/* * Copyright (C) 2014 STMicroelectronics – All Rights Reserved * * STMicroelectronics PHY driver MiPHY365 (for SoC STiH416). * * Authors: Alexandre Torgue <alexandre.torgue@st.com> * Lee Jones <lee.jones@linaro.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2, as * published by the Free Software Foundation. * */ #include <linux/platform_device.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/of_address.h> #include <linux/clk.h> #include <linux/phy/phy.h> #include <linux/delay.h> #include <linux/mfd/syscon.h> #include <linux/regmap.h> #include <dt-bindings/phy/phy-miphy365x.h> #define HFC_TIMEOUT 100 #define SYSCFG_SELECT_SATA_MASK BIT(1) #define SYSCFG_SELECT_SATA_POS 1 /* MiPHY365x register definitions */ #define RESET_REG 0x00 #define RST_PLL BIT(1) #define RST_PLL_CAL BIT(2) #define RST_RX BIT(4) #define RST_MACRO BIT(7) #define STATUS_REG 0x01 #define IDLL_RDY BIT(0) #define PLL_RDY BIT(1) #define DES_BIT_LOCK BIT(2) #define DES_SYMBOL_LOCK BIT(3) #define CTRL_REG 0x02 #define TERM_EN BIT(0) #define PCI_EN BIT(2) #define DES_BIT_LOCK_EN BIT(3) #define TX_POL BIT(5) #define INT_CTRL_REG 0x03 #define BOUNDARY1_REG 0x10 #define SPDSEL_SEL BIT(0) #define BOUNDARY3_REG 0x12 #define TX_SPDSEL_GEN1_VAL 0 #define TX_SPDSEL_GEN2_VAL 0x01 #define TX_SPDSEL_GEN3_VAL 0x02 #define RX_SPDSEL_GEN1_VAL 0 #define RX_SPDSEL_GEN2_VAL (0x01 << 3) #define RX_SPDSEL_GEN3_VAL (0x02 << 3) #define PCIE_REG 0x16 #define BUF_SEL_REG 0x20 #define CONF_GEN_SEL_GEN3 0x02 #define CONF_GEN_SEL_GEN2 0x01 #define PD_VDDTFILTER BIT(4) #define TXBUF1_REG 0x21 #define SWING_VAL 0x04 #define SWING_VAL_GEN1 0x03 #define PREEMPH_VAL (0x3 << 5) #define TXBUF2_REG 0x22 #define TXSLEW_VAL 0x2 #define TXSLEW_VAL_GEN1 0x4 #define RXBUF_OFFSET_CTRL_REG 0x23 #define RXBUF_REG 0x25 #define SDTHRES_VAL 0x01 #define EQ_ON3 (0x03 << 4) #define EQ_ON1 (0x01 << 4) #define COMP_CTRL1_REG 0x40 #define START_COMSR BIT(0) #define START_COMZC BIT(1) #define COMSR_DONE BIT(2) #define COMZC_DONE BIT(3) #define COMP_AUTO_LOAD BIT(4) #define COMP_CTRL2_REG 0x41 #define COMP_2MHZ_RAT_GEN1 0x1e #define COMP_2MHZ_RAT 0xf #define COMP_CTRL3_REG 0x42 #define COMSR_COMP_REF 0x33 #define COMP_IDLL_REG 0x47 #define COMZC_IDLL 0x2a #define PLL_CTRL1_REG 0x50 #define PLL_START_CAL BIT(0) #define BUF_EN BIT(2) #define SYNCHRO_TX BIT(3) #define SSC_EN BIT(6) #define CONFIG_PLL BIT(7) #define PLL_CTRL2_REG 0x51 #define BYPASS_PLL_CAL BIT(1) #define PLL_RAT_REG 0x52 #define PLL_SSC_STEP_MSB_REG 0x56 #define PLL_SSC_STEP_MSB_VAL 0x03 #define PLL_SSC_STEP_LSB_REG 0x57 #define PLL_SSC_STEP_LSB_VAL 0x63 #define PLL_SSC_PER_MSB_REG 0x58 #define PLL_SSC_PER_MSB_VAL 0 #define PLL_SSC_PER_LSB_REG 0x59 #define PLL_SSC_PER_LSB_VAL 0xf1 #define IDLL_TEST_REG 0x72 #define START_CLK_HF BIT(6) #define DES_BITLOCK_REG 0x86 #define BIT_LOCK_LEVEL 0x01 #define BIT_LOCK_CNT_512 (0x03 << 5) struct miphy365x_phy { struct phy *phy; void __iomem *base; bool pcie_tx_pol_inv; bool sata_tx_pol_inv; u32 sata_gen; u64 ctrlreg; u8 type; }; struct miphy365x_dev { struct device *dev; struct regmap *regmap; struct mutex