#undef DEBUG /* * ARM performance counter support. * * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles * Copyright (C) 2010 ARM Ltd., Will Deacon * * This code is based on the sparc64 perf event code, which is in turn based * on the x86 code. */ #define pr_fmt(fmt) "hw perfevents: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int armpmu_map_cache_event(const unsigned (*cache_map) [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX], u64 config) { unsigned int cache_type, cache_op, cache_result, ret; cache_type = (config >> 0) & 0xff; if (cache_type >= PERF_COUNT_HW_CACHE_MAX) return -EINVAL; cache_op = (config >> 8) & 0xff; if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) return -EINVAL; cache_result = (config >> 16) & 0xff; if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) return -EINVAL; ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; if (ret == CACHE_OP_UNSUPPORTED) return -ENOENT; return ret; } static int armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) { int mapping; if (config >= PERF_COUNT_HW_MAX) return -EINVAL; mapping = (*event_map)[config]; return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; } static int armpmu_map_raw_event(u32 raw_event_mask, u64 config) { return (int)(config & raw_event_mask); } int armpmu_map_event(struct perf_event *event, const unsigned (*event_map)[PERF_COUNT_HW_MAX], const unsigned (*cache_map) [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX], u32 raw_event_mask) { u64 config = event->attr.config; int type = event->attr.type; if (type == event->pmu->type) return armpmu_map_raw_event(raw_event_mask, config); switch (type) { case PERF_TYPE_HARDWARE: return armpmu_map_hw_event(event_map, config); case PERF_TYPE_HW_CACHE: return armpmu_map_cache_event(cache_map, config); case PERF_TYPE_RAW: return armpmu_map_raw_event(raw_event_mask, config); } return -ENOENT; } int armpmu_event_set_period(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; s64 left = local64_read(&hwc->period_left); s64 period = hwc->sample_period; int ret = 0; if (unlikely(left <= -period)) { left = period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } if (unlikely(left <= 0)) { left += period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } /* * Limit the maximum period to prevent the counter value * from overtaking the one we are about to program. In * effect we are reducing max_period to account for * interrupt latency (and we are being very conservative). */ if (left > (armpmu->max_period >> 1)) left = armpmu->max_period >> 1; local64_set(&hwc->prev_count, (u64)-left); armpmu->write_counter(event, (u64)(-left) & 0xffffffff); perf_event_update_userpage(event); return ret; } u64 armpmu_event_update(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; u64 delta, prev_raw_count, new_raw_count; again: prev_raw_count = local64_read(&hwc->prev_count); new_raw_count = armpmu->read_counter(event); if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) goto again; delta = (new_raw_count - prev_raw_count) & armpmu->max_period; local64_add(delta, &event->count); local64_sub(delta, &hwc->period_left); return new_raw_count; } static void armpmu_read(struct perf_event *event) { armpmu_event_update(event); } static void armpmu_stop(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; /* * ARM pmu always has to update the counter, so ignore * PERF_EF_UPDATE, see comments in armpmu_start(). */ if (!(hwc->state & PERF_HES_STOPPED)) { armpmu->disable(event); armpmu_event_update(event); hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; } } static void armpmu_start(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; /* * ARM pmu always has to reprogram the period, so ignore * PERF_EF_RELOAD, see the comment below. */ if (flags & PERF_EF_RELOAD) WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); hwc->state = 0; /* * Set the period again. Some counters can't be stopped, so when we * were stopped we simply disabled the IRQ source and the counter * may have been left counting. If we don't do this step then we may * get an interrupt too soon or *way* too late if the overflow has * happened since disabling. */ armpmu_event_set_period(event); armpmu->enable(event); } static void armpmu_del(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; armpmu_stop(event, PERF_EF_UPDATE); hw_events->events[idx] = NULL; clear_bit(idx, hw_events->used_mask); if (armpmu->clear_event_idx) armpmu->clear_event_idx(hw_events, event); perf_event_update_userpage(event); } static int armpmu_add(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); struct