/* * NVM Express device driver * Copyright (c) 2011-2014, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nvme.h" #define NVME_Q_DEPTH 1024 #define NVME_AQ_DEPTH 256 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) /* * We handle AEN commands ourselves and don't even let the * block layer know about them. */ #define NVME_NR_AEN_COMMANDS 1 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS) static int use_threaded_interrupts; module_param(use_threaded_interrupts, int, 0); static bool use_cmb_sqes = true; module_param(use_cmb_sqes, bool, 0644); MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); static struct workqueue_struct *nvme_workq; struct nvme_dev; struct nvme_queue; static int nvme_reset(struct nvme_dev *dev); static void nvme_process_cq(struct nvme_queue *nvmeq); static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); /* * Represents an NVM Express device. Each nvme_dev is a PCI function. */ struct nvme_dev { struct nvme_queue **queues; struct blk_mq_tag_set tagset; struct blk_mq_tag_set admin_tagset; u32 __iomem *dbs; struct device *dev; struct dma_pool *prp_page_pool; struct dma_pool *prp_small_pool; unsigned queue_count; unsigned online_queues; unsigned max_qid; int q_depth; u32 db_stride; struct msix_entry *entry; void __iomem *bar; struct work_struct reset_work; struct work_struct scan_work; struct work_struct remove_work; struct work_struct async_work; struct timer_list watchdog_timer; struct mutex shutdown_lock; bool subsystem; void __iomem *cmb; dma_addr_t cmb_dma_addr; u64 cmb_size; u32 cmbsz; unsigned long flags; #define NVME_CTRL_RESETTING 0 #define NVME_CTRL_REMOVING 1 struct nvme_ctrl ctrl; struct completion ioq_wait; }; static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) { return container_of(ctrl, struct nvme_dev, ctrl); } /* * An NVM Express queue. Each device has at least two (one for admin * commands and one for I/O commands). */ struct nvme_queue { struct device *q_dmadev; struct nvme_dev *dev; char irqname[24]; /* nvme4294967295-65535\0 */ spinlock_t q_lock; struct nvme_command *sq_cmds; struct nvme_command __iomem *sq_cmds_io; volatile struct nvme_completion *cqes; struct blk_mq_tags **tags; dma_addr_t sq_dma_addr; dma_addr_t cq_dma_addr; u32 __iomem *q_db; u16 q_depth; s16 cq_vector; u16 sq_tail; u16 cq_head; u16 qid; u8 cq_phase; u8 cqe_seen; }; /* * The nvme_iod describes the data in an I/O, including the list of PRP * entries. You can't see it in this data structure because C doesn't let * me express that. Use nvme_init_iod to ensure there's enough space * allocated to store the PRP list. */ struct nvme_iod { struct nvme_queue *nvmeq; int aborted; int npages; /* In the PRP list. 0 means small pool in use */ int nents; /* Used in scatterlist */ int length; /* Of data, in bytes */ dma_addr_t first_dma; struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ struct scatterlist *sg; struct scatterlist inline_sg[0]; }; /* * Check we didin't inadvertently grow the command struct */ static inline void _nvme_check_size(void) { BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); BUILD_BUG_ON(sizeof(struct nvme_features) != 64); BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); BUILD_BUG_ON(sizeof(struct nvme_command) != 64); BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); } /* * Max size of iod being embedded in the request payload */ #define NVME_INT_PAGES 2 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) /* * Will slightly overestimate the number of pages needed. This is OK * as it only leads to a small amount of wasted memory for the lifetime of * the I/O. */ static int nvme_npages(unsigned size, struct nvme_dev *dev) { unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, dev->ctrl.page_size); return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); } static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev, unsigned int size, unsigned int nseg) { return sizeof(__le64 *) * nvme_npages(size, dev) + sizeof(struct scatterlist) * nseg; } static unsigned int nvme_cmd_size(struct nvme_dev *dev) { return sizeof(struct nvme_iod) + nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES); } static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) { struct nvme_dev *dev = data; struct nvme_queue *nvmeq = dev->queues[0]; WARN_ON(hctx_idx != 0); WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); WARN_ON(nvmeq->tags); hctx->driver_data = nvmeq; nvmeq->tags = &dev->admin_tagset.tags[0]; return 0; } static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) { struct nvme_queue *nvmeq = hctx->driver_data; nvmeq->tags = NULL; } static int nvme_admin_init_request(void *data, struct request *req, unsigned int hctx_idx, unsigned int rq_idx, unsigned int numa_node) { struct nvme_dev *dev = data; struct nvme_iod *iod = blk_mq_rq_to_pdu(req); struct nvme_queue *nvmeq = dev->queues[0]; BUG_ON(!nvmeq); iod->nvmeq = nvmeq; return 0; } static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) { struct nvme_dev *dev = data; struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; if (!nvmeq->tags) nvmeq->tags = &dev->tagset.tags[hctx_idx]; WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); hctx->driver_data = nvmeq; return 0; } static int nvme_init_request(void *data, struct request *req, unsigned int hctx_idx, unsigned int rq_idx, unsigned int numa_node) { struct nvme_dev *dev = data; struct nvme_iod *iod = blk_mq_rq_to_pdu(req); struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; BUG_ON(!nvmeq); iod->nvmeq = nvmeq; return 0; } static void nvme_queue_scan(struct nvme_dev *dev) { /* * Do not queue new scan work when a controller is reset during * removal. */ if (test_bit(NVME_CTRL_REMOVING, &dev->flags)) return; queue_work(nvme_workq, &dev->scan_work); } static void nvme_complete_async_event(struct nvme_dev *dev, struct nvme_completion *cqe) { u16 status = le16_to_cpu(cqe->status) >> 1; u32 result = le32_to_cpu(cqe->result); if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) { ++dev->ctrl.event_limit; queue_work(nvme_workq, &dev->async_work); } if (status != NVME_SC_SUCCESS) return; switch (result & 0xff07) { case NVME_AER_NOTICE_NS_CHANGED: dev_info(dev->ctrl.device, "rescanning\n"); nvme_queue_scan(dev); default: dev_warn(dev->ctrl.device, "async event result %08x\n", result); } } /** * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell * @nvmeq: The queue to use * @cmd: The command to send * * Safe to use from interrupt context */ static void __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) { u16 tail = nvmeq->sq_tail; if (nvmeq->sq_cmds_io) memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); else memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); if (++tail == nvmeq->q_depth) tail = 0; writel(tail, nvmeq->q_db); nvmeq->sq_tail = tail; } static __le64 **iod_list(struct request *req) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); return (__le64 **)(iod->sg + req->nr_phys_segments); } static int nvme_init_iod(struct request *rq, unsigned size, struct nvme_dev *dev) { struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); int nseg = rq->nr_phys_segments; if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC); if (!iod->sg) return BLK_MQ_RQ_QUEUE_BUSY; } else { iod->sg = iod->inline_sg; } iod->aborted = 0; iod->npages = -1; iod->nents = 0; iod->length = size; return 0; } static void nvme_free_iod(struct nvme_dev *dev, struct request *req) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); const int last_prp = dev->ctrl.page_size / 8 - 1; int i; __le64 **list = iod_list(req); dma_addr_t prp_dma = iod->first_dma; if (req->cmd_flags & REQ_DISCARD) kfree(req->completion_data); if (iod->npages == 0) dma_pool_free(dev->prp_small_pool, list[0], prp_dma); for (i = 0; i < iod->npages; i++) { __le64 *prp_list = list[i]; dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); prp_dma = next_prp_dma; } if (iod->sg != iod->inline_sg) kfree(iod->sg); } #ifdef CONFIG_BLK_DEV_INTEGRITY static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) { if (be32_to_cpu(pi->ref_tag) == v) pi->ref_tag = cpu_to_be32(p); } static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) { if (be32_to_cpu(pi->ref_tag) == p) pi->ref_tag = cpu_to_be32(v); } /** * nvme_dif_remap - remaps ref tags to bip seed and physical lba * * The virtual start sector is the one that was originally submitted by the * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical * start sector may be different. Remap protection information to match the * physical LBA on writes, and back to the original seed on reads. * * Type 0 and 3 do not have a ref tag, so no remapping required. */ static void nvme_dif_remap(struct request *req, void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) { struct nvme_ns *ns = req->rq_disk->private_data; struct bio_integrity_payload *bip; struct t10_pi_tuple *pi; void *p, *pmap; u32 i, nlb, ts, phys, virt; if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) return; bip = bio_integrity(req->bio); if (!bip) return; pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; p = pmap; virt = bip_get_seed(bip); phys = nvme_block_nr(ns, blk_rq_pos(req)); nlb = (blk_rq_bytes(req) >> ns->lba_shift); ts = ns->disk->queue->integrity.tuple_size; for (i = 0; i < nlb; i++, virt++, phys++) { pi = (struct t10_pi_tuple *)p; dif_swap(phys, virt, pi); p += ts; } kunmap_atomic(pmap); } #else /* CONFIG_BLK_DEV_INTEGRITY */ static void nvme_dif_remap(struct request *req, void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) { } static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) { } static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) { } #endif static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req, int total_len) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); struct dma_pool *pool; int length = total_len; struct scatterlist *sg = iod->sg; int dma_len = sg_dma_len(sg); u64 dma_addr = sg_dma_address(sg); u32 page_size = dev->ctrl.page_size; int offset = dma_addr & (page_size - 1); __le64 *prp_list; __le64 **list = iod_list(req); dma_addr_t prp_dma; int nprps, i; length -= (page_size - offset); if (length <= 0) return true; dma_len -= (page_size - offset); if (dma_len) { dma_addr += (page_size - offset); } else { sg = sg_next(sg); dma_addr = sg_dma_address(sg); dma_len = sg_dma_len(sg); } if (length <= page_size) { iod->first_dma = dma_addr; return true; } nprps = DIV_ROUND_UP(length, page_size); if (nprps <= (256 / 8)) { pool = dev->prp_small_pool; iod->npages = 0; } else { pool = dev->prp_page_pool; iod->npages = 1; } prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); if (!prp_list) { iod->first_dma = dma_addr; iod->npages = -1; return false; } list[0] = prp_list; iod->first_dma = prp_dma; i = 0; for (;;) { if (i == page_size >> 3) { __le64 *old_prp_list = prp_list; prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); if (!prp_list) return false; list[iod->npages++] = prp_list; prp_list[0] = old_prp_list[i - 1]; old_prp_list[i - 1] = cpu_to_le64(prp_dma); i = 1; } prp_list[i++] = cpu_to_le64(dma_addr); dma_len -= page_size; dma_addr += page_size; length -= page_size; if (length <= 0) break; if (dma_len > 0) continue; BUG_ON(dma_len < 0); sg = sg_next(sg); dma_addr = sg_dma_address(sg); dma_len = sg_dma_len(sg); } return true; } static int nvme_map_data(struct nvme_dev *dev, struct request *req, unsigned size, struct nvme_command *cmnd) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); struct request_queue *q = req->q; enum dma_data_direction dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; int ret = BLK_MQ_RQ_QUEUE_ERROR; sg_init_table(iod->sg, req->nr_phys_segments); iod->nents = blk_rq_map_sg(q, req, iod->sg); if (!iod->nents) goto out; ret = BLK_MQ_RQ_QUEUE_BUSY; if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir)) goto out; if (!nvme_setup_prps(dev, req, size)) goto out_unmap; ret = BLK_MQ_RQ_QUEUE_ERROR; if (blk_integrity_rq(req)) { if (blk_rq_count_integrity_sg(q, req->bio) != 1) goto out_unmap; sg_init_table(&iod->meta_sg, 1); if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) goto out_unmap; if (rq_data_dir(req)) nvme_dif_remap(req, nvme_dif_prep); if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) goto out_unmap; } cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); cmnd->rw.prp2 = cpu_to_le64(iod->first_dma); if (blk_integrity_rq(req)) cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); return BLK_MQ_RQ_QUEUE_OK; out_unmap: dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); out: return ret; } static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); enum