/* * File: msi.c * Purpose: PCI Message Signaled Interrupt (MSI) * * Copyright (C) 2003-2004 Intel * Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com) */ #include <linux/mm.h> #include <linux/irq.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/config.h> #include <linux/ioport.h> #include <linux/smp_lock.h> #include <linux/pci.h> #include <linux/proc_fs.h> #include <asm/errno.h> #include <asm/io.h> #include <asm/smp.h> #include "pci.h" #include "msi.h" #define MSI_TARGET_CPU first_cpu(cpu_online_map) static DEFINE_SPINLOCK(msi_lock); static struct msi_desc* msi_desc[NR_IRQS] = { [0 ... NR_IRQS-1] = NULL }; static kmem_cache_t* msi_cachep; static int pci_msi_enable = 1; static int last_alloc_vector; static int nr_released_vectors; static int nr_reserved_vectors = NR_HP_RESERVED_VECTORS; static int nr_msix_devices; #ifndef CONFIG_X86_IO_APIC int vector_irq[NR_VECTORS] = { [0 ... NR_VECTORS - 1] = -1}; u8 irq_vector[NR_IRQ_VECTORS] = { FIRST_DEVICE_VECTOR , 0 }; #endif static void msi_cache_ctor(void *p, kmem_cache_t *cache, unsigned long flags) { memset(p, 0, NR_IRQS * sizeof(struct msi_desc)); } static int msi_cache_init(void) { msi_cachep = kmem_cache_create("msi_cache", NR_IRQS * sizeof(struct msi_desc), 0, SLAB_HWCACHE_ALIGN, msi_cache_ctor, NULL); if (!msi_cachep) return -ENOMEM; return 0; } static void msi_set_mask_bit(unsigned int vector, int flag) { struct msi_desc *entry; entry = (struct msi_desc *)msi_desc[vector]; if (!entry || !entry->dev || !entry->mask_base) return; switch (entry->msi_attrib.type) { case PCI_CAP_ID_MSI: { int pos; u32 mask_bits; pos = (long)entry->mask_base; pci_read_config_dword(entry->dev, pos, &mask_bits); mask_bits &= ~(1); mask_bits |= flag; pci_write_config_dword(entry->dev, pos, mask_bits); break; } case PCI_CAP_ID_MSIX: { int offset = entry->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_VECTOR_CTRL_OFFSET; writel(flag, entry->mask_base + offset); break; } default: break; } } #ifdef CONFIG_SMP static void set_msi_affinity(unsigned int vector, cpumask_t cpu_mask) { struct msi_desc *entry; struct msg_address address; unsigned int irq = vector; unsigned int dest_cpu = first_cpu(cpu_mask); entry = (struct msi_desc *)msi_desc[vector]; if (!entry || !entry->dev) return; switch (entry->msi_attrib.type) { case PCI_CAP_ID_MSI: { int pos; if (!(pos = pci_find_capability(entry->dev, PCI_CAP_ID_MSI))) return; pci_read_config_dword(entry->dev, msi_lower_address_reg(pos), &address.lo_address.value); address.lo_address.value &= MSI_ADDRESS_DEST_ID_MASK; address.lo_address.value |= (cpu_physical_id(dest_cpu) << MSI_TARGET_CPU_SHIFT); entry->msi_attrib.current_cpu = cpu_physical_id(dest_cpu); pci_write_config_dword(entry->dev, msi_lower_address_reg(pos), address.lo_address.value); set_native_irq_info(irq, cpu_mask); break; } case PCI_CAP_ID_MSIX: { int offset = entry->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_LOWER_ADDR_OFFSET; address.lo_address.value = readl(entry->mask_base + offset); address.lo_address.value &= MSI_ADDRESS_DEST_ID_MASK; address.lo_address.value |= (cpu_physical_id(dest_cpu) << MSI_TARGET_CPU_SHIFT); entry->msi_attrib.current_cpu = cpu_physical_id(dest_cpu); writel(address.lo_address.value, entry->mask_base + offset); set_native_irq_info(irq, cpu_mask); break; } default: break; } } #endif /* CONFIG_SMP */ static void mask_MSI_irq(unsigned int vector) { msi_set_mask_bit(vector, 1); } static void unmask_MSI_irq(unsigned int vector) { msi_set_mask_bit(vector, 0); } static unsigned int startup_msi_irq_wo_maskbit(unsigned int vector) { struct msi_desc *entry; unsigned long flags; spin_lock_irqsave(&msi_lock, flags); entry = msi_desc[vector]; if (!entry || !entry->dev) { spin_unlock_irqrestore(&msi_lock, flags); return 