miphy_mutex; struct miphy365x_phy **phys; }; /* * These values are represented in Device tree. They are considered to be ABI * and although they can be extended any existing values must not change. */ enum miphy_sata_gen { SATA_GEN1 = 1, SATA_GEN2, SATA_GEN3 }; static u8 rx_tx_spd[] = { TX_SPDSEL_GEN1_VAL | RX_SPDSEL_GEN1_VAL, TX_SPDSEL_GEN2_VAL | RX_SPDSEL_GEN2_VAL, TX_SPDSEL_GEN3_VAL | RX_SPDSEL_GEN3_VAL }; /* * This function selects the system configuration, * either two SATA, one SATA and one PCIe, or two PCIe lanes. */ static int miphy365x_set_path(struct miphy365x_phy *miphy_phy, struct miphy365x_dev *miphy_dev) { bool sata = (miphy_phy->type == MIPHY_TYPE_SATA); return regmap_update_bits(miphy_dev->regmap, (unsigned int)miphy_phy->ctrlreg, SYSCFG_SELECT_SATA_MASK, sata << SYSCFG_SELECT_SATA_POS); } static int miphy365x_init_pcie_port(struct miphy365x_phy *miphy_phy, struct miphy365x_dev *miphy_dev) { u8 val; if (miphy_phy->pcie_tx_pol_inv) { /* Invert Tx polarity and clear pci_txdetect_pol bit */ val = TERM_EN | PCI_EN | DES_BIT_LOCK_EN | TX_POL; writeb_relaxed(val, miphy_phy->base + CTRL_REG); writeb_relaxed(0x00, miphy_phy->base + PCIE_REG); } return 0; } static inline int miphy365x_hfc_not_rdy(struct miphy365x_phy *miphy_phy, struct miphy365x_dev *miphy_dev) { unsigned long timeout = jiffies + msecs_to_jiffies(HFC_TIMEOUT); u8 mask = IDLL_RDY | PLL_RDY; u8 regval; do { regval = readb_relaxed(miphy_phy->base + STATUS_REG); if (!(regval & mask)) return 0; usleep_range(2000, 2500); } while (time_before(jiffies, timeout)); dev_err(miphy_dev->dev, "HFC ready timeout!\n"); return -EBUSY; } static inline int miphy365x_rdy(struct miphy365x_phy *miphy_phy, struct miphy365x_dev *miphy_dev) { unsigned long timeout = jiffies + msecs_to_jiffies(HFC_TIMEOUT); u8 mask = IDLL_RDY | PLL_RDY; u8 regval; do { regval = readb_relaxed(miphy_phy->base + STATUS_REG); if ((regval & mask) == mask) return 0; usleep_range(2000, 2500); } while (time_before(jiffies, timeout)); dev_err(miphy_dev->dev, "PHY not ready timeout!\n"); return -EBUSY; } static inline void miphy365x_set_comp(struct miphy365x_phy *miphy_phy, struct miphy365x_dev *miphy_dev) { u8 val, mask; if (miphy_phy->sata_gen == SATA_GEN1) writeb_relaxed(COMP_2MHZ_RAT_GEN1, miphy_phy->base + COMP_CTRL2_REG); else writeb_relaxed(COMP_2MHZ_RAT, miphy_phy->base + COMP_CTRL2_REG); if (miphy_phy->sata_gen != SATA_GEN3) { writeb_relaxed(COMSR_COMP_REF, miphy_phy->base + COMP_CTRL3_REG); /* * Force VCO current to value defined by address 0x5A * and disable PCIe100Mref bit * Enable auto load compensation for pll_i_bias */ writeb_relaxed(BYPASS_PLL_CAL, miphy_phy->base + PLL_CTRL2_REG); writeb_relaxed(COMZC_IDLL, miphy_phy->base + COMP_IDLL_REG); } /* * Force restart compensation and enable auto load * for Comzc_Tx, Comzc_Rx and Comsr on macro */ val = START_COMSR | START_COMZC | COMP_AUTO_LOAD; writeb_relaxed(val, miphy_phy->base + COMP_CTRL1_REG); mask = COMSR_DONE | COMZC_DONE; while ((readb_relaxed(miphy_phy->base + COMP_CTRL1_REG) & mask) != mask) cpu_relax(); } static inline void miphy365x_set_ssc(struct