// SPDX-License-Identifier: GPL-2.0 /* * NVM Express device driver * Copyright (c) 2011-2014, Intel Corporation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "trace.h" #include "nvme.h" #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) /* * These can be higher, but we need to ensure that any command doesn't * require an sg allocation that needs more than a page of data. */ #define NVME_MAX_KB_SZ 4096 #define NVME_MAX_SEGS 127 static int use_threaded_interrupts; module_param(use_threaded_interrupts, int, 0); static bool use_cmb_sqes = true; module_param(use_cmb_sqes, bool, 0444); MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); static unsigned int max_host_mem_size_mb = 128; module_param(max_host_mem_size_mb, uint, 0444); MODULE_PARM_DESC(max_host_mem_size_mb, "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); static unsigned int sgl_threshold = SZ_32K; module_param(sgl_threshold, uint, 0644); MODULE_PARM_DESC(sgl_threshold, "Use SGLs when average request segment size is larger or equal to " "this size. Use 0 to disable SGLs."); #define NVME_PCI_MIN_QUEUE_SIZE 2 #define NVME_PCI_MAX_QUEUE_SIZE 4095 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); static const struct kernel_param_ops io_queue_depth_ops = { .set = io_queue_depth_set, .get = param_get_uint, }; static unsigned int io_queue_depth = 1024; module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); static int io_queue_count_set(const char *val, const struct kernel_param *kp) { unsigned int n; int ret; ret = kstrtouint(val, 10, &n); if (ret != 0 || n > num_possible_cpus()) return -EINVAL; return param_set_uint(val, kp); } static const struct kernel_param_ops io_queue_count_ops = { .set = io_queue_count_set, .get = param_get_uint, }; static unsigned int write_queues; module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); MODULE_PARM_DESC(write_queues, "Number of queues to use for writes. If not set, reads and writes " "will share a queue set."); static unsigned int poll_queues; module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); static bool noacpi; module_param(noacpi, bool, 0444); MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); struct nvme_dev; struct nvme_queue; static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); /* * Represents an NVM Express device. Each nvme_dev is a PCI function. */ struct nvme_dev { struct nvme_queue *queues; struct blk_mq_tag_set tagset; struct blk_mq_tag_set admin_tagset; u32 __iomem *dbs; struct device *dev; struct dma_pool *prp_page_pool; struct dma_pool *prp_small_pool; unsigned online_queues; unsigned max_qid; unsigned io_queues[HCTX_MAX_TYPES]; unsigned int num_vecs; u32 q_depth; int io_sqes; u32 db_stride; void __iomem *bar; unsigned long bar_mapped_size; struct work_struct remove_work; struct mutex shutdown_lock; bool subsystem; u64 cmb_size; bool cmb_use_sqes; u32 cmbsz; u32 cmbloc; struct nvme_ctrl ctrl; u32 last_ps; bool hmb; mempool_t *iod_mempool; /* shadow doorbell buffer support: */ u32 *dbbuf_dbs; dma_addr_t dbbuf_dbs_dma_addr; u32 *dbbuf_eis; dma_addr_t dbbuf_eis_dma_addr; /* host memory buffer support: */ u64 host_mem_size; u32 nr_host_mem_descs; dma_addr_t host_mem_descs_dma; struct nvme_host_mem_buf_desc *host_mem_descs; void **host_mem_desc_bufs; unsigned int nr_allocated_queues; unsigned int nr_write_queues; unsigned int nr_poll_queues; bool attrs_added; }; static int io_queue_depth_set(const char *val, const struct kernel_param *kp) { return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, NVME_PCI_MAX_QUEUE_SIZE); } static inline unsigned int sq_idx(unsigned int qid, u32 stride) { return qid * 2 * stride; } static inline unsigned int cq_idx(unsigned int qid, u32 stride) { return (qid * 2 + 1) * stride; } static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) { return container_of(ctrl, struct nvme_dev, ctrl); } /* * An NVM Express queue. Each device has at least two (one for admin * commands and one for I/O commands). */ struct nvme_queue { struct nvme_dev *dev; spinlock_t sq_lock; void *sq_cmds; /* only used for poll queues: */ spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; struct nvme_completion *cqes; dma_addr_t sq_dma_addr; dma_addr_t cq_dma_addr; u32 __iomem *q_db; u32 q_depth; u16 cq_vector; u16 sq_tail; u16 last_sq_tail; u16 cq_head; u16 qid; u8 cq_phase; u8 sqes; unsigned long flags; #define NVMEQ_ENABLED 0 #define NVMEQ_SQ_CMB 1 #define NVMEQ_DELETE_ERROR 2 #define NVMEQ_POLLED 3 u32 *dbbuf_sq_db; u32 *dbbuf_cq_db; u32 *dbbuf_sq_ei; u32 *dbbuf_cq_ei; struct completion delete_done; }; /* * The nvme_iod describes the data in an I/O. * * The sg pointer contains the list of PRP/SGL chunk allocations in addition * to the actual struct scatterlist. */ struct nvme_iod { struct nvme_request req; struct nvme_command cmd; struct nvme_queue *nvmeq; bool use_sgl; int aborted; int npages; /* In the PRP list. 0 means small pool in use */ int nents; /* Used in scatterlist */ dma_addr_t first_dma; unsigned int dma_len; /* length of single DMA segment mapping */ dma_addr_t meta_dma; struct scatterlist *sg; }; static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) { return dev->nr_allocated_queues * 8 * dev->db_stride; } static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) { unsigned int mem_size = nvme_dbbuf_size(dev); if (dev->dbbuf_dbs) { /* * Clear the dbbuf memory so the driver doesn't observe stale * values from the previous instantiation. */ memset(dev->dbbuf_dbs, 0, mem_size); memset(dev->dbbuf_eis, 0, mem_size); return 0; } dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, &dev->dbbuf_dbs_dma_addr, GFP_KERNEL); if (!dev->dbbuf_dbs) return -ENOMEM; dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, &dev->dbbuf_eis_dma_addr, GFP_KERNEL); if (!dev->dbbuf_eis) { dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); dev->dbbuf_dbs = NULL; return -ENOMEM; } return 0; } static void nvme_dbbuf_dma_free(struct nvme_dev *dev) { unsigned int mem_size = nvme_dbbuf_size(dev); if (dev->dbbuf_dbs) { dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); dev->dbbuf_dbs = NULL; } if (dev->dbbuf_eis) { dma_free_coherent(dev->dev, mem_size, dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); dev->dbbuf_eis = NULL; } } static void nvme_dbbuf_init(struct nvme_dev *dev, struct nvme_queue *nvmeq, int qid) { if (!dev->dbbuf_dbs || !qid) return; nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; } static void nvme_dbbuf_free(struct nvme_queue *nvmeq) { if (!nvmeq->qid) return; nvmeq->dbbuf_sq_db = NULL; nvmeq->dbbuf_cq_db = NULL; nvmeq->dbbuf_sq_ei = NULL; nvmeq->dbbuf_cq_ei = NULL; } static void nvme_dbbuf_set(struct nvme_dev *dev) { struct nvme_command c = { }; unsigned int i; if (!dev->dbbuf_dbs) return; c.dbbuf.opcode = nvme_admin_dbbuf; c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); /* Free memory and continue on */ nvme_dbbuf_dma_free(dev); for (i = 1; i <= dev->online_queues; i++) nvme_dbbuf_free(&dev->queues[i]); } } static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) { return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); } /* Update dbbuf and return true if an MMIO is required */ static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, volatile u32 *dbbuf_ei) { if (dbbuf_db) { u16 old_value; /* * Ensure that the queue is written before updating * the doorbell in memory */ wmb(); old_value = *dbbuf_db; *dbbuf_db = value; /* * Ensure that the doorbell is updated before reading the event * index from memory. The controller needs to provide similar * ordering to ensure the envent index is updated before reading * the doorbell. */ mb(); if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) return false; } return true; } /* * Will slightly overestimate the number of pages needed. This is OK * as it only leads to a small amount of wasted memory for the lifetime of * the I/O. */ static int nvme_pci_npages_prp(void) { unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE, NVME_CTRL_PAGE_SIZE); return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); } /* * Calculates the number of pages needed for the SGL segments. For example a 4k * page can accommodate 256 SGL descriptors. */ static int nvme_pci_npages_sgl(void) { return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc), PAGE_SIZE); } static size_t nvme_pci_iod_alloc_size(void) { size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl()); return sizeof(__le64 *) * npages + sizeof(struct scatterlist) * NVME_MAX_SEGS; } static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) { struct nvme_dev *dev = data; struct nvme_queue *nvmeq = &dev->queues[0]; WARN_ON(hctx_idx != 0); WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); hctx->driver_data = nvmeq; return 0; } static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) { struct nvme_dev *dev = data; struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); hctx->driver_data = nvmeq; return 0; } static int nvme_pci_init_request(struct blk_mq_tag_set *set, struct request *req, unsigned int hctx_idx, unsigned int numa_node) { struct nvme_dev *dev = set->driver_data; struct nvme_iod *iod = blk_mq_rq_to_pdu(req); int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; struct nvme_queue *nvmeq = &dev->queues[queue_idx]; BUG_ON(!nvmeq); iod->nvmeq = nvmeq; nvme_req(req)->ctrl = &dev->ctrl; nvme_req(req)->cmd = &iod->cmd; return 0; } static int queue_irq_offset(struct nvme_dev *dev) { /* if we have more than 1 vec, admin queue offsets us by 1 */ if (dev->num_vecs > 1) return 1; return 0; } static int nvme_pci_map_queues(struct blk_mq_tag_set *set) { struct nvme_dev *dev = set->driver_data; int i, qoff, offset; offset = queue_irq_offset(dev); for (i = 0, qoff = 0; i < set->nr_maps; i++) { struct blk_mq_queue_map *map = &set->map[i]; map->nr_queues = dev->io_queues[i]; if (!map->nr_queues) { BUG_ON(i == HCTX_TYPE_DEFAULT); continue; } /* * The poll queue(s) doesn't have an IRQ (and hence IRQ * affinity), so use the regular blk-mq cpu mapping */ map->queue_offset = qoff; if (i != HCTX_TYPE_POLL && offset) blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); else blk_mq_map_queues(map); qoff += map->nr_queues; offset += map->nr_queues; } return 0; } /* * Write sq tail if we are asked to, or if the next command would wrap. */ static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) { if (!write_sq) { u16 next_tail = nvmeq->sq_tail + 1; if (next_tail == nvmeq->q_depth) next_tail = 0; if (next_tail != nvmeq->last_sq_tail) return; } if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) writel(nvmeq->sq_tail, nvmeq->q_db); nvmeq->last_sq_tail = nvmeq->sq_tail; } static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) { memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), absolute_pointer(cmd), sizeof(*cmd)); if (++nvmeq->sq_tail == nvmeq->q_depth) nvmeq->sq_tail = 0; } static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) { struct nvme_queue *nvmeq = hctx->driver_data; spin_lock(&nvmeq->sq_lock); if (nvmeq->sq_tail != nvmeq->last_sq_tail) nvme_write_sq_db(nvmeq, true); spin_unlock(&nvmeq->sq_lock); } static void **nvme_pci_iod_list(struct request *req) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); } static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); int nseg = blk_rq_nr_phys_segments(req); unsigned int avg_seg_size; avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); if (!nvme_ctrl_sgl_supported(&dev->ctrl)) return false; if (!iod->nvmeq->qid) return false; if (!sgl_threshold || avg_seg_size < sgl_threshold) return false; return true; } static void nvme_free_prps(struct nvme_dev *dev, struct request *req) { const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; struct nvme_iod *iod = blk_mq_rq_to_pdu(req); dma_addr_t dma_addr = iod->first_dma; int i; for (i = 0; i < iod->npages; i++) { __le64 *prp_list = nvme_pci_iod_list(req)[i]; dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); dma_addr = next_dma_addr; } } static void nvme_free_sgls(struct nvme_dev *dev, struct request *req) { const int last_sg = SGES_PER_PAGE - 1; struct nvme_iod *iod = blk_mq_rq_to_pdu(req); dma_addr_t dma_addr = iod->first_dma; int i; for (i = 0; i < iod->npages; i++) { struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i]; dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr); dma_pool_free(dev->prp_page_pool, sg_list, dma_addr); dma_addr = next_dma_addr; } } static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); if (is_pci_p2pdma_page(sg_page(iod->sg))) pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); else dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); } static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); if (iod->dma_len) { dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, rq_dma_dir(req)); return; } WARN_ON_ONCE(!iod->nents); nvme_unmap_sg(dev, req); if (iod->npages == 0) dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], iod->first_dma); else if (iod->use_sgl) nvme_free_sgls(dev, req); else nvme_free_prps(dev, req); mempool_free(iod->sg, dev->iod_mempool); } static void nvme_print_sgl(struct scatterlist *sgl, int nents) { int i; struct scatterlist *sg; for_each_sg(sgl, sg, nents, i) { dma_addr_t phys = sg_phys(sg); pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " "dma_address:%pad dma_length:%d\n", i, &phys, sg->offset, sg->length, &sg_dma_address(sg), sg_dma_len(sg)); } } static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, struct request *req, struct nvme_rw_command *cmnd) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); struct dma_pool *pool; int length = blk_rq_payload_bytes(req); struct scatterlist *sg = iod->sg; int dma_len = sg_dma_len(sg); u64 dma_addr = sg_dma_address(sg); int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); __le64 *prp_list; void **list = nvme_pci_iod_list(req); dma_addr_t prp_dma; int nprps, i; length -= (NVME_CTRL_PAGE_SIZE - offset); if (length <= 0) { iod->first_dma = 0; goto done; } dma_len -= (NVME_CTRL_PAGE_SIZE - offset); if (dma_len) { dma_addr += (NVME_CTRL_PAGE_SIZE - offset); } else { sg = sg_next(sg); dma_addr = sg_dma_address(sg); dma_len = sg_dma_len(sg); } if (length <= NVME_CTRL_PAGE_SIZE) { iod->first_dma = dma_addr; goto done; } nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); if (nprps <= (256 / 8)) { pool = dev->prp_small_pool; iod->npages = 0; } else { pool = dev->prp_page_pool; iod->npages = 1; } prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); if (!prp_list) { iod->first_dma = dma_addr; iod->npages = -1; return BLK_STS_RESOURCE; } list[0] = prp_list; iod->first_dma = prp_dma; i = 0; for (;;) { if (i == NVME_CTRL_PAGE_SIZE >> 3) { __le64 *old_prp_list = prp_list; prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); if (!prp_list) goto free_prps; list[iod->npages++] = prp_list; prp_list[0] = old_prp_list[i - 1]; old_prp_list[i - 1] = cpu_to_le64(prp_dma); i = 1; } prp_list[i++] = cpu_to_le64(dma_addr); dma_len -= NVME_CTRL_PAGE_SIZE; dma_addr += NVME_CTRL_PAGE_SIZE; length -= NVME_CTRL_PAGE_SIZE; if (length <= 0) break; if (dma_len > 0) continue; if (unlikely(dma_len < 0)) goto bad_sgl; sg = sg_next(sg); dma_addr = sg_dma_address(sg); dma_len = sg_dma_len(sg); } done: cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); return BLK_STS_OK; free_prps: nvme_free_prps(dev, req); return BLK_STS_RESOURCE; bad_sgl: WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), "Invalid SGL for payload:%d nents:%d\n", blk_rq_payload_bytes(req), iod->nents); return BLK_STS_IOERR; } static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, struct scatterlist *sg) { sge->addr = cpu_to_le64(sg_dma_address(sg)); sge->length = cpu_to_le32(sg_dma_len(sg)); sge->type = NVME_SGL_FMT_DATA_DESC << 4; } static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, dma_addr_t dma_addr, int entries) { sge->addr = cpu_to_le64(dma_addr); if (entries < SGES_PER_PAGE) { sge->length = cpu_to_le32(entries * sizeof(*sge)); sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; } else { sge->length = cpu_to_le32(PAGE_SIZE); sge->type = NVME_SGL_FMT_SEG_DESC << 4; } } static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, struct request *req, struct nvme_rw_command *cmd, int entries) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); struct dma_pool *pool; struct nvme_sgl_desc *sg_list; struct scatterlist *sg = iod->sg; dma_addr_t sgl_dma; int i = 0; /* setting the transfer type as SGL */ cmd->flags = NVME_CMD_SGL_METABUF; if (entries == 1) { nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); return BLK_STS_OK; } if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { pool = dev->prp_small_pool; iod->npages = 0; } else { pool = dev->prp_page_pool; iod->npages = 1; } sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); if (!sg_list) { iod->npages = -1; return BLK_STS_RESOURCE; } nvme_pci_iod_list(req)[0] = sg_list; iod->first_dma = sgl_dma; nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); do { if (i == SGES_PER_PAGE) { struct nvme_sgl_desc *old_sg_desc = sg_list; struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); if (!sg_list) goto free_sgls; i = 0; nvme_pci_iod_list(req)[iod->npages++] = sg_list; sg_list[i++] = *link; nvme_pci_sgl_set_seg(link, sgl_dma, entries); } nvme_pci_sgl_set_data(&sg_list[i++], sg); sg = sg_next(sg); } while (--entries > 0); return BLK_STS_OK; free_sgls: nvme_free_sgls(dev, req); return BLK_STS_RESOURCE; } static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, struct request *req, struct nvme_rw_command *cmnd, struct bio_vec *bv) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); if (dma_mapping_error(dev->dev, iod->first_dma)) return BLK_STS_RESOURCE; iod->dma_len = bv->bv_len; cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); if (bv->bv_len > first_prp_len) cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); return BLK_STS_OK; } static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, struct request *req, struct nvme_rw_command *cmnd, struct bio_vec *bv) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); if (dma_mapping_error(dev->dev, iod->first_dma)) return BLK_STS_RESOURCE; iod->dma_len = bv->bv_len; cmnd->flags = NVME_CMD_SGL_METABUF; cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; return BLK_STS_OK; } static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, struct nvme_command *cmnd) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); blk_status_t ret = BLK_STS_RESOURCE; int nr_mapped; if (blk_rq_nr_phys_segments(req) == 1) { struct bio_vec bv = req_bvec(req); if (!is_pci_p2pdma_page(bv.bv_page)) { if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) return nvme_setup_prp_simple(dev, req, &cmnd->rw, &bv); if (iod->nvmeq->qid && sgl_threshold && nvme_ctrl_sgl_supported(&dev->ctrl)) return nvme_setup_sgl_simple(dev, req, &cmnd->rw, &bv); } } iod->dma_len = 0; iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); if (!iod->sg) return BLK_STS_RESOURCE; sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); iod->nents = blk_rq_map_sg(req->q, req, iod->sg); if (!iod->nents) goto out_free_sg; if (is_pci_p2pdma_page(sg_page(iod->sg))) nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg, iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN); else nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN); if (!nr_mapped) goto out_free_sg; iod->use_sgl = nvme_pci_use_sgls(dev, req); if (iod->use_sgl) ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); else ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); if (ret != BLK_STS_OK) goto out_unmap_sg; return BLK_STS_OK; out_unmap_sg: nvme_unmap_sg(dev, req); out_free_sg: mempool_free(iod->sg, dev->iod_mempool); return ret; } static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, struct nvme_command *cmnd) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), rq_dma_dir(req), 0); if (dma_mapping_error(dev->dev, iod->meta_dma)) return BLK_STS_IOERR; cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); return BLK_STS_OK; } static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); blk_status_t ret; iod->aborted = 