// SPDX-License-Identifier: GPL-2.0-or-later // // helpers.c -- Voltage/Current Regulator framework helper functions. // // Copyright 2007, 2008 Wolfson Microelectronics PLC. // Copyright 2008 SlimLogic Ltd. #include <linux/kernel.h> #include <linux/err.h> #include <linux/delay.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/regulator/driver.h> #include <linux/module.h> #include "internal.h" /** * regulator_is_enabled_regmap - standard is_enabled() for regmap users * * @rdev: regulator to operate on * * Regulators that use regmap for their register I/O can set the * enable_reg and enable_mask fields in their descriptor and then use * this as their is_enabled operation, saving some code. */ int regulator_is_enabled_regmap(struct regulator_dev *rdev) { unsigned int val; int ret; ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val); if (ret != 0) return ret; val &= rdev->desc->enable_mask; if (rdev->desc->enable_is_inverted) { if (rdev->desc->enable_val) return val != rdev->desc->enable_val; return val == 0; } else { if (rdev->desc->enable_val) return val == rdev->desc->enable_val; return val != 0; } } EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap); /** * regulator_enable_regmap - standard enable() for regmap users * * @rdev: regulator to operate on * * Regulators that use regmap for their register I/O can set the * enable_reg and enable_mask fields in their descriptor and then use * this as their enable() operation, saving some code. */ int regulator_enable_regmap(struct regulator_dev *rdev) { unsigned int val; if (rdev->desc->enable_is_inverted) { val = rdev->desc->disable_val; } else { val = rdev->desc->enable_val; if (!val) val = rdev->desc->enable_mask; } return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, rdev->desc->enable_mask, val); } EXPORT_SYMBOL_GPL(regulator_enable_regmap); /** * regulator_disable_regmap - standard disable() for regmap users * * @rdev: regulator to operate on * * Regulators that use regmap for their register I/O can set the * enable_reg and enable_mask fields in their descriptor and then use * this as their disable() operation, saving some code. */ int regulator_disable_regmap(struct regulator_dev *rdev) { unsigned int val; if (rdev->desc->enable_is_inverted) { val = rdev->desc->enable_val; if (!val) val = rdev->desc->enable_mask; } else { val = rdev->desc->disable_val; } return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, rdev->desc->enable_mask, val); } EXPORT_SYMBOL_GPL(regulator_disable_regmap); static int regulator_range_selector_to_index(struct regulator_dev *rdev, unsigned int rval) { int i; if (!rdev->desc->linear_range_selectors) return -EINVAL; rval &= rdev->desc->vsel_range_mask; for (i = 0; i < rdev->desc->n_linear_ranges; i++) { if (rdev->desc->linear_range_selectors[i] == rval) return i; } return -EINVAL; } /** * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel * * @rdev: regulator to operate on * * Regulators that use regmap for their register I/O and use pickable * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask * fields in their descriptor and then use this as their get_voltage_vsel * operation, saving some code. */ int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev) { unsigned int r_val; int range; unsigned int val; int ret; unsigned int voltages = 0; const struct linear_range *r = rdev->desc->linear_ranges; if (!r) return -EINVAL; ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val); if (ret != 0) return ret; ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val); if (ret != 0) return ret; val &= rdev->desc->vsel_mask; val >>= ffs(rdev->desc->vsel_mask) - 1; range = regulator_range_selector_to_index(rdev, r_val); if (range < 0) return -EINVAL; voltages = linear_range_values_in_range_array(r, range); return val + voltages; } EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap); /** * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel * * @rdev: regulator to operate on * @sel: Selector to set * * Regulators that use regmap for their register I/O and use pickable * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask * fields in their descriptor and then use this as their set_voltage_vsel * operation, saving some code. */ int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev, unsigned int sel) { unsigned