dma_data_direction dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; if (iod->nents) { dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); if (blk_integrity_rq(req)) { if (!rq_data_dir(req)) nvme_dif_remap(req, nvme_dif_complete); dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); } } nvme_free_iod(dev, req); } /* * NOTE: ns is NULL when called on the admin queue. */ static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { struct nvme_ns *ns = hctx->queue->queuedata; struct nvme_queue *nvmeq = hctx->driver_data; struct nvme_dev *dev = nvmeq->dev; struct request *req = bd->rq; struct nvme_command cmnd; unsigned map_len; int ret = BLK_MQ_RQ_QUEUE_OK; /* * If formated with metadata, require the block layer provide a buffer * unless this namespace is formated such that the metadata can be * stripped/generated by the controller with PRACT=1. */ if (ns && ns->ms && !blk_integrity_rq(req)) { if (!(ns->pi_type && ns->ms == 8) && req->cmd_type != REQ_TYPE_DRV_PRIV) { blk_mq_end_request(req, -EFAULT); return BLK_MQ_RQ_QUEUE_OK; } } map_len = nvme_map_len(req); ret = nvme_init_iod(req, map_len, dev); if (ret) return ret; ret = nvme_setup_cmd(ns, req, &cmnd); if (ret) goto out; if (req->nr_phys_segments) ret = nvme_map_data(dev, req, map_len, &cmnd); if (ret) goto out; cmnd.common.command_id = req->tag; blk_mq_start_request(req); spin_lock_irq(&nvmeq->q_lock); if (unlikely(nvmeq->cq_vector < 0)) { if (ns && !test_bit(NVME_NS_DEAD, &ns->flags)) ret = BLK_MQ_RQ_QUEUE_BUSY; else ret = BLK_MQ_RQ_QUEUE_ERROR; spin_unlock_irq(&nvmeq->q_lock); goto out; } __nvme_submit_cmd(nvmeq, &cmnd); nvme_process_cq(nvmeq); spin_unlock_irq(&nvmeq->q_lock); return BLK_MQ_RQ_QUEUE_OK; out: nvme_free_iod(dev, req); return ret; } static void nvme_complete_rq(struct request *req) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); struct nvme_dev *dev = iod->nvmeq->dev; int error = 0; nvme_unmap_data(dev, req); if (unlikely(req->errors)) { if (nvme_req_needs_retry(req, req->errors)) { nvme_requeue_req(req); return; } if (req->cmd_type == REQ_TYPE_DRV_PRIV) error = req->errors; else error = nvme_error_status(req->errors); } if (unlikely(iod->aborted)) { dev_warn(dev->ctrl.device, "completing aborted command with status: %04x\n", req->errors); } blk_mq_end_request(req, error); } /* We read the CQE phase first to check if the rest of the entry is valid */ static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head, u16 phase) { return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase; } static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag) { u16 head, phase; head = nvmeq->cq_head; phase = nvmeq->cq_phase; while (nvme_cqe_valid(nvmeq, head, phase)) { struct nvme_completion cqe = nvmeq->cqes[head]; struct request *req; if (++head == nvmeq->q_depth) { head = 0; phase = !phase; } if (tag && *tag == cqe.command_id) *tag = -1; if (unlikely(cqe.command_id >= nvmeq->q_depth)) { dev_warn(nvmeq->dev->ctrl.device, "invalid id %d completed on queue %d\n", cqe.command_id, le16_to_cpu(cqe.sq_id)); continue; } /* * AEN requests are special as they don't time out and can * survive any kind of queue freeze and often don't respond to * aborts. We don't even bother to allocate a struct request * for them but rather special case them here. */ if (unlikely(nvmeq->qid == 0 && cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) { nvme_complete_async_event(nvmeq->dev, &cqe); continue; } req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id); if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special) memcpy(req->special, &cqe, sizeof(cqe)); blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1); } /* If the controller ignores the cq head doorbell and continuously * writes to the queue, it is theoretically possible to wrap around * the queue twice and mistakenly return IRQ_NONE. Linux only * requires that 0.1% of your interrupts are handled, so this isn't * a big problem. */ if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) return; if (likely(nvmeq->cq_vector >= 0)) writel(head, nvmeq->q_db + nvmeq->dev->db_stride); nvmeq->cq_head = head; nvmeq->cq_phase = phase; nvmeq->cqe_seen = 1; } static void nvme_process_cq(struct nvme_queue *nvmeq) { __nvme_process_cq(nvmeq, NULL); } static irqreturn_t nvme_irq(int irq, void *data) { irqreturn_t result; struct nvme_queue *nvmeq = data; spin_lock(&nvmeq->q_lock); nvme_process_cq(nvmeq); result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; nvmeq->cqe_seen = 0; spin_unlock(&nvmeq->q_lock); return result; } static irqreturn_t nvme_irq_check(int irq, void *data) { struct nvme_queue *nvmeq = data; if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) return IRQ_WAKE_THREAD; return IRQ_NONE; } static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) { struct nvme_queue *nvmeq = hctx->driver_data; if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) { spin_lock_irq(&nvmeq->q_lock); __nvme_process_cq(nvmeq, &tag); spin_unlock_irq(&nvmeq->q_lock); if (tag == -1) return 1; } return 0; } static void nvme_async_event_work(struct work_struct *work) { struct nvme_dev *dev = container_of(work, struct nvme_dev, async_work); struct nvme_queue *nvmeq = dev->queues[0]; struct nvme_command c; memset(&c, 0, sizeof(c)); c.common.opcode = nvme_admin_async_event; spin_lock_irq(&nvmeq->q_lock); while (dev->ctrl.event_limit > 0) { c.common.command_id = NVME_AQ_BLKMQ_DEPTH + --dev->ctrl.event_limit; __nvme_submit_cmd(nvmeq, &c); } spin_unlock_irq(&nvmeq->q_lock); } static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) { struct nvme_command c; memset(&c, 0, sizeof(c)); c.delete_queue.opcode = opcode; c.delete_queue.qid = cpu_to_le16(id); return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); } static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, struct nvme_queue *nvmeq) { struct nvme_command c; int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; /* * Note: we (ab)use the fact the the prp fields survive if no data * is attached to the request. */ memset(&c, 0, sizeof(c)); c.create_cq.opcode = nvme_admin_create_cq; c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); c.create_cq.cqid = cpu_to_le16(qid); c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); c.create_cq.cq_flags = cpu_to_le16(flags); c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); } static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, struct nvme_queue *nvmeq) { struct nvme_command c; int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; /* * Note: we (ab)use the fact the the prp fields survive if no data * is attached to the request. */ memset(&c, 0, sizeof(c)); c.create_sq.opcode = nvme_admin_create_sq; c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); c.create_sq.sqid = cpu_to_le16(qid); c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); c.create_sq.sq_flags = cpu_to_le16(flags); c.create_sq.cqid = cpu_to_le16(qid); return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); } static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) { return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); } static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) { return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); } static void abort_endio(struct request *req, int error) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); struct nvme_queue *nvmeq = iod->nvmeq; u16 status = req->errors; dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status); atomic_inc(&nvmeq->dev->ctrl.abort_limit); blk_mq_free_request(req); } static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); struct nvme_queue *nvmeq = iod->nvmeq; struct nvme_dev *dev = nvmeq->dev; struct request *abort_req; struct nvme_command cmd; /* * Shutdown immediately if controller times out while starting. The * reset work will see the pci device disabled when it gets the forced * cancellation error. All outstanding requests are completed on * shutdown, so we return BLK_EH_HANDLED. */ if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) { dev_warn(dev->ctrl.device, "I/O %d QID %d timeout, disable controller\n", req->tag, nvmeq->qid); nvme_dev_disable(dev, false); req->errors = NVME_SC_CANCELLED; return BLK_EH_HANDLED; } /* * Shutdown the controller immediately and schedule a reset if the * command was already aborted once before and still hasn't been * returned to the driver, or if this is the admin queue. */ if (!nvmeq->qid || iod->aborted) { dev_warn(dev->ctrl.device, "I/O %d QID %d timeout, reset controller\n", req->tag, nvmeq->qid); nvme_dev_disable(dev, false); queue_work(nvme_workq, &dev->reset_work); /* * Mark the request as handled, since the inline shutdown * forces all outstanding requests to complete. */ req->errors = NVME_SC_CANCELLED; return BLK_EH_HANDLED; } iod->aborted = 1; if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { atomic_inc(&dev->ctrl.abort_limit); return BLK_EH_RESET_TIMER; } memset(&cmd, 0, sizeof(cmd)); cmd.abort.opcode = nvme_admin_abort_cmd; cmd.abort.cid = req->tag; cmd.abort.sqid = cpu_to_le16(nvmeq->qid); dev_warn(nvmeq->dev->ctrl.device, "I/O %d QID %d timeout, aborting\n", req->tag, nvmeq->qid); abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, BLK_MQ_REQ_NOWAIT); if (IS_ERR(abort_req)) { atomic_inc(&dev->ctrl.abort_limit); return BLK_EH_RESET_TIMER; } abort_req->timeout = ADMIN_TIMEOUT; abort_req->end_io_data = NULL; blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); /* * The aborted req will be completed on receiving the abort req. * We enable the timer again. If hit twice, it'll cause a device reset, * as the device then is in a faulty state. */ return BLK_EH_RESET_TIMER; } static void nvme_cancel_io(struct request *req, void *data, bool reserved) { int status; if (!blk_mq_request_started(req)) return; dev_dbg_ratelimited(((struct nvme_dev *) data)->ctrl.device, "Cancelling I/O %d", req->tag); status = NVME_SC_ABORT_REQ; if (blk_queue_dying(req->q)) status |= NVME_SC_DNR; blk_mq_complete_request(req, status); } static void nvme_free_queue(struct nvme_queue *nvmeq) { dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes, nvmeq->cq_dma_addr); if (nvmeq->sq_cmds) dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), nvmeq->sq_cmds, nvmeq->sq_dma_addr); kfree(nvmeq); } static void nvme_free_queues(struct nvme_dev *dev, int lowest) { int i; for (i = dev->queue_count - 1; i >= lowest; i--) { struct nvme_queue *nvmeq = dev->queues[i]; dev->queue_count--; dev->queues[i] = NULL; nvme_free_queue(nvmeq); } } /** * nvme_suspend_queue - put queue into suspended state * @nvmeq - queue to suspend */ static int nvme_suspend_queue(struct nvme_queue *nvmeq) { int vector; spin_lock_irq(&nvmeq->q_lock); if (nvmeq->cq_vector == -1) { spin_unlock_irq(&nvmeq->q_lock); return 1; } vector = nvmeq->dev->entry[nvmeq->cq_vector].vector; nvmeq->dev->online_queues--; nvmeq->cq_vector = -1; spin_unlock_irq(&nvmeq->q_lock); if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q); irq_set_affinity_hint(vector, NULL); free_irq(vector, nvmeq); return 0; } static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) { struct nvme_queue *nvmeq = dev->queues[0]; if (!nvmeq) return; if (nvme_suspend_queue(nvmeq)) return; if (shutdown) nvme_shutdown_ctrl(&dev->ctrl); else nvme_disable_ctrl(&dev->ctrl, lo_hi_readq( dev->bar + NVME_REG_CAP)); spin_lock_irq(&nvmeq->q_lock); nvme_process_cq(nvmeq); spin_unlock_irq(&nvmeq->q_lock); } static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, int entry_size) { int q_depth = dev->q_depth; unsigned q_size_aligned = roundup(q_depth * entry_size, dev->ctrl.page_size); if (q_size_aligned * nr_io_queues > dev->cmb_size) { u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); q_depth = div_u64(mem_per_q, entry_size); /* * Ensure the reduced q_depth is above some threshold where it * would be better to map queues in system memory with the * original depth */ if (q_depth < 64) return -ENOMEM; } return q_depth; } static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, int qid, int depth) { if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), dev->ctrl.page_size); nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; nvmeq->sq_cmds_io = dev->cmb + offset; } else { nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), &nvmeq->sq_dma_addr, GFP_KERNEL); if (!nvmeq->sq_cmds) return -ENOMEM; } return 0; } static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) { struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL); if (!nvmeq) return NULL; nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), &nvmeq->cq_dma_addr, GFP_KERNEL); if (!nvmeq->cqes) goto free_nvmeq; if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) goto free_cqdma; nvmeq->q_dmadev = dev->dev; nvmeq->dev = dev; snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d", dev->ctrl.instance, qid); spin_lock_init(&nvmeq->q_lock); nvmeq->cq_head = 0; nvmeq->cq_phase = 1; nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; nvmeq->q_depth = depth; nvmeq->qid = qid; nvmeq->cq_vector = -1; dev->queues[qid] = nvmeq; dev->queue_count++; return nvmeq; free_cqdma: dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, nvmeq->cq_dma_addr); free_nvmeq: kfree(nvmeq); return NULL; } static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq, const char *name) { if (use_threaded_interrupts) return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq_check, nvme_irq, IRQF_SHARED, name, nvmeq); return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq, IRQF_SHARED, name, nvmeq); } static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) { struct nvme_dev *dev = nvmeq->dev; spin_lock_irq(&nvmeq->q_lock); nvmeq->sq_tail = 0; nvmeq->cq_head = 0; nvmeq->cq_phase = 1; nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); dev->online_queues++; spin_unlock_irq(&nvmeq->q_lock); } static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) { struct nvme_dev *dev = nvmeq->dev; int result; nvmeq->cq_vector = qid - 1; result = adapter_alloc_cq(dev, qid, nvmeq); if (result < 0) return result; result = adapter_alloc_sq(dev, qid, nvmeq); if (result < 0) goto release_cq; result = queue_request_irq(dev, nvmeq, nvmeq->irqname); if (result < 0) goto release_sq; nvme_init_queue(nvmeq, qid); return result; release_sq: adapter_delete_sq(dev, qid); release_cq: adapter_delete_cq(dev, qid); return result; } static struct blk_mq_ops nvme_mq_admin_ops = { .queue_rq = nvme_queue_rq, .complete = nvme_complete_rq, .map_queue = blk_mq_map_queue, .init_hctx = nvme_admin_init_hctx, .exit_hctx = nvme_admin_exit_hctx, .init_request = nvme_admin_init_request, .timeout = nvme_timeout, }; static struct blk_mq_ops nvme_mq_ops = { .queue_rq = nvme_queue_rq, .complete = nvme_complete_rq, .map_queue = blk_mq_map_queue, .init_hctx = nvme_init_hctx, .init_request = nvme_init_request, .timeout = nvme_timeout, .poll = nvme_poll, }; static void nvme_dev_remove_admin(struct nvme_dev *dev) { if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { /* * If the controller was reset during removal, it's possible * user requests may be waiting on a stopped queue. Start the * queue to flush these to completion. */ blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); blk_cleanup_queue(dev->ctrl.admin_q); blk_mq_free_tag_set(&dev->admin_tagset); } } static int nvme_alloc_admin_tags(struct nvme_dev *dev) { if (!dev->ctrl.admin_q) { dev->admin_tagset.ops = &nvme_mq_admin_ops; dev->admin_tagset.nr_hw_queues = 1; /* * Subtract one to leave an empty queue entry for 'Full Queue' * condition. See NVM-Express 1.2 specification, section 4.1.2. */ dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1; dev->admin_tagset.timeout = ADMIN_TIMEOUT; dev->admin_tagset.numa_node = dev_to_node(dev->dev); dev->admin_tagset.cmd_size = nvme_cmd_size(dev); dev->admin_tagset.driver_data = dev; if (blk_mq_alloc_tag_set(&dev->admin_tagset)) return -ENOMEM; dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); if (IS_ERR(dev->ctrl.admin_q)) { blk_mq_free_tag_set(&dev->admin_tagset); return -ENOMEM; } if (!blk_get_queue(dev->ctrl.admin_q)) { nvme_dev_remove_admin(dev); dev->ctrl.admin_q = NULL; return -ENODEV; } } else blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); return 0; } static int nvme_configure_admin_queue(struct nvme_dev *dev) { int result; u32 aqa; u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); struct nvme_queue *nvmeq; dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ? NVME_CAP_NSSRC(cap) : 0; if (dev->subsystem && (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); result = nvme_disable_ctrl(&dev->ctrl, cap); if (result < 0) return result; nvmeq = dev->queues[0]; if (!nvmeq) { nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); if (!nvmeq) return -ENOMEM; } aqa = nvmeq->q_depth - 1; aqa |= aqa << 16; writel(aqa, dev->bar + NVME_REG_AQA); lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); result = nvme_enable_ctrl(&dev->ctrl, cap); if (result) goto free_nvmeq; nvmeq->cq_vector = 0; result = queue_request_irq(dev, nvmeq, nvmeq->irqname); if (result) { nvmeq->cq_vector = -1; goto free_nvmeq; } return result; free_nvmeq: nvme_free_queues(dev, 0); return result; } static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) { /* If true, indicates loss of adapter communication, possibly by a * NVMe Subsystem reset. */ bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); /* If there is a reset ongoing, we shouldn't reset again. */ if (work_busy(&dev->reset_work)) return false; /* We shouldn't reset unless the controller is on fatal error state * _or_ if we lost the communication with it. */ if (!(csts & NVME_CSTS_CFS) && !nssro) return false; /* If PCI error recovery process is happening, we cannot reset or * the recovery mechanism will surely fail. */ if (pci_channel_offline(to_pci_dev(dev->dev))) return false; return true; } static void nvme_watchdog_timer(unsigned long data) { struct nvme_dev *dev = (struct nvme_dev *)data; u32 csts = readl(dev->bar + NVME_REG_CSTS); /* Skip controllers under certain specific conditions. */ if (nvme_should_reset(dev, csts)) { if (queue_work(nvme_workq, &dev->reset_work)) dev_warn(dev->dev, "Failed status: 0x%x, reset controller.\n", csts); return; } mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); } static int nvme_create_io_queues(struct nvme_dev *dev) { unsigned i, max; int ret = 0; for (i = dev->queue_count; i <= dev->max_qid; i++) { if (!nvme_alloc_queue(dev, i, dev->q_depth)) { ret = -ENOMEM; break; } } max = min(dev->max_qid, dev->queue_count - 1); for (i = dev->online_queues; i <= max; i++) { ret = nvme_create_queue(dev->queues[i], i); if (ret) { nvme_free_queues(dev, i); break; } } /* * Ignore failing Create SQ/CQ commands, we can continue with less * than the desired aount of queues, and even a controller without * I/O queues an still be used to issue admin commands. This might * be useful to upgrade a buggy firmware for example. */ return ret >= 0 ? 