// SPDX-License-Identifier: GPL-2.0-only
/*
 * Qualcomm self-authenticating modem subsystem remoteproc driver
 *
 * Copyright (C) 2016 Linaro Ltd.
 * Copyright (C) 2014 Sony Mobile Communications AB
 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/devcoredump.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_reserved_mem.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/remoteproc.h>
#include <linux/reset.h>
#include <linux/soc/qcom/mdt_loader.h>
#include <linux/iopoll.h>
#include <linux/slab.h>

#include "remoteproc_internal.h"
#include "qcom_common.h"
#include "qcom_pil_info.h"
#include "qcom_q6v5.h"

#include <linux/firmware/qcom/qcom_scm.h>

#define MPSS_CRASH_REASON_SMEM		421

#define MBA_LOG_SIZE			SZ_4K

#define MPSS_PAS_ID			5

/* RMB Status Register Values */
#define RMB_PBL_SUCCESS			0x1

#define RMB_MBA_XPU_UNLOCKED		0x1
#define RMB_MBA_XPU_UNLOCKED_SCRIBBLED	0x2
#define RMB_MBA_META_DATA_AUTH_SUCCESS	0x3
#define RMB_MBA_AUTH_COMPLETE		0x4

/* PBL/MBA interface registers */
#define RMB_MBA_IMAGE_REG		0x00
#define RMB_PBL_STATUS_REG		0x04
#define RMB_MBA_COMMAND_REG		0x08
#define RMB_MBA_STATUS_REG		0x0C
#define RMB_PMI_META_DATA_REG		0x10
#define RMB_PMI_CODE_START_REG		0x14
#define RMB_PMI_CODE_LENGTH_REG		0x18
#define RMB_MBA_MSS_STATUS		0x40
#define RMB_MBA_ALT_RESET		0x44

#define RMB_CMD_META_DATA_READY		0x1
#define RMB_CMD_LOAD_READY		0x2

/* QDSP6SS Register Offsets */
#define QDSP6SS_RESET_REG		0x014
#define QDSP6SS_GFMUX_CTL_REG		0x020
#define QDSP6SS_PWR_CTL_REG		0x030
#define QDSP6SS_MEM_PWR_CTL		0x0B0
#define QDSP6V6SS_MEM_PWR_CTL		0x034
#define QDSP6SS_STRAP_ACC		0x110

/* AXI Halt Register Offsets */
#define AXI_HALTREQ_REG			0x0
#define AXI_HALTACK_REG			0x4
#define AXI_IDLE_REG			0x8
#define AXI_GATING_VALID_OVERRIDE	BIT(0)

#define HALT_ACK_TIMEOUT_US		100000

/* QACCEPT Register Offsets */
#define QACCEPT_ACCEPT_REG		0x0
#define QACCEPT_ACTIVE_REG		0x4
#define QACCEPT_DENY_REG		0x8
#define QACCEPT_REQ_REG			0xC

#define QACCEPT_TIMEOUT_US		50

/* QDSP6SS_RESET */
#define Q6SS_STOP_CORE			BIT(0)
#define Q6SS_CORE_ARES			BIT(1)
#define Q6SS_BUS_ARES_ENABLE		BIT(2)

/* QDSP6SS CBCR */
#define Q6SS_CBCR_CLKEN			BIT(0)
#define Q6SS_CBCR_CLKOFF		BIT(31)
#define Q6SS_CBCR_TIMEOUT_US		200

/* QDSP6SS_GFMUX_CTL */
#define Q6SS_CLK_ENABLE			BIT(1)

/* QDSP6SS_PWR_CTL */
#define Q6SS_L2DATA_SLP_NRET_N_0	BIT(0)
#define Q6SS_L2DATA_SLP_NRET_N_1	BIT(1)
#define Q6SS_L2DATA_SLP_NRET_N_2	BIT(2)
#define Q6SS_L2TAG_SLP_NRET_N		BIT(16)
#define Q6SS_ETB_SLP_NRET_N		BIT(17)
#define Q6SS_L2DATA_STBY_N		BIT(18)
#define Q6SS_SLP_RET_N			BIT(19)
#define Q6SS_CLAMP_IO			BIT(20)
#define QDSS_BHS_ON			BIT(21)
#define QDSS_LDO_BYP			BIT(22)

/* QDSP6v55 parameters */
#define QDSP6V55_MEM_BITS		GENMASK(16, 8)

/* QDSP6v56 parameters */
#define QDSP6v56_LDO_BYP		BIT(25)
#define QDSP6v56_BHS_ON		BIT(24)
#define QDSP6v56_CLAMP_WL		BIT(21)
#define QDSP6v56_CLAMP_QMC_MEM		BIT(22)
#define QDSP6SS_XO_CBCR		0x0038
#define QDSP6SS_ACC_OVERRIDE_VAL		0x20

/* QDSP6v65 parameters */
#define QDSP6SS_CORE_CBCR		0x20
#define QDSP6SS_SLEEP                   0x3C
#define QDSP6SS_BOOT_CORE_START         0x400
#define QDSP6SS_BOOT_CMD                0x404
#define BOOT_FSM_TIMEOUT                10000

struct reg_info {
	struct regulator *reg;
	int uV;
	int uA;
};

struct qcom_mss_reg_res {
	const char *supply;
	int uV;
	int uA;
};

struct rproc_hexagon_res {
	const char *hexagon_mba_image;
	struct qcom_mss_reg_res *proxy_supply;
	struct qcom_mss_reg_res *fallback_proxy_supply;
	struct qcom_mss_reg_res *active_supply;
	char **proxy_clk_names;
	char **reset_clk_names;
	char **active_clk_names;
	char **proxy_pd_names;
	int version;
	bool need_mem_protection;
	bool has_alt_reset;
	bool has_mba_logs;
	bool has_spare_reg;
	bool has_qaccept_regs;
	bool has_ext_cntl_regs;
	bool has_vq6;
};

struct q6v5 {
	struct device *dev;
	struct rproc *rproc;

	void __iomem *reg_base;
	void __iomem *rmb_base;

	struct regmap *halt_map;
	struct regmap *conn_map;

	u32 halt_q6;
	u32 halt_modem;
	u32 halt_nc;
	u32 halt_vq6;
	u32 conn_box;

	u32 qaccept_mdm;
	u32 qaccept_cx;
	u32 qaccept_axi;

	u32 axim1_clk_off;
	u32 crypto_clk_off;
	u32 force_clk_on;
	u32 rscc_disable;

	struct reset_control *mss_restart;
	struct reset_control *pdc_reset;

	struct qcom_q6v5 q6v5;

	struct clk *active_clks[8];
	struct clk *reset_clks[4];
	struct clk *proxy_clks[4];
	struct device *proxy_pds[3];
	int active_clk_count;
	int reset_clk_count;
	int proxy_clk_count;
	int proxy_pd_count;

	struct reg_info active_regs[1];
	struct reg_info proxy_regs[1];
	struct reg_info fallback_proxy_regs[2];
	int active_reg_count;
	int proxy_reg_count;
	int fallback_proxy_reg_count;

	bool dump_mba_loaded;
	size_t current_dump_size;
	size_t total_dump_size;

	phys_addr_t mba_phys;
	size_t mba_size;
	size_t dp_size;

	phys_addr_t mdata_phys;
	size_t mdata_size;

	phys_addr_t mpss_phys;
	phys_addr_t mpss_reloc;
	size_t mpss_size;

	struct qcom_rproc_glink glink_subdev;
	struct qcom_rproc_subdev smd_subdev;
	struct qcom_rproc_ssr ssr_subdev;
	struct qcom_sysmon *sysmon;
	struct platform_device *bam_dmux;
	bool need_mem_protection;
	bool has_alt_reset;
	bool has_mba_logs;
	bool has_spare_reg;
	bool has_qaccept_regs;
	bool has_ext_cntl_regs;
	bool has_vq6;
	u64 mpss_perm;
	u64 mba_perm;
	const char *hexagon_mdt_image;
	int version;
};

enum {
	MSS_MSM8909,
	MSS_MSM8916,
	MSS_MSM8953,
	MSS_MSM8974,
	MSS_MSM8996,
	MSS_MSM8998,
	MSS_SC7180,
	MSS_SC7280,
	MSS_SDM845,
};

static int q6v5_regulator_init(struct device *dev, struct reg_info *regs,
			       const struct qcom_mss_reg_res *reg_res)
{
	int rc;
	int i;

	if (!reg_res)
		return 0;

	for (i = 0; reg_res[i].supply; i++) {
		regs[i].reg = devm_regulator_get(dev, reg_res[i].supply);
		if (IS_ERR(regs[i].reg)) {
			rc = PTR_ERR(regs[i].reg);
			if (rc != -EPROBE_DEFER)
				dev_err(dev, "Failed to get %s\n regulator",
					reg_res[i].supply);
			return rc;
		}