int range; int ret, i; unsigned int voltages_in_range = 0; for (i = 0; i < rdev->desc->n_linear_ranges; i++) { const struct linear_range *r; r = &rdev->desc->linear_ranges[i]; voltages_in_range = linear_range_values_in_range(r); if (sel < voltages_in_range) break; sel -= voltages_in_range; } if (i == rdev->desc->n_linear_ranges) return -EINVAL; sel <<= ffs(rdev->desc->vsel_mask) - 1; sel += rdev->desc->linear_ranges[i].min_sel; range = rdev->desc->linear_range_selectors[i]; if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) { ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg, rdev->desc->vsel_range_mask | rdev->desc->vsel_mask, sel | range); } else { ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_range_reg, rdev->desc->vsel_range_mask, range); if (ret) return ret; ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg, rdev->desc->vsel_mask, sel); } if (ret) return ret; if (rdev->desc->apply_bit) ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg, rdev->desc->apply_bit, rdev->desc->apply_bit); return ret; } EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap); /** * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users * * @rdev: regulator to operate on * * Regulators that use regmap for their register I/O can set the * vsel_reg and vsel_mask fields in their descriptor and then use this * as their get_voltage_vsel operation, saving some code. */ int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev) { unsigned int val; int ret; ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val); if (ret != 0) return ret; val &= rdev->desc->vsel_mask; val >>= ffs(rdev->desc->vsel_mask) - 1; return val; } EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap); /** * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users * * @rdev: regulator to operate on * @sel: Selector to set * * Regulators that use regmap for their register I/O can set the * vsel_reg and vsel_mask fields in their descriptor and then use this * as their set_voltage_vsel operation, saving some code. */ int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel) { int ret; sel <<= ffs(rdev->desc->vsel_mask) - 1; ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg, rdev->desc->vsel_mask, sel); if (ret) return ret; if (rdev->desc->apply_bit) ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg, rdev->desc->apply_bit, rdev->desc->apply_bit); return ret; } EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap); /** * regulator_map_voltage_iterate - map_voltage() based on list_voltage() * * @rdev: Regulator to operate on * @min_uV: Lower bound for voltage * @max_uV: Upper bound for voltage * * Drivers implementing set_voltage_sel() and list_voltage() can use * this as their map_voltage() operation. It will find a suitable * voltage by calling list_voltage() until it gets something in bounds * for the requested voltages. */ int regulator_map_voltage_iterate(struct regulator_dev *rdev, int min_uV, int max_uV) { int best_val = INT_MAX; int selector = 0; int i, ret; /* Find the smallest voltage that falls within the specified * range. */ for (i = 0; i < rdev->desc->n_voltages; i++) { ret = rdev->desc->ops->list_voltage(rdev, i); if (ret < 0) continue; if (ret < best_val && ret >= min_uV && ret <= max_uV) { best_val = ret; selector = i; } } if (best_val != INT_MAX) return selector; else return -EINVAL; } EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate); /** * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list * * @rdev: Regulator to operate on * @min_uV: Lower bound for voltage * @max_uV: Upper bound for voltage * * Drivers that have ascendant voltage list can use this as their * map_voltage() operation. */ int regulator_map_voltage_ascend(struct regulator_dev *rdev, int min_uV, int max_uV) { int i, ret; for (i = 0; i < rdev->desc->n_voltages; i++) { ret = rdev->desc->ops->list_voltage(rdev, i); if (ret < 0) continue; if (ret > max_uV) break; if (ret >= min_uV && ret <= max_uV) return i; } return -EINVAL; } EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend); /** * regulator_map_voltage_linear - map_voltage() for simple linear mappings * * @rdev: Regulator to operate on * @min_uV: Lower bound for voltage * @max_uV: Upper bound for voltage * * Drivers providing min_uV and uV_step in their regulator_desc can * use