hw_perf_event *hwc = &event->hw; int idx; int err = 0; /* An event following a process won't be stopped earlier */ if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) return -ENOENT; perf_pmu_disable(event->pmu); /* If we don't have a space for the counter then finish early. */ idx = armpmu->get_event_idx(hw_events, event); if (idx < 0) { err = idx; goto out; } /* * If there is an event in the counter we are going to use then make * sure it is disabled. */ event->hw.idx = idx; armpmu->disable(event); hw_events->events[idx] = event; hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; if (flags & PERF_EF_START) armpmu_start(event, PERF_EF_RELOAD); /* Propagate our changes to the userspace mapping. */ perf_event_update_userpage(event); out: perf_pmu_enable(event->pmu); return err; } static int validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events, struct perf_event *event) { struct arm_pmu *armpmu; if (is_software_event(event)) return 1; /* * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The * core perf code won't check that the pmu->ctx == leader->ctx * until after pmu->event_init(event). */ if (event->pmu != pmu) return 0; if (event->state < PERF_EVENT_STATE_OFF) return 1; if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) return 1; armpmu = to_arm_pmu(event->pmu); return armpmu->get_event_idx(hw_events, event) >= 0; } static int validate_group(struct perf_event *event) { struct perf_event *sibling, *leader = event->group_leader; struct pmu_hw_events fake_pmu; /* * Initialise the fake PMU. We only need to populate the * used_mask for the purposes of validation. */ memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask)); if (!validate_event(event->pmu, &fake_pmu, leader)) return -EINVAL; list_for_each_entry(sibling, &leader->sibling_list, group_entry) { if (!validate_event(event->pmu, &fake_pmu, sibling)) return -EINVAL; } if (!validate_event(event->pmu, &fake_pmu, event)) return -EINVAL; return 0; } static irqreturn_t armpmu_dispatch_irq(int irq, void *dev) { struct arm_pmu *armpmu; struct platform_device *plat_device; struct arm_pmu_platdata *plat; int ret; u64 start_clock, finish_clock; /* * we request the IRQ with a (possibly percpu) struct arm_pmu**, but * the handlers expect a struct arm_pmu*. The percpu_irq framework will * do any necessary shifting, we just need to perform the first * dereference. */ armpmu = *(void **)dev; plat_device = armpmu->plat_device; plat = dev_get_platdata(&plat_device->dev); start_clock = sched_clock(); if (plat && plat->handle_irq) ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq); else ret = armpmu->handle_irq(irq, armpmu); finish_clock = sched_clock(); perf_sample_event_took(finish_clock - start_clock); return ret; } static void armpmu_release_hardware(struct arm_pmu *armpmu) { armpmu->free_irq(armpmu); } static int armpmu_reserve_hardware(struct arm_pmu *armpmu) { int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq); if (err) { armpmu_release_hardware(armpmu); return err; } return 0; } static void hw_perf_event_destroy(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); atomic_t *active_events = &armpmu->active_events; struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex; if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) { armpmu_release_hardware(armpmu); mutex_unlock(pmu_reserve_mutex); } } static int event_requires_mode_exclusion(struct perf_event_attr *attr) { return attr->exclude_idle || attr->exclude_user || attr->exclude_kernel || attr->exclude_hv; } static int __hw_perf_event_init(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int mapping; mapping = armpmu->map_event(event); if (mapping < 0) { pr_debug("event %x:%llx not supported\n", event->attr.type, event->attr.config); return mapping; } /* * We don't assign an index until we actually place the event onto * hardware. Use -1 to signify that we haven't decided where to put it * yet. For SMP systems, each core has it's own PMU so we can't do any * clever allocation or constraints checking at this point. */ hwc->idx = -1; hwc->config_base = 0; hwc->config = 0; hwc->event_base = 0; /* * Check whether we need to exclude the counter from certain modes. */ if ((!armpmu->set_event_filter || armpmu->set_event_filter(hwc, &event->attr)) && event_requires_mode_exclusion(&event->attr)) { pr_debug("ARM performance counters do not support " "mode exclusion\n"); return -EOPNOTSUPP; } /* * Store the event encoding into the config_base field. */ hwc->config_base |= (unsigned long)mapping; if (!is_sampling_event(event)) { /* * For