		regs[i].uV = reg_res[i].uV;
		regs[i].uA = reg_res[i].uA;
	}

	return i;
}

static int q6v5_regulator_enable(struct q6v5 *qproc,
				 struct reg_info *regs, int count)
{
	int ret;
	int i;

	for (i = 0; i < count; i++) {
		if (regs[i].uV > 0) {
			ret = regulator_set_voltage(regs[i].reg,
					regs[i].uV, INT_MAX);
			if (ret) {
				dev_err(qproc->dev,
					"Failed to request voltage for %d.\n",
						i);
				goto err;
			}
		}

		if (regs[i].uA > 0) {
			ret = regulator_set_load(regs[i].reg,
						 regs[i].uA);
			if (ret < 0) {
				dev_err(qproc->dev,
					"Failed to set regulator mode\n");
				goto err;
			}
		}

		ret = regulator_enable(regs[i].reg);
		if (ret) {
			dev_err(qproc->dev, "Regulator enable failed\n");
			goto err;
		}
	}

	return 0;
err:
	for (; i >= 0; i--) {
		if (regs[i].uV > 0)
			regulator_set_voltage(regs[i].reg, 0, INT_MAX);

		if (regs[i].uA > 0)
			regulator_set_load(regs[i].reg, 0);

		regulator_disable(regs[i].reg);
	}

	return ret;
}

static void q6v5_regulator_disable(struct q6v5 *qproc,
				   struct reg_info *regs, int count)
{
	int i;

	for (i = 0; i < count; i++) {
		if (regs[i].uV > 0)
			regulator_set_voltage(regs[i].reg, 0, INT_MAX);

		if (regs[i].uA > 0)
			regulator_set_load(regs[i].reg, 0);

		regulator_disable(regs[i].reg);
	}
}

static int q6v5_clk_enable(struct device *dev,
			   struct clk **clks, int count)
{
	int rc;
	int i;

	for (i = 0; i < count; i++) {
		rc = clk_prepare_enable(clks[i]);
		if (rc) {
			dev_err(dev, "Clock enable failed\n");
			goto err;
		}
	}

	return 0;
err:
	for (i--; i >= 0; i--)
		clk_disable_unprepare(clks[i]);

	return rc;
}

static void q6v5_clk_disable(struct device *dev,
			     struct clk **clks, int count)
{
	int i;

	for (i = 0; i < count; i++)
		clk_disable_unprepare(clks[i]);
}

static int q6v5_pds_enable(struct q6v5 *qproc, struct device **pds,
			   size_t pd_count)
{
	int ret;
	int i;

	for (i = 0; i < pd_count; i++) {
		dev_pm_genpd_set_performance_state(pds[i], INT_MAX);
		ret = pm_runtime_get_sync(pds[i]);
		if (ret < 0) {
			pm_runtime_put_noidle(pds[i]);
			dev_pm_genpd_set_performance_state(pds[i], 0);
			goto unroll_pd_votes;
		}
	}

	return 0;

unroll_pd_votes:
	for (i--; i >= 0; i--) {
		dev_pm_genpd_set_performance_state(pds[i], 0);
		pm_runtime_put(pds[i]);
	}

	return ret;
}

static void q6v5_pds_disable(struct q6v5 *qproc, struct device **pds,
			     size_t pd_count)
{
	int i;

	for (i = 0; i < pd_count; i++) {
		dev_pm_genpd_set_performance_state(pds[i], 0);
		pm_runtime_put(pds[i]);
	}
}

static int q6v5_xfer_mem_ownership(struct q6v5 *qproc, u64 *current_perm,
				   bool local, bool remote, phys_addr_t addr,
				   size_t size)
{
	struct qcom_scm_vmperm next[2];
	int perms = 0;

	if (!qproc->need_mem_protection)
		return 0;

	if (local == !!(*current_perm & BIT(QCOM_SCM_VMID_HLOS)) &&
	    remote == !!(*current_perm & BIT(QCOM_SCM_VMID_MSS_MSA)))
		return 0;

	if (local) {
		next[perms].vmid = QCOM_SCM_VMID_HLOS;
		next[perms].perm = QCOM_SCM_PERM_RWX;
		perms++;
	}

	if (remote) {
		next[perms].vmid = QCOM_SCM_VMID_MSS_MSA;
		next[perms].perm = QCOM_SCM_PERM_RW;
		perms++;
	}

	return qcom_scm_assign_mem(addr, ALIGN(size, SZ_4K),
				   current_perm, next, perms);
}

static void q6v5_debug_policy_load(struct q6v5 *qproc, void *mba_region)
{
	const struct firmware *dp_fw;

	if (request_firmware_direct(&dp_fw, "msadp", qproc->dev))
		return;

	if (SZ_1M + dp_fw->size <= qproc->mba_size) {
		memcpy(mba_region + SZ_1M, dp_fw->data, dp_fw->size);
		qproc->dp_size = dp_fw->size;
	}

	release_firmware(dp_fw);
}

static int q6v5_load(struct rproc *rproc, const struct firmware *fw)
{
	struct q6v5 *qproc = rproc->priv;
	void *mba_region;

	/* MBA is restricted to a maximum size of 1M */
	if (fw->size > qproc->mba_size || fw->size > SZ_1M) {
		dev_err(qproc->dev, "MBA firmware load failed\n");
		return -EINVAL;
	}

	mba_region = memremap(qproc->mba_phys, qproc->mba_size, MEMREMAP_WC);
	if (!mba_region) {
		dev_err(qproc->dev, "unable to map memory region: %pa+%zx\n",
			&qproc->mba_phys, qproc->mba_size);
		return -EBUSY;
	}

	memcpy(mba_region, fw->data, fw->size);
	q6v5_debug_policy_load(qproc, mba_region);
	memunmap(mba_region);

	return 0;
}

static int q6v5_reset_assert(struct q6v5 *qproc)
{
	int ret;

	if (qproc->has_alt_reset) {
		reset_control_assert(qproc->pdc_reset);
		ret = reset_control_reset(qproc->mss_restart);
		reset_control_deassert(qproc->pdc_reset);
	} else if (qproc->has_spare_reg) {
		/*
		 * When the AXI pipeline is being reset with the Q6 modem partly
		 * operational there is possibility of AXI valid signal to
		 * glitch, leading to spurious transactions and Q6 hangs. A work
		 * around is employed by asserting the AXI_GATING_VALID_OVERRIDE
		 * BIT before triggering Q6 MSS reset. AXI_GATING_VALID_OVERRIDE
		 * is withdrawn post MSS assert followed by a MSS deassert,
		 * while holding the PDC reset.
		 */
		reset_control_assert(qproc->pdc_reset);
		regmap_update_bits(qproc->conn_map, qproc->conn_box,
				   AXI_GATING_VALID_OVERRIDE, 1);
		reset_control_assert(qproc->mss_restart);
		reset_control_deassert(qproc->pdc_reset);
		regmap_update_bits(qproc->conn_map, qproc->conn_box,
				   AXI_GATING_VALID_OVERRIDE, 0);
		ret = reset_control_deassert(qproc->mss_restart);
	} else if (qproc->has_ext_cntl_regs) {
		regmap_write(qproc->conn_map, qproc->rscc_disable, 0);
		reset_control_assert(qproc->pdc_reset);
		reset_control_assert(qproc->mss_restart);
		reset_control_deassert(qproc->pdc_reset);
		ret = reset_control_deassert(qproc->mss_restart);
	} else {
		ret = reset_control_assert(qproc->mss_restart);
	}

	return ret;
}

static int q6v5_reset_deassert(struct q6v5 *qproc)
{
	int ret;

	if (qproc->has_alt_reset) {
		reset_control_assert(qproc->pdc_reset);
		writel(1, qproc->rmb_base + RMB_MBA_ALT_RESET);
		ret = reset_control_reset(qproc->mss_restart);
		writel(0, qproc->rmb_base + RMB_MBA_ALT_RESET);
		reset_control_deassert(qproc->pdc_reset);
	} else if (qproc->has_spare_reg || qproc->has_ext_cntl_regs) {
		ret = reset_control_reset(qproc->mss_restart);
	} else {
		ret = reset_control_deassert(qproc->mss_restart);
	}

	return ret;
}

static int q6v5_rmb_pbl_wait(struct q6v5 *qproc, int ms)
{
	unsigned long timeout;
	s32 val;

	timeout = jiffies + msecs_to_jiffies(ms);
	for (;;) {
		val = readl(qproc->rmb_base + RMB_PBL_STATUS_REG);
		if (val)
			break;

		if (time_after(jiffies, timeout))
			return -ETIMEDOUT;

		msleep(1);
	}

	return val;
}

static int q6v5_rmb_mba_wait(struct q6v5 *qproc, u32 status, int ms)
{

	unsigned long timeout;
	s32 val;