0; iod->npages = -1; iod->nents = 0; ret = nvme_setup_cmd(req->q->queuedata, req); if (ret) return ret; if (blk_rq_nr_phys_segments(req)) { ret = nvme_map_data(dev, req, &iod->cmd); if (ret) goto out_free_cmd; } if (blk_integrity_rq(req)) { ret = nvme_map_metadata(dev, req, &iod->cmd); if (ret) goto out_unmap_data; } blk_mq_start_request(req); return BLK_STS_OK; out_unmap_data: nvme_unmap_data(dev, req); out_free_cmd: nvme_cleanup_cmd(req); return ret; } /* * NOTE: ns is NULL when called on the admin queue. */ static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { struct nvme_queue *nvmeq = hctx->driver_data; struct nvme_dev *dev = nvmeq->dev; struct request *req = bd->rq; struct nvme_iod *iod = blk_mq_rq_to_pdu(req); blk_status_t ret; /* * We should not need to do this, but we're still using this to * ensure we can drain requests on a dying queue. */ if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) return BLK_STS_IOERR; if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) return nvme_fail_nonready_command(&dev->ctrl, req); ret = nvme_prep_rq(dev, req); if (unlikely(ret)) return ret; spin_lock(&nvmeq->sq_lock); nvme_sq_copy_cmd(nvmeq, &iod->cmd); nvme_write_sq_db(nvmeq, bd->last); spin_unlock(&nvmeq->sq_lock); return BLK_STS_OK; } static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist) { spin_lock(&nvmeq->sq_lock); while (!rq_list_empty(*rqlist)) { struct request *req = rq_list_pop(rqlist); struct nvme_iod *iod = blk_mq_rq_to_pdu(req); nvme_sq_copy_cmd(nvmeq, &iod->cmd); } nvme_write_sq_db(nvmeq, true); spin_unlock(&nvmeq->sq_lock); } static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) { /* * We should not need to do this, but we're still using this to * ensure we can drain requests on a dying queue. */ if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) return false; if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) return false; req->mq_hctx->tags->rqs[req->tag] = req; return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; } static void nvme_queue_rqs(struct request **rqlist) { struct request *req, *next, *prev = NULL; struct request *requeue_list = NULL; rq_list_for_each_safe(rqlist, req, next) { struct nvme_queue *nvmeq = req->mq_hctx->driver_data; if (!nvme_prep_rq_batch(nvmeq, req)) { /* detach 'req' and add to remainder list */ rq_list_move(rqlist, &requeue_list, req, prev); req = prev; if (!req) continue; } if (!next || req->mq_hctx != next->mq_hctx) { /* detach rest of list, and submit */ req->rq_next = NULL; nvme_submit_cmds(nvmeq, rqlist); *rqlist = next; prev = NULL; } else prev = req; } *rqlist = requeue_list; } static __always_inline void nvme_pci_unmap_rq(struct request *req) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); struct nvme_dev *dev = iod->nvmeq->dev; if (blk_integrity_rq(req)) dma_unmap_page(dev->dev, iod->meta_dma, rq_integrity_vec(req)->bv_len, rq_data_dir(req)); if (blk_rq_nr_phys_segments(req)) nvme_unmap_data(dev, req); } static void nvme_pci_complete_rq(struct request *req) { nvme_pci_unmap_rq(req); nvme_complete_rq(req); } static void nvme_pci_complete_batch(struct io_comp_batch *iob) { nvme_complete_batch(iob, nvme_pci_unmap_rq); } /* We read the CQE phase first to check if the rest of the entry is valid */ static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) { struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; } static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) { u16 head = nvmeq->cq_head; if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, nvmeq->dbbuf_cq_ei)) writel(head, nvmeq->q_db + nvmeq->dev->db_stride); } static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) { if (!nvmeq->qid) return nvmeq->dev->admin_tagset.tags[0]; return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; } static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, struct io_comp_batch *iob, u16 idx) { struct nvme_completion *cqe = &nvmeq->cqes[idx]; __u16 command_id = READ_ONCE(cqe->command_id); struct request *req; /* * AEN requests are special as they don't time out and can * survive any kind of queue freeze and often don't respond to * aborts. We don't even bother to allocate a struct request * for them but rather special case them here. */ if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { nvme_complete_async_event(&nvmeq->dev->ctrl, cqe->status, &cqe->result); return; } req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); if (unlikely(!req)) { dev_warn(nvmeq->dev->ctrl.device, "invalid id %d completed on queue %d\n", command_id, le16_to_cpu(cqe->sq_id)); return; } trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); if (!nvme_try_complete_req(req, cqe->status, cqe->result) && !blk_mq_add_to_batch(req, iob, nvme_req(req)->status, nvme_pci_complete_batch)) nvme_pci_complete_rq(req); } static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) { u32 tmp = nvmeq->cq_head + 1; if (tmp == nvmeq->q_depth) { nvmeq->cq_head = 0; nvmeq->cq_phase ^= 1; } else { nvmeq->cq_head = tmp; } } static inline int nvme_poll_cq(struct nvme_queue *nvmeq, struct io_comp_batch *iob) { int found = 0; while (nvme_cqe_pending(nvmeq)) { found++; /* * load-load control dependency between phase and the rest of * the cqe requires a full read memory barrier */ dma_rmb(); nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); nvme_update_cq_head(nvmeq); } if (found) nvme_ring_cq_doorbell(nvmeq); return found; } static irqreturn_t nvme_irq(int irq, void *data) { struct nvme_queue *nvmeq = data; DEFINE_IO_COMP_BATCH(iob); if (nvme_poll_cq(nvmeq, &iob)) { if (!rq_list_empty(iob.req_list)) nvme_pci_complete_batch(&iob); return IRQ_HANDLED; } return IRQ_NONE; } static irqreturn_t nvme_irq_check(int irq, void *data) { struct nvme_queue *nvmeq = data; if (nvme_cqe_pending(nvmeq)) return IRQ_WAKE_THREAD; return IRQ_NONE; } /* * Poll for completions for any interrupt driven queue * Can be called from any context. */ static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) { struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); nvme_poll_cq(nvmeq, NULL); enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); } static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) { struct nvme_queue *nvmeq = hctx->driver_data; bool found; if (!nvme_cqe_pending(nvmeq)) return 0; spin_lock(&nvmeq->cq_poll_lock); found = nvme_poll_cq(nvmeq, iob); spin_unlock(&nvmeq->cq_poll_lock); return found; } static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) { struct nvme_dev *dev = to_nvme_dev(ctrl); struct nvme_queue *nvmeq = &dev->queues[0]; struct nvme_command c = { }; c.common.opcode = nvme_admin_async_event; c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; spin_lock(&nvmeq->sq_lock); nvme_sq_copy_cmd(nvmeq, &c); nvme_write_sq_db(nvmeq, true); spin_unlock(&nvmeq->sq_lock); } static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) { struct nvme_command c = { }; c.delete_queue.opcode = opcode; c.delete_queue.qid = cpu_to_le16(id); return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); } static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, struct nvme_queue *nvmeq, s16 vector) { struct nvme_command c = { }; int flags = NVME_QUEUE_PHYS_CONTIG; if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) flags |= NVME_CQ_IRQ_ENABLED; /* * Note: we (ab)use the fact that the prp fields survive if no data * is attached to the request. */ c.create_cq.opcode = nvme_admin_create_cq; c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); c.create_cq.cqid = cpu_to_le16(qid); c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); c.create_cq.cq_flags = cpu_to_le16(flags); c.create_cq.irq_vector = cpu_to_le16(vector); return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); } static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, struct nvme_queue *nvmeq) { struct nvme_ctrl *ctrl = &dev->ctrl; struct nvme_command c = { }; int flags = NVME_QUEUE_PHYS_CONTIG; /* * Some drives have a bug that auto-enables WRRU if MEDIUM isn't * set. Since URGENT priority is zeroes, it makes all queues * URGENT. */ if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) flags |= NVME_SQ_PRIO_MEDIUM; /* * Note: we (ab)use the fact that the prp fields survive if no data * is attached to the request. */ c.create_sq.opcode = nvme_admin_create_sq; c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); c.create_sq.sqid = cpu_to_le16(qid); c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); c.create_sq.sq_flags = cpu_to_le16(flags); c.create_sq.cqid = cpu_to_le16(qid); return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); } static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) { return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); } static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) { return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); } static void abort_endio(struct request *req, blk_status_t error) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); struct nvme_queue *nvmeq = iod->nvmeq; dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", nvme_req(req)->status); atomic_inc(&nvmeq->dev->ctrl.abort_limit); blk_mq_free_request(req); } static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) { /* If true, indicates loss of adapter communication, possibly by a * NVMe Subsystem reset. */ bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); /* If there is a reset/reinit ongoing, we shouldn't reset again. */ switch (dev->ctrl.state) { case NVME_CTRL_RESETTING: case NVME_CTRL_CONNECTING: return false; default: break; } /* We shouldn't reset unless the controller is on fatal error state * _or_ if we lost the communication with it. */ if (!