); /* Messages are only sent one-by-one */ (void)perf_cmd_recv(perf); } static const struct ntb_ctx_ops perf_ops = { .link_event = perf_link_event, .db_event = perf_db_event, .msg_event = perf_msg_event }; static void perf_free_outbuf(struct perf_peer *peer) { (void)ntb_peer_mw_clear_trans(peer->perf->ntb, peer->pidx, peer->gidx); } static int perf_setup_outbuf(struct perf_peer *peer) { struct perf_ctx *perf = peer->perf; int ret; /* Outbuf size can be unaligned due to custom max_mw_size */ ret = ntb_peer_mw_set_trans(perf->ntb, peer->pidx, peer->gidx, peer->outbuf_xlat, peer->outbuf_size); if (ret) { dev_err(&perf->ntb->dev, "Failed to set outbuf translation\n"); return ret; } /* Initialization is finally done */ set_bit(PERF_STS_DONE, &peer->sts); return 0; } static void perf_free_inbuf(struct perf_peer *peer) { if (!peer->inbuf) return; (void)ntb_mw_clear_trans(peer->perf->ntb, peer->pidx, peer->gidx); dma_free_coherent(&peer->perf->ntb->dev, peer->inbuf_size, peer->inbuf, peer->inbuf_xlat); peer->inbuf = NULL; } static int perf_setup_inbuf(struct perf_peer *peer) { resource_size_t xlat_align, size_align, size_max; struct perf_ctx *perf = peer->perf; int ret; /* Get inbound MW parameters */ ret = ntb_mw_get_align(perf->ntb, peer->pidx, perf->gidx, &xlat_align, &size_align, &size_max); if (ret) { dev_err(&perf->ntb->dev, "Couldn't get inbuf restrictions\n"); return ret; } if (peer->inbuf_size > size_max) { dev_err(&perf->ntb->dev, "Too big inbuf size %pa > %pa\n", &peer->inbuf_size, &size_max); return -EINVAL; } peer->inbuf_size = round_up(peer->inbuf_size, size_align); perf_free_inbuf(peer); peer->inbuf = dma_alloc_coherent(&perf->ntb->dev, peer->inbuf_size, &peer->inbuf_xlat, GFP_KERNEL); if (!peer->inbuf) { dev_err(&perf->ntb->dev, "Failed to alloc inbuf of %pa\n", &peer->inbuf_size); return -ENOMEM; } if (!IS_ALIGNED(peer->inbuf_xlat, xlat_align)) { dev_err(&perf->ntb->dev, "Unaligned inbuf allocated\n"); goto err_free_inbuf; } ret = ntb_mw_set_trans(perf->ntb, peer->pidx, peer->gidx, peer->inbuf_xlat, peer->inbuf_size); if (ret) { dev_err(&perf->ntb->dev, "Failed to set inbuf translation\n"); goto err_free_inbuf; } /* * We submit inbuf xlat transmission cmd for execution here to follow * the code architecture, even though this method is called from service * work itself so the command will be executed right after it returns. */ (void)perf_cmd_exec(peer, PERF_CMD_SXLAT); return 0; err_free_inbuf: perf_free_inbuf(peer); return ret; } static void perf_service_work(struct work_struct *work) { struct perf_peer *peer = to_peer_service(work); if (test_and_clear_bit(PERF_CMD_SSIZE, &peer->sts)) perf_cmd_send(peer, PERF_CMD_SSIZE, peer->outbuf_size); if (test_and_clear_bit(PERF_CMD_RSIZE, &peer->sts)) perf_setup_inbuf(peer); if (test_and_clear_bit(PERF_CMD_SXLAT, &peer->sts)) perf_cmd_send(peer, PERF_CMD_SXLAT, peer->inbuf_xlat); if (test_and_clear_bit(PERF_CMD_RXLAT, &peer->sts)) perf_setup_outbuf(peer); if (test_and_clear_bit(PERF_CMD_CLEAR, &peer->sts)) { clear_bit(PERF_STS_DONE, &peer->sts); if (test_bit(0, &peer->perf->busy_flag) && peer == peer->perf->test_peer) { dev_warn(&peer->perf->ntb->dev, "Freeing