	timeout = jiffies + msecs_to_jiffies(ms);
	for (;;) {
		val = readl(qproc->rmb_base + RMB_MBA_STATUS_REG);
		if (val < 0)
			break;

		if (!status && val)
			break;
		else if (status && val == status)
			break;

		if (time_after(jiffies, timeout))
			return -ETIMEDOUT;

		msleep(1);
	}

	return val;
}

static void q6v5_dump_mba_logs(struct q6v5 *qproc)
{
	struct rproc *rproc = qproc->rproc;
	void *data;
	void *mba_region;

	if (!qproc->has_mba_logs)
		return;

	if (q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true, false, qproc->mba_phys,
				    qproc->mba_size))
		return;

	mba_region = memremap(qproc->mba_phys, qproc->mba_size, MEMREMAP_WC);
	if (!mba_region)
		return;

	data = vmalloc(MBA_LOG_SIZE);
	if (data) {
		memcpy(data, mba_region, MBA_LOG_SIZE);
		dev_coredumpv(&rproc->dev, data, MBA_LOG_SIZE, GFP_KERNEL);
	}
	memunmap(mba_region);
}

static int q6v5proc_reset(struct q6v5 *qproc)
{
	u32 val;
	int ret;
	int i;

	if (qproc->version == MSS_SDM845) {
		val = readl(qproc->reg_base + QDSP6SS_SLEEP);
		val |= Q6SS_CBCR_CLKEN;
		writel(val, qproc->reg_base + QDSP6SS_SLEEP);

		ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_SLEEP,
					 val, !(val & Q6SS_CBCR_CLKOFF), 1,
					 Q6SS_CBCR_TIMEOUT_US);
		if (ret) {
			dev_err(qproc->dev, "QDSP6SS Sleep clock timed out\n");
			return -ETIMEDOUT;
		}

		/* De-assert QDSP6 stop core */
		writel(1, qproc->reg_base + QDSP6SS_BOOT_CORE_START);
		/* Trigger boot FSM */
		writel(1, qproc->reg_base + QDSP6SS_BOOT_CMD);

		ret = readl_poll_timeout(qproc->rmb_base + RMB_MBA_MSS_STATUS,
				val, (val & BIT(0)) != 0, 10, BOOT_FSM_TIMEOUT);
		if (ret) {
			dev_err(qproc->dev, "Boot FSM failed to complete.\n");
			/* Reset the modem so that boot FSM is in reset state */
			q6v5_reset_deassert(qproc);
			return ret;
		}

		goto pbl_wait;
	} else if (qproc->version == MSS_SC7180 || qproc->version == MSS_SC7280) {
		val = readl(qproc->reg_base + QDSP6SS_SLEEP);
		val |= Q6SS_CBCR_CLKEN;
		writel(val, qproc->reg_base + QDSP6SS_SLEEP);

		ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_SLEEP,
					 val, !(val & Q6SS_CBCR_CLKOFF), 1,
					 Q6SS_CBCR_TIMEOUT_US);
		if (ret) {
			dev_err(qproc->dev, "QDSP6SS Sleep clock timed out\n");
			return -ETIMEDOUT;
		}

		/* Turn on the XO clock needed for PLL setup */
		val = readl(qproc->reg_base + QDSP6SS_XO_CBCR);
		val |= Q6SS_CBCR_CLKEN;
		writel(val, qproc->reg_base + QDSP6SS_XO_CBCR);

		ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_XO_CBCR,
					 val, !(val & Q6SS_CBCR_CLKOFF), 1,
					 Q6SS_CBCR_TIMEOUT_US);
		if (ret) {
			dev_err(qproc->dev, "QDSP6SS XO clock timed out\n");
			return -ETIMEDOUT;
		}

		/* Configure Q6 core CBCR to auto-enable after reset sequence */
		val = readl(qproc->reg_base + QDSP6SS_CORE_CBCR);
		val |= Q6SS_CBCR_CLKEN;
		writel(val, qproc->reg_base + QDSP6SS_CORE_CBCR);

		/* De-assert the Q6 stop core signal */
		writel(1, qproc->reg_base + QDSP6SS_BOOT_CORE_START);

		/* Wait for 10 us for any staggering logic to settle */
		usleep_range(10, 20);

		/* Trigger the boot FSM to start the Q6 out-of-reset sequence */
		writel(1, qproc->reg_base + QDSP6SS_BOOT_CMD);

		/* Poll the MSS_STATUS for FSM completion */
		ret = readl_poll_timeout(qproc->rmb_base + RMB_MBA_MSS_STATUS,
					 val, (val & BIT(0)) != 0, 10, BOOT_FSM_TIMEOUT);
		if (ret) {
			dev_err(qproc->dev, "Boot FSM failed to complete.\n");
			/* Reset the modem so that boot FSM is in reset state */
			q6v5_reset_deassert(qproc);
			return ret;
		}
		goto pbl_wait;
	} else if (qproc->version == MSS_MSM8909 ||
		   qproc->version == MSS_MSM8953 ||
		   qproc->version == MSS_MSM8996 ||
		   qproc->version == MSS_MSM8998) {

		if (qproc->version != MSS_MSM8909 &&
		    qproc->version != MSS_MSM8953)
			/* Override the ACC value if required */
			writel(QDSP6SS_ACC_OVERRIDE_VAL,
			       qproc->reg_base + QDSP6SS_STRAP_ACC);

		/* Assert resets, stop core */
		val = readl(qproc->reg_base + QDSP6SS_RESET_REG);
		val |= Q6SS_CORE_ARES | Q6SS_BUS_ARES_ENABLE | Q6SS_STOP_CORE;
		writel(val, qproc->reg_base + QDSP6SS_RESET_REG);

		/* BHS require xo cbcr to be enabled */
		val = readl(qproc->reg_base + QDSP6SS_XO_CBCR);
		val |= Q6SS_CBCR_CLKEN;
		writel(val, qproc->reg_base + QDSP6SS_XO_CBCR);

		/* Read CLKOFF bit to go low indicating CLK is enabled */
		ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_XO_CBCR,
					 val, !(val & Q6SS_CBCR_CLKOFF), 1,
					 Q6SS_CBCR_TIMEOUT_US);
		if (ret) {
			dev_err(qproc->dev,
				"xo cbcr enabling timed out (rc:%d)\n", ret);
			return ret;
		}
		/* Enable power block headswitch and wait for it to stabilize */
		val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
		val |= QDSP6v56_BHS_ON;
		writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
		val |= readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
		udelay(1);

		/* Put LDO in bypass mode */
		val |= QDSP6v56_LDO_BYP;
		writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);

		if (qproc->version != MSS_MSM8909) {
			int mem_pwr_ctl;

			/* Deassert QDSP6 compiler memory clamp */
			val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
			val &= ~QDSP6v56_CLAMP_QMC_MEM;
			writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);

			/* Deassert memory peripheral sleep and L2 memory standby */
			val |= Q6SS_L2DATA_STBY_N | Q6SS_SLP_RET_N;
			writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);

			/* Turn on L1, L2, ETB and JU memories 1 at a time */
			if (qproc->version == MSS_MSM8953 ||
			    qproc->version == MSS_MSM8996) {
				mem_pwr_ctl = QDSP6SS_MEM_PWR_CTL;
				i = 19;
			} else {
				/* MSS_MSM8998 */
				mem_pwr_ctl = QDSP6V6SS_MEM_PWR_CTL;
				i = 28;
			}
			val = readl(qproc->reg_base + mem_pwr_ctl);
			for (; i >= 0; i--) {
				val |= BIT(i);
				writel(val, qproc->reg_base + mem_pwr_ctl);
				/*
				 * Read back value to ensure the write is done then
				 * wait for 1us for both memory peripheral and data
				 * array to turn on.
				 */
				val |= readl(qproc->reg_base + mem_pwr_ctl);
				udelay(1);
			}
		} else {
			/* Turn on memories */
			val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
			val |= Q6SS_SLP_RET_N | Q6SS_L2DATA_STBY_N |
			       Q6SS_ETB_SLP_NRET_N | QDSP6V55_MEM_BITS;
			writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);

			/* Turn on L2 banks 1 at a time */
			for (i = 0; i <= 7; i++) {
				val |= BIT(i);
				writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
			}
		}

		/* Remove word line clamp */
		val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
		val &= ~QDSP6v56_CLAMP_WL;
		writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
	} else {
		/* Assert resets, stop core */
		val = readl(qproc->reg_base + QDSP6SS_RESET_REG);
		val |= Q6SS_CORE_ARES | Q6SS_BUS_ARES_ENABLE | Q6SS_STOP_CORE;
		writel(val, qproc->reg_base + QDSP6SS_RESET_REG);