0; } entry->msi_attrib.state = 1; /* Mark it active */ spin_unlock_irqrestore(&msi_lock, flags); return 0; /* never anything pending */ } static unsigned int startup_msi_irq_w_maskbit(unsigned int vector) { startup_msi_irq_wo_maskbit(vector); unmask_MSI_irq(vector); return 0; /* never anything pending */ } static void shutdown_msi_irq(unsigned int vector) { struct msi_desc *entry; unsigned long flags; spin_lock_irqsave(&msi_lock, flags); entry = msi_desc[vector]; if (entry && entry->dev) entry->msi_attrib.state = 0; /* Mark it not active */ spin_unlock_irqrestore(&msi_lock, flags); } static void end_msi_irq_wo_maskbit(unsigned int vector) { move_native_irq(vector); ack_APIC_irq(); } static void end_msi_irq_w_maskbit(unsigned int vector) { move_native_irq(vector); unmask_MSI_irq(vector); ack_APIC_irq(); } static void do_nothing(unsigned int vector) { } /* * Interrupt Type for MSI-X PCI/PCI-X/PCI-Express Devices, * which implement the MSI-X Capability Structure. */ static struct hw_interrupt_type msix_irq_type = { .typename = "PCI-MSI-X", .startup = startup_msi_irq_w_maskbit, .shutdown = shutdown_msi_irq, .enable = unmask_MSI_irq, .disable = mask_MSI_irq, .ack = mask_MSI_irq, .end = end_msi_irq_w_maskbit, .set_affinity = set_msi_irq_affinity }; /* * Interrupt Type for MSI PCI/PCI-X/PCI-Express Devices, * which implement the MSI Capability Structure with * Mask-and-Pending Bits. */ static struct hw_interrupt_type msi_irq_w_maskbit_type = { .typename = "PCI-MSI", .startup = startup_msi_irq_w_maskbit, .shutdown = shutdown_msi_irq, .enable = unmask_MSI_irq, .disable = mask_MSI_irq, .ack = mask_MSI_irq, .end = end_msi_irq_w_maskbit, .set_affinity = set_msi_irq_affinity }; /* * Interrupt Type for MSI PCI/PCI-X/PCI-Express Devices, * which implement the MSI Capability Structure without * Mask-and-Pending Bits. */ static struct hw_interrupt_type msi_irq_wo_maskbit_type = { .typename = "PCI-MSI", .startup = startup_msi_irq_wo_maskbit, .shutdown = shutdown_msi_irq, .enable = do_nothing, .disable = do_nothing, .ack = do_nothing, .end = end_msi_irq_wo_maskbit, .set_affinity = set_msi_irq_affinity }; static void msi_data_init(struct msg_data *msi_data, unsigned int vector) { memset(msi_data, 0, sizeof(struct msg_data)); msi_data->vector = (u8)vector; msi_data->delivery_mode = MSI_DELIVERY_MODE; msi_data->level = MSI_LEVEL_MODE; msi_data->trigger = MSI_TRIGGER_MODE; } static void msi_address_init(struct msg_address *msi_address) { unsigned int dest_id; unsigned long dest_phys_id = cpu_physical_id(MSI_TARGET_CPU); memset(msi_address, 0, sizeof(struct msg_address)); msi_address->hi_address = (u32)0; dest_id = (MSI_ADDRESS_HEADER << MSI_ADDRESS_HEADER_SHIFT); msi_address->lo_address.u.dest_mode = MSI_PHYSICAL_MODE; msi_address->lo_address.u.redirection_hint = MSI_REDIRECTION_HINT_MODE; msi_address->lo_address.u.dest_id = dest_id; msi_address->lo_address.value |= (dest_phys_id << MSI_TARGET_CPU_SHIFT); } static int msi_free_vector(struct pci_dev* dev, int vector, int reassign); static int assign_msi_vector(void) { static int new_vector_avail = 1; int vector; unsigned long flags; /* * msi_lock is provided to ensure that successful allocation of MSI * vector is assigned unique among drivers. */ spin_lock_irqsave(&msi_lock, flags); if (!new_vector_avail) { int free_vector = 0; /* * vector_irq[] = -1 indicates that this specific vector is: * - assigned for MSI (since MSI have no associated IRQ) or * - assigned for legacy if less than 16, or * - having no corresponding 1:1 vector-to-IOxAPIC IRQ mapping * vector_irq[] = 0 indicates that this vector, previously * assigned for MSI, is freed by hotplug removed operations. * This vector will be reused for any