miphy365x_phy *miphy_phy, struct miphy365x_dev *miphy_dev) { u8 val; /* * SSC Settings. SSC will be enabled through Link * SSC Ampl. = 0.4% * SSC Freq = 31KHz */ writeb_relaxed(PLL_SSC_STEP_MSB_VAL, miphy_phy->base + PLL_SSC_STEP_MSB_REG); writeb_relaxed(PLL_SSC_STEP_LSB_VAL, miphy_phy->base + PLL_SSC_STEP_LSB_REG); writeb_relaxed(PLL_SSC_PER_MSB_VAL, miphy_phy->base + PLL_SSC_PER_MSB_REG); writeb_relaxed(PLL_SSC_PER_LSB_VAL, miphy_phy->base + PLL_SSC_PER_LSB_REG); /* SSC Settings complete */ if (miphy_phy->sata_gen == SATA_GEN1) { val = PLL_START_CAL | BUF_EN | SYNCHRO_TX | CONFIG_PLL; writeb_relaxed(val, miphy_phy->base + PLL_CTRL1_REG); } else { val = SSC_EN | PLL_START_CAL | BUF_EN | SYNCHRO_TX | CONFIG_PLL; writeb_relaxed(val, miphy_phy->base + PLL_CTRL1_REG); } } static int miphy365x_init_sata_port(struct miphy365x_phy *miphy_phy, struct miphy365x_dev *miphy_dev) { int ret; u8 val; /* * Force PHY macro reset, PLL calibration reset, PLL reset * and assert Deserializer Reset */ val = RST_PLL | RST_PLL_CAL | RST_RX | RST_MACRO; writeb_relaxed(val, miphy_phy->base + RESET_REG); if (miphy_phy->sata_tx_pol_inv) writeb_relaxed(TX_POL, miphy_phy->base + CTRL_REG); /* * Force macro1 to use rx_lspd, tx_lspd * Force Rx_Clock on first I-DLL phase * Force Des in HP mode on macro, rx_lspd, tx_lspd for Gen2/3 */ writeb_relaxed(SPDSEL_SEL, miphy_phy->base + BOUNDARY1_REG); writeb_relaxed(START_CLK_HF, miphy_phy->base + IDLL_TEST_REG); val = rx_tx_spd[miphy_phy->sata_gen]; writeb_relaxed(val, miphy_phy->base + BOUNDARY3_REG); /* Wait for HFC_READY = 0 */ ret = miphy365x_hfc_not_rdy(miphy_phy, miphy_dev); if (ret) return ret; /* Compensation Recalibration */ miphy365x_set_comp(miphy_phy, miphy_dev); switch (miphy_phy->sata_gen) { case SATA_GEN3: /* * TX Swing target 550-600mv peak to peak diff * Tx Slew target 90-110ps rising/falling time * Rx Eq ON3, Sigdet threshold SDTH1 */ val = PD_VDDTFILTER | CONF_GEN_SEL_GEN3; writeb_relaxed(val, miphy_phy->base + BUF_SEL_REG); val = SWING_VAL | PREEMPH_VAL; writeb_relaxed(val, miphy_phy->base + TXBUF1_REG); writeb_relaxed(TXSLEW_VAL, miphy_phy->base + TXBUF2_REG); writeb_relaxed(0x00, miphy_phy->base + RXBUF_OFFSET_CTRL_REG); val = SDTHRES_VAL | EQ_ON3; writeb_relaxed(val, miphy_phy->base + RXBUF_REG); break; case SATA_GEN2: /* * conf gen sel=0x1 to program Gen2 banked registers * VDDT filter ON * Tx Swing target 550-600mV peak-to-peak diff * Tx Slew target 90-110 ps rising/falling time * RX Equalization ON1, Sigdet threshold SDTH1 */ writeb_relaxed(CONF_GEN_SEL_GEN2, miphy_phy->base + BUF_SEL_REG); writeb_relaxed(SWING_VAL, miphy_phy->base + TXBUF1_REG); writeb_relaxed(TXSLEW_VAL, miphy_phy->base + TXBUF2_REG); val = SDTHRES_VAL | EQ_ON1; writeb_relaxed(val, miphy_phy->base + RXBUF_REG); break; case SATA_GEN1: /* * conf gen sel = 00b to program Gen1 banked registers * VDDT filter ON * Tx Swing target 500-550mV peak-to-peak diff * Tx Slew target120-140 ps rising/falling time */ writeb_relaxed(PD_VDDTFILTER, miphy_phy->base + BUF_SEL_REG); writeb_relaxed(SWING_VAL_GEN1, miphy_phy->base + TXBUF1_REG); writeb_relaxed(TXSLEW_VAL_GEN1, miphy_phy->base + TXBUF2_REG); break; default: break; } /* Force Macro1 in partial mode & release pll cal reset */ writeb_relaxed(RST_RX, miphy_phy->base + RESET_REG); usleep_range(100, 150); miphy365x_set_ssc(miphy_phy, miphy_dev); /* Wait for phy_ready */ ret = miphy365x_rdy(miphy_phy, miphy_dev); if (ret) return ret; /* * Enable macro1 to use rx_lspd & tx_lspd * Release Rx_Clock on first I-DLL phase on macro1 * Assert deserializer reset * des_bit_lock_en is set * bit lock detection strength * Deassert deserializer reset */ writeb_relaxed(0x00, miphy_phy->base + BOUNDARY1_REG); writeb_relaxed(0x00, miphy_phy->base + IDLL_TEST_REG); writeb_relaxed(RST_RX, miphy_phy->base + RESET_REG); val = miphy_phy->sata_tx_pol_inv ? (TX_POL | DES_BIT_LOCK_EN) : DES_BIT_LOCK_EN; writeb_relaxed(val, miphy_phy->base + CTRL_REG); val = BIT_LOCK_CNT_512 | BIT_LOCK_LEVEL; writeb_relaxed(val, miphy_phy->base + DES_BITLOCK_REG); writeb_relaxed(0x00, miphy_phy->base + RESET_REG); return 0; } static int miphy365x_init(struct phy *phy) { struct miphy365x_phy *miphy_phy = phy_get_drvdata(phy); struct miphy365x_dev *miphy_dev = dev_get_drvdata(phy->dev.parent); int ret = 0; mutex_lock(&miphy_dev->miphy_mutex); ret = miphy365x_set_path(miphy_phy, miphy_dev); if (ret) { mutex_unlock(&miphy_dev->miphy_mutex); return ret; } /* Initialise Miphy for PCIe or SATA */ if (miphy_phy->type == MIPHY_TYPE_PCIE) ret = miphy365x_init_pcie_port(miphy_phy, miphy_dev); else ret = miphy365x_init_sata_port(miphy_phy, miphy_dev); mutex_unlock(&miphy_dev->miphy_mutex); return ret; } int miphy365x_get_addr(struct device *dev, struct miphy365x_phy *miphy_phy, int index) { struct device_node *phynode = miphy_phy->phy->dev.of_node; const char *name; const __be32 *taddr; int type = miphy_phy->type; int ret; ret = of_property_read_string_index(phynode, "reg-names", index, &name); if (ret) { dev_err(dev, "no reg-names property not found\n"); return ret; } if (!strncmp(name, "syscfg", 6)) { taddr = of_get_address(phynode, index, NULL, NULL); if (!taddr) { dev_err(dev, "failed to fetch syscfg address\n"); return -EINVAL; } miphy_phy->ctrlreg = of_translate_address(phynode, taddr); if (miphy_phy->ctrlreg == OF_BAD_ADDR) { dev_err(dev, "failed to translate syscfg address\n"); return -EINVAL; } return 0; } if (!((!strncmp(name, "sata", 4) && type == MIPHY_TYPE_SATA) || (!strncmp(name, "pcie", 4) && type == MIPHY_TYPE_PCIE))) return 0; miphy_phy->base = of_iomap(phynode, index); if (!miphy_phy->base) { dev_err(dev, "Failed to map %s\n", phynode->full_name); return -EINVAL; } return 0; } static struct phy *miphy365x_xlate(struct device *dev, struct of_phandle_args *args) { struct miphy365x_dev *miphy_dev = dev_get_drvdata(dev); struct miphy365x_phy *miphy_phy = NULL; struct device_node *phynode = args->np; int ret, index; if (!of_device_is_available(phynode)) { dev_warn(dev, "Requested PHY is disabled\n"); return ERR_PTR(-ENODEV); } if (args->args_count != 1) { dev_err(dev, "Invalid number of cells in 'phy' property\n"); return ERR_PTR(-EINVAL); } for (index = 0; index < of_get_child_count(dev->of_node); index++) if (phynode == miphy_dev->phys[index]->phy->dev.of_node) { miphy_phy = miphy_dev->phys[index]; break; } if (!miphy_phy) { dev_err(dev, "Failed to find appropriate phy\n"); return ERR_PTR(-EINVAL); } miphy_phy->type = args->args[0]; if (!