this as their map_voltage() operation. */ int regulator_map_voltage_linear(struct regulator_dev *rdev, int min_uV, int max_uV) { int ret, voltage; /* Allow uV_step to be 0 for fixed voltage */ if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) { if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV) return 0; else return -EINVAL; } if (!rdev->desc->uV_step) { BUG_ON(!rdev->desc->uV_step); return -EINVAL; } if (min_uV < rdev->desc->min_uV) min_uV = rdev->desc->min_uV; ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step); if (ret < 0) return ret; ret += rdev->desc->linear_min_sel; /* Map back into a voltage to verify we're still in bounds */ voltage = rdev->desc->ops->list_voltage(rdev, ret); if (voltage < min_uV || voltage > max_uV) return -EINVAL; return ret; } EXPORT_SYMBOL_GPL(regulator_map_voltage_linear); /** * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges * * @rdev: Regulator to operate on * @min_uV: Lower bound for voltage * @max_uV: Upper bound for voltage * * Drivers providing linear_ranges in their descriptor can use this as * their map_voltage() callback. */ int regulator_map_voltage_linear_range(struct regulator_dev *rdev, int min_uV, int max_uV) { const struct linear_range *range; int ret = -EINVAL; unsigned int sel; bool found; int voltage, i; if (!rdev->desc->n_linear_ranges) { BUG_ON(!rdev->desc->n_linear_ranges); return -EINVAL; } for (i = 0; i < rdev->desc->n_linear_ranges; i++) { range = &rdev->desc->linear_ranges[i]; ret = linear_range_get_selector_high(range, min_uV, &sel, &found); if (ret) continue; ret = sel; /* * Map back into a voltage to verify we're still in bounds. * If we are not, then continue checking rest of the ranges. */ voltage = rdev->desc->ops->list_voltage(rdev, sel); if (voltage >= min_uV && voltage <= max_uV) break; } if (i == rdev->desc->n_linear_ranges) return -EINVAL; return ret; } EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range); /** * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges * * @rdev: Regulator to operate on * @min_uV: Lower bound for voltage * @max_uV: Upper bound for voltage * * Drivers providing pickable linear_ranges in their descriptor can use * this as their map_voltage() callback. */ int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev, int min_uV, int max_uV) { const struct linear_range *range; int ret = -EINVAL; int voltage, i; unsigned int selector = 0; if (!rdev->desc->n_linear_ranges) { BUG_ON(!rdev->desc->n_linear_ranges); return -EINVAL; } for (i = 0; i < rdev->desc->n_linear_ranges; i++) { int linear_max_uV; bool found; unsigned int sel; range = &rdev->desc->linear_ranges[i]; linear_max_uV = linear_range_get_max_value(range); if (!(min_uV <= linear_max_uV && max_uV >= range->min)) { selector += linear_range_values_in_range(range); continue; } ret = linear_range_get_selector_high(range, min_uV, &sel, &found); if (ret) { selector += linear_range_values_in_range(range); continue; } ret = selector + sel - range->min_sel; voltage = rdev->desc->ops->list_voltage(rdev, ret); /* * Map back into a voltage to verify we're still in bounds. * We may have overlapping voltage ranges. Hence we don't * exit but retry until we have checked all ranges. */ if (voltage < min_uV || voltage > max_uV) selector += linear_range_values_in_range(range); else break; } if (i == rdev->desc->n_linear_ranges) return -EINVAL; return ret; } EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range); /** * regulator_list_voltage_linear - List voltages with simple calculation * * @rdev: Regulator device * @selector: Selector to convert into a voltage * * Regulators with a simple linear mapping between voltages and * selectors can set min_uV and uV_step in the regulator descriptor * and then use this function as their list_voltage() operation, */ int regulator_list_voltage_linear(struct regulator_dev *rdev, unsigned int selector) { if (selector >= rdev->desc->n_voltages) return -EINVAL; if (selector < rdev->desc->linear_min_sel) return 0; selector -= rdev->desc->linear_min_sel; return rdev->desc->min_uV + (rdev->desc->uV_step * selector); } EXPORT_SYMBOL_GPL(regulator_list_voltage_linear); /** * regulator_list_voltage_pickable_linear_range - pickable range list voltages * * @rdev: Regulator device * @selector: Selector to convert into a voltage * * list_voltage() operation, intended to be used by drivers utilizing pickable * ranges helpers. */ int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev, unsigned int selector) { const struct linear_range *range; int i; unsigned int all_sels = 0; if (!rdev->desc->n_linear_ranges) { BUG_ON(!rdev->desc->n_linear_ranges); return -EINVAL; } for (i = 0; i < rdev->desc->n_linear_ranges; i++) { unsigned int sel_indexes; range = &rdev->desc->linear_ranges[i]; sel_indexes = linear_range_values_in_range(range) - 1; if (all_sels + sel_indexes >= selector) { selector -= all_sels; /* * As we see here, pickable ranges work only as * long as the first selector for each pickable * range is 0, and the each subsequent range for * this 'pick' follow immediately at next unused * selector (Eg. there is no gaps between ranges). * I think this is fine but it probably should be * documented. OTOH, whole pickable range stuff * might benefit from some documentation */ return range->min + (range->step * selector); } all_sels += (sel_indexes + 1); } return -EINVAL; } EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range); /** * regulator_desc_list_voltage_linear_range - List voltages for linear ranges * * @desc: Regulator desc for regulator which volatges are to be listed * @selector: Selector to convert into a voltage * * Regulators with a series of simple linear mappings between voltages * and selectors who have set linear_ranges in the regulator descriptor * can use this function prior regulator registration to list voltages. * This is useful when voltages need to be listed during device-tree * parsing. */ int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc, unsigned int selector) { unsigned int val; int ret; BUG_ON(!desc->n_linear_ranges); ret = linear_range_get_value_array(desc->linear_ranges, desc->n_linear_ranges, selector, &val); if (ret) return ret; return val; } EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range); /** * regulator_list_voltage_linear_range - List voltages for linear ranges * * @rdev: Regulator device * @selector: Selector to convert into a voltage * * Regulators with a series of simple linear mappings between voltages * and selectors can set linear_ranges in the regulator descriptor and * then use this function as their list_voltage() operation, */ int regulator_list_voltage_linear_range(struct regulator_dev *rdev, unsigned int selector) { return regulator_desc_list_voltage_linear_range(rdev->desc, selector); } EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range); /** * regulator_list_voltage_table - List voltages with table based mapping * * @rdev: Regulator device * @selector: Selector to convert into a voltage * * Regulators with table based mapping between voltages and * selectors can set volt_table in the regulator descriptor * and then use this function as their list_voltage() operation. */ int regulator_list_voltage_table(struct regulator_dev *rdev, unsigned int selector) { if (!rdev->desc->volt_table) { BUG_ON(!rdev->desc->volt_table); return -EINVAL; } if (selector >= rdev->desc->n_voltages) return -EINVAL; if (selector < rdev->desc->linear_min_sel) return 0; return rdev->desc->volt_table[selector]; } EXPORT_SYMBOL_GPL(regulator_list_voltage_table); /** * regulator_set_bypass_regmap - Default set_bypass() using regmap * * @rdev: device to operate on. * @enable: state to set. */ int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable) { unsigned int val; if (enable) { val = rdev->desc->bypass_val_on; if (!val) val = rdev->desc->bypass_mask; } else { val = rdev->desc->bypass_val_off; } return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg, rdev->desc->bypass_mask, val); } EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap); /** * regulator_set_soft_start_regmap - Default set_soft_start() using regmap * * @rdev: device to operate on. */ int regulator_set_soft_start_regmap(struct regulator_dev *rdev) { unsigned int val; val = rdev->desc->soft_start_val_on; if (!val) val = rdev->desc->soft_start_mask; return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg, rdev->desc->soft_start_mask, val); } EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap); /** * regulator_set_pull_down_regmap - Default set_pull_down() using regmap * * @rdev: device to operate on. */ int