		/* Enable power block headswitch and wait for it to stabilize */
		val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
		val |= QDSS_BHS_ON | QDSS_LDO_BYP;
		writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
		val |= readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
		udelay(1);
		/*
		 * Turn on memories. L2 banks should be done individually
		 * to minimize inrush current.
		 */
		val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
		val |= Q6SS_SLP_RET_N | Q6SS_L2TAG_SLP_NRET_N |
			Q6SS_ETB_SLP_NRET_N | Q6SS_L2DATA_STBY_N;
		writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
		val |= Q6SS_L2DATA_SLP_NRET_N_2;
		writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
		val |= Q6SS_L2DATA_SLP_NRET_N_1;
		writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
		val |= Q6SS_L2DATA_SLP_NRET_N_0;
		writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
	}
	/* Remove IO clamp */
	val &= ~Q6SS_CLAMP_IO;
	writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);

	/* Bring core out of reset */
	val = readl(qproc->reg_base + QDSP6SS_RESET_REG);
	val &= ~Q6SS_CORE_ARES;
	writel(val, qproc->reg_base + QDSP6SS_RESET_REG);

	/* Turn on core clock */
	val = readl(qproc->reg_base + QDSP6SS_GFMUX_CTL_REG);
	val |= Q6SS_CLK_ENABLE;
	writel(val, qproc->reg_base + QDSP6SS_GFMUX_CTL_REG);

	/* Start core execution */
	val = readl(qproc->reg_base + QDSP6SS_RESET_REG);
	val &= ~Q6SS_STOP_CORE;
	writel(val, qproc->reg_base + QDSP6SS_RESET_REG);

pbl_wait:
	/* Wait for PBL status */
	ret = q6v5_rmb_pbl_wait(qproc, 1000);
	if (ret == -ETIMEDOUT) {
		dev_err(qproc->dev, "PBL boot timed out\n");
	} else if (ret != RMB_PBL_SUCCESS) {
		dev_err(qproc->dev, "PBL returned unexpected status %d\n", ret);
		ret = -EINVAL;
	} else {
		ret = 0;
	}

	return ret;
}

static int q6v5proc_enable_qchannel(struct q6v5 *qproc, struct regmap *map, u32 offset)
{
	unsigned int val;
	int ret;

	if (!qproc->has_qaccept_regs)
		return 0;

	if (qproc->has_ext_cntl_regs) {
		regmap_write(qproc->conn_map, qproc->rscc_disable, 0);
		regmap_write(qproc->conn_map, qproc->force_clk_on, 1);

		ret = regmap_read_poll_timeout(qproc->halt_map, qproc->axim1_clk_off, val,
					       !val, 1, Q6SS_CBCR_TIMEOUT_US);
		if (ret) {
			dev_err(qproc->dev, "failed to enable axim1 clock\n");
			return -ETIMEDOUT;
		}
	}

	regmap_write(map, offset + QACCEPT_REQ_REG, 1);

	/* Wait for accept */
	ret = regmap_read_poll_timeout(map, offset + QACCEPT_ACCEPT_REG, val, val, 5,
				       QACCEPT_TIMEOUT_US);
	if (ret) {
		dev_err(qproc->dev, "qchannel enable failed\n");
		return -ETIMEDOUT;
	}

	return 0;
}

static void q6v5proc_disable_qchannel(struct q6v5 *qproc, struct regmap *map, u32 offset)
{
	int ret;
	unsigned int val, retry;
	unsigned int nretry = 10;
	bool takedown_complete = false;

	if (!qproc->has_qaccept_regs)
		return;

	while (!takedown_complete && nretry) {
		nretry--;

		/* Wait for active transactions to complete */
		regmap_read_poll_timeout(map, offset + QACCEPT_ACTIVE_REG, val, !val, 5,
					 QACCEPT_TIMEOUT_US);

		/* Request Q-channel transaction takedown */
		regmap_write(map, offset + QACCEPT_REQ_REG, 0);

		/*
		 * If the request is denied, reset the Q-channel takedown request,
		 * wait for active transactions to complete and retry takedown.
		 */
		retry = 10;
		while (retry) {
			usleep_range(5, 10);
			retry--;
			ret = regmap_read(map, offset + QACCEPT_DENY_REG, &val);
			if (!ret && val) {
				regmap_write(map, offset + QACCEPT_REQ_REG, 1);
				break;
			}

			ret = regmap_read(map, offset + QACCEPT_ACCEPT_REG, &val);
			if (!ret && !val) {
				takedown_complete = true;
				break;
			}
		}

		if (!retry)
			break;
	}

	/* Rely on mss_restart to clear out pending transactions on takedown failure */
	if (!takedown_complete)
		dev_err(qproc->dev, "qchannel takedown failed\n");
}

static void q6v5proc_halt_axi_port(struct q6v5 *qproc,
				   struct regmap *halt_map,
				   u32 offset)
{
	unsigned int val;
	int ret;

	/* Check if we're already idle */
	ret = regmap_read(halt_map, offset + AXI_IDLE_REG, &val);
	if (!ret && val)
		return;

	/* Assert halt request */
	regmap_write(halt_map, offset + AXI_HALTREQ_REG, 1);

	/* Wait for halt */
	regmap_read_poll_timeout(halt_map, offset + AXI_HALTACK_REG, val,
				 val, 1000, HALT_ACK_TIMEOUT_US);

	ret = regmap_read(halt_map, offset + AXI_IDLE_REG, &val);
	if (ret || !val)
		dev_err(qproc->dev, "port failed halt\n");

	/* Clear halt request (port will remain halted until reset) */
	regmap_write(halt_map, offset + AXI_HALTREQ_REG, 0);
}

static int q6v5_mpss_init_image(struct q6v5 *qproc, const struct firmware *fw,
				const char *fw_name)
{
	unsigned long dma_attrs = DMA_ATTR_FORCE_CONTIGUOUS;
	dma_addr_t phys;
	void *metadata;
	u64 mdata_perm;
	int xferop_ret;
	size_t size;
	void *ptr;
	int ret;

	metadata = qcom_mdt_read_metadata(fw, &size, fw_name, qproc->dev);
	if (IS_ERR(metadata))
		return PTR_ERR(metadata);

	if (qproc->mdata_phys) {
		if (size > qproc->mdata_size) {
			ret = -EINVAL;
			dev_err(qproc->dev, "metadata size outside memory range\n");
			goto free_metadata;
		}

		phys = qproc->mdata_phys;
		ptr = memremap(qproc->mdata_phys, size, MEMREMAP_WC);
		if (!ptr) {
			ret = -EBUSY;
			dev_err(qproc->dev, "unable to map memory region: %pa+%zx\n",
				&qproc->mdata_phys, size);
			goto free_metadata;
		}
	} else {
		ptr = dma_alloc_attrs(qproc->dev, size, &phys, GFP_KERNEL, dma_attrs);
		if (!ptr) {
			ret = -ENOMEM;
			dev_err(qproc->dev, "failed to allocate mdt buffer\n");
			goto free_metadata;
		}
	}

	memcpy(ptr, metadata, size);

	if (qproc->mdata_phys)
		memunmap(ptr);

	/* Hypervisor mapping to access metadata by modem */
	mdata_perm = BIT(QCOM_SCM_VMID_HLOS);
	ret = q6v5_xfer_mem_ownership(qproc, &mdata_perm, false, true,
				      phys, size);
	if (ret) {
		dev_err(qproc->dev,
			"assigning Q6 access to metadata failed: %d\n", ret);
		ret = -EAGAIN;
		goto free_dma_attrs;
	}

	writel(phys, qproc->rmb_base + RMB_PMI_META_DATA_REG);
	writel(RMB_CMD_META_DATA_READY, qproc->rmb_base + RMB_MBA_COMMAND_REG);

	ret = q6v5_rmb_mba_wait(qproc, RMB_MBA_META_DATA_AUTH_SUCCESS, 1000);
	if (ret == -ETIMEDOUT)
		dev_err(qproc->dev, "MPSS header authentication timed out\n");
	else if (ret < 0)
		dev_err(qproc->dev, "MPSS header authentication failed: %d\n", ret);