while test on-fly\n"); perf_terminate_test(peer->perf); } perf_free_outbuf(peer); perf_free_inbuf(peer); } } static int perf_init_service(struct perf_ctx *perf) { u64 mask; if (ntb_peer_mw_count(perf->ntb) < perf->pcnt + 1) { dev_err(&perf->ntb->dev, "Not enough memory windows\n"); return -EINVAL; } if (ntb_msg_count(perf->ntb) >= PERF_MSG_CNT) { perf->cmd_send = perf_msg_cmd_send; perf->cmd_recv = perf_msg_cmd_recv; dev_dbg(&perf->ntb->dev, "Message service initialized\n"); return 0; } dev_dbg(&perf->ntb->dev, "Message service unsupported\n"); mask = GENMASK_ULL(perf->pcnt, 0); if (ntb_spad_count(perf->ntb) >= PERF_SPAD_CNT(perf->pcnt) && (ntb_db_valid_mask(perf->ntb) & mask) == mask) { perf->cmd_send = perf_spad_cmd_send; perf->cmd_recv = perf_spad_cmd_recv; dev_dbg(&perf->ntb->dev, "Scratchpad service initialized\n"); return 0; } dev_dbg(&perf->ntb->dev, "Scratchpad service unsupported\n"); dev_err(&perf->ntb->dev, "Command services unsupported\n"); return -EINVAL; } static int perf_enable_service(struct perf_ctx *perf) { u64 mask, incmd_bit; int ret, sidx, scnt; mask = ntb_db_valid_mask(perf->ntb); (void)ntb_db_set_mask(perf->ntb, mask); ret = ntb_set_ctx(perf->ntb, perf, &perf_ops); if (ret) return ret; if (perf->cmd_send == perf_msg_cmd_send) { u64 inbits, outbits; inbits = ntb_msg_inbits(perf->ntb); outbits = ntb_msg_outbits(perf->ntb); (void)ntb_msg_set_mask(perf->ntb, inbits | outbits); incmd_bit = BIT_ULL(__ffs64(inbits)); ret = ntb_msg_clear_mask(perf->ntb, incmd_bit); dev_dbg(&perf->ntb->dev, "MSG sts unmasked %#llx\n", incmd_bit); } else { scnt = ntb_spad_count(perf->ntb); for (sidx = 0; sidx < scnt; sidx++) ntb_spad_write(perf->ntb, sidx, PERF_CMD_INVAL); incmd_bit = PERF_SPAD_NOTIFY(perf->gidx); ret = ntb_db_clear_mask(perf->ntb, incmd_bit); dev_dbg(&perf->ntb->dev, "DB bits unmasked %#llx\n", incmd_bit); } if (ret) { ntb_clear_ctx(perf->ntb); return ret; } ntb_link_enable(perf->ntb, NTB_SPEED_AUTO, NTB_WIDTH_AUTO); /* Might be not necessary */ ntb_link_event(perf->ntb); return 0; } static void perf_disable_service(struct perf_ctx *perf) { int pidx; ntb_link_disable(perf->ntb); if (perf->cmd_send == perf_msg_cmd_send) { u64 inbits; inbits = ntb_msg_inbits(perf->ntb); (void)ntb_msg_set_mask(perf->ntb, inbits); } else { (void)ntb_db_set_mask(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx)); } ntb_clear_ctx(perf->ntb); for (pidx = 0; pidx < perf->pcnt; pidx++) perf_cmd_exec(&perf->peers[pidx], PERF_CMD_CLEAR); for (pidx = 0; pidx < perf->pcnt; pidx++) flush_work(&perf->peers[pidx].service); } /*============================================================================== * Performance measuring work-thread *============================================================================== */ static void perf_dma_copy_callback(void *data) { struct perf_thread *pthr = data; atomic_dec(&pthr->dma_sync); wake_up(&pthr->dma_wait); } static int perf_copy_chunk(struct perf_thread *pthr, void __iomem *dst, void *src, size_t len) { struct dma_async_tx_descriptor *tx; struct dmaengine_unmap_data *unmap; struct device *dma_dev; int try = 0, ret = 0; if (!use_dma) { memcpy_toio(dst, src, len); goto ret_check_tsync; } dma_dev = pthr->dma_chan->device->dev; if (!is_dma_copy_aligned(pthr->dma_chan->device, offset_in_page(src), offset_in_page(dst), len)) return -EIO; unmap = dmaengine_get_unmap_data(dma_dev, 2, GFP_NOWAIT); if (!unmap) return -ENOMEM; unmap->len = len; unmap->addr[0] = dma_map_page(dma_dev, virt_to_page(src), offset_in_page(src), len, DMA_TO_DEVICE); if (dma_mapping_error(dma_dev, unmap->addr[0])) { ret = -EIO; goto err_free_resource; } unmap->to_cnt = 1; unmap->addr[1] = dma_map_page(dma_dev, virt_to_page(dst), offset_in_page(dst), len, DMA_FROM_DEVICE); if (dma_mapping_error(dma_dev, unmap->addr[1])) { ret = -EIO; goto err_free_resource; } unmap->from_cnt = 1; do { tx = dmaengine_prep_dma_memcpy(pthr->dma_chan, unmap->addr[1], unmap->addr[0], len, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tx) msleep(DMA_MDELAY); } while (!tx && (try++ < DMA_TRIES)); if (!tx) { ret = -EIO; goto err_free_resource; } tx->callback = perf_dma_copy_callback; tx->callback_param = pthr; dma_set_unmap(tx, unmap); ret = dma_submit_error(dmaengine_submit(tx)); if (ret) { dmaengine_unmap_put(unmap); goto err_free_resource; } dmaengine_unmap_put(unmap); atomic_inc(&pthr->dma_sync); dma_async_issue_pending(pthr->dma_chan); ret_check_tsync: return likely(atomic_read(&pthr->perf->tsync) > 0) ? 0 : -EINTR; err_free_resource: dmaengine_unmap_put(unmap); return ret; } static bool perf_dma_filter(struct dma_chan *chan, void *data) { struct perf_ctx *perf = data; int node; node = dev_to_node(&perf->ntb->dev); return node == NUMA_NO_NODE || node == dev_to_node(chan->device->dev); } static int perf_init_test(struct perf_thread *pthr) { struct perf_ctx *perf = pthr->perf; dma_cap_mask_t dma_mask; pthr->src = kmalloc_node(perf->test_peer->outbuf_size, GFP_KERNEL, dev_to_node(&perf->ntb->dev)); if (!pthr->src) return -ENOMEM; get_random_bytes(pthr->src, perf->test_peer->outbuf_size); if (!use_dma) return 0; dma_cap_zero(dma_mask); dma_cap_set(DMA_MEMCPY, dma_mask); pthr->dma_chan = dma_request_channel(dma_mask, perf_dma_filter, perf); if (!pthr->dma_chan) { dev_err(&perf->ntb->dev, "%d: Failed to get DMA channel\n", pthr->tidx); atomic_dec(&perf->tsync); wake_up(&perf->twait); kfree(pthr->src); return -ENODEV; } atomic_set(&pthr->dma_sync, 0); return 0; } static int perf_run_test(struct perf_thread *pthr) { struct perf_peer *peer = pthr->perf->test_peer; struct perf_ctx *perf = pthr->perf; void __iomem *flt_dst, *bnd_dst; u64 total_size, chunk_size; void *flt_src; int ret = 0; total_size = 1ULL << total_order; chunk_size = 1ULL << chunk_order; chunk_size = min_t(u64, peer->outbuf_size, chunk_size); flt_src = pthr->src; bnd_dst = peer->outbuf + peer->outbuf_size; flt_dst = peer->outbuf; pthr->duration = ktime_get(); /* Copied field is cleared on test launch stage */ while (pthr->copied < total_size) { ret = perf_copy_chunk(pthr, flt_dst, flt_src, chunk_size); if (ret) { dev_err(&perf->ntb->dev, "%d: Got error %d on test\n", pthr->tidx, ret); return ret; } pthr->copied += chunk_size; flt_dst += chunk_size; flt_src += chunk_size; if (flt_dst >= bnd_dst || flt_dst < peer->outbuf) { flt_dst = peer->outbuf; flt_src = pthr->src; } /* Give up CPU to give a chance for other threads to use it */ schedule(); } return 0; } static int perf_sync_test(struct perf_thread *pthr) { struct perf_ctx *perf = pthr->perf; if (!use_dma) goto no_dma_ret; wait_event(pthr->dma_wait, (atomic_read(&pthr->dma_sync) == 0 || atomic_read(&perf->tsync) < 0)); if (atomic_read(&perf->tsync) < 0) return -EINTR; no_dma_ret: pthr->duration = ktime_sub(ktime_get(), pthr->duration); dev_dbg(&perf->ntb->dev, "%d: copied %llu bytes\n", pthr->tidx, pthr->copied); dev_dbg(&perf->ntb->dev, "%d: lasted %llu usecs\n", pthr->tidx, ktime_to_us(pthr->duration)); dev_dbg(&perf->ntb->dev, "%d: %llu MBytes/s\n", pthr->tidx, div64_u64(pthr->copied, ktime_to_us(pthr->duration))); return 0; } static void perf_clear_test(struct perf_thread *pthr) { struct perf_ctx *perf = pthr->perf; if (!use_dma) goto no_dma_notify; /* * If test finished without errors, termination isn't needed. * We call it anyway just to be sure of the transfers completion. */ (void)dmaengine_terminate_sync(pthr->dma_chan); dma_release_channel(pthr->dma_chan); no_dma_notify: atomic_dec(&perf->tsync); wake_up(&perf->twait); kfree(pthr->src); } static void perf_thread_work(struct work_struct *work) { struct perf_thread *pthr = to_thread_work(work); int ret; /* * Perform stages in compliance with use_dma flag value. * Test status is changed only if error happened, otherwise * status -ENODATA is kept while test is on-fly. Results * synchronization is performed only if test fininshed * without an error or interruption. */ ret = perf_init_test(pthr); if (ret) { pthr->status = ret; return; } ret = perf_run_test(pthr); if (ret) { pthr->status = ret; goto err_clear_test; } pthr->status = perf_sync_test(pthr); err_clear_test: perf_clear_test(pthr); } static int perf_set_tcnt(struct perf_ctx *perf, u8 tcnt) { if (tcnt == 0 || tcnt > MAX_THREADS_CNT) return -EINVAL; if (test_and_set_bit_lock(0, &perf->busy_flag)) return -EBUSY; perf->tcnt = tcnt; clear_bit_unlock(0, &perf->busy_flag); return 0; } static void perf_terminate_test(struct perf_ctx *perf) { int tidx; atomic_set(&perf->tsync, -1); wake_up(&perf->twait); for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) { wake_up(&perf->threads[tidx].dma_wait); cancel_work_sync(&perf->threads[tidx].work); } } static int perf_submit_test(struct perf_peer *peer) { struct perf_ctx *perf = peer->perf; struct perf_thread *pthr; int tidx, ret; if (!test_bit(PERF_STS_DONE, &peer->sts)) return -ENOLINK; if (test_and_set_bit_lock(0, &perf->busy_flag)) return -EBUSY; perf->test_peer = peer; atomic_set(&perf->tsync, perf->tcnt); for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) { pthr = &perf->threads[tidx]; pthr->status = -ENODATA; pthr->copied = 0; pthr->duration = ktime_set(0, 0); if (tidx < perf->tcnt) (void)queue_work(perf_wq, &pthr->work); } ret = wait_event_interruptible(perf->twait, atomic_read(&perf->tsync) <= 0); if (ret == -ERESTARTSYS) { perf_terminate_test(perf); ret = -EINTR; } clear_bit_unlock(0, &perf->busy_flag); return ret; } static int perf_read_stats(struct perf_ctx *perf, char *buf, size_t size, ssize_t *pos) { struct perf_thread *pthr; int tidx; if (test_and_set_bit_lock(0, &perf->busy_flag)) return -EBUSY; (*pos) += scnprintf(buf + *pos, size - *pos, " Peer %d test statistics:\n", perf->test_peer->pidx); for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) { pthr = &perf->threads[tidx]; if (pthr->status == -ENODATA) continue; if (pthr->status) { (*pos) += scnprintf(buf + *pos, size - *pos, "%d: error status %d\n", tidx, pthr->status); continue; } (*pos) += scnprintf(buf + *pos, size - *pos, "%d: copied %llu bytes in %llu usecs, %llu MBytes/s\n", tidx, pthr->copied, ktime_to_us(pthr->duration), div64_u64(pthr->copied, ktime_to_us(pthr->duration))); } clear_bit_unlock(0, &perf->busy_flag); return 0; } static void perf_init_threads(struct perf_ctx *perf) { struct perf_thread *pthr; int tidx; perf->tcnt = DEF_THREADS_CNT; perf->test_peer = &perf->peers[0]; init_waitqueue_head(&perf->twait); for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) { pthr = &perf->threads[tidx]; pthr->perf = perf; pthr->tidx = tidx; pthr->status = -ENODATA; init_waitqueue_head(&pthr->dma_wait); INIT_WORK(&pthr->work, perf_thread_work); } } static void perf_clear_threads(struct perf_ctx *perf) { perf_terminate_test(perf); } /*============================================================================== * DebugFS nodes *============================================================================== */ static ssize_t perf_dbgfs_read_info(struct file *filep, char __user *ubuf, size_t size, loff_t *offp) { struct perf_ctx *perf = filep->private_data; struct perf_peer *peer; size_t buf_size; ssize_t pos = 0; int ret, pidx; char *buf; buf_size = min_t(size_t, size, 0x1000U); buf = kmalloc(buf_size, GFP_KERNEL); if (!buf) return -ENOMEM; pos += scnprintf(buf + pos, buf_size - pos, " Performance measuring tool info:\n\n"); pos += scnprintf(buf + pos, buf_size - pos, "Local port %d, Global index %d\n", ntb_port_number(perf->ntb), perf->gidx); pos += scnprintf(buf + pos, buf_size - pos, "Test status: "); if (test_bit(0, &perf->busy_flag)) { pos += scnprintf(buf + pos, buf_size - pos, "on-fly with port %d (%d)\n", ntb_peer_port_number(perf->ntb, perf->test_peer->pidx), perf->test_peer->pidx); } else { pos += scnprintf(buf + pos, buf_size - pos, "idle\n"); } for (pidx = 0; pidx < perf->pcnt; pidx++) { peer = &perf->peers[pidx]; pos += scnprintf(buf + pos, buf_size - pos, "Port %d (%d), Global index %d:\n", ntb_peer_port_number(perf->ntb, peer->pidx), peer->pidx, peer->gidx); pos += scnprintf(buf + pos, buf_size - pos, "\tLink status: %s\n", test_bit(PERF_STS_LNKUP, &peer->sts) ? "up" : "down"); pos += scnprintf(buf + pos, buf_size - pos, "\tOut buffer addr 0x%pK\n", peer->outbuf); pos += scnprintf(buf + pos, buf_size - pos, "\tOut buffer size %pa\n", &peer->outbuf_size); pos += scnprintf(buf + pos, buf_size - pos, "\tOut buffer xlat 0x%016llx[p]\n", peer->outbuf_xlat); if (!peer->inbuf) { pos += scnprintf(buf + pos, buf_size - pos, "\tIn buffer addr: unallocated\n"); continue; } pos += scnprintf(buf + pos, buf_size - pos, "\tIn buffer addr 0x%pK\n", peer->inbuf); pos += scnprintf(buf + pos, buf_size - pos, "\tIn buffer size %pa\n", &peer->inbuf_size); pos += scnprintf(buf + pos, buf_size - pos, "\tIn buffer xlat %pad[p]\n", &peer->inbuf_xlat); } ret = simple_read_from_buffer(ubuf, size, offp, buf, pos); kfree(buf); return ret; } static const struct file_operations perf_dbgfs_info = { .open = simple_open, .read = perf_dbgfs_read_info }; static ssize_t perf_dbgfs_read_run(struct file *filep, char __user *ubuf, size_t size, loff_t *offp) { struct perf_ctx *perf = filep->private_data; ssize_t ret, pos = 0; char *buf; buf = kmalloc(PERF_BUF_LEN, GFP_KERNEL); if (!buf) return -ENOMEM; ret = perf_read_stats(perf, buf, PERF_BUF_LEN, &pos); if (ret) goto err_free; ret = simple_read_from_buffer(ubuf, size, offp, buf, pos); err_free: kfree(buf); return ret; } static ssize_t perf_dbgfs_write_run(struct file *filep, const char __user *ubuf, size_t size, loff_t *offp) { struct perf_ctx *perf = filep->private_data; struct perf_peer *peer; int pidx, ret; ret = kstrtoint_from_user(ubuf, size, 0, &pidx); if (ret) return ret; if (pidx < 0 || pidx >= perf->pcnt) return -EINVAL; peer = &perf->peers[pidx]; ret = perf_submit_test(peer); if (ret) return ret; return size; } static const struct file_operations perf_dbgfs_run = { .open = simple_open, .read = perf_dbgfs_read_run, .write = perf_dbgfs_write_run }; static ssize_t perf_dbgfs_read_tcnt(struct file *filep, char __user *ubuf, size_t size, loff_t *offp) { struct perf_ctx *perf = filep->private_data; char buf[8]; ssize_t pos; pos = scnprintf(buf, sizeof(buf), "%hhu\n", perf->tcnt); return simple_read_from_buffer(ubuf, size, offp, buf, pos); } static ssize_t perf_dbgfs_write_tcnt(struct file *filep, const char __user *ubuf, size_t size, loff_t *offp) { struct perf_ctx *perf = filep->private_data; int ret; u8 val; ret = kstrtou8_from_user(ubuf, size, 0, &val); if (ret) return ret; ret = perf_set_tcnt(perf, val); if (ret) return ret; return size; } static const struct file_operations perf_dbgfs_tcnt = { .open = simple_open, .read = perf_dbgfs_read_tcnt, .write = perf_dbgfs_write_tcnt }; static void perf_setup_dbgfs(struct perf_ctx *perf) { struct pci_dev *pdev = perf->ntb->pdev; perf->dbgfs_dir = debugfs_create_dir(pci_name(pdev), perf_dbgfs_topdir); if (!perf->dbgfs_dir) { dev_warn(&perf->ntb->dev, "DebugFS unsupported\n"); return; } debugfs_create_file("info", 0600, perf->dbgfs_dir, perf, &perf_dbgfs_info); debugfs_create_file("run", 0600, perf->dbgfs_dir, perf, &perf_dbgfs_run); debugfs_create_file("threads_count", 0600, perf->dbgfs_dir, perf, &perf_dbgfs_tcnt); /* They are made read-only for test exec safety and integrity */ debugfs_create_u8("chunk_order", 0500, perf->dbgfs_dir, &chunk_order); debugfs_create_u8("total_order", 0500, perf->dbgfs_dir, &total_order); debugfs_create_bool("use_dma", 0500, perf->dbgfs_dir, &use_dma); } static void perf_clear_dbgfs(struct perf_ctx *perf) { debugfs_remove_recursive(perf->dbgfs_dir); } /*============================================================================== * Basic driver initialization *============================================================================== */ static struct perf_ctx *perf_create_data(struct ntb_dev *ntb) { struct perf_ctx *perf; perf = devm_kzalloc(&ntb->dev, sizeof(*perf), GFP_KERNEL); if (!perf) return ERR_PTR(-ENOMEM); perf->pcnt = ntb_peer_port_count(ntb); perf->peers = devm_kcalloc(&ntb->dev, perf->pcnt, sizeof(*perf->peers), GFP_KERNEL); if (!perf->peers) return ERR_PTR(-ENOMEM); perf->ntb = ntb; return perf; } static int perf_setup_peer_mw(struct perf_peer *peer) { struct perf_ctx *perf = peer->perf; phys_addr_t phys_addr; int ret; /* Get outbound MW parameters and map it */ ret = ntb_peer_mw_get_addr(perf->ntb, peer->gidx, &phys_addr, &peer->outbuf_size); if (ret) return ret; peer->outbuf = devm_ioremap_wc(&perf->ntb->dev, phys_addr, peer->outbuf_size); if (!peer->outbuf) return -ENOMEM; if (max_mw_size && peer->outbuf_size > max_mw_size) { peer->outbuf_size = max_mw_size; dev_warn(&peer->perf->ntb->dev, "Peer %d outbuf reduced to %pa\n", peer->pidx, &peer->outbuf_size); } return 0; } static int perf_init_peers(struct perf_ctx *perf) { struct perf_peer *peer; int pidx, lport, ret; lport = ntb_port_number(perf->ntb); perf->gidx = -1; for (pidx = 0; pidx < perf->pcnt; pidx++) { peer = &perf->peers[pidx]; peer->perf = perf; peer->pidx = pidx; if (lport < ntb_peer_port_number(perf->ntb, pidx)) { if (perf->gidx == -1) perf->gidx = pidx; peer->gidx = pidx + 1; } else { peer->gidx = pidx; } INIT_WORK(&peer->service, perf_service_work); } if (perf->gidx == -1) perf->gidx = pidx; for (pidx = 0; pidx < perf->pcnt; pidx++) { ret = perf_setup_peer_mw(&perf->peers[pidx]); if (ret) return ret; } dev_dbg(&perf->ntb->dev, "Global port index %d\n", perf->gidx); return 0; } static int perf_probe(struct ntb_client *client, struct ntb_dev *ntb) { struct perf_ctx *perf; int ret; perf = perf_create_data(ntb); if (IS_ERR(perf)) return PTR_ERR(perf); ret = perf_init_peers(perf); if (ret) return ret; perf_init_threads(perf); ret = perf_init_service(perf); if (ret) return ret; ret = perf_enable_service(perf); if (ret) return ret; perf_setup_dbgfs(perf); return 0; } static void perf_remove(struct ntb_client *client, struct ntb_dev *ntb) { struct perf_ctx *perf = ntb->ctx; perf_clear_dbgfs(perf); perf_disable_service(perf); perf_clear_threads(perf); } static struct ntb_client perf_client = { .ops = { .probe = perf_probe, .remove = perf_remove } }; static int __init perf_init(void) { int ret; if (chunk_order > MAX_CHUNK_ORDER) { chunk_order = MAX_CHUNK_ORDER; pr_info("Chunk order reduced to %hhu\n", chunk_order); } if (total_order < chunk_order) { total_order = chunk_order; pr_info("Total data order reduced to %hhu\n", total_order); } perf_wq = alloc_workqueue("perf_wq", WQ_UNBOUND | WQ_SYSFS, 0); if (!perf_wq) return -ENOMEM; if (debugfs_initialized()) perf_dbgfs_topdir = debugfs_create_dir(KBUILD_MODNAME, NULL); ret = ntb_register_client(&perf_client); if (ret) { debugfs_remove_recursive(perf_dbgfs_topdir); destroy_workqueue(perf_wq); } return ret; } module_init(perf_init); static void __exit perf_exit(void) { ntb_unregister_client(&perf_client); debugfs_remove_recursive(perf_dbgfs_topdir); destroy_workqueue(perf_wq); } module_exit(perf_exit);