subsequent hotplug added * operations. * vector_irq[] > 0 indicates that this vector is assigned for * IOxAPIC IRQs. This vector and its value provides a 1-to-1 * vector-to-IOxAPIC IRQ mapping. */ for (vector = FIRST_DEVICE_VECTOR; vector < NR_IRQS; vector++) { if (vector_irq[vector] != 0) continue; free_vector = vector; if (!msi_desc[vector]) break; else continue; } if (!free_vector) { spin_unlock_irqrestore(&msi_lock, flags); return -EBUSY; } vector_irq[free_vector] = -1; nr_released_vectors--; spin_unlock_irqrestore(&msi_lock, flags); if (msi_desc[free_vector] != NULL) { struct pci_dev *dev; int tail; /* free all linked vectors before re-assign */ do { spin_lock_irqsave(&msi_lock, flags); dev = msi_desc[free_vector]->dev; tail = msi_desc[free_vector]->link.tail; spin_unlock_irqrestore(&msi_lock, flags); msi_free_vector(dev, tail, 1); } while (free_vector != tail); } return free_vector; } vector = assign_irq_vector(AUTO_ASSIGN); last_alloc_vector = vector; if (vector == LAST_DEVICE_VECTOR) new_vector_avail = 0; spin_unlock_irqrestore(&msi_lock, flags); return vector; } static int get_new_vector(void) { int vector; if ((vector = assign_msi_vector()) > 0) set_intr_gate(vector, interrupt[vector]); return vector; } static int msi_init(void) { static int status = -ENOMEM; if (!status) return status; if (pci_msi_quirk) { pci_msi_enable = 0; printk(KERN_WARNING "PCI: MSI quirk detected. MSI disabled.\n"); status = -EINVAL; return status; } if ((status = msi_cache_init()) < 0) { pci_msi_enable = 0; printk(KERN_WARNING "PCI: MSI cache init failed\n"); return status; } last_alloc_vector = assign_irq_vector(AUTO_ASSIGN); if (last_alloc_vector < 0) { pci_msi_enable = 0; printk(KERN_WARNING "PCI: No interrupt vectors available for MSI\n"); status = -EBUSY; return status; } vector_irq[last_alloc_vector] = 0; nr_released_vectors++; return status; } static int get_msi_vector(struct pci_dev *dev) { return get_new_vector(); } static struct msi_desc* alloc_msi_entry(void) { struct msi_desc *entry; entry = kmem_cache_alloc(msi_cachep, SLAB_KERNEL); if (!entry) return NULL; memset(entry, 0, sizeof(struct msi_desc)); entry->link.tail = entry->link.head = 0; /* single message */ entry->dev = NULL; return entry; } static void attach_msi_entry(struct msi_desc *entry, int vector) { unsigned long flags; spin_lock_irqsave(&msi_lock, flags); msi_desc[vector] = entry; spin_unlock_irqrestore(&msi_lock, flags); } static void irq_handler_init(int cap_id, int pos, int mask) { spin_lock(&irq_desc[pos].lock); if (cap_id == PCI_CAP_ID_MSIX) irq_desc[pos].handler = &msix_irq_type; else { if (!mask) irq_desc[pos].handler = &msi_irq_wo_maskbit_type; else irq_desc[pos].handler = &msi_irq_w_maskbit_type; } spin_unlock(&irq_desc[pos].lock); } static void enable_msi_mode(struct pci_dev *dev, int pos, int type) { u16 control; pci_read_config_word(dev, msi_control_reg(pos), &control); if (type == PCI_CAP_ID_MSI) { /* Set enabled bits to single MSI & enable MSI_enable bit */ msi_enable(control, 1); pci_write_config_word(dev, msi_control_reg(pos), control); } else { msix_enable(control); pci_write_config_word(dev, msi_control_reg(pos), control); } if (pci_find_capability(dev, PCI_CAP_ID_EXP)) { /* PCI Express Endpoint device detected */ pci_intx(dev, 0); /* disable intx */ } } void disable_msi_mode(struct pci_dev *dev, int pos, int type) { u16 control; pci_read_config_word(dev, msi_control_reg(pos), &control); if (type == PCI_CAP_ID_MSI) { /* Set enabled bits to single MSI & enable MSI_enable bit */ msi_disable(control); pci_write_config_word(dev, msi_control_reg(pos), control); } else { msix_disable(control); pci_write_config_word(dev, msi_control_reg(pos), control); } if (pci_find_capability(dev, PCI_CAP_ID_EXP)) { /* PCI