0 : ret; } static void __iomem *nvme_map_cmb(struct nvme_dev *dev) { u64 szu, size, offset; u32 cmbloc; resource_size_t bar_size; struct pci_dev *pdev = to_pci_dev(dev->dev); void __iomem *cmb; dma_addr_t dma_addr; if (!use_cmb_sqes) return NULL; dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); if (!(NVME_CMB_SZ(dev->cmbsz))) return NULL; cmbloc = readl(dev->bar + NVME_REG_CMBLOC); szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); size = szu * NVME_CMB_SZ(dev->cmbsz); offset = szu * NVME_CMB_OFST(cmbloc); bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc)); if (offset > bar_size) return NULL; /* * Controllers may support a CMB size larger than their BAR, * for example, due to being behind a bridge. Reduce the CMB to * the reported size of the BAR */ if (size > bar_size - offset) size = bar_size - offset; dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset; cmb = ioremap_wc(dma_addr, size); if (!cmb) return NULL; dev->cmb_dma_addr = dma_addr; dev->cmb_size = size; return cmb; } static inline void nvme_release_cmb(struct nvme_dev *dev) { if (dev->cmb) { iounmap(dev->cmb); dev->cmb = NULL; } } static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) { return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride); } static int nvme_setup_io_queues(struct nvme_dev *dev) { struct nvme_queue *adminq = dev->queues[0]; struct pci_dev *pdev = to_pci_dev(dev->dev); int result, i, vecs, nr_io_queues, size; nr_io_queues = num_possible_cpus(); result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); if (result < 0) return result; /* * Degraded controllers might return an error when setting the queue * count. We still want to be able to bring them online and offer * access to the admin queue, as that might be only way to fix them up. */ if (result > 0) { dev_err(dev->ctrl.device, "Could not set queue count (%d)\n", result); return 0; } if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { result = nvme_cmb_qdepth(dev, nr_io_queues, sizeof(struct nvme_command)); if (result > 0) dev->q_depth = result; else nvme_release_cmb(dev); } size = db_bar_size(dev, nr_io_queues); if (size > 8192) { iounmap(dev->bar); do { dev->bar = ioremap(pci_resource_start(pdev, 0), size); if (dev->bar) break; if (!--nr_io_queues) return -ENOMEM; size = db_bar_size(dev, nr_io_queues); } while (1); dev->dbs = dev->bar + 4096; adminq->q_db = dev->dbs; } /* Deregister the admin queue's interrupt */ free_irq(dev->entry[0].vector, adminq); /* * If we enable msix early due to not intx, disable it again before * setting up the full range we need. */ if (pdev->msi_enabled) pci_disable_msi(pdev); else if (pdev->msix_enabled) pci_disable_msix(pdev); for (i = 0; i < nr_io_queues; i++) dev->entry[i].entry = i; vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues); if (vecs < 0) { vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32)); if (vecs < 0) { vecs = 1; } else { for (i = 0; i < vecs; i++) dev->entry[i].vector = i + pdev->irq; } } /* * Should investigate if there's a performance win from allocating * more queues than interrupt vectors; it might allow the submission * path to scale better, even if the receive path is limited by the * number of interrupts. */ nr_io_queues = vecs; dev->max_qid = nr_io_queues; result = queue_request_irq(dev, adminq, adminq->irqname); if (result) { adminq->cq_vector = -1; goto free_queues; } return nvme_create_io_queues(dev); free_queues: nvme_free_queues(dev, 1); return result; } static void nvme_set_irq_hints(struct nvme_dev *dev) { struct nvme_queue *nvmeq; int i; for (i = 0; i < dev->online_queues; i++) { nvmeq = dev->queues[i]; if (!nvmeq->tags || !(*nvmeq->tags)) continue; irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector, blk_mq_tags_cpumask(*nvmeq->tags)); } } static void nvme_dev_scan(struct work_struct *work) { struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work); if (!dev->tagset.tags) return; nvme_scan_namespaces(&dev->ctrl); nvme_set_irq_hints(dev); } static void nvme_del_queue_end(struct request *req, int error) { struct nvme_queue *nvmeq = req->end_io_data; blk_mq_free_request(req); complete(&nvmeq->dev->ioq_wait); } static void nvme_del_cq_end(struct request *req, int error) { struct nvme_queue *nvmeq = req->end_io_data; if (!error) { unsigned long flags; /* * We might be called with the AQ q_lock held * and the I/O queue q_lock should always * nest inside the AQ one. */ spin_lock_irqsave_nested(&nvmeq->q_lock, flags, SINGLE_DEPTH_NESTING); nvme_process_cq(nvmeq); spin_unlock_irqrestore(&nvmeq->q_lock, flags); } nvme_del_queue_end(req, error); } static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) { struct request_queue *q = nvmeq->dev->ctrl.admin_q; struct request *req; struct nvme_command cmd; memset(&cmd, 0, sizeof(cmd)); cmd.delete_queue.opcode = opcode; cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT); if (IS_ERR(req)) return PTR_ERR(req); req->timeout = ADMIN_TIMEOUT; req->end_io_data = nvmeq; blk_execute_rq_nowait(q, NULL, req, false, opcode == nvme_admin_delete_cq ? nvme_del_cq_end : nvme_del_queue_end); return 0; } static void nvme_disable_io_queues(struct nvme_dev *dev) { int pass; unsigned long timeout; u8 opcode = nvme_admin_delete_sq; for (pass = 0; pass < 2; pass++) { int sent = 0, i = dev->queue_count - 1; reinit_completion(&dev->ioq_wait); retry: timeout = ADMIN_TIMEOUT; for (; i > 0; i--) { struct nvme_queue *nvmeq = dev->queues[i]; if (!pass) nvme_suspend_queue(nvmeq); if (nvme_delete_queue(nvmeq, opcode)) break; ++sent; } while (sent--) { timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); if (timeout == 0) return; if (i) goto retry; } opcode = nvme_admin_delete_cq; } } /* * Return: error value if an error occurred setting up the queues or calling * Identify Device. 