(csts & NVME_CSTS_CFS) && !nssro) return false; return true; } static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) { /* Read a config register to help see what died. */ u16 pci_status; int result; result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, &pci_status); if (result == PCIBIOS_SUCCESSFUL) dev_warn(dev->ctrl.device, "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", csts, pci_status); else dev_warn(dev->ctrl.device, "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", csts, result); } static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) { struct nvme_iod *iod = blk_mq_rq_to_pdu(req); struct nvme_queue *nvmeq = iod->nvmeq; struct nvme_dev *dev = nvmeq->dev; struct request *abort_req; struct nvme_command cmd = { }; u32 csts = readl(dev->bar + NVME_REG_CSTS); /* If PCI error recovery process is happening, we cannot reset or * the recovery mechanism will surely fail. */ mb(); if (pci_channel_offline(to_pci_dev(dev->dev))) return BLK_EH_RESET_TIMER; /* * Reset immediately if the controller is failed */ if (nvme_should_reset(dev, csts)) { nvme_warn_reset(dev, csts); nvme_dev_disable(dev, false); nvme_reset_ctrl(&dev->ctrl); return BLK_EH_DONE; } /* * Did we miss an interrupt? */ if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) nvme_poll(req->mq_hctx, NULL); else nvme_poll_irqdisable(nvmeq); if (blk_mq_request_completed(req)) { dev_warn(dev->ctrl.device, "I/O %d QID %d timeout, completion polled\n", req->tag, nvmeq->qid); return BLK_EH_DONE; } /* * Shutdown immediately if controller times out while starting. The * reset work will see the pci device disabled when it gets the forced * cancellation error. All outstanding requests are completed on * shutdown, so we return BLK_EH_DONE. */ switch (dev->ctrl.state) { case NVME_CTRL_CONNECTING: nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); fallthrough; case NVME_CTRL_DELETING: dev_warn_ratelimited(dev->ctrl.device, "I/O %d QID %d timeout, disable controller\n", req->tag, nvmeq->qid); nvme_req(req)->flags |= NVME_REQ_CANCELLED; nvme_dev_disable(dev, true); return BLK_EH_DONE; case NVME_CTRL_RESETTING: return BLK_EH_RESET_TIMER; default: break; } /* * Shutdown the controller immediately and schedule a reset if the * command was already aborted once before and still hasn't been * returned to the driver, or if this is the admin queue. */ if (!nvmeq->qid || iod->aborted) { dev_warn(dev->ctrl.device, "I/O %d QID %d timeout, reset controller\n", req->tag, nvmeq->qid); nvme_req(req)->flags |= NVME_REQ_CANCELLED; nvme_dev_disable(dev, false); nvme_reset_ctrl(&dev->ctrl); return BLK_EH_DONE; } if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { atomic_inc(&dev->ctrl.abort_limit); return BLK_EH_RESET_TIMER; } iod->aborted = 1; cmd.abort.opcode = nvme_admin_abort_cmd; cmd.abort.cid = nvme_cid(req); cmd.abort.sqid = cpu_to_le16(nvmeq->qid); dev_warn(nvmeq->dev->ctrl.device, "I/O %d QID %d timeout, aborting\n", req->tag, nvmeq->qid); abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); if (IS_ERR(abort_req)) { atomic_inc(&dev->ctrl.abort_limit); return BLK_EH_RESET_TIMER; } nvme_init_request(abort_req, &cmd); abort_req->end_io_data = NULL; blk_execute_rq_nowait(abort_req, false, abort_endio); /* * The aborted req will be completed on receiving the abort req. * We enable the timer again. If hit twice, it'll cause a device reset, * as the device then is in a faulty state. */ return BLK_EH_RESET_TIMER; } static void nvme_free_queue(struct nvme_queue *nvmeq) { dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, nvmeq->cq_dma_addr); if (!nvmeq->sq_cmds) return; if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), nvmeq->sq_cmds, SQ_SIZE(nvmeq)); } else { dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), nvmeq->sq_cmds, nvmeq->sq_dma_addr); } } static void nvme_free_queues(struct nvme_dev *dev, int lowest) { int i; for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { dev->ctrl.queue_count--; nvme_free_queue(&dev->queues[i]); } } /** * nvme_suspend_queue - put queue into suspended state * @nvmeq: queue to suspend */ static int nvme_suspend_queue(struct nvme_queue *nvmeq) { if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) return 1; /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ mb(); nvmeq->dev->online_queues--; if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) nvme_stop_admin_queue(&nvmeq->dev->ctrl); if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); return 0; } static void nvme_suspend_io_queues(struct nvme_dev *dev) { int i; for (i = dev->ctrl.queue_count - 1; i > 0; i--) nvme_suspend_queue(&dev->queues[i]); } static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) { struct nvme_queue *nvmeq = &dev->queues[0]; if (shutdown) nvme_shutdown_ctrl(&dev->ctrl); else nvme_disable_ctrl(&dev->ctrl); nvme_poll_irqdisable(nvmeq); } /* * Called only on a device that has been disabled and after all other threads * that can check this device's completion queues have synced, except * nvme_poll(). This is the last chance for the driver to see a natural * completion before nvme_cancel_request() terminates all incomplete requests. */ static void nvme_reap_pending_cqes(struct nvme_dev *dev) { int i; for (i = dev->ctrl.queue_count - 1; i > 0; i--) { spin_lock(&dev->queues[i].cq_poll_lock); nvme_poll_cq(&dev->queues[i], NULL); spin_unlock(&dev->queues[i].cq_poll_lock); } } static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, int entry_size) { int q_depth = dev->q_depth; unsigned q_size_aligned = roundup(q_depth * entry_size, NVME_CTRL_PAGE_SIZE); if (q_size_aligned * nr_io_queues > dev->cmb_size) { u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); q_depth = div_u64(mem_per_q, entry_size); /* * Ensure the reduced q_depth is above some threshold where it * would be better to map queues in system memory with the * original depth */ if (q_depth < 64) return -ENOMEM; } return q_depth; } static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, int qid) { struct pci_dev *pdev = to_pci_dev(dev->dev); if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); if (nvmeq->sq_cmds) { nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, nvmeq->sq_cmds); if (nvmeq->sq_dma_addr) { set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); return 0; } pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); } } nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), &nvmeq->sq_dma_addr, GFP_KERNEL); if (!nvmeq->sq_cmds) return -ENOMEM; return 0; } static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) { struct nvme_queue *nvmeq = &dev->queues[qid]; if (dev->ctrl.queue_count > qid) return 0; nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; nvmeq->q_depth = depth; nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), &nvmeq->cq_dma_addr, GFP_KERNEL); if (!nvmeq->cqes) goto free_nvmeq; if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) goto free_cqdma; nvmeq->dev = dev; spin_lock_init(&nvmeq->sq_lock); spin_lock_init(&nvmeq->cq_poll_lock); nvmeq->cq_head = 0; nvmeq->cq_phase = 1; nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; nvmeq->qid = qid; dev->ctrl.queue_count++; return 0; free_cqdma: dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, nvmeq->cq_dma_addr); free_nvmeq: return -ENOMEM; } static int queue_request_irq(struct nvme_queue *nvmeq) { struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); int nr = nvmeq->dev->ctrl.instance; if (use_threaded_interrupts) { return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); } else { return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); } } static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) { struct nvme_dev *dev = nvmeq->dev; nvmeq->sq_tail = 0; nvmeq->last_sq_tail = 0; nvmeq->cq_head = 0; nvmeq->cq_phase = 1; nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); nvme_dbbuf_init(dev, nvmeq, qid); dev->online_queues++; wmb(); /* ensure the first interrupt sees the initialization */ } /* * Try getting shutdown_lock while setting up IO queues. */ static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) { /* * Give up if the lock is being held by nvme_dev_disable. */ if (!mutex_trylock(&dev->shutdown_lock)) return -ENODEV; /* * Controller is in wrong state, fail early. */ if (dev->ctrl.state != NVME_CTRL_CONNECTING) { mutex_unlock(&dev->shutdown_lock); return -ENODEV; } return 0; } static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) { struct nvme_dev *dev = nvmeq->dev; int result; u16 vector = 0; clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); /* * A queue's vector matches the queue identifier unless the controller * has only one vector available. */ if (!polled) vector = dev->num_vecs == 1 ? 0 : qid; else set_bit(NVMEQ_POLLED, &nvmeq->flags); result = adapter_alloc_cq(dev, qid, nvmeq, vector); if (result) return result; result = adapter_alloc_sq(dev, qid, nvmeq); if (result < 0) return result; if (result) goto release_cq; nvmeq->cq_vector = vector; result = nvme_setup_io_queues_trylock(dev); if (result) return result; nvme_init_queue(nvmeq, qid); if (!polled) { result = queue_request_irq(nvmeq); if (result < 0) goto release_sq; } set_bit(NVMEQ_ENABLED, &nvmeq->flags); mutex_unlock(&dev->shutdown_lock); return result; release_sq: dev->online_queues--; mutex_unlock(&dev->shutdown_lock); adapter_delete_sq(dev, qid); release_cq: adapter_delete_cq(dev, qid); return result; } static const struct blk_mq_ops nvme_mq_admin_ops = { .queue_rq = nvme_queue_rq, .complete = nvme_pci_complete_rq, .init_hctx = nvme_admin_init_hctx, .init_request = nvme_pci_init_request, .timeout = nvme_timeout, }; static const struct blk_mq_ops nvme_mq_ops = { .queue_rq = nvme_queue_rq, .queue_rqs = nvme_queue_rqs, .complete = nvme_pci_complete_rq, .commit_rqs = nvme_commit_rqs, .init_hctx = nvme_init_hctx, .init_request = nvme_pci_init_request, .map_queues = nvme_pci_map_queues, .timeout = nvme_timeout, .poll = nvme_poll, }; static void nvme_dev_remove_admin(struct nvme_dev *dev) { if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { /* * If the controller was reset during removal, it's possible * user requests may be waiting on a stopped queue. Start the * queue to flush these to completion. */ nvme_start_admin_queue(&dev->ctrl); blk_cleanup_queue(dev->ctrl.admin_q); blk_mq_free_tag_set(&dev->admin_tagset); } } static int nvme_alloc_admin_tags(struct nvme_dev *dev) { if (!dev->ctrl.admin_q) { dev->admin_tagset.ops = &nvme_mq_admin_ops; dev->admin_tagset.nr_hw_queues = 1; dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT; dev->admin_tagset.numa_node = dev->ctrl.numa_node; dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; dev->admin_tagset.driver_data = dev; if (blk_mq_alloc_tag_set(&dev->admin_tagset)) return -ENOMEM; dev->ctrl.admin_tagset = &dev->admin_tagset; dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); if (IS_ERR(dev->ctrl.admin_q)) { blk_mq_free_tag_set(&dev->admin_tagset); return -ENOMEM; } if (!blk_get_queue(dev->ctrl.admin_q)) { nvme_dev_remove_admin(dev); dev->ctrl.admin_q = NULL; return -ENODEV; } } else nvme_start_admin_queue(&dev->ctrl); return 0; } static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) { return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); } static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) { struct pci_dev *pdev = to_pci_dev(dev->dev); if (size <= dev->bar_mapped_size) return 0; if (size > pci_resource_len(pdev, 0)) return -ENOMEM; if (dev->bar) iounmap(dev->bar); dev->bar = ioremap(pci_resource_start(pdev, 0), size); if (!dev->bar) { dev->bar_mapped_size = 0; return -ENOMEM; } dev->bar_mapped_size = size; dev->dbs = dev->bar + NVME_REG_DBS; return 0; } static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) { int result; u32 aqa; struct nvme_queue *nvmeq; result = nvme_remap_bar(dev, db_bar_size(dev, 0)); if (result < 0) return result; dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? NVME_CAP_NSSRC(dev->ctrl.cap) : 0; if (dev->subsystem && (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); result = nvme_disable_ctrl(&dev->ctrl); if (result < 0) return result; result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); if (result) return result; dev->ctrl.numa_node = dev_to_node(dev->dev); nvmeq = &dev->queues[0]; aqa = nvmeq->q_depth - 1; aqa |= aqa << 16; writel(aqa, dev->bar + NVME_REG_AQA); lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); result = nvme_enable_ctrl(&dev->ctrl); if (result) return result; nvmeq->cq_vector = 0; nvme_init_queue(nvmeq, 0); result = queue_request_irq(nvmeq); if (result) { dev->online_queues--; return result; } set_bit(NVMEQ_ENABLED, &nvmeq->flags); return result; } static int nvme_create_io_queues(struct nvme_dev *dev) { unsigned i, max, rw_queues; int ret = 0; for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { if (nvme_alloc_queue(dev, i, dev->q_depth)) { ret = -ENOMEM; break; } } max = min(dev->max_qid, dev->ctrl.queue_count - 1); if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + dev->io_queues[HCTX_TYPE_READ]; } else { rw_queues = max; } for (i = dev->online_queues; i <= max; i++) { bool polled = i > rw_queues; ret = nvme_create_queue(&dev->queues[i], i, polled); if (ret) break; } /* * Ignore failing Create SQ/CQ commands, we can continue with less * than the desired amount of queues, and even a controller without * I/O queues can still be used to issue admin commands. This might * be useful to upgrade a buggy firmware for example. */ return ret >= 0 ? 0 : ret; } static u64 nvme_cmb_size_unit(struct nvme_dev *dev) { u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; return 1ULL << (12 + 4 * szu); } static u32 nvme_cmb_size(struct nvme_dev *dev) { return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; } static void nvme_map_cmb(struct nvme_dev *dev) { u64 size, offset; resource_size_t bar_size; struct pci_dev *pdev = to_pci_dev(dev->dev); int bar; if (dev->cmb_size) return; if (NVME_CAP_CMBS(dev->ctrl.cap)) writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); if (!dev->cmbsz) return; dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); bar = NVME_CMB_BIR(dev->cmbloc); bar_size = pci_resource_len(pdev, bar); if (offset > bar_size) return; /* * Tell the controller about the host side address mapping the CMB, * and enable CMB decoding for the NVMe 1.4+ scheme: */ if (NVME_CAP_CMBS(dev->ctrl.cap)) { hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | (pci_bus_address(pdev, bar) + offset), dev->bar + NVME_REG_CMBMSC); } /* * Controllers may support a CMB size larger than their BAR, * for example, due to being behind a bridge. Reduce the CMB to * the reported size of the BAR */ if (size > bar_size - offset) size = bar_size - offset; if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { dev_warn(dev->ctrl.device, "failed to register the CMB\n"); return; } dev->cmb_size = size; dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) pci_p2pmem_publish(pdev, true); } static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) { u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; u64 dma_addr = dev->host_mem_descs_dma; struct nvme_command c = { }; int ret; c.features.opcode = nvme_admin_set_features; c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); c.features.dword11 = cpu_to_le32(bits); c.features.dword12 = cpu_to_le32(host_mem_size); c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); if (ret) { dev_warn(dev->ctrl.device, "failed to set host mem (err %d, flags %#x).\n", ret, bits); } else dev->hmb = bits & NVME_HOST_MEM_ENABLE; return ret; } static void nvme_free_host_mem(struct nvme_dev *dev) { int i; for (i = 0; i < dev->nr_host_mem_descs; i++) { struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], le64_to_cpu(desc->addr), DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); } kfree(dev->host_mem_desc_bufs); dev->host_mem_desc_bufs = NULL; dma_free_coherent(dev->dev, dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), dev->host_mem_descs, dev->host_mem_descs_dma); dev->host_mem_descs = NULL; dev->nr_host_mem_descs = 0; } static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, u32 chunk_size) { struct nvme_host_mem_buf_desc *descs; u32 max_entries, len; dma_addr_t descs_dma; int i = 0; void **bufs; u64 size, tmp; tmp = (preferred + chunk_size - 1); do_div(tmp, chunk_size); max_entries = tmp; if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) max_entries = dev->ctrl.hmmaxd; descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), &descs_dma, GFP_KERNEL); if (!descs) goto out; bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); if (!bufs) goto out_free_descs; for (size = 0; size < preferred && i < max_entries; size += len) { dma_addr_t dma_addr; len = min_t(u64, chunk_size, preferred - size); bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); if (!bufs[i]) break; descs[i].addr = cpu_to_le64(dma_addr); descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); i++; } if (!size) goto out_free_bufs; dev->nr_host_mem_descs = i; dev->host_mem_size = size; dev->host_mem_descs = descs; dev->host_mem_descs_dma = descs_dma; dev->host_mem_desc_bufs = bufs; return 0; out_free_bufs: while (--i >= 0) { size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; dma_free_attrs(dev->dev, size, bufs[i], le64_to_cpu(descs[i].addr), DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); } kfree(bufs); out_free_descs: dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, descs_dma); out: dev->host_mem_descs = NULL; return -ENOMEM; } static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) { u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); u64 chunk_size; /* start big and work our way down */ for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { if (!min || dev->host_mem_size >= min) return 0; nvme_free_host_mem(dev); } } return -ENOMEM; } static int nvme_setup_host_mem(struct nvme_dev *dev) { u64 max = (u64)max_host_mem_size_mb * SZ_1M; u64 preferred = (u64)dev->ctrl.hmpre * 4096; u64 min = (u64)dev->ctrl.hmmin * 4096; u32 enable_bits = NVME_HOST_MEM_ENABLE; int ret; preferred = min(preferred, max); if (min > max) { dev_warn(dev->ctrl.device, "min host memory (%lld MiB) above limit (%d MiB).\n", min >> ilog2(SZ_1M), max_host_mem_size_mb); nvme_free_host_mem(dev); return 0; } /* * If we already have a buffer allocated check if we can reuse it. */ if (dev->host_mem_descs) { if (dev->host_mem_size >= min) enable_bits |= NVME_HOST_MEM_RETURN; else nvme_free_host_mem(dev); } if (!dev->host_mem_descs) { if (nvme_alloc_host_mem(dev, min, preferred)) { dev_warn(dev->ctrl.device, "failed to allocate host memory buffer.\n"); return 0; /* controller must work without HMB */ } dev_info(dev->ctrl.device, "allocated %lld MiB host memory buffer.\n", dev->host_mem_size >> ilog2(SZ_1M)); } ret = nvme_set_host_mem(dev, enable_bits); if (ret) nvme_free_host_mem(dev); return ret; } static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", ndev->cmbloc, ndev->cmbsz); } static DEVICE_ATTR_RO(cmb); static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); return sysfs_emit(buf, "%u\n", ndev->cmbloc); } static DEVICE_ATTR_RO(cmbloc); static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); return sysfs_emit(buf, "%u\n", ndev->cmbsz); } static DEVICE_ATTR_RO(cmbsz); static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); return sysfs_emit(buf, "%d\n", ndev->hmb); } static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); bool new; int ret; if (strtobool(buf, &new) < 0) return -EINVAL; if (new == ndev->hmb) return count; if (new) { ret = nvme_setup_host_mem(ndev); } else { ret = nvme_set_host_mem(ndev, 0); if (!ret) nvme_free_host_mem(ndev); } if (ret < 0) return ret; return count; } static DEVICE_ATTR_RW(hmb); static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, struct attribute *a, int n) { struct nvme_ctrl *ctrl = dev_get_drvdata(container_of(kobj, struct device, kobj)); struct nvme_dev *dev = to_nvme_dev(ctrl); if (a == &dev_attr_cmb.attr || a == &dev_attr_cmbloc.attr || a == &dev_attr_cmbsz.attr) { if (!dev->cmbsz) return 0; } if (a == &dev_attr_hmb.attr && !ctrl->hmpre) return 0; return a->mode; } static struct attribute *nvme_pci_attrs[] = { &dev_attr_cmb.attr, &dev_attr_cmbloc.attr, &dev_attr_cmbsz.attr, &dev_attr_hmb.attr, NULL, }; static const struct attribute_group nvme_pci_attr_group = { .attrs = nvme_pci_attrs, .is_visible = nvme_pci_attrs_are_visible, }; /* * nirqs is the number of interrupts available for write and read * queues. The core already reserved an interrupt for the admin queue. */ static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) { struct nvme_dev *dev = affd->priv; unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; /* * If there is no interrupt available for queues, ensure that * the default queue is set to 1. The affinity set size is * also set to one, but the irq core ignores it for this case. * * If only one interrupt is available or 'write_queue' == 0, combine * write and read queues. * * If 'write_queues' > 0, ensure it leaves room for at least one read * queue. */ if (!nrirqs) { nrirqs = 1; nr_read_queues = 0; } else if (nrirqs == 1 || !nr_write_queues) { nr_read_queues = 0; } else if (nr_write_queues >= nrirqs) { nr_read_queues = 1; } else { nr_read_queues = nrirqs - nr_write_queues; } dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; affd->set_size[HCTX_TYPE_READ] = nr_read_queues; affd->nr_sets = nr_read_queues ? 