Express Endpoint device detected */ pci_intx(dev, 1); /* enable intx */ } } static int msi_lookup_vector(struct pci_dev *dev, int type) { int vector; unsigned long flags; spin_lock_irqsave(&msi_lock, flags); for (vector = FIRST_DEVICE_VECTOR; vector < NR_IRQS; vector++) { if (!msi_desc[vector] || msi_desc[vector]->dev != dev || msi_desc[vector]->msi_attrib.type != type || msi_desc[vector]->msi_attrib.default_vector != dev->irq) continue; spin_unlock_irqrestore(&msi_lock, flags); /* This pre-assigned MSI vector for this device already exits. Override dev->irq with this vector */ dev->irq = vector; return 0; } spin_unlock_irqrestore(&msi_lock, flags); return -EACCES; } void pci_scan_msi_device(struct pci_dev *dev) { if (!dev) return; if (pci_find_capability(dev, PCI_CAP_ID_MSIX) > 0) nr_msix_devices++; else if (pci_find_capability(dev, PCI_CAP_ID_MSI) > 0) nr_reserved_vectors++; } /** * msi_capability_init - configure device's MSI capability structure * @dev: pointer to the pci_dev data structure of MSI device function * * Setup the MSI capability structure of device function with a single * MSI vector, regardless of device function is capable of handling * multiple messages. A return of zero indicates the successful setup * of an entry zero with the new MSI vector or non-zero for otherwise. **/ static int msi_capability_init(struct pci_dev *dev) { struct msi_desc *entry; struct msg_address address; struct msg_data data; int pos, vector; u16 control; pos = pci_find_capability(dev, PCI_CAP_ID_MSI); pci_read_config_word(dev, msi_control_reg(pos), &control); /* MSI Entry Initialization */ if (!(entry = alloc_msi_entry())) return -ENOMEM; if ((vector = get_msi_vector(dev)) < 0) { kmem_cache_free(msi_cachep, entry); return -EBUSY; } entry->link.head = vector; entry->link.tail = vector; entry->msi_attrib.type = PCI_CAP_ID_MSI; entry->msi_attrib.state = 0; /* Mark it not active */ entry->msi_attrib.entry_nr = 0; entry->msi_attrib.maskbit = is_mask_bit_support(control); entry->msi_attrib.default_vector = dev->irq; /* Save IOAPIC IRQ */ dev->irq = vector; entry->dev = dev; if (is_mask_bit_support(control)) { entry->mask_base = (void __iomem *)(long)msi_mask_bits_reg(pos, is_64bit_address(control)); } /* Replace with MSI handler */ irq_handler_init(PCI_CAP_ID_MSI, vector, entry->msi_attrib.maskbit); /* Configure MSI capability structure */ msi_address_init(&address); msi_data_init(&data, vector); entry->msi_attrib.current_cpu = ((address.lo_address.u.dest_id >> MSI_TARGET_CPU_SHIFT) & MSI_TARGET_CPU_MASK); pci_write_config_dword(dev, msi_lower_address_reg(pos), address.lo_address.value); if (is_64bit_address(control)) { pci_write_config_dword(dev, msi_upper_address_reg(pos), address.hi_address); pci_write_config_word(dev, msi_data_reg(pos, 1), *((u32*)&data)); } else pci_write_config_word(dev, msi_data_reg(pos, 0), *((u32*)&data)); if (entry->msi_attrib.maskbit) { unsigned int maskbits, temp; /* All MSIs are unmasked by default, Mask them all */ pci_read_config_dword(dev, msi_mask_bits_reg(pos, is_64bit_address(control)), &maskbits); temp = (1 << multi_msi_capable(control)); temp = ((temp - 1) & ~temp); maskbits |= temp; pci_write_config_dword(dev, msi_mask_bits_reg(pos, is_64bit_address(control)), maskbits); } attach_msi_entry(entry, vector); /* Set MSI enabled bits */ enable_msi_mode(dev, pos, PCI_CAP_ID_MSI); return 0; } /** * msix_capability_init - configure device's MSI-X capability * @dev: pointer to the pci_dev data structure of MSI-X device function * @entries: pointer to an array of struct msix_entry entries * @nvec: number of @entries * * Setup the MSI-X capability structure of device function with a * single MSI-X vector. A return of