(miphy_phy->type == MIPHY_TYPE_SATA || miphy_phy->type == MIPHY_TYPE_PCIE)) { dev_err(dev, "Unsupported device type: %d\n", miphy_phy->type); return ERR_PTR(-EINVAL); } /* Each port handles SATA and PCIE - third entry is always sysconf. */ for (index = 0; index < 3; index++) { ret = miphy365x_get_addr(dev, miphy_phy, index); if (ret < 0) return ERR_PTR(ret); } return miphy_phy->phy; } static struct phy_ops miphy365x_ops = { .init = miphy365x_init, .owner = THIS_MODULE, }; static int miphy365x_of_probe(struct device_node *phynode, struct miphy365x_phy *miphy_phy) { of_property_read_u32(phynode, "st,sata-gen", &miphy_phy->sata_gen); if (!miphy_phy->sata_gen) miphy_phy->sata_gen = SATA_GEN1; miphy_phy->pcie_tx_pol_inv = of_property_read_bool(phynode, "st,pcie-tx-pol-inv"); miphy_phy->sata_tx_pol_inv = of_property_read_bool(phynode, "st,sata-tx-pol-inv"); return 0; } static int miphy365x_probe(struct platform_device *pdev) { struct device_node *child, *np = pdev->dev.of_node; struct miphy365x_dev *miphy_dev; struct phy_provider *provider; struct phy *phy; int chancount, port = 0; int ret; miphy_dev = devm_kzalloc(&pdev->dev, sizeof(*miphy_dev), GFP_KERNEL); if (!miphy_dev) return -ENOMEM; chancount = of_get_child_count(np); miphy_dev->phys = devm_kzalloc(&pdev->dev, sizeof(phy) * chancount, GFP_KERNEL); if (!miphy_dev->phys) return -ENOMEM; miphy_dev->regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg"); if (IS_ERR(miphy_dev->regmap)) { dev_err(miphy_dev->dev, "No syscfg phandle specified\n"); return PTR_ERR(miphy_dev->regmap); } miphy_dev->dev = &pdev->dev; dev_set_drvdata(&pdev->dev, miphy_dev); mutex_init(&miphy_dev->miphy_mutex); for_each_child_of_node(np, child) { struct miphy365x_phy *miphy_phy; miphy_phy = devm_kzalloc(&pdev->dev, sizeof(*miphy_phy), GFP_KERNEL); if (!miphy_phy) return -ENOMEM; miphy_dev->phys[port] = miphy_phy; phy = devm_phy_create(&pdev->dev, child, &miphy365x_ops, NULL); if (IS_ERR(phy)) { dev_err(&pdev->dev, "failed to create PHY\n"); return PTR_ERR(phy); } miphy_dev->phys[port]->phy = phy; ret = miphy365x_of_probe(child, miphy_phy); if (ret) return ret; phy_set_drvdata(phy, miphy_dev->phys[port]); port++; } provider = devm_of_phy_provider_register(&pdev->dev, miphy365x_xlate); if (IS_ERR(provider)) return PTR_ERR(provider); return 0; } static const struct of_device_id miphy365x_of_match[] = { { .compatible = "st,miphy365x-phy", }, { }, }; MODULE_DEVICE_TABLE(of, miphy365x_of_match); static struct platform_driver miphy365x_driver = { .probe = miphy365x_probe, .driver = { .name = "miphy365x-phy", .owner = THIS_MODULE, .of_match_table = miphy365x_of_match, } }; module_platform_driver(miphy365x_driver); MODULE_AUTHOR("Alexandre Torgue <alexandre.torgue@st.com>"); MODULE_DESCRIPTION("STMicroelectronics miphy365x driver"); MODULE_LICENSE("GPL v2");