2 : 1; } static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) { struct pci_dev *pdev = to_pci_dev(dev->dev); struct irq_affinity affd = { .pre_vectors = 1, .calc_sets = nvme_calc_irq_sets, .priv = dev, }; unsigned int irq_queues, poll_queues; /* * Poll queues don't need interrupts, but we need at least one I/O queue * left over for non-polled I/O. */ poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); dev->io_queues[HCTX_TYPE_POLL] = poll_queues; /* * Initialize for the single interrupt case, will be updated in * nvme_calc_irq_sets(). */ dev->io_queues[HCTX_TYPE_DEFAULT] = 1; dev->io_queues[HCTX_TYPE_READ] = 0; /* * We need interrupts for the admin queue and each non-polled I/O queue, * but some Apple controllers require all queues to use the first * vector. */ irq_queues = 1; if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) irq_queues += (nr_io_queues - poll_queues); return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); } static void nvme_disable_io_queues(struct nvme_dev *dev) { if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) __nvme_disable_io_queues(dev, nvme_admin_delete_cq); } static unsigned int nvme_max_io_queues(struct nvme_dev *dev) { /* * If tags are shared with admin queue (Apple bug), then * make sure we only use one IO queue. */ if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) return 1; return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; } static int nvme_setup_io_queues(struct nvme_dev *dev) { struct nvme_queue *adminq = &dev->queues[0]; struct pci_dev *pdev = to_pci_dev(dev->dev); unsigned int nr_io_queues; unsigned long size; int result; /* * Sample the module parameters once at reset time so that we have * stable values to work with. */ dev->nr_write_queues = write_queues; dev->nr_poll_queues = poll_queues; nr_io_queues = dev->nr_allocated_queues - 1; result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); if (result < 0) return result; if (nr_io_queues == 0) return 0; /* * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions * from set to unset. If there is a window to it is truely freed, * pci_free_irq_vectors() jumping into this window will crash. * And take lock to avoid racing with pci_free_irq_vectors() in * nvme_dev_disable() path. */ result = nvme_setup_io_queues_trylock(dev); if (result) return result; if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) pci_free_irq(pdev, 0, adminq); if (dev->cmb_use_sqes) { result = nvme_cmb_qdepth(dev, nr_io_queues, sizeof(struct nvme_command)); if (result > 0) dev->q_depth = result; else dev->cmb_use_sqes = false; } do { size = db_bar_size(dev, nr_io_queues); result = nvme_remap_bar(dev, size); if (!result) break; if (!--nr_io_queues) { result = -ENOMEM; goto out_unlock; } } while (1); adminq->q_db = dev->dbs; retry: /* Deregister the admin queue's interrupt */ if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) pci_free_irq(pdev, 0, adminq); /* * If we enable msix early due to not intx, disable it again before * setting up the full range we need. */ pci_free_irq_vectors(pdev); result = nvme_setup_irqs(dev, nr_io_queues); if (result <= 0) { result = -EIO; goto out_unlock; } dev->num_vecs = result; result = max(result - 1, 1); dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; /* * Should investigate if there's a performance win from allocating * more queues than interrupt vectors; it might allow the submission * path to scale better, even if the receive path is limited by the * number of interrupts. */ result = queue_request_irq(adminq); if (result) goto out_unlock; set_bit(NVMEQ_ENABLED, &adminq->flags); mutex_unlock(&dev->shutdown_lock); result = nvme_create_io_queues(dev); if (result || dev->online_queues < 2) return result; if (dev->online_queues - 1 < dev->max_qid) { nr_io_queues = dev->online_queues - 1; nvme_disable_io_queues(dev); result = nvme_setup_io_queues_trylock(dev); if (result) return result; nvme_suspend_io_queues(dev); goto retry; } dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", dev->io_queues[HCTX_TYPE_DEFAULT], dev->io_queues[HCTX_TYPE_READ], dev->io_queues[HCTX_TYPE_POLL]); return 0; out_unlock: mutex_unlock(&dev->shutdown_lock); return result; } static void nvme_del_queue_end(struct request *req, blk_status_t error) { struct nvme_queue *nvmeq = req->end_io_data; blk_mq_free_request(req); complete(&nvmeq->delete_done); } static void nvme_del_cq_end(struct request *req, blk_status_t error) { struct nvme_queue *nvmeq = req->end_io_data; if (error) set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); nvme_del_queue_end(req, error); } static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) { struct request_queue *q = nvmeq->dev->ctrl.admin_q; struct request *req; struct nvme_command cmd = { }; cmd.delete_queue.opcode = opcode; cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); if (IS_ERR(req)) return PTR_ERR(req); nvme_init_request(req, &cmd); req->end_io_data = nvmeq; init_completion(&nvmeq->delete_done); blk_execute_rq_nowait(req, false, opcode == nvme_admin_delete_cq ? nvme_del_cq_end : nvme_del_queue_end); return 0; } static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) { int nr_queues = dev->online_queues - 1, sent = 0; unsigned long timeout; retry: timeout = NVME_ADMIN_TIMEOUT; while (nr_queues > 0) { if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) break; nr_queues--; sent++; } while (sent) { struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, timeout); if (timeout == 0) return false; sent--; if (nr_queues) goto retry; } return true; } static void nvme_dev_add(struct nvme_dev *dev) { int ret; if (!dev->ctrl.tagset) { dev->tagset.ops = &nvme_mq_ops; dev->tagset.nr_hw_queues = dev->online_queues - 1; dev->tagset.nr_maps = 2; /* default + read */ if (dev->io_queues[HCTX_TYPE_POLL]) dev->tagset.nr_maps++; dev->tagset.timeout = NVME_IO_TIMEOUT; dev->tagset.numa_node = dev->ctrl.numa_node; dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; dev->tagset.cmd_size = sizeof(struct nvme_iod); dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; dev->tagset.driver_data = dev; /* * Some Apple controllers requires tags to be unique * across admin and IO queue, so reserve the first 32 * tags of the IO queue. */ if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) dev->tagset.reserved_tags = NVME_AQ_DEPTH; ret = blk_mq_alloc_tag_set(&dev->tagset); if (ret) { dev_warn(dev->ctrl.device, "IO queues tagset allocation failed %d\n", ret); return; } dev->ctrl.tagset = &dev->tagset; } else { blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); /* Free previously allocated queues that are no longer usable */ nvme_free_queues(dev, dev->online_queues); } nvme_dbbuf_set(dev); } static int nvme_pci_enable(struct nvme_dev *dev) { int result = -ENOMEM; struct pci_dev *pdev = to_pci_dev(dev->dev); int dma_address_bits = 64; if (pci_enable_device_mem(pdev)) return result; pci_set_master(pdev); if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) dma_address_bits = 48; if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits))) goto disable; if (readl(dev->bar + NVME_REG_CSTS) == -1) { result = -ENODEV; goto disable; } /* * Some devices and/or platforms don't advertise or work with INTx * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll * adjust this later. */ result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); if (result < 0) return result; dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, io_queue_depth); dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); dev->dbs = dev->bar + 4096; /* * Some Apple controllers require a non-standard SQE size. * Interestingly they also seem to ignore the CC:IOSQES register * so we don't bother updating it here. */ if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) dev->io_sqes = 7; else dev->io_sqes = NVME_NVM_IOSQES; /* * Temporary fix for the Apple controller found in the MacBook8,1 and * some MacBook7,1 to avoid controller resets and data loss. */ if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { dev->q_depth = 2; dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " "set queue depth=%u to work around controller resets\n", dev->q_depth); } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && (pdev->device == 0xa821 || pdev->device == 0xa822) && NVME_CAP_MQES(dev->ctrl.cap) == 0) { dev->q_depth = 64; dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " "set queue depth=%u\n", dev->q_depth); } /* * Controllers with the shared tags quirk need the IO queue to be * big enough so that we get 32 tags for the admin queue */ if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && (dev->q_depth < (NVME_AQ_DEPTH + 2))) { dev->q_depth = NVME_AQ_DEPTH + 2; dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", dev->q_depth); } nvme_map_cmb(dev); pci_enable_pcie_error_reporting(pdev); pci_save_state(pdev); return 0; disable: pci_disable_device(pdev); return result; } static void nvme_dev_unmap(struct nvme_dev *dev) { if (dev->bar) iounmap(dev->bar); pci_release_mem_regions(to_pci_dev(dev->dev)); } static void nvme_pci_disable(struct