zero indicates the successful setup of * requested MSI-X entries with allocated vectors or non-zero for otherwise. **/ static int msix_capability_init(struct pci_dev *dev, struct msix_entry *entries, int nvec) { struct msi_desc *head = NULL, *tail = NULL, *entry = NULL; struct msg_address address; struct msg_data data; int vector, pos, i, j, nr_entries, temp = 0; u32 phys_addr, table_offset; u16 control; u8 bir; void __iomem *base; pos = pci_find_capability(dev, PCI_CAP_ID_MSIX); /* Request & Map MSI-X table region */ pci_read_config_word(dev, msi_control_reg(pos), &control); nr_entries = multi_msix_capable(control); pci_read_config_dword(dev, msix_table_offset_reg(pos), &table_offset); bir = (u8)(table_offset & PCI_MSIX_FLAGS_BIRMASK); phys_addr = pci_resource_start (dev, bir); phys_addr += (u32)(table_offset & ~PCI_MSIX_FLAGS_BIRMASK); base = ioremap_nocache(phys_addr, nr_entries * PCI_MSIX_ENTRY_SIZE); if (base == NULL) return -ENOMEM; /* MSI-X Table Initialization */ for (i = 0; i < nvec; i++) { entry = alloc_msi_entry(); if (!entry) break; if ((vector = get_msi_vector(dev)) < 0) break; j = entries[i].entry; entries[i].vector = vector; entry->msi_attrib.type = PCI_CAP_ID_MSIX; entry->msi_attrib.state = 0; /* Mark it not active */ entry->msi_attrib.entry_nr = j; entry->msi_attrib.maskbit = 1; entry->msi_attrib.default_vector = dev->irq; entry->dev = dev; entry->mask_base = base; if (!head) { entry->link.head = vector; entry->link.tail = vector; head = entry; } else { entry->link.head = temp; entry->link.tail = tail->link.tail; tail->link.tail = vector; head->link.head = vector; } temp = vector; tail = entry; /* Replace with MSI-X handler */ irq_handler_init(PCI_CAP_ID_MSIX, vector, 1); /* Configure MSI-X capability structure */ msi_address_init(&address); msi_data_init(&data, vector); entry->msi_attrib.current_cpu = ((address.lo_address.u.dest_id >> MSI_TARGET_CPU_SHIFT) & MSI_TARGET_CPU_MASK); writel(address.lo_address.value, base + j * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_LOWER_ADDR_OFFSET); writel(address.hi_address, base + j * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_UPPER_ADDR_OFFSET); writel(*(u32*)&data, base + j * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_DATA_OFFSET); attach_msi_entry(entry, vector); } if (i != nvec) { i--; for (; i >= 0; i--) { vector = (entries + i)->vector; msi_free_vector(dev, vector, 0); (entries + i)->vector = 0; } return -EBUSY; } /* Set MSI-X enabled bits */ enable_msi_mode(dev, pos, PCI_CAP_ID_MSIX); return 0; } /** * pci_enable_msi - configure device's MSI capability structure * @dev: pointer to the pci_dev data structure of MSI device function * * Setup the MSI capability structure of device function with * a single MSI vector upon its software driver call to request for * MSI mode enabled on its hardware device function. A return of zero * indicates the successful setup of an entry zero with the new MSI * vector or non-zero for otherwise. **/ int pci_enable_msi(struct pci_dev* dev) { int pos, temp, status = -EINVAL; u16 control; if (!pci_msi_enable || !dev) return status; if (dev->no_msi) return status; temp = dev->irq; if ((status = msi_init()) < 0) return status; if (!