	/* Metadata authentication done, remove modem access */
	xferop_ret = q6v5_xfer_mem_ownership(qproc, &mdata_perm, true, false,
					     phys, size);
	if (xferop_ret)
		dev_warn(qproc->dev,
			 "mdt buffer not reclaimed system may become unstable\n");

free_dma_attrs:
	if (!qproc->mdata_phys)
		dma_free_attrs(qproc->dev, size, ptr, phys, dma_attrs);
free_metadata:
	kfree(metadata);

	return ret < 0 ? ret : 0;
}

static bool q6v5_phdr_valid(const struct elf32_phdr *phdr)
{
	if (phdr->p_type != PT_LOAD)
		return false;

	if ((phdr->p_flags & QCOM_MDT_TYPE_MASK) == QCOM_MDT_TYPE_HASH)
		return false;

	if (!phdr->p_memsz)
		return false;

	return true;
}

static int q6v5_mba_load(struct q6v5 *qproc)
{
	int ret;
	int xfermemop_ret;
	bool mba_load_err = false;

	ret = qcom_q6v5_prepare(&qproc->q6v5);
	if (ret)
		return ret;

	ret = q6v5_pds_enable(qproc, qproc->proxy_pds, qproc->proxy_pd_count);
	if (ret < 0) {
		dev_err(qproc->dev, "failed to enable proxy power domains\n");
		goto disable_irqs;
	}

	ret = q6v5_regulator_enable(qproc, qproc->fallback_proxy_regs,
				    qproc->fallback_proxy_reg_count);
	if (ret) {
		dev_err(qproc->dev, "failed to enable fallback proxy supplies\n");
		goto disable_proxy_pds;
	}

	ret = q6v5_regulator_enable(qproc, qproc->proxy_regs,
				    qproc->proxy_reg_count);
	if (ret) {
		dev_err(qproc->dev, "failed to enable proxy supplies\n");
		goto disable_fallback_proxy_reg;
	}

	ret = q6v5_clk_enable(qproc->dev, qproc->proxy_clks,
			      qproc->proxy_clk_count);
	if (ret) {
		dev_err(qproc->dev, "failed to enable proxy clocks\n");
		goto disable_proxy_reg;
	}

	ret = q6v5_regulator_enable(qproc, qproc->active_regs,
				    qproc->active_reg_count);
	if (ret) {
		dev_err(qproc->dev, "failed to enable supplies\n");
		goto disable_proxy_clk;
	}

	ret = q6v5_clk_enable(qproc->dev, qproc->reset_clks,
			      qproc->reset_clk_count);
	if (ret) {
		dev_err(qproc->dev, "failed to enable reset clocks\n");
		goto disable_vdd;
	}

	ret = q6v5_reset_deassert(qproc);
	if (ret) {
		dev_err(qproc->dev, "failed to deassert mss restart\n");
		goto disable_reset_clks;
	}

	ret = q6v5_clk_enable(qproc->dev, qproc->active_clks,
			      qproc->active_clk_count);
	if (ret) {
		dev_err(qproc->dev, "failed to enable clocks\n");
		goto assert_reset;
	}

	ret = q6v5proc_enable_qchannel(qproc, qproc->halt_map, qproc->qaccept_axi);
	if (ret) {
		dev_err(qproc->dev, "failed to enable axi bridge\n");
		goto disable_active_clks;
	}

	/*
	 * Some versions of the MBA firmware will upon boot wipe the MPSS region as well, so provide
	 * the Q6 access to this region.
	 */
	ret = q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, false, true,
				      qproc->mpss_phys, qproc->mpss_size);
	if (ret) {
		dev_err(qproc->dev, "assigning Q6 access to mpss memory failed: %d\n", ret);
		goto disable_active_clks;
	}

	/* Assign MBA image access in DDR to q6 */
	ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, false, true,
				      qproc->mba_phys, qproc->mba_size);
	if (ret) {
		dev_err(qproc->dev,
			"assigning Q6 access to mba memory failed: %d\n", ret);
		goto disable_active_clks;
	}

	writel(qproc->mba_phys, qproc->rmb_base + RMB_MBA_IMAGE_REG);
	if (qproc->dp_size) {
		writel(qproc->mba_phys + SZ_1M, qproc->rmb_base + RMB_PMI_CODE_START_REG);
		writel(qproc->dp_size, qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG);
	}

	ret = q6v5proc_reset(qproc);
	if (ret)
		goto reclaim_mba;

	if (qproc->has_mba_logs)
		qcom_pil_info_store("mba", qproc->mba_phys, MBA_LOG_SIZE);

	ret = q6v5_rmb_mba_wait(qproc, 0, 5000);
	if (ret == -ETIMEDOUT) {
		dev_err(qproc->dev, "MBA boot timed out\n");
		goto halt_axi_ports;
	} else if (ret != RMB_MBA_XPU_UNLOCKED &&
		   ret != RMB_MBA_XPU_UNLOCKED_SCRIBBLED) {
		dev_err(qproc->dev, "MBA returned unexpected status %d\n", ret);
		ret = -EINVAL;
		goto halt_axi_ports;
	}

	qproc->dump_mba_loaded = true;
	return 0;

halt_axi_ports:
	q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_q6);
	if (qproc->has_vq6)
		q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_vq6);
	q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_modem);
	q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_nc);
	q6v5proc_disable_qchannel(qproc, qproc->halt_map, qproc->qaccept_mdm);
	q6v5proc_disable_qchannel(qproc, qproc->halt_map, qproc->qaccept_cx);
	q6v5proc_disable_qchannel(qproc, qproc->halt_map, qproc->qaccept_axi);
	mba_load_err = true;
reclaim_mba:
	xfermemop_ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true,
						false, qproc->mba_phys,
						qproc->mba_size);
	if (xfermemop_ret) {
		dev_err(qproc->dev,
			"Failed to reclaim mba buffer, system may become unstable\n");
	} else if (mba_load_err) {
		q6v5_dump_mba_logs(qproc);
	}

disable_active_clks:
	q6v5_clk_disable(qproc->dev, qproc->active_clks,
			 qproc->active_clk_count);
assert_reset:
	q6v5_reset_assert(qproc);
disable_reset_clks:
	q6v5_clk_disable(qproc->dev, qproc->reset_clks,
			 qproc->reset_clk_count);
disable_vdd:
	q6v5_regulator_disable(qproc, qproc->active_regs,
			       qproc->active_reg_count);
disable_proxy_clk:
	q6v5_clk_disable(qproc->dev, qproc->proxy_clks,
			 qproc->proxy_clk_count);
disable_proxy_reg:
	q6v5_regulator_disable(qproc, qproc->proxy_regs,
			       qproc->proxy_reg_count);
disable_fallback_proxy_reg:
	q6v5_regulator_disable(qproc, qproc->fallback_proxy_regs,
			       qproc->fallback_proxy_reg_count);
disable_proxy_pds:
	q6v5_pds_disable(qproc, qproc->proxy_pds, qproc->proxy_pd_count);
disable_irqs:
	qcom_q6v5_unprepare(&qproc->q6v5);

	return ret;
}

static void q6v5_mba_reclaim(struct q6v5 *qproc)
{
	int ret;
	u32 val;

	qproc->dump_mba_loaded = false;
	qproc->dp_size = 0;

	q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_q6);
	if (qproc->has_vq6)
		q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_vq6);
	q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_modem);
	q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_nc);
	if (qproc->version == MSS_MSM8996) {
		/*
		 * To avoid high MX current during LPASS/MSS restart.
		 */
		val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
		val |= Q6SS_CLAMP_IO | QDSP6v56_CLAMP_WL |
			QDSP6v56_CLAMP_QMC_MEM;
		writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
	}

	if (qproc->has_ext_cntl_regs) {
		regmap_write(qproc->conn_map, qproc->rscc_disable, 1);

		ret = regmap_read_poll_timeout(qproc->halt_map, qproc->axim1_clk_off, val,
					       !val, 1, Q6SS_CBCR_TIMEOUT_US);
		if (ret)
			dev_err(qproc->dev, "failed to enable axim1 clock\n");

		ret = regmap_read_poll_timeout(qproc->halt_map, qproc->crypto_clk_off, val,
					       !val, 1, Q6SS_CBCR_TIMEOUT_US);
		if (ret)
			dev_err(qproc->dev, "failed to enable crypto clock\n");
	}

	q6v5proc_disable_qchannel(qproc, qproc->halt_map, qproc->qaccept_mdm);
	q6v5proc_disable_qchannel(qproc, qproc->halt_map, qproc->qaccept_cx);
	q6v5proc_disable_qchannel(qproc, qproc->halt_map, qproc->qaccept_axi);

	q6v5_reset_assert(qproc);

	q6v5_clk_disable(qproc->dev, qproc->reset_clks,
			 qproc->reset_clk_count);
	q6v5_clk_disable(qproc->dev, qproc->active_clks,
			 qproc->active_clk_count);
	q6v5_regulator_disable(qproc, qproc->active_regs,
			       qproc->active_reg_count);