0 if these succeeded, even if adding some of the * namespaces failed. At the moment, these failures are silent. TBD which * failures should be reported. */ static int nvme_dev_add(struct nvme_dev *dev) { if (!dev->ctrl.tagset) { dev->tagset.ops = &nvme_mq_ops; dev->tagset.nr_hw_queues = dev->online_queues - 1; dev->tagset.timeout = NVME_IO_TIMEOUT; dev->tagset.numa_node = dev_to_node(dev->dev); dev->tagset.queue_depth = min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; dev->tagset.cmd_size = nvme_cmd_size(dev); dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; dev->tagset.driver_data = dev; if (blk_mq_alloc_tag_set(&dev->tagset)) return 0; dev->ctrl.tagset = &dev->tagset; } else { blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); /* Free previously allocated queues that are no longer usable */ nvme_free_queues(dev, dev->online_queues); } nvme_queue_scan(dev); return 0; } static int nvme_pci_enable(struct nvme_dev *dev) { u64 cap; int result = -ENOMEM; struct pci_dev *pdev = to_pci_dev(dev->dev); if (pci_enable_device_mem(pdev)) return result; pci_set_master(pdev); if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) goto disable; if (readl(dev->bar + NVME_REG_CSTS) == -1) { result = -ENODEV; goto disable; } /* * Some devices and/or platforms don't advertise or work with INTx * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll * adjust this later. */ if (pci_enable_msix(pdev, dev->entry, 1)) { pci_enable_msi(pdev); dev->entry[0].vector = pdev->irq; } if (!dev->entry[0].vector) { result = -ENODEV; goto disable; } cap = lo_hi_readq(dev->bar + NVME_REG_CAP); dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); dev->db_stride = 1 << NVME_CAP_STRIDE(cap); dev->dbs = dev->bar + 4096; /* * Temporary fix for the Apple controller found in the MacBook8,1 and * some MacBook7,1 to avoid controller resets and data loss. */ if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { dev->q_depth = 2; dev_warn(dev->dev, "detected Apple NVMe controller, set " "queue depth=%u to work around controller resets\n", dev->q_depth); } if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2)) dev->cmb = nvme_map_cmb(dev); pci_enable_pcie_error_reporting(pdev); pci_save_state(pdev); return 0; disable: pci_disable_device(pdev); return result; } static void nvme_dev_unmap(struct nvme_dev *dev) { if (dev->bar) iounmap(dev->bar); pci_release_regions(to_pci_dev(dev->dev)); } static void nvme_pci_disable(struct nvme_dev *dev) { struct pci_dev *pdev = to_pci_dev(dev->dev); if (pdev->msi_enabled) pci_disable_msi(pdev); else if (pdev->msix_enabled) pci_disable_msix(pdev); if (pci_is_enabled(pdev)) { pci_disable_pcie_error_reporting(pdev); pci_disable_device(pdev); } } static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) { int i; u32 csts = -1; del_timer_sync(&dev->watchdog_timer); mutex_lock(&dev->shutdown_lock); if (pci_is_enabled(to_pci_dev(dev->dev))) { nvme_stop_queues(&dev->ctrl); csts = readl(dev->bar + NVME_REG_CSTS); } if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) { for (i = dev->queue_count - 1; i >= 0; i--) { struct nvme_queue *nvmeq = dev->queues[i]; nvme_suspend_queue(nvmeq); } } else { nvme_disable_io_queues(dev); nvme_disable_admin_queue(dev, shutdown); } nvme_pci_disable(dev); blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_io, dev); blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_io, dev); mutex_unlock(&dev->shutdown_lock); } static int nvme_setup_prp_pools(struct nvme_dev *dev) { dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, PAGE_SIZE, PAGE_SIZE, 0); if (!dev->prp_page_pool) return -ENOMEM; /* Optimisation for I/Os between 4k and 128k */ dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 256, 256, 0); if (!dev->prp_small_pool) { dma_pool_destroy(dev->prp_page_pool); return -ENOMEM; } return 0; } static void nvme_release_prp_pools(struct nvme_dev *dev) { dma_pool_destroy(dev->prp_page_pool); dma_pool_destroy(dev->prp_small_pool); } static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) { struct nvme_dev *dev = to_nvme_dev(ctrl); put_device(dev->dev); if (dev->tagset.tags) blk_mq_free_tag_set(&dev->tagset); if (dev->ctrl.admin_q) blk_put_queue(dev->ctrl.admin_q); kfree(dev->queues); kfree(dev->entry); kfree(dev); } static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) { dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); kref_get(&dev->ctrl.kref); nvme_dev_disable(dev, false); if (!schedule_work(&dev->remove_work)) nvme_put_ctrl(&dev->ctrl); } static void nvme_reset_work(struct work_struct *work) { struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work); int result = -ENODEV; if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags))) goto out; /* * If we're called to reset a live controller first shut it down before * moving on. */ if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) nvme_dev_disable(dev, false); set_bit(NVME_CTRL_RESETTING, &dev->flags); result = nvme_pci_enable(dev); if (result) goto out; result = nvme_configure_admin_queue(dev); if (result) goto out; nvme_init_queue(dev->queues[0], 0); result = nvme_alloc_admin_tags(dev); if (result) goto out; result = nvme_init_identify(&dev->ctrl); if (result) goto out; result = nvme_setup_io_queues(dev); if (result) goto out; /* * A controller that can not execute IO typically requires user * intervention to correct. For such degraded controllers, the driver * should not submit commands the user did not request, so skip * registering for asynchronous event notification on this condition. */ if (dev->online_queues > 1) { dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS; queue_work(nvme_workq, &dev->async_work); } mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); /* * Keep the controller around but remove all namespaces if we don't have * any working I/O queue. */ if (dev->online_queues < 2) { dev_warn(dev->ctrl.device, "IO queues not created\n"); nvme_kill_queues(&dev->ctrl); nvme_remove_namespaces(&dev->ctrl); } else { nvme_start_queues(&dev->ctrl); nvme_dev_add(dev); } clear_bit(NVME_CTRL_RESETTING, &dev->flags); return; out: nvme_remove_dead_ctrl(dev, result); } static void nvme_remove_dead_ctrl_work(struct work_struct *work) { struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); struct pci_dev *pdev = to_pci_dev(dev->dev); nvme_kill_queues(&dev->ctrl); if (pci_get_drvdata(pdev)) pci_stop_and_remove_bus_device_locked(pdev); nvme_put_ctrl(&dev->ctrl); } static int nvme_reset(struct nvme_dev *dev) { if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q)) return -ENODEV; if (!queue_work(nvme_workq, &dev->reset_work)) return -EBUSY; flush_work(&dev->reset_work); return 0; } static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) { *val = readl(to_nvme_dev(ctrl)->bar + off); return 0; } static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) { writel(val, to_nvme_dev(ctrl)->bar + off); return 0; } static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) { *val = readq(to_nvme_dev(ctrl)->bar + off); return 0; } static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl) { struct nvme_dev *dev = to_nvme_dev(ctrl); return !dev->bar || dev->online_queues < 2; } static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl) { return nvme_reset(to_nvme_dev(ctrl)); } static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { .module = THIS_MODULE, .reg_read32 = nvme_pci_reg_read32, .reg_write32 = nvme_pci_reg_write32, .reg_read64 = nvme_pci_reg_read64, .io_incapable = nvme_pci_io_incapable, .reset_ctrl = nvme_pci_reset_ctrl, .free_ctrl = nvme_pci_free_ctrl, }; static int nvme_dev_map(struct nvme_dev *dev) { int bars; struct pci_dev *pdev = to_pci_dev(dev->dev); bars = pci_select_bars(pdev, IORESOURCE_MEM); if (!bars) return -ENODEV; if (pci_request_selected_regions(pdev, bars, "nvme")) return -ENODEV; dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); if (!dev->bar) goto release; return 0; release: pci_release_regions(pdev); return -ENODEV; } static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int node, result = -ENOMEM; struct nvme_dev *dev; node = dev_to_node(&pdev->dev); if (node == NUMA_NO_NODE) set_dev_node(&pdev->dev, 0); dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); if (!dev) return -ENOMEM; dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry), GFP_KERNEL, node); if (!dev->entry) goto free; dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), GFP_KERNEL, node); if (!dev->queues) goto free; dev->dev = get_device(&pdev->dev); pci_set_drvdata(pdev, dev); result = nvme_dev_map(dev); if (result) goto free; INIT_WORK(&dev->scan_work, nvme_dev_scan); INIT_WORK(&dev->reset_work, nvme_reset_work); INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); INIT_WORK(&dev->async_work, nvme_async_event_work); setup_timer(&dev->watchdog_timer, nvme_watchdog_timer, (unsigned long)dev); mutex_init(&dev->shutdown_lock); init_completion(&dev->ioq_wait); result = nvme_setup_prp_pools(dev); if (result) goto put_pci; result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, id->driver_data); if (result) goto release_pools; dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); queue_work(nvme_workq, &dev->reset_work); return 0; release_pools: nvme_release_prp_pools(dev); put_pci: put_device(dev->dev); nvme_dev_unmap(dev); free: kfree(dev->queues); kfree(dev->entry); kfree(dev); return result; } static void nvme_reset_notify(struct pci_dev *pdev, bool prepare) { struct nvme_dev *dev = pci_get_drvdata(pdev); if (prepare) nvme_dev_disable(dev, false); else queue_work(nvme_workq, &dev->reset_work); } static void nvme_shutdown(struct pci_dev *pdev) { struct nvme_dev *dev = pci_get_drvdata(pdev); nvme_dev_disable(dev, true); } /* * The driver's remove may be called on a device in a partially initialized * state. This function must not have any dependencies on the device state in * order to proceed. */ static void nvme_remove(struct pci_dev *pdev) { struct nvme_dev *dev = pci_get_drvdata(pdev); del_timer_sync(&dev->watchdog_timer); set_bit(NVME_CTRL_REMOVING, &dev->flags); pci_set_drvdata(pdev, NULL); flush_work(&dev->async_work); flush_work(&dev->scan_work); nvme_remove_namespaces(&dev->ctrl); nvme_uninit_ctrl(&dev->ctrl); nvme_dev_disable(dev, true); flush_work(&dev->reset_work); nvme_dev_remove_admin(dev); nvme_free_queues(dev, 0); nvme_release_cmb(dev); nvme_release_prp_pools(dev); nvme_dev_unmap(dev); nvme_put_ctrl(&dev->ctrl); } #ifdef CONFIG_PM_SLEEP static int nvme_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct nvme_dev *ndev = pci_get_drvdata(pdev); nvme_dev_disable(ndev, true); return 0; } static int nvme_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct nvme_dev *ndev = pci_get_drvdata(pdev); queue_work(nvme_workq, &ndev->reset_work); return 0; } #endif static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct nvme_dev *dev = pci_get_drvdata(pdev); /* * A frozen channel requires a reset. When detected, this method will * shutdown the controller to quiesce. The controller will be restarted * after the slot reset through driver's slot_reset callback. */ dev_warn(dev->ctrl.device, "error detected: state:%d\n", state); switch (state) { case pci_channel_io_normal: return PCI_ERS_RESULT_CAN_RECOVER; case pci_channel_io_frozen: nvme_dev_disable(dev, false); return PCI_ERS_RESULT_NEED_RESET; case pci_channel_io_perm_failure: return PCI_ERS_RESULT_DISCONNECT; } return PCI_ERS_RESULT_NEED_RESET; } static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) { struct nvme_dev *dev = pci_get_drvdata(pdev); dev_info(dev->ctrl.device, "restart after slot reset\n"); pci_restore_state(pdev); queue_work(nvme_workq, &dev->reset_work); return PCI_ERS_RESULT_RECOVERED; } static void nvme_error_resume(struct pci_dev *pdev) { pci_cleanup_aer_uncorrect_error_status(pdev); } static const struct pci_error_handlers nvme_err_handler = { .error_detected = nvme_error_detected, .slot_reset = nvme_slot_reset, .resume = nvme_error_resume, .reset_notify = nvme_reset_notify, }; /* Move to pci_ids.h later */ #define PCI_CLASS_STORAGE_EXPRESS 0x010802 static const struct pci_device_id nvme_id_table[] = { { PCI_VDEVICE(INTEL, 0x0953), .driver_data = NVME_QUIRK_STRIPE_SIZE | NVME_QUIRK_DISCARD_ZEROES, }, { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, { 0, } }; MODULE_DEVICE_TABLE(pci, nvme_id_table); static struct pci_driver nvme_driver = { .name = "nvme", .id_table = nvme_id_table, .probe = nvme_probe, .remove = nvme_remove, .shutdown = nvme_shutdown, .driver = { .pm = &nvme_dev_pm_ops, }, .err_handler = &nvme_err_handler, }; static int __init nvme_init(void) { int result; nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0); if (!nvme_workq) return -ENOMEM; result = pci_register_driver(&nvme_driver); if (result) destroy_workqueue(nvme_workq); return result; } static void __exit nvme_exit(void) { pci_unregister_driver(&nvme_driver); destroy_workqueue(nvme_workq); _nvme_check_size(); } MODULE_AUTHOR("Matthew Wilcox "); MODULE_LICENSE("GPL"); MODULE_VERSION("1.0"); module_init(nvme_init); module_exit(nvme_exit);