non-sampling runs, limit the sample_period to half * of the counter width. That way, the new counter value * is far less likely to overtake the previous one unless * you have some serious IRQ latency issues. */ hwc->sample_period = armpmu->max_period >> 1; hwc->last_period = hwc->sample_period; local64_set(&hwc->period_left, hwc->sample_period); } if (event->group_leader != event) { if (validate_group(event) != 0) return -EINVAL; } return 0; } static int armpmu_event_init(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); int err = 0; atomic_t *active_events = &armpmu->active_events; /* * Reject CPU-affine events for CPUs that are of a different class to * that which this PMU handles. Process-following events (where * event->cpu == -1) can be migrated between CPUs, and thus we have to * reject them later (in armpmu_add) if they're scheduled on a * different class of CPU. */ if (event->cpu != -1 && !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus)) return -ENOENT; /* does not support taken branch sampling */ if (has_branch_stack(event)) return -EOPNOTSUPP; if (armpmu->map_event(event) == -ENOENT) return -ENOENT; event->destroy = hw_perf_event_destroy; if (!atomic_inc_not_zero(active_events)) { mutex_lock(&armpmu->reserve_mutex); if (atomic_read(active_events) == 0) err = armpmu_reserve_hardware(armpmu); if (!err) atomic_inc(active_events); mutex_unlock(&armpmu->reserve_mutex); } if (err) return err; err = __hw_perf_event_init(event); if (err) hw_perf_event_destroy(event); return err; } static void armpmu_enable(struct pmu *pmu) { struct arm_pmu *armpmu = to_arm_pmu(pmu); struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); /* For task-bound events we may be called on other CPUs */ if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) return; if (enabled) armpmu->start(armpmu); } static void armpmu_disable(struct pmu *pmu) { struct arm_pmu *armpmu = to_arm_pmu(pmu); /* For task-bound events we may be called on other CPUs */ if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) return; armpmu->stop(armpmu); } /* * In heterogeneous systems, events are specific to a particular * microarchitecture, and aren't suitable for another. Thus, only match CPUs of * the same microarchitecture. */ static int armpmu_filter_match(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); unsigned int cpu = smp_processor_id(); return cpumask_test_cpu(cpu, &armpmu->supported_cpus); } static void armpmu_init(struct arm_pmu *armpmu) { atomic_set(&armpmu->active_events, 0); mutex_init(&armpmu->reserve_mutex); armpmu->pmu = (struct pmu) { .pmu_enable = armpmu_enable, .pmu_disable = armpmu_disable, .event_init = armpmu_event_init, .add = armpmu_add, .del = armpmu_del, .start = armpmu_start, .stop = armpmu_stop, .read = armpmu_read, .filter_match = armpmu_filter_match, }; } /* Set at runtime when we know what CPU type we are. */ static struct arm_pmu *__oprofile_cpu_pmu; /* * Despite the names, these two functions are CPU-specific and are used * by the OProfile/perf code. */ const char *perf_pmu_name(void) { if (!__oprofile_cpu_pmu) return NULL; return __oprofile_cpu_pmu->name; } EXPORT_SYMBOL_GPL(perf_pmu_name); int perf_num_counters(void) { int max_events = 0; if (__oprofile_cpu_pmu != NULL) max_events = __oprofile_cpu_pmu->num_events; return max_events; } EXPORT_SYMBOL_GPL(perf_num_counters); static void cpu_pmu_enable_percpu_irq(void *data) { int irq = *(int *)data; enable_percpu_irq(irq, IRQ_TYPE_NONE); } static void cpu_pmu_disable_percpu_irq(void *data) { int irq = *(int *)data; disable_percpu_irq(irq); } static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu) { int i, irq, irqs; struct platform_device *pmu_device = cpu_pmu->plat_device; struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events; irqs = min(pmu_device->num_resources, num_possible_cpus()); irq = platform_get_irq(pmu_device, 0); if (irq >= 0 && irq_is_percpu(irq)) { on_each_cpu(cpu_pmu_disable_percpu_irq, &irq, 1); free_percpu_irq(irq, &hw_events->percpu_pmu); } else { for (i = 0; i < irqs; ++i) { int cpu = i; if (cpu_pmu->irq_affinity) cpu = cpu_pmu->irq_affinity[i]; if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs)) continue; irq = platform_get_irq(pmu_device, i); if (irq >= 0) free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu)); } } } static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler) { int i, err, irq, irqs; struct platform_device *pmu_device = cpu_pmu->plat_device; struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events; if (!pmu_device) return -ENODEV; irqs = min(pmu_device->num_resources, num_possible_cpus()); if (irqs < 1) { pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n"); return 0; } irq = platform_get_irq(pmu_device, 0); if (irq >= 0 && irq_is_percpu(irq)) { err = request_percpu_irq(irq, handler, "arm-pmu", &hw_events->percpu_pmu); if (err) { pr_err("unable to request IRQ%d for ARM PMU counters\n", irq); return err; } on_each_cpu(cpu_pmu_enable_percpu_irq, &irq, 1); } else { for (i = 0; i < irqs; ++i) { int cpu = i; err = 0; irq = platform_get_irq(pmu_device, i); if (irq < 0) continue; if (cpu_pmu->irq_affinity) cpu = cpu_pmu->irq_affinity[i]; /* * If we have a single PMU interrupt that we can't shift, * assume that we're running on a uniprocessor machine and * continue. Otherwise, continue without this interrupt. */ if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) { pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n", irq, cpu); continue; } err = request_irq(irq, handler, IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu", per_cpu_ptr(&hw_events->percpu_pmu, cpu)); if (err) { pr_err("unable to request IRQ%d for ARM PMU counters\n", irq); return err; } cpumask_set_cpu(cpu, &cpu_pmu->active_irqs); } } return 0; } static DEFINE_MUTEX(arm_pmu_mutex); static LIST_HEAD(arm_pmu_list); /* * PMU hardware loses all context when a CPU goes offline. * When a CPU is hotplugged back in, since some hardware registers are * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading * junk values out of them. */ static int arm_perf_starting_cpu(unsigned int cpu) { struct arm_pmu *pmu; mutex_lock(&arm_pmu_mutex); list_for_each_entry(pmu, &arm_pmu_list, entry) { if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) continue; if (pmu->reset) pmu->reset(pmu); } mutex_unlock(&arm_pmu_mutex); return 0; } #ifdef CONFIG_CPU_PM static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd) { struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); struct perf_event *event; int idx; for (idx = 0; idx < armpmu->num_events; idx++) { /* * If the counter is not used skip it, there is no * need of stopping/restarting it. */ if (!test_bit(idx, hw_events->used_mask)) continue; event = hw_events->events[idx]; switch (cmd) { case CPU_PM_ENTER: /* * Stop and update the counter */ armpmu_stop(event, PERF_EF_UPDATE); break; case CPU_PM_EXIT: case CPU_PM_ENTER_FAILED: /* * Restore and enable the counter. * armpmu_start() indirectly calls * * perf_event_update_userpage() * * that requires RCU read locking to be functional, * wrap the call within RCU_NONIDLE to make the * RCU subsystem aware this cpu is not idle from * an RCU perspective for the armpmu_start() call * duration. */ RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD)); break; default: break; } } } static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd, void *v) { struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb); struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) return NOTIFY_DONE; /* * Always reset the PMU registers on power-up even if * there are no events running. */ if (cmd == CPU_PM_EXIT && armpmu->reset) armpmu->reset(armpmu); if (!enabled) return NOTIFY_OK; switch (cmd) { case CPU_PM_ENTER: armpmu->stop(armpmu); cpu_pm_pmu_setup(armpmu, cmd); break; case CPU_PM_EXIT: cpu_pm_pmu_setup(armpmu, cmd); case CPU_PM_ENTER_FAILED: armpmu->start(armpmu); break; default: return NOTIFY_DONE; } return NOTIFY_OK; } static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify; return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb); } static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb); } #else static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; } static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { } #endif static int cpu_pmu_init(struct arm_pmu *cpu_pmu) { int err; int cpu; struct pmu_hw_events __percpu *cpu_hw_events; cpu_hw_events = alloc_percpu(struct pmu_hw_events); if (!cpu_hw_events) return -ENOMEM; mutex_lock(&arm_pmu_mutex); list_add_tail(&cpu_pmu->entry, &arm_pmu_list); mutex_unlock(&arm_pmu_mutex); err = cpu_pm_pmu_register(cpu_pmu); if (err) goto out_unregister; for_each_possible_cpu(cpu) { struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu); raw_spin_lock_init(&events->pmu_lock); events->percpu_pmu = cpu_pmu; } cpu_pmu->hw_events = cpu_hw_events; cpu_pmu->request_irq = cpu_pmu_request_irq; cpu_pmu->free_irq = cpu_pmu_free_irq; /* Ensure the PMU has sane values out of reset. */ if (cpu_pmu->reset) on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset, cpu_pmu, 1); /* If no interrupts available, set the corresponding