	/* In case of failure or coredump scenario where reclaiming MBA memory
	 * could not happen reclaim it here.
	 */
	ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true, false,
				      qproc->mba_phys,
				      qproc->mba_size);
	WARN_ON(ret);

	ret = qcom_q6v5_unprepare(&qproc->q6v5);
	if (ret) {
		q6v5_pds_disable(qproc, qproc->proxy_pds,
				 qproc->proxy_pd_count);
		q6v5_clk_disable(qproc->dev, qproc->proxy_clks,
				 qproc->proxy_clk_count);
		q6v5_regulator_disable(qproc, qproc->fallback_proxy_regs,
				       qproc->fallback_proxy_reg_count);
		q6v5_regulator_disable(qproc, qproc->proxy_regs,
				       qproc->proxy_reg_count);
	}
}

static int q6v5_reload_mba(struct rproc *rproc)
{
	struct q6v5 *qproc = rproc->priv;
	const struct firmware *fw;
	int ret;

	ret = request_firmware(&fw, rproc->firmware, qproc->dev);
	if (ret < 0)
		return ret;

	q6v5_load(rproc, fw);
	ret = q6v5_mba_load(qproc);
	release_firmware(fw);

	return ret;
}

static int q6v5_mpss_load(struct q6v5 *qproc)
{
	const struct elf32_phdr *phdrs;
	const struct elf32_phdr *phdr;
	const struct firmware *seg_fw;
	const struct firmware *fw;
	struct elf32_hdr *ehdr;
	phys_addr_t mpss_reloc;
	phys_addr_t boot_addr;
	phys_addr_t min_addr = PHYS_ADDR_MAX;
	phys_addr_t max_addr = 0;
	u32 code_length;
	bool relocate = false;
	char *fw_name;
	size_t fw_name_len;
	ssize_t offset;
	size_t size = 0;
	void *ptr;
	int ret;
	int i;

	fw_name_len = strlen(qproc->hexagon_mdt_image);
	if (fw_name_len <= 4)
		return -EINVAL;

	fw_name = kstrdup(qproc->hexagon_mdt_image, GFP_KERNEL);
	if (!fw_name)
		return -ENOMEM;

	ret = request_firmware(&fw, fw_name, qproc->dev);
	if (ret < 0) {
		dev_err(qproc->dev, "unable to load %s\n", fw_name);
		goto out;
	}

	/* Initialize the RMB validator */
	writel(0, qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG);

	ret = q6v5_mpss_init_image(qproc, fw, qproc->hexagon_mdt_image);
	if (ret)
		goto release_firmware;

	ehdr = (struct elf32_hdr *)fw->data;
	phdrs = (struct elf32_phdr *)(ehdr + 1);

	for (i = 0; i < ehdr->e_phnum; i++) {
		phdr = &phdrs[i];

		if (!q6v5_phdr_valid(phdr))
			continue;

		if (phdr->p_flags & QCOM_MDT_RELOCATABLE)
			relocate = true;

		if (phdr->p_paddr < min_addr)
			min_addr = phdr->p_paddr;

		if (phdr->p_paddr + phdr->p_memsz > max_addr)
			max_addr = ALIGN(phdr->p_paddr + phdr->p_memsz, SZ_4K);
	}

	if (qproc->version == MSS_MSM8953) {
		ret = qcom_scm_pas_mem_setup(MPSS_PAS_ID, qproc->mpss_phys, qproc->mpss_size);
		if (ret) {
			dev_err(qproc->dev,
				"setting up mpss memory failed: %d\n", ret);
			goto release_firmware;
		}
	}

	/*
	 * In case of a modem subsystem restart on secure devices, the modem
	 * memory can be reclaimed only after MBA is loaded.
	 */
	q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, true, false,
				qproc->mpss_phys, qproc->mpss_size);

	/* Share ownership between Linux and MSS, during segment loading */
	ret = q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, true, true,
				      qproc->mpss_phys, qproc->mpss_size);
	if (ret) {
		dev_err(qproc->dev,
			"assigning Q6 access to mpss memory failed: %d\n", ret);
		ret = -EAGAIN;
		goto release_firmware;
	}

	mpss_reloc = relocate ? min_addr : qproc->mpss_phys;
	qproc->mpss_reloc = mpss_reloc;
	/* Load firmware segments */
	for (i = 0; i < ehdr->e_phnum; i++) {
		phdr = &phdrs[i];

		if (!q6v5_phdr_valid(phdr))
			continue;

		offset = phdr->p_paddr - mpss_reloc;
		if (offset < 0 || offset + phdr->p_memsz > qproc->mpss_size) {
			dev_err(qproc->dev, "segment outside memory range\n");
			ret = -EINVAL;
			goto release_firmware;
		}

		if (phdr->p_filesz > phdr->p_memsz) {
			dev_err(qproc->dev,
				"refusing to load segment %d with p_filesz > p_memsz\n",
				i);
			ret = -EINVAL;
			goto release_firmware;
		}

		ptr = memremap(qproc->mpss_phys + offset, phdr->p_memsz, MEMREMAP_WC);
		if (!ptr) {
			dev_err(qproc->dev,
				"unable to map memory region: %pa+%zx-%x\n",
				&qproc->mpss_phys, offset, phdr->p_memsz);
			goto release_firmware;
		}

		if (phdr->p_filesz && phdr->p_offset < fw->size) {
			/* Firmware is large enough to be non-split */
			if (phdr->p_offset + phdr->p_filesz > fw->size) {
				dev_err(qproc->dev,
					"failed to load segment %d from truncated file %s\n",
					i, fw_name);
				ret = -EINVAL;
				memunmap(ptr);
				goto release_firmware;
			}

			memcpy(ptr, fw->data + phdr->p_offset, phdr->p_filesz);
		} else if (phdr->p_filesz) {
			/* Replace "xxx.xxx" with "xxx.bxx" */
			sprintf(fw_name + fw_name_len - 3, "b%02d", i);
			ret = request_firmware_into_buf(&seg_fw, fw_name, qproc->dev,
							ptr, phdr->p_filesz);
			if (ret) {
				dev_err(qproc->dev, "failed to load %s\n", fw_name);
				memunmap(ptr);
				goto release_firmware;
			}

			if (seg_fw->size != phdr->p_filesz) {
				dev_err(qproc->dev,
					"failed to load segment %d from truncated file %s\n",
					i, fw_name);
				ret = -EINVAL;
				release_firmware(seg_fw);
				memunmap(ptr);
				goto release_firmware;
			}

			release_firmware(seg_fw);
		}

		if (phdr->p_memsz > phdr->p_filesz) {
			memset(ptr + phdr->p_filesz, 0,
			       phdr->p_memsz - phdr->p_filesz);
		}
		memunmap(ptr);
		size += phdr->p_memsz;

		code_length = readl(qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG);
		if (!code_length) {
			boot_addr = relocate ? qproc->mpss_phys : min_addr;
			writel(boot_addr, qproc->rmb_base + RMB_PMI_CODE_START_REG);
			writel(RMB_CMD_LOAD_READY, qproc->rmb_base + RMB_MBA_COMMAND_REG);
		}
		writel(size, qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG);

		ret = readl(qproc->rmb_base + RMB_MBA_STATUS_REG);
		if (ret < 0) {
			dev_err(qproc->dev, "MPSS authentication failed: %d\n",
				ret);
			goto release_firmware;
		}
	}

	/* Transfer ownership of modem ddr region to q6 */
	ret = q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, false, true,
				      qproc->mpss_phys, qproc->mpss_size);
	if (ret) {
		dev_err(qproc->dev,
			"assigning Q6 access to mpss memory failed: %d\n", ret);
		ret = -EAGAIN;
		goto release_firmware;
	}

	ret = q6v5_rmb_mba_wait(qproc, RMB_MBA_AUTH_COMPLETE, 10000);
	if (ret == -ETIMEDOUT)
		dev_err(qproc->dev, "MPSS authentication timed out\n");
	else if (ret < 0)
		dev_err(qproc->dev, "MPSS authentication failed: %d\n", ret);

	qcom_pil_info_store("modem", qproc->mpss_phys, qproc->mpss_size);

release_firmware:
	release_firmware(fw);
out:
	kfree(fw_name);

	return ret < 0 ? ret : 0;
}

static void qcom_q6v5_dump_segment(struct rproc *rproc,
				   struct rproc_dump_segment *segment,
				   void *dest, size_t cp_offset, size_t size)
{
	int ret = 0;
	struct q6v5 *qproc = rproc->priv;
	int offset = segment->da - qproc->mpss_reloc;
	void *ptr = NULL;

	/* Unlock mba before copying segments */
	if (!qproc->dump_mba_loaded) {
		ret = q6v5_reload_mba(rproc);
		if (!ret) {
			/* Reset ownership back to Linux to copy segments */
			ret = q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm,
						      true, false,
						      qproc->mpss_phys,
						      qproc->mpss_size);
		}
	}

	if (!ret)
		ptr = memremap(qproc->mpss_phys + offset + cp_offset, size, MEMREMAP_WC);

	if (ptr) {
		memcpy(dest, ptr, size);
		memunmap(ptr);
	} else {
		memset(dest, 0xff, size);
	}

	qproc->current_dump_size += size;