(pos = pci_find_capability(dev, PCI_CAP_ID_MSI))) return -EINVAL; pci_read_config_word(dev, msi_control_reg(pos), &control); if (control & PCI_MSI_FLAGS_ENABLE) return 0; /* Already in MSI mode */ if (!msi_lookup_vector(dev, PCI_CAP_ID_MSI)) { /* Lookup Sucess */ unsigned long flags; spin_lock_irqsave(&msi_lock, flags); if (!vector_irq[dev->irq]) { msi_desc[dev->irq]->msi_attrib.state = 0; vector_irq[dev->irq] = -1; nr_released_vectors--; spin_unlock_irqrestore(&msi_lock, flags); enable_msi_mode(dev, pos, PCI_CAP_ID_MSI); return 0; } spin_unlock_irqrestore(&msi_lock, flags); dev->irq = temp; } /* Check whether driver already requested for MSI-X vectors */ if ((pos = pci_find_capability(dev, PCI_CAP_ID_MSIX)) > 0 && !msi_lookup_vector(dev, PCI_CAP_ID_MSIX)) { printk(KERN_INFO "PCI: %s: Can't enable MSI. " "Device already has MSI-X vectors assigned\n", pci_name(dev)); dev->irq = temp; return -EINVAL; } status = msi_capability_init(dev); if (!status) { if (!pos) nr_reserved_vectors--; /* Only MSI capable */ else if (nr_msix_devices > 0) nr_msix_devices--; /* Both MSI and MSI-X capable, but choose enabling MSI */ } return status; } void pci_disable_msi(struct pci_dev* dev) { struct msi_desc *entry; int pos, default_vector; u16 control; unsigned long flags; if (!dev || !(pos = pci_find_capability(dev, PCI_CAP_ID_MSI))) return; pci_read_config_word(dev, msi_control_reg(pos), &control); if (!(control & PCI_MSI_FLAGS_ENABLE)) return; spin_lock_irqsave(&msi_lock, flags); entry = msi_desc[dev->irq]; if (!entry || !entry->dev || entry->msi_attrib.type != PCI_CAP_ID_MSI) { spin_unlock_irqrestore(&msi_lock, flags); return; } if (entry->msi_attrib.state) { spin_unlock_irqrestore(&msi_lock, flags); printk(KERN_WARNING "PCI: %s: pci_disable_msi() called without " "free_irq() on MSI vector %d\n", pci_name(dev), dev->irq); BUG_ON(entry->msi_attrib.state > 0); } else { vector_irq[dev->irq] = 0; /* free it */ nr_released_vectors++; default_vector = entry->msi_attrib.default_vector; spin_unlock_irqrestore(&msi_lock, flags); /* Restore dev->irq to its default pin-assertion vector */ dev->irq = default_vector; disable_msi_mode(dev, pci_find_capability(dev, PCI_CAP_ID_MSI), PCI_CAP_ID_MSI); } } static int msi_free_vector(struct pci_dev* dev, int vector, int reassign) { struct msi_desc *entry; int head, entry_nr, type; void __iomem *base; unsigned long flags; spin_lock_irqsave(&msi_lock, flags); entry = msi_desc[vector]; if (!entry || entry->dev != dev) { spin_unlock_irqrestore(&msi_lock, flags); return -EINVAL; } type = entry->msi_attrib.type; entry_nr = entry->msi_attrib.entry_nr; head = entry->link.head; base = entry->mask_base; msi_desc[entry->link.head]->link.tail = entry->link.tail; msi_desc[entry->link.tail]->link.head = entry->link.head; entry->dev = NULL; if (!reassign) { vector_irq[vector] = 0; nr_released_vectors++; } msi_desc[vector] = NULL; spin_unlock_irqrestore(&msi_lock, flags); kmem_cache_free(msi_cachep, entry); if (type == PCI_CAP_ID_MSIX) { if (!reassign) writel(1, base + entry_nr * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_VECTOR_CTRL_OFFSET); if (head == vector) { /* * Detect last MSI-X vector to be released. * Release the MSI-X memory-mapped table. */ int pos, nr_entries; u32 phys_addr, table_offset; u16 control; u8 bir; pos = pci_find_capability(dev, PCI_CAP_ID_MSIX); pci_read_config_word(dev, msi_control_reg(pos), &control); nr_entries = multi_msix_capable(control); pci_read_config_dword(dev, msix_table_offset_reg(pos), &table_offset); bir = (u8)(table_offset & PCI_MSIX_FLAGS_BIRMASK); phys_addr = pci_resource_start (dev, bir); phys_addr += (u32)(table_offset & ~PCI_MSIX_FLAGS_BIRMASK); iounmap(base); } } return 0; } static int reroute_msix_table(int head, struct msix_entry *entries, int *nvec) { int vector = head, tail = 0; int i, j = 0, nr_entries = 0; void __iomem *base; unsigned long flags; spin_lock_irqsave(&msi_lock, flags); while (head != tail) { nr_entries++; tail = msi_desc[vector]->link.tail; if (entries[0].entry == msi_desc[vector]->msi_attrib.entry_nr) j = vector; vector = tail; } if (*nvec > nr_entries) { spin_unlock_irqrestore(&msi_lock, flags); *nvec = nr_entries; return -EINVAL; } vector = ((j > 0) ? j : head); for (i = 0; i < *nvec; i++) { j = msi_desc[vector]->msi_attrib.entry_nr; msi_desc[vector]->msi_attrib.state = 0; /* Mark it not active */ vector_irq[vector] = -1; /* Mark it busy */ nr_released_vectors--; entries[i].vector = vector; if (j != (entries + i)->entry) { base = msi_desc[vector]->mask_base; msi_desc[vector]->msi_attrib.entry_nr = (entries + i)->entry; writel( readl(base + j * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_LOWER_ADDR_OFFSET), base + (entries + i)->entry * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_LOWER_ADDR_OFFSET); writel( readl(base + j * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_UPPER_ADDR_OFFSET), base + (entries + i)->entry * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_UPPER_ADDR_OFFSET); writel( (readl(base + j * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_DATA_OFFSET) & 0xff00) | vector, base + (entries+i)->entry*PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_DATA_OFFSET); } vector = msi_desc[vector]->link.tail; } spin_unlock_irqrestore(&msi_lock, flags); return 0; } /** * pci_enable_msix - configure device's MSI-X capability structure * @dev: pointer to the pci_dev data structure of MSI-X device function * @entries: pointer to an array of MSI-X entries * @nvec: number of MSI-X vectors requested for allocation by device driver * * Setup the MSI-X capability structure of device function with the number * of requested vectors upon its software driver call to request for * MSI-X mode enabled on its hardware device function. A return of zero * indicates the successful configuration of MSI-X capability structure * with new allocated MSI-X vectors. A return of < 0 indicates a failure. * Or a return of > 0 indicates that driver request is exceeding the number * of vectors available. Driver should use the returned value to re-send * its request. **/ int pci_enable_msix(struct pci_dev* dev, struct msix_entry *entries, int nvec) { int status, pos, nr_entries, free_vectors; int i, j, temp; u16 control; unsigned long flags; if (!pci_msi_enable || !dev || !entries) return -EINVAL; if ((status = msi_init()) < 0) return status; if (!(pos = pci_find_capability(dev, PCI_CAP_ID_MSIX))) return -EINVAL; pci_read_config_word(dev, msi_control_reg(pos), &control); if (control & PCI_MSIX_FLAGS_ENABLE) return -EINVAL; /* Already in MSI-X mode */ nr_entries = multi_msix_capable(control); if (nvec > nr_entries) return -EINVAL; /* Check for any invalid entries */ for (i = 0; i < nvec; i++) { if (entries[i].entry >= nr_entries) return -EINVAL; /* invalid entry */ for (j = i + 1; j < nvec; j++) { if (entries[i].entry == entries[j].entry) return -EINVAL; /* duplicate entry */ } } temp = dev->irq; if (!msi_lookup_vector(dev, PCI_CAP_ID_MSIX)) { /* Lookup Sucess */ nr_entries = nvec; /* Reroute MSI-X table */ if (reroute_msix_table(dev->irq, entries, &nr_entries)) { /* #requested > #previous-assigned */ dev->irq = temp; return nr_entries; } dev->irq = temp; enable_msi_mode(dev, pos, PCI_CAP_ID_MSIX); return 0; } /* Check whether driver already requested for MSI vector */ if (pci_find_capability(dev, PCI_CAP_ID_MSI) > 0 && !msi_lookup_vector(dev, PCI_CAP_ID_MSI)) { printk(KERN_INFO "PCI: %s: Can't enable MSI-X. " "Device already has an MSI vector assigned\n", pci_name(dev)); dev->irq = temp; return -EINVAL; } spin_lock_irqsave(&msi_lock, flags); /* * msi_lock is provided to ensure that enough vectors resources are * available before granting. */ free_vectors = pci_vector_resources(last_alloc_vector, nr_released_vectors); /* Ensure that each MSI/MSI-X device has one vector reserved by default to avoid any MSI-X driver to take all available resources */ free_vectors -= nr_reserved_vectors; /* Find the average of free vectors among MSI-X devices */ if (nr_msix_devices > 0) free_vectors /= nr_msix_devices; spin_unlock_irqrestore(&msi_lock, flags); if (nvec > free_vectors) { if (free_vectors > 0) return free_vectors; else return -EBUSY; } status = msix_capability_init(dev, entries, nvec); if (!status && nr_msix_devices > 0) nr_msix_devices--; return status; } void pci_disable_msix(struct pci_dev* dev) { int pos, temp; u16 control; if (!dev || !