regulator_set_pull_down_regmap(struct regulator_dev *rdev) { unsigned int val; val = rdev->desc->pull_down_val_on; if (!val) val = rdev->desc->pull_down_mask; return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg, rdev->desc->pull_down_mask, val); } EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap); /** * regulator_get_bypass_regmap - Default get_bypass() using regmap * * @rdev: device to operate on. * @enable: current state. */ int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable) { unsigned int val; unsigned int val_on = rdev->desc->bypass_val_on; int ret; ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val); if (ret != 0) return ret; if (!val_on) val_on = rdev->desc->bypass_mask; *enable = (val & rdev->desc->bypass_mask) == val_on; return 0; } EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap); /** * regulator_set_active_discharge_regmap - Default set_active_discharge() * using regmap * * @rdev: device to operate on. * @enable: state to set, 0 to disable and 1 to enable. */ int regulator_set_active_discharge_regmap(struct regulator_dev *rdev, bool enable) { unsigned int val; if (enable) val = rdev->desc->active_discharge_on; else val = rdev->desc->active_discharge_off; return regmap_update_bits(rdev->regmap, rdev->desc->active_discharge_reg, rdev->desc->active_discharge_mask, val); } EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap); /** * regulator_set_current_limit_regmap - set_current_limit for regmap users * * @rdev: regulator to operate on * @min_uA: Lower bound for current limit * @max_uA: Upper bound for current limit * * Regulators that use regmap for their register I/O can set curr_table, * csel_reg and csel_mask fields in their descriptor and then use this * as their set_current_limit operation, saving some code. */ int regulator_set_current_limit_regmap(struct regulator_dev *rdev, int min_uA, int max_uA) { unsigned int n_currents = rdev->desc->n_current_limits; int i, sel = -1; if (n_currents == 0) return -EINVAL; if (rdev->desc->curr_table) { const unsigned int *curr_table = rdev->desc->curr_table; bool ascend = curr_table[n_currents - 1] > curr_table[0]; /* search for closest to maximum */ if (ascend) { for (i = n_currents - 1; i >= 0; i--) { if (min_uA <= curr_table[i] && curr_table[i] <= max_uA) { sel = i; break; } } } else { for (i = 0; i < n_currents; i++) { if (min_uA <= curr_table[i] && curr_table[i] <= max_uA) { sel = i; break; } } } } if (sel < 0) return -EINVAL; sel <<= ffs(rdev->desc->csel_mask) - 1; return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg, rdev->desc->csel_mask, sel); } EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap); /** * regulator_get_current_limit_regmap - get_current_limit for regmap users * * @rdev: regulator to operate on * * Regulators that use regmap for their register I/O can set the * csel_reg and csel_mask fields in their descriptor and then use this * as their get_current_limit operation, saving some code. */ int regulator_get_current_limit_regmap(struct regulator_dev *rdev) { unsigned int val; int ret; ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val); if (ret != 0) return ret; val &= rdev->desc->csel_mask; val >>= ffs(rdev->desc->csel_mask) - 1; if (rdev->desc->curr_table) { if (val >= rdev->desc->n_current_limits) return -EINVAL; return rdev->desc->curr_table[val]; } return -EINVAL; } EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap); /** * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array * of regulator_bulk_data structs * * @consumers: array of regulator_bulk_data entries to initialize * @supply_names: array of supply name strings * @num_supplies: number of supply names to initialize * * Note: the 'consumers' array must be the size of 'num_supplies'. */ void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers, const char *const *supply_names, unsigned int num_supplies) { unsigned int i; for (i = 0; i < num_supplies; i++) consumers[i].supply = supply_names[i]; } EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names); /** * regulator_is_equal - test whether two regulators are the same * * @reg1: first regulator to operate on * @reg2: second regulator to operate on */ bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2) { return reg1->rdev == reg2->rdev; } EXPORT_SYMBOL_GPL(regulator_is_equal);