	/* Reclaim mba after copying segments */
	if (qproc->current_dump_size == qproc->total_dump_size) {
		if (qproc->dump_mba_loaded) {
			/* Try to reset ownership back to Q6 */
			q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm,
						false, true,
						qproc->mpss_phys,
						qproc->mpss_size);
			q6v5_mba_reclaim(qproc);
		}
	}
}

static int q6v5_start(struct rproc *rproc)
{
	struct q6v5 *qproc = rproc->priv;
	int xfermemop_ret;
	int ret;

	ret = q6v5_mba_load(qproc);
	if (ret)
		return ret;

	dev_info(qproc->dev, "MBA booted with%s debug policy, loading mpss\n",
		 qproc->dp_size ? "" : "out");

	ret = q6v5_mpss_load(qproc);
	if (ret)
		goto reclaim_mpss;

	ret = qcom_q6v5_wait_for_start(&qproc->q6v5, msecs_to_jiffies(5000));
	if (ret == -ETIMEDOUT) {
		dev_err(qproc->dev, "start timed out\n");
		goto reclaim_mpss;
	}

	xfermemop_ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true,
						false, qproc->mba_phys,
						qproc->mba_size);
	if (xfermemop_ret)
		dev_err(qproc->dev,
			"Failed to reclaim mba buffer system may become unstable\n");

	/* Reset Dump Segment Mask */
	qproc->current_dump_size = 0;

	return 0;

reclaim_mpss:
	q6v5_mba_reclaim(qproc);
	q6v5_dump_mba_logs(qproc);

	return ret;
}

static int q6v5_stop(struct rproc *rproc)
{
	struct q6v5 *qproc = rproc->priv;
	int ret;

	ret = qcom_q6v5_request_stop(&qproc->q6v5, qproc->sysmon);
	if (ret == -ETIMEDOUT)
		dev_err(qproc->dev, "timed out on wait\n");

	q6v5_mba_reclaim(qproc);

	return 0;
}

static int qcom_q6v5_register_dump_segments(struct rproc *rproc,
					    const struct firmware *mba_fw)
{
	const struct firmware *fw;
	const struct elf32_phdr *phdrs;
	const struct elf32_phdr *phdr;
	const struct elf32_hdr *ehdr;
	struct q6v5 *qproc = rproc->priv;
	unsigned long i;
	int ret;

	ret = request_firmware(&fw, qproc->hexagon_mdt_image, qproc->dev);
	if (ret < 0) {
		dev_err(qproc->dev, "unable to load %s\n",
			qproc->hexagon_mdt_image);
		return ret;
	}

	rproc_coredump_set_elf_info(rproc, ELFCLASS32, EM_NONE);

	ehdr = (struct elf32_hdr *)fw->data;
	phdrs = (struct elf32_phdr *)(ehdr + 1);
	qproc->total_dump_size = 0;

	for (i = 0; i < ehdr->e_phnum; i++) {
		phdr = &phdrs[i];

		if (!q6v5_phdr_valid(phdr))
			continue;

		ret = rproc_coredump_add_custom_segment(rproc, phdr->p_paddr,
							phdr->p_memsz,
							qcom_q6v5_dump_segment,
							NULL);
		if (ret)
			break;

		qproc->total_dump_size += phdr->p_memsz;
	}

	release_firmware(fw);
	return ret;
}

static unsigned long q6v5_panic(struct rproc *rproc)
{
	struct q6v5 *qproc = rproc->priv;

	return qcom_q6v5_panic(&qproc->q6v5);
}

static const struct rproc_ops q6v5_ops = {
	.start = q6v5_start,
	.stop = q6v5_stop,
	.parse_fw = qcom_q6v5_register_dump_segments,
	.load = q6v5_load,
	.panic = q6v5_panic,
};

static void qcom_msa_handover(struct qcom_q6v5 *q6v5)
{
	struct q6v5 *qproc = container_of(q6v5, struct q6v5, q6v5);

	q6v5_clk_disable(qproc->dev, qproc->proxy_clks,
			 qproc->proxy_clk_count);
	q6v5_regulator_disable(qproc, qproc->proxy_regs,
			       qproc->proxy_reg_count);
	q6v5_regulator_disable(qproc, qproc->fallback_proxy_regs,
			       qproc->fallback_proxy_reg_count);
	q6v5_pds_disable(qproc, qproc->proxy_pds, qproc->proxy_pd_count);
}

static int q6v5_init_mem(struct q6v5 *qproc, struct platform_device *pdev)
{
	struct of_phandle_args args;
	int halt_cell_cnt = 3;
	int ret;

	qproc->reg_base = devm_platform_ioremap_resource_byname(pdev, "qdsp6");
	if (IS_ERR(qproc->reg_base))
		return PTR_ERR(qproc->reg_base);

	qproc->rmb_base = devm_platform_ioremap_resource_byname(pdev, "rmb");
	if (IS_ERR(qproc->rmb_base))
		return PTR_ERR(qproc->rmb_base);

	if (qproc->has_vq6)
		halt_cell_cnt++;

	ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node,
					       "qcom,halt-regs", halt_cell_cnt, 0, &args);
	if (ret < 0) {
		dev_err(&pdev->dev, "failed to parse qcom,halt-regs\n");
		return -EINVAL;
	}

	qproc->halt_map = syscon_node_to_regmap(args.np);
	of_node_put(args.np);
	if (IS_ERR(qproc->halt_map))
		return PTR_ERR(qproc->halt_map);

	qproc->halt_q6 = args.args[0];
	qproc->halt_modem = args.args[1];
	qproc->halt_nc = args.args[2];

	if (qproc->has_vq6)
		qproc->halt_vq6 = args.args[3];

	if (qproc->has_qaccept_regs) {
		ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node,
						       "qcom,qaccept-regs",
						       3, 0, &args);
		if (ret < 0) {
			dev_err(&pdev->dev, "failed to parse qaccept-regs\n");
			return -EINVAL;
		}

		qproc->qaccept_mdm = args.args[0];
		qproc->qaccept_cx = args.args[1];
		qproc->qaccept_axi = args.args[2];
	}

	if (qproc->has_ext_cntl_regs) {
		ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node,
						       "qcom,ext-regs",
						       2, 0, &args);
		if (ret < 0) {
			dev_err(&pdev->dev, "failed to parse ext-regs index 0\n");
			return -EINVAL;
		}

		qproc->conn_map = syscon_node_to_regmap(args.np);
		of_node_put(args.np);
		if (IS_ERR(qproc->conn_map))
			return PTR_ERR(qproc->conn_map);

		qproc->force_clk_on = args.args[0];
		qproc->rscc_disable = args.args[1];

		ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node,
						       "qcom,ext-regs",
						       2, 1, &args);
		if (ret < 0) {
			dev_err(&pdev->dev, "failed to parse ext-regs index 1\n");
			return -EINVAL;
		}

		qproc->axim1_clk_off = args.args[0];
		qproc->crypto_clk_off = args.args[1];
	}

	if (qproc->has_spare_reg) {
		ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node,
						       "qcom,spare-regs",
						       1, 0, &args);
		if (ret < 0) {
			dev_err(&pdev->dev, "failed to parse spare-regs\n");
			return -EINVAL;
		}

		qproc->conn_map = syscon_node_to_regmap(args.np);
		of_node_put(args.np);
		if (IS_ERR(qproc->conn_map))
			return PTR_ERR(qproc->conn_map);

		qproc->conn_box = args.args[0];
	}

	return 0;
}

static int q6v5_init_clocks(struct device *dev, struct clk **clks,
		char **clk_names)
{
	int i;

	if (!clk_names)
		return 0;

	for (i = 0; clk_names[i]; i++) {
		clks[i] = devm_clk_get(dev, clk_names[i]);
		if (IS_ERR(clks[i])) {
			int rc = PTR_ERR(clks[i]);

			if (rc != -EPROBE_DEFER)
				dev_err(dev, "Failed to get %s clock\n",
					clk_names[i]);
			return rc;
		}
	}

	return i;
}

static int q6v5_pds_attach(struct device *dev, struct device **devs,
			   char **pd_names)
{
	size_t num_pds = 0;
	int ret;
	int i;

	if (!pd_names)
		return 0;

	while (pd_names[num_pds])
		num_pds++;

	for (i = 0; i < num_pds; i++) {
		devs[i] = dev_pm_domain_attach_by_name(dev, pd_names[i]);
		if (IS_ERR_OR_NULL(devs[i])) {
			ret = PTR_ERR(devs[i]) ? : -ENODATA;
			goto unroll_attach;
		}
	}

	return num_pds;

unroll_attach:
	for (i--; i >= 0; i--)
		dev_pm_domain_detach(devs[i], false);

	return ret;
}

static void q6v5_pds_detach(struct q6v5 *qproc, struct device **pds,
			    size_t pd_count)
{
	int i;

	for (i = 0; i < pd_count; i++)
		dev_pm_domain_detach(pds[i], false);
}

static int q6v5_init_reset(struct q6v5 *qproc)
{
	qproc->mss_restart = devm_reset_control_get_exclusive(qproc->dev,
							      "mss_restart");
	if (IS_ERR(qproc->mss_restart)) {
		dev_err(qproc->dev, "failed to acquire mss restart\n");
		return PTR_ERR(qproc->mss_restart);
	}

	if (qproc->has_alt_reset || qproc->has_spare_reg || qproc->has_ext_cntl_regs) {
		qproc->pdc_reset = devm_reset_control_get_exclusive(qproc->dev,
								    "pdc_reset");
		if (IS_ERR(qproc->pdc_reset)) {
			dev_err(qproc->dev, "failed to acquire pdc reset\n");
			return PTR_ERR(qproc->pdc_reset);
		}
	}

	return 0;
}

static int q6v5_alloc_memory_region(struct q6v5 *qproc)
{
	struct device_node *child;
	struct reserved_mem *rmem;
	struct device_node *node;
	struct resource r;
	int ret;