nvme_dev *dev) { struct pci_dev *pdev = to_pci_dev(dev->dev); pci_free_irq_vectors(pdev); if (pci_is_enabled(pdev)) { pci_disable_pcie_error_reporting(pdev); pci_disable_device(pdev); } } static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) { bool dead = true, freeze = false; struct pci_dev *pdev = to_pci_dev(dev->dev); mutex_lock(&dev->shutdown_lock); if (pci_is_enabled(pdev)) { u32 csts = readl(dev->bar + NVME_REG_CSTS); if (dev->ctrl.state == NVME_CTRL_LIVE || dev->ctrl.state == NVME_CTRL_RESETTING) { freeze = true; nvme_start_freeze(&dev->ctrl); } dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || pdev->error_state != pci_channel_io_normal); } /* * Give the controller a chance to complete all entered requests if * doing a safe shutdown. */ if (!dead && shutdown && freeze) nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); nvme_stop_queues(&dev->ctrl); if (!dead && dev->ctrl.queue_count > 0) { nvme_disable_io_queues(dev); nvme_disable_admin_queue(dev, shutdown); } nvme_suspend_io_queues(dev); nvme_suspend_queue(&dev->queues[0]); nvme_pci_disable(dev); nvme_reap_pending_cqes(dev); blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); blk_mq_tagset_wait_completed_request(&dev->tagset); blk_mq_tagset_wait_completed_request(&dev->admin_tagset); /* * The driver will not be starting up queues again if shutting down so * must flush all entered requests to their failed completion to avoid * deadlocking blk-mq hot-cpu notifier. */ if (shutdown) { nvme_start_queues(&dev->ctrl); if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) nvme_start_admin_queue(&dev->ctrl); } mutex_unlock(&dev->shutdown_lock); } static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) { if (!nvme_wait_reset(&dev->ctrl)) return -EBUSY; nvme_dev_disable(dev, shutdown); return 0; } static int nvme_setup_prp_pools(struct nvme_dev *dev) { dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, NVME_CTRL_PAGE_SIZE, NVME_CTRL_PAGE_SIZE, 0); if (!dev->prp_page_pool) return -ENOMEM; /* Optimisation for I/Os between 4k and 128k */ dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 256, 256, 0); if (!dev->prp_small_pool) { dma_pool_destroy(dev->prp_page_pool); return -ENOMEM; } return 0; } static void nvme_release_prp_pools(struct nvme_dev *dev) { dma_pool_destroy(dev->prp_page_pool); dma_pool_destroy(dev->prp_small_pool); } static void nvme_free_tagset(struct nvme_dev *dev) { if (dev->tagset.tags) blk_mq_free_tag_set(&dev->tagset); dev->ctrl.tagset = NULL; } static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) { struct nvme_dev *dev = to_nvme_dev(ctrl); nvme_dbbuf_dma_free(dev); nvme_free_tagset(dev); if (dev->ctrl.admin_q) blk_put_queue(dev->ctrl.admin_q); free_opal_dev(dev->ctrl.opal_dev); mempool_destroy(dev->iod_mempool); put_device(dev->dev); kfree(dev->queues); kfree(dev); } static void nvme_remove_dead_ctrl(struct nvme_dev *dev) { /* * Set state to deleting now to avoid blocking nvme_wait_reset(), which * may be holding this pci_dev's device lock. */ nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); nvme_get_ctrl(&dev->ctrl); nvme_dev_disable(dev, false); nvme_kill_queues(&dev->ctrl); if (!queue_work(nvme_wq, &dev->remove_work)) nvme_put_ctrl(&dev->ctrl); } static void nvme_reset_work(struct work_struct *work) { struct nvme_dev *dev = container_of(work, struct nvme_dev, ctrl.reset_work); bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); int result; if (dev->ctrl.state != NVME_CTRL_RESETTING) { dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", dev->ctrl.state); result = -ENODEV; goto out; } /* * If we're called to reset a live controller first shut it down before * moving on. */ if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) nvme_dev_disable(dev, false); nvme_sync_queues(&dev->ctrl); mutex_lock(&dev->shutdown_lock); result = nvme_pci_enable(dev); if (result) goto out_unlock; result = nvme_pci_configure_admin_queue(dev); if (result) goto out_unlock; result = nvme_alloc_admin_tags(dev); if (result) goto out_unlock; /* * Limit the max command size to prevent iod->sg allocations going * over a single page. */ dev->ctrl.max_hw_sectors = min_t(u32, NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); dev->ctrl.max_segments = NVME_MAX_SEGS; /* * Don't limit the IOMMU merged segment size. */ dma_set_max_seg_size(dev->dev, 0xffffffff); dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1); mutex_unlock(&dev->shutdown_lock); /* * Introduce CONNECTING state from nvme-fc/rdma transports to mark the * initializing procedure here. */ if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { dev_warn(dev->ctrl.device, "failed to mark controller CONNECTING\n"); result = -EBUSY; goto out; } /* * We do not support an SGL for metadata (yet), so we are limited to a * single integrity segment for the separate metadata pointer. */ dev->ctrl.max_integrity_segments = 1; result = nvme_init_ctrl_finish(&dev->ctrl); if (result) goto out; if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { if (!dev->ctrl.opal_dev) dev->ctrl.opal_dev = init_opal_dev(&dev->ctrl, &nvme_sec_submit); else if (was_suspend) opal_unlock_from_suspend(dev->ctrl.opal_dev); } else { free_opal_dev(dev->ctrl.opal_dev); dev->ctrl.opal_dev = NULL; } if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { result = nvme_dbbuf_dma_alloc(dev); if (result) dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); } if (dev->ctrl.hmpre) { result = nvme_setup_host_mem(dev); if (result < 0) goto out; } result = nvme_setup_io_queues(dev); if (result) goto out; /* * Keep the controller around but remove all namespaces if we don't have * any working I/O queue. */ if (dev->online_queues < 2) { dev_warn(dev->ctrl.device, "IO queues not created\n"); nvme_kill_queues(&dev->ctrl); nvme_remove_namespaces(&dev->ctrl); nvme_free_tagset(dev); } else { nvme_start_queues(&dev->ctrl); nvme_wait_freeze(&dev->ctrl); nvme_dev_add(dev); nvme_unfreeze(&dev->ctrl); } /* * If only admin queue live, keep it to do further investigation or * recovery. */ if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { dev_warn(dev->ctrl.device, "failed to mark controller live state\n"); result = -ENODEV; goto out; } if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj, &nvme_pci_attr_group)) dev->attrs_added = true; nvme_start_ctrl(&dev->ctrl); return; out_unlock: mutex_unlock(&dev->shutdown_lock); out: if (result) dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", result); nvme_remove_dead_ctrl(dev); } static void nvme_remove_dead_ctrl_work(struct work_struct *work) { struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); struct pci_dev *pdev = to_pci_dev(dev->dev); if (pci_get_drvdata(pdev)) device_release_driver(&pdev->dev); nvme_put_ctrl(&dev->ctrl); } static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) { *val = readl(to_nvme_dev(ctrl)->bar + off); return 0; } static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) { writel(val, to_nvme_dev(ctrl)->bar + off); return 0; } static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) { *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); return 0; } static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) { struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); } static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { .name = "pcie", .module = THIS_MODULE, .flags = NVME_F_METADATA_SUPPORTED | NVME_F_PCI_P2PDMA, .reg_read32 = nvme_pci_reg_read32, .reg_write32 = nvme_pci_reg_write32, .reg_read64 = nvme_pci_reg_read64, .free_ctrl = nvme_pci_free_ctrl, .submit_async_event = nvme_pci_submit_async_event, .get_address = nvme_pci_get_address, }; static int nvme_dev_map(struct nvme_dev *dev) { struct pci_dev *pdev = to_pci_dev(dev->dev); if (pci_request_mem_regions(pdev, "nvme")) return -ENODEV; if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) goto release; return 0; release: pci_release_mem_regions(pdev); return -ENODEV; } static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) { if (pdev->vendor == 0x144d && pdev->device == 0xa802) { /* * Several Samsung devices seem to drop off the PCIe bus * randomly when APST is on and uses the deepest sleep state. * This has been observed on a Samsung "SM951 NVMe SAMSUNG * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD * 950 PRO 256GB", but it seems to be restricted to two Dell * laptops. */ if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) return NVME_QUIRK_NO_DEEPEST_PS; } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { /* * Samsung SSD 960 EVO drops off the PCIe bus after system * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as * within few minutes after bootup on a Coffee Lake board - * ASUS PRIME Z370-A */ if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) return NVME_QUIRK_NO_APST; } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || pdev->device == 0xa808 || pdev->device == 0xa809)) || (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { /* * Forcing to use host managed nvme power settings for * lowest idle power with quick resume latency on * Samsung and Toshiba SSDs based on suspend behavior * on Coffee Lake board for LENOVO C640 */ if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && dmi_match(DMI_BOARD_NAME, "LNVNB161216")) return NVME_QUIRK_SIMPLE_SUSPEND; } return 0; } static void nvme_async_probe(void *data, async_cookie_t cookie) { struct nvme_dev *dev = data; flush_work(&dev->ctrl.reset_work); flush_work(&dev->ctrl.scan_work); nvme_put_ctrl(&dev->ctrl); } static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int node, result = -ENOMEM; struct nvme_dev *dev; unsigned long quirks = id->driver_data; size_t alloc_size; node = dev_to_node(&pdev->dev); if (node == NUMA_NO_NODE) set_dev_node(&pdev->dev, first_memory_node); dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); if (!dev) return -ENOMEM; dev->nr_write_queues = write_queues; dev->nr_poll_queues = poll_queues; dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; dev->queues = kcalloc_node(dev->nr_allocated_queues, sizeof(struct nvme_queue), GFP_KERNEL, node); if (!dev->queues) goto free; dev->dev = get_device(&pdev->dev); pci_set_drvdata(pdev, dev); result = nvme_dev_map(dev); if (result) goto put_pci; INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); mutex_init(&dev->shutdown_lock); result = nvme_setup_prp_pools(dev); if (result) goto unmap; quirks |= check_vendor_combination_bug(pdev); if (!noacpi && acpi_storage_d3(&pdev->dev)) { /* * Some systems use a bios work around to ask for D3 on * platforms that support kernel managed suspend. */ dev_info(&pdev->dev, "platform quirk: setting simple suspend\n"); quirks |= NVME_QUIRK_SIMPLE_SUSPEND; } /* * Double check that our mempool alloc size will cover the biggest * command we support. */ alloc_size = nvme_pci_iod_alloc_size(); WARN_ON_ONCE(alloc_size > PAGE_SIZE); dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, mempool_kfree, (void *) alloc_size, GFP_KERNEL, node); if (!dev->iod_mempool) { result = -ENOMEM; goto release_pools; } result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, quirks); if (result) goto release_mempool; dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); nvme_reset_ctrl(&dev->ctrl); async_schedule(nvme_async_probe, dev); return 0; release_mempool: mempool_destroy(dev->iod_mempool); release_pools: nvme_release_prp_pools(dev); unmap: nvme_dev_unmap(dev); put_pci: put_device(dev->dev); free: kfree(dev->queues); kfree(dev); return result; } static void nvme_reset_prepare(struct pci_dev *pdev) { struct nvme_dev *dev = pci_get_drvdata(pdev); /* * We don't need to check the return value from waiting for the reset * state as pci_dev device lock is held, making it impossible to race * with ->remove(). */ nvme_disable_prepare_reset(dev, false); nvme_sync_queues(&dev->ctrl); } static void nvme_reset_done(struct pci_dev *pdev) { struct nvme_dev *dev = pci_get_drvdata(pdev); if (!nvme_try_sched_reset(&dev->ctrl)) flush_work(&dev->ctrl.reset_work); } static void nvme_shutdown(struct pci_dev *pdev) { struct nvme_dev *dev = pci_get_drvdata(pdev); nvme_disable_prepare_reset(dev, true); } static void nvme_remove_attrs(struct nvme_dev *dev) { if (dev->attrs_added) sysfs_remove_group(&dev->ctrl.device->kobj, &nvme_pci_attr_group); } /* * The driver's remove may be called on a device in a partially initialized * state. This function must not have any dependencies on the device state in * order to proceed. */ static void nvme_remove(struct pci_dev *pdev) { struct nvme_dev *dev = pci_get_drvdata(pdev); nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); pci_set_drvdata(pdev, NULL); if (!pci_device_is_present(pdev)) { nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); nvme_dev_disable(dev, true); } flush_work(&dev->ctrl.reset_work); nvme_stop_ctrl(&dev->ctrl); nvme_remove_namespaces(&dev->ctrl); nvme_dev_disable(dev, true); nvme_remove_attrs(dev); nvme_free_host_mem(dev); nvme_dev_remove_admin(dev); nvme_free_queues(dev, 0); nvme_release_prp_pools(dev); nvme_dev_unmap(dev); nvme_uninit_ctrl(&dev->ctrl); } #ifdef CONFIG_PM_SLEEP static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) { return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); } static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) { return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); } static int nvme_resume(struct device *dev) { struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); struct nvme_ctrl *ctrl = &ndev->ctrl; if (ndev->last_ps == U32_MAX || nvme_set_power_state(ctrl, ndev->last_ps) != 0) goto reset; if (ctrl->hmpre && nvme_setup_host_mem(ndev)) goto reset; return 0; reset: return nvme_try_sched_reset(ctrl); } static int nvme_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct nvme_dev *ndev = pci_get_drvdata(pdev); struct nvme_ctrl *ctrl = &ndev->ctrl; int ret = -EBUSY; ndev->last_ps = U32_MAX; /* * The platform does not remove power for a kernel managed suspend so * use host managed nvme power settings for lowest idle power if * possible. This should have quicker resume latency than a full device * shutdown. But if the firmware is involved after the suspend or the * device does not support any non-default power states, shut down the * device fully. * * If ASPM is not enabled for the device, shut down the device and allow * the PCI bus layer to put it into D3 in order to take the PCIe link * down, so as to allow the platform to achieve its minimum low-power * state (which may not be possible if the link is up). */ if (pm_suspend_via_firmware() || !ctrl->npss || !pcie_aspm_enabled(pdev) || (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) return nvme_disable_prepare_reset(ndev, true); nvme_start_freeze(ctrl); nvme_wait_freeze(ctrl); nvme_sync_queues(ctrl); if (ctrl->state != NVME_CTRL_LIVE) goto unfreeze; /* * Host memory access may not be successful in a system suspend state, * but the specification allows the controller to access memory in a * non-operational power state. */ if (ndev->hmb) { ret = nvme_set_host_mem(ndev, 0); if (ret < 0) goto unfreeze; } ret = nvme_get_power_state(ctrl, &ndev->last_ps); if (ret < 0) goto unfreeze; /* * A saved state prevents pci pm from generically controlling the * device's power. If we're using protocol specific settings, we don't * want pci interfering. */ pci_save_state(pdev); ret = nvme_set_power_state(ctrl, ctrl->npss); if (ret < 0) goto unfreeze; if (ret) { /* discard the saved state */ pci_load_saved_state(pdev, NULL); /* * Clearing npss forces a controller reset on resume. The * correct value will be rediscovered then. */ ret = nvme_disable_prepare_reset(ndev, true); ctrl->npss = 0; } unfreeze: nvme_unfreeze(ctrl); return ret; } static int nvme_simple_suspend(struct device *dev) { struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); return nvme_disable_prepare_reset(ndev, true); } static int nvme_simple_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct nvme_dev *ndev = pci_get_drvdata(pdev); return nvme_try_sched_reset(&ndev->ctrl); } static const struct dev_pm_ops nvme_dev_pm_ops = { .suspend = nvme_suspend, .resume = nvme_resume, .freeze = nvme_simple_suspend, .thaw = nvme_simple_resume, .poweroff = nvme_simple_suspend, .restore = nvme_simple_resume, }; #endif /* CONFIG_PM_SLEEP */ static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct nvme_dev *dev = pci_get_drvdata(pdev); /* * A frozen channel requires a reset. When detected, this method will * shutdown the controller to quiesce. The controller will be restarted * after the slot reset through driver's slot_reset callback. */ switch (state) { case pci_channel_io_normal: return PCI_ERS_RESULT_CAN_RECOVER; case pci_channel_io_frozen: dev_warn(dev->ctrl.device, "frozen state error detected, reset controller\n"); nvme_dev_disable(dev, false); return PCI_ERS_RESULT_NEED_RESET; case pci_channel_io_perm_failure: dev_warn(dev->ctrl.device, "failure state error detected, request disconnect\n"); return PCI_ERS_RESULT_DISCONNECT; } return PCI_ERS_RESULT_NEED_RESET; } static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) { struct nvme_dev *dev = pci_get_drvdata(pdev); dev_info(dev->ctrl.device, "restart after slot reset\n"); pci_restore_state(pdev); nvme_reset_ctrl(&dev->ctrl); return PCI_ERS_RESULT_RECOVERED; } static void nvme_error_resume(struct pci_dev *pdev) { struct nvme_dev *dev = pci_get_drvdata(pdev); flush_work(&dev->ctrl.reset_work); } static const struct pci_error_handlers nvme_err_handler = { .error_detected = nvme_error_detected, .slot_reset = nvme_slot_reset, .resume = nvme_error_resume, .reset_prepare = nvme_reset_prepare, .reset_done = nvme_reset_done, }; static const struct pci_device_id nvme_id_table[] = { { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ .driver_data = NVME_QUIRK_STRIPE_SIZE | NVME_QUIRK_DEALLOCATE_ZEROES, }, { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ .driver_data = NVME_QUIRK_STRIPE_SIZE | NVME_QUIRK_DEALLOCATE_ZEROES, }, { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ .driver_data = NVME_QUIRK_STRIPE_SIZE | NVME_QUIRK_DEALLOCATE_ZEROES | NVME_QUIRK_IGNORE_DEV_SUBNQN, }, { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ .driver_data = NVME_QUIRK_STRIPE_SIZE | NVME_QUIRK_DEALLOCATE_ZEROES, }, { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ .driver_data = NVME_QUIRK_NO_DEEPEST_PS | NVME_QUIRK_MEDIUM_PRIO_SQ | NVME_QUIRK_NO_TEMP_THRESH_CHANGE | NVME_QUIRK_DISABLE_WRITE_ZEROES, }, { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ .driver_data = NVME_QUIRK_IDENTIFY_CNS | NVME_QUIRK_DISABLE_WRITE_ZEROES, }, { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, }, { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | NVME_QUIRK_NO_NS_DESC_LIST, }, { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | NVME_QUIRK_DISABLE_WRITE_ZEROES| NVME_QUIRK_IGNORE_DEV_SUBNQN, }, { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | NVME_QUIRK_IGNORE_DEV_SUBNQN, }, { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ .driver_data = NVME_QUIRK_NO_DEEPEST_PS | NVME_QUIRK_IGNORE_DEV_SUBNQN, }, { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), .driver_data = NVME_QUIRK_SINGLE_VECTOR }, { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), .driver_data = NVME_QUIRK_SINGLE_VECTOR | NVME_QUIRK_128_BYTES_SQES | NVME_QUIRK_SHARED_TAGS | NVME_QUIRK_SKIP_CID_GEN }, { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, { 0, } }; MODULE_DEVICE_TABLE(pci, nvme_id_table); static struct pci_driver nvme_driver = { .name = "nvme", .id_table = nvme_id_table, .probe = nvme_probe, .remove = nvme_remove, .shutdown = nvme_shutdown, #ifdef CONFIG_PM_SLEEP .driver = { .pm = &nvme_dev_pm_ops, }, #endif .sriov_configure = pci_sriov_configure_simple, .err_handler = &nvme_err_handler, }; static int __init nvme_init(void) { BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); return pci_register_driver(&nvme_driver); } static void __exit nvme_exit(void) { pci_unregister_driver(&nvme_driver); flush_workqueue(nvme_wq); } MODULE_AUTHOR("Matthew Wilcox "); MODULE_LICENSE("GPL"); MODULE_VERSION("1.0"); module_init(nvme_init); module_exit(nvme_exit);