(pos = pci_find_capability(dev, PCI_CAP_ID_MSIX))) return; pci_read_config_word(dev, msi_control_reg(pos), &control); if (!(control & PCI_MSIX_FLAGS_ENABLE)) return; temp = dev->irq; if (!msi_lookup_vector(dev, PCI_CAP_ID_MSIX)) { int state, vector, head, tail = 0, warning = 0; unsigned long flags; vector = head = dev->irq; spin_lock_irqsave(&msi_lock, flags); while (head != tail) { state = msi_desc[vector]->msi_attrib.state; if (state) warning = 1; else { vector_irq[vector] = 0; /* free it */ nr_released_vectors++; } tail = msi_desc[vector]->link.tail; vector = tail; } spin_unlock_irqrestore(&msi_lock, flags); if (warning) { dev->irq = temp; printk(KERN_WARNING "PCI: %s: pci_disable_msix() called without " "free_irq() on all MSI-X vectors\n", pci_name(dev)); BUG_ON(warning > 0); } else { dev->irq = temp; disable_msi_mode(dev, pci_find_capability(dev, PCI_CAP_ID_MSIX), PCI_CAP_ID_MSIX); } } } /** * msi_remove_pci_irq_vectors - reclaim MSI(X) vectors to unused state * @dev: pointer to the pci_dev data structure of MSI(X) device function * * Being called during hotplug remove, from which the device function * is hot-removed. All previous assigned MSI/MSI-X vectors, if * allocated for this device function, are reclaimed to unused state, * which may be used later on. **/ void msi_remove_pci_irq_vectors(struct pci_dev* dev) { int state, pos, temp; unsigned long flags; if (!pci_msi_enable || !dev) return; temp = dev->irq; /* Save IOAPIC IRQ */ if ((pos = pci_find_capability(dev, PCI_CAP_ID_MSI)) > 0 && !msi_lookup_vector(dev, PCI_CAP_ID_MSI)) { spin_lock_irqsave(&msi_lock, flags); state = msi_desc[dev->irq]->msi_attrib.state; spin_unlock_irqrestore(&msi_lock, flags); if (state) { printk(KERN_WARNING "PCI: %s: msi_remove_pci_irq_vectors() " "called without free_irq() on MSI vector %d\n", pci_name(dev), dev->irq); BUG_ON(state > 0); } else /* Release MSI vector assigned to this device */ msi_free_vector(dev, dev->irq, 0); dev->irq = temp; /* Restore IOAPIC IRQ */ } if ((pos = pci_find_capability(dev, PCI_CAP_ID_MSIX)) > 0 && !msi_lookup_vector(dev, PCI_CAP_ID_MSIX)) { int vector, head, tail = 0, warning = 0; void __iomem *base = NULL; vector = head = dev->irq; while (head != tail) { spin_lock_irqsave(&msi_lock, flags); state = msi_desc[vector]->msi_attrib.state; tail = msi_desc[vector]->link.tail; base = msi_desc[vector]->mask_base; spin_unlock_irqrestore(&msi_lock, flags); if (state) warning = 1; else if (vector != head) /* Release MSI-X vector */ msi_free_vector(dev, vector, 0); vector = tail; } msi_free_vector(dev, vector, 0); if (warning) { /* Force to release the MSI-X memory-mapped table */ u32 phys_addr, table_offset; u16 control; u8 bir; pci_read_config_word(dev, msi_control_reg(pos), &control); pci_read_config_dword(dev, msix_table_offset_reg(pos), &table_offset); bir = (u8)(table_offset & PCI_MSIX_FLAGS_BIRMASK); phys_addr = pci_resource_start (dev, bir); phys_addr += (u32)(table_offset & ~PCI_MSIX_FLAGS_BIRMASK); iounmap(base); printk(KERN_WARNING "PCI: %s: msi_remove_pci_irq_vectors() " "called without free_irq() on all MSI-X vectors\n", pci_name(dev)); BUG_ON(warning > 0); } dev->irq = temp; /* Restore IOAPIC IRQ */ } } EXPORT_SYMBOL(pci_enable_msi); EXPORT_SYMBOL(pci_disable_msi); EXPORT_SYMBOL(pci_enable_msix); EXPORT_SYMBOL(pci_disable_msix);