capability flag */ if (!platform_get_irq(cpu_pmu->plat_device, 0)) cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; /* * This is a CPU PMU potentially in a heterogeneous configuration (e.g. * big.LITTLE). This is not an uncore PMU, and we have taken ctx * sharing into account (e.g. with our pmu::filter_match callback and * pmu::event_init group validation). */ cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS; return 0; out_unregister: mutex_lock(&arm_pmu_mutex); list_del(&cpu_pmu->entry); mutex_unlock(&arm_pmu_mutex); free_percpu(cpu_hw_events); return err; } static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu) { cpu_pm_pmu_unregister(cpu_pmu); mutex_lock(&arm_pmu_mutex); list_del(&cpu_pmu->entry); mutex_unlock(&arm_pmu_mutex); free_percpu(cpu_pmu->hw_events); } /* * CPU PMU identification and probing. */ static int probe_current_pmu(struct arm_pmu *pmu, const struct pmu_probe_info *info) { int cpu = get_cpu(); unsigned int cpuid = read_cpuid_id(); int ret = -ENODEV; pr_info("probing PMU on CPU %d\n", cpu); for (; info->init != NULL; info++) { if ((cpuid & info->mask) != info->cpuid) continue; ret = info->init(pmu); break; } put_cpu(); return ret; } static int of_pmu_irq_cfg(struct arm_pmu *pmu) { int *irqs, i = 0; bool using_spi = false; struct platform_device *pdev = pmu->plat_device; irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL); if (!irqs) return -ENOMEM; do { struct device_node *dn; int cpu, irq; /* See if we have an affinity entry */ dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i); if (!dn) break; /* Check the IRQ type and prohibit a mix of PPIs and SPIs */ irq = platform_get_irq(pdev, i); if (irq >= 0) { bool spi = !irq_is_percpu(irq); if (i > 0 && spi != using_spi) { pr_err("PPI/SPI IRQ type mismatch for %s!\n", dn->name); kfree(irqs); return -EINVAL; } using_spi = spi; } /* Now look up the logical CPU number */ for_each_possible_cpu(cpu) { struct device_node *cpu_dn; cpu_dn = of_cpu_device_node_get(cpu); of_node_put(cpu_dn); if (dn == cpu_dn) break; } if (cpu >= nr_cpu_ids) { pr_warn("Failed to find logical CPU for %s\n", dn->name); of_node_put(dn); cpumask_setall(&pmu->supported_cpus); break; } of_node_put(dn); /* For SPIs, we need to track the affinity per IRQ */ if (using_spi) { if (i >= pdev->num_resources) break; irqs[i] = cpu; } /* Keep track of the CPUs containing this PMU type */ cpumask_set_cpu(cpu, &pmu->supported_cpus); i++; } while (1); /* If we didn't manage to parse anything, claim to support all CPUs */ if (cpumask_weight(&pmu->supported_cpus) == 0) cpumask_setall(&pmu->supported_cpus); /* If we matched up the IRQ affinities, use them to route the SPIs */ if (using_spi && i == pdev->num_resources) pmu->irq_affinity = irqs; else kfree(irqs); return 0; } int arm_pmu_device_probe(struct platform_device *pdev, const struct of_device_id *of_table, const struct pmu_probe_info *probe_table) { const struct of_device_id *of_id; const int (*init_fn)(struct arm_pmu *); struct device_node *node = pdev->dev.of_node; struct arm_pmu *pmu; int ret = -ENODEV; pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL); if (!pmu) { pr_info("failed to allocate PMU device!\n"); return -ENOMEM; } armpmu_init(pmu); pmu->plat_device = pdev; if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) { init_fn = of_id->data; pmu->secure_access = of_property_read_bool(pdev->dev.of_node, "secure-reg-access"); /* arm64 systems boot only as non-secure */ if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) { pr_warn("ignoring \"secure-reg-access\" property for arm64\n"); pmu->secure_access = false; } ret = of_pmu_irq_cfg(pmu); if (!ret) ret = init_fn(pmu); } else { cpumask_setall(&pmu->supported_cpus); ret = probe_current_pmu(pmu, probe_table); } if (ret) { pr_info("%s: failed to probe PMU!\n", of_node_full_name(node)); goto out_free; } ret = cpu_pmu_init(pmu); if (ret) goto out_free; ret = perf_pmu_register(&pmu->pmu, pmu->name, -1); if (ret) goto out_destroy; if (!__oprofile_cpu_pmu) __oprofile_cpu_pmu = pmu; pr_info("enabled with %s PMU driver, %d counters available\n", pmu->name, pmu->num_events); return 0; out_destroy: cpu_pmu_destroy(pmu); out_free: pr_info("%s: failed to register PMU devices!\n", of_node_full_name(node)); kfree(pmu->irq_affinity); kfree(pmu); return ret; } static int arm_pmu_hp_init(void) { int ret; ret = cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_STARTING, "AP_PERF_ARM_STARTING", arm_perf_starting_cpu, NULL); if (ret) pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n", ret); return ret; } subsys_initcall(arm_pmu_hp_init);