	/*
	 * In the absence of mba/mpss sub-child, extract the mba and mpss
	 * reserved memory regions from device's memory-region property.
	 */
	child = of_get_child_by_name(qproc->dev->of_node, "mba");
	if (!child) {
		node = of_parse_phandle(qproc->dev->of_node,
					"memory-region", 0);
	} else {
		node = of_parse_phandle(child, "memory-region", 0);
		of_node_put(child);
	}

	ret = of_address_to_resource(node, 0, &r);
	of_node_put(node);
	if (ret) {
		dev_err(qproc->dev, "unable to resolve mba region\n");
		return ret;
	}

	qproc->mba_phys = r.start;
	qproc->mba_size = resource_size(&r);

	if (!child) {
		node = of_parse_phandle(qproc->dev->of_node,
					"memory-region", 1);
	} else {
		child = of_get_child_by_name(qproc->dev->of_node, "mpss");
		node = of_parse_phandle(child, "memory-region", 0);
		of_node_put(child);
	}

	ret = of_address_to_resource(node, 0, &r);
	of_node_put(node);
	if (ret) {
		dev_err(qproc->dev, "unable to resolve mpss region\n");
		return ret;
	}

	qproc->mpss_phys = qproc->mpss_reloc = r.start;
	qproc->mpss_size = resource_size(&r);

	if (!child) {
		node = of_parse_phandle(qproc->dev->of_node, "memory-region", 2);
	} else {
		child = of_get_child_by_name(qproc->dev->of_node, "metadata");
		node = of_parse_phandle(child, "memory-region", 0);
		of_node_put(child);
	}

	if (!node)
		return 0;

	rmem = of_reserved_mem_lookup(node);
	if (!rmem) {
		dev_err(qproc->dev, "unable to resolve metadata region\n");
		return -EINVAL;
	}

	qproc->mdata_phys = rmem->base;
	qproc->mdata_size = rmem->size;

	return 0;
}

static int q6v5_probe(struct platform_device *pdev)
{
	const struct rproc_hexagon_res *desc;
	struct device_node *node;
	struct q6v5 *qproc;
	struct rproc *rproc;
	const char *mba_image;
	int ret;

	desc = of_device_get_match_data(&pdev->dev);
	if (!desc)
		return -EINVAL;

	if (desc->need_mem_protection && !qcom_scm_is_available())
		return -EPROBE_DEFER;

	mba_image = desc->hexagon_mba_image;
	ret = of_property_read_string_index(pdev->dev.of_node, "firmware-name",
					    0, &mba_image);
	if (ret < 0 && ret != -EINVAL) {
		dev_err(&pdev->dev, "unable to read mba firmware-name\n");
		return ret;
	}

	rproc = rproc_alloc(&pdev->dev, pdev->name, &q6v5_ops,
			    mba_image, sizeof(*qproc));
	if (!rproc) {
		dev_err(&pdev->dev, "failed to allocate rproc\n");
		return -ENOMEM;
	}

	rproc->auto_boot = false;
	rproc_coredump_set_elf_info(rproc, ELFCLASS32, EM_NONE);

	qproc = rproc->priv;
	qproc->dev = &pdev->dev;
	qproc->rproc = rproc;
	qproc->hexagon_mdt_image = "modem.mdt";
	ret = of_property_read_string_index(pdev->dev.of_node, "firmware-name",
					    1, &qproc->hexagon_mdt_image);
	if (ret < 0 && ret != -EINVAL) {
		dev_err(&pdev->dev, "unable to read mpss firmware-name\n");
		goto free_rproc;
	}

	platform_set_drvdata(pdev, qproc);

	qproc->has_qaccept_regs = desc->has_qaccept_regs;
	qproc->has_ext_cntl_regs = desc->has_ext_cntl_regs;
	qproc->has_vq6 = desc->has_vq6;
	qproc->has_spare_reg = desc->has_spare_reg;
	ret = q6v5_init_mem(qproc, pdev);
	if (ret)
		goto free_rproc;

	ret = q6v5_alloc_memory_region(qproc);
	if (ret)
		goto free_rproc;

	ret = q6v5_init_clocks(&pdev->dev, qproc->proxy_clks,
			       desc->proxy_clk_names);
	if (ret < 0) {
		dev_err(&pdev->dev, "Failed to get proxy clocks.\n");
		goto free_rproc;
	}
	qproc->proxy_clk_count = ret;

	ret = q6v5_init_clocks(&pdev->dev, qproc->reset_clks,
			       desc->reset_clk_names);
	if (ret < 0) {
		dev_err(&pdev->dev, "Failed to get reset clocks.\n");
		goto free_rproc;
	}
	qproc->reset_clk_count = ret;

	ret = q6v5_init_clocks(&pdev->dev, qproc->active_clks,
			       desc->active_clk_names);
	if (ret < 0) {
		dev_err(&pdev->dev, "Failed to get active clocks.\n");
		goto free_rproc;
	}
	qproc->active_clk_count = ret;

	ret = q6v5_regulator_init(&pdev->dev, qproc->proxy_regs,
				  desc->proxy_supply);
	if (ret < 0) {
		dev_err(&pdev->dev, "Failed to get proxy regulators.\n");
		goto free_rproc;
	}
	qproc->proxy_reg_count = ret;

	ret = q6v5_regulator_init(&pdev->dev,  qproc->active_regs,
				  desc->active_supply);
	if (ret < 0) {
		dev_err(&pdev->dev, "Failed to get active regulators.\n");
		goto free_rproc;
	}
	qproc->active_reg_count = ret;

	ret = q6v5_pds_attach(&pdev->dev, qproc->proxy_pds,
			      desc->proxy_pd_names);
	/* Fallback to regulators for old device trees */
	if (ret == -ENODATA && desc->fallback_proxy_supply) {
		ret = q6v5_regulator_init(&pdev->dev,
					  qproc->fallback_proxy_regs,
					  desc->fallback_proxy_supply);
		if (ret < 0) {
			dev_err(&pdev->dev, "Failed to get fallback proxy regulators.\n");
			goto free_rproc;
		}
		qproc->fallback_proxy_reg_count = ret;
	} else if (ret < 0) {
		dev_err(&pdev->dev, "Failed to init power domains\n");
		goto free_rproc;
	} else {
		qproc->proxy_pd_count = ret;
	}

	qproc->has_alt_reset = desc->has_alt_reset;
	ret = q6v5_init_reset(qproc);
	if (ret)
		goto detach_proxy_pds;

	qproc->version = desc->version;
	qproc->need_mem_protection = desc->need_mem_protection;
	qproc->has_mba_logs = desc->has_mba_logs;

	ret = qcom_q6v5_init(&qproc->q6v5, pdev, rproc, MPSS_CRASH_REASON_SMEM, "modem",
			     qcom_msa_handover);
	if (ret)
		goto detach_proxy_pds;

	qproc->mpss_perm = BIT(QCOM_SCM_VMID_HLOS);
	qproc->mba_perm = BIT(QCOM_SCM_VMID_HLOS);
	qcom_add_glink_subdev(rproc, &qproc->glink_subdev, "mpss");
	qcom_add_smd_subdev(rproc, &qproc->smd_subdev);
	qcom_add_ssr_subdev(rproc, &qproc->ssr_subdev, "mpss");
	qproc->sysmon = qcom_add_sysmon_subdev(rproc, "modem", 0x12);
	if (IS_ERR(qproc->sysmon)) {
		ret = PTR_ERR(qproc->sysmon);
		goto remove_subdevs;
	}

	ret = rproc_add(rproc);
	if (ret)
		goto remove_sysmon_subdev;

	node = of_get_compatible_child(pdev->dev.of_node, "qcom,bam-dmux");
	qproc->bam_dmux = of_platform_device_create(node, NULL, &pdev->dev);
	of_node_put(node);

	return 0;

remove_sysmon_subdev:
	qcom_remove_sysmon_subdev(qproc->sysmon);
remove_subdevs:
	qcom_remove_ssr_subdev(rproc, &qproc->ssr_subdev);
	qcom_remove_smd_subdev(rproc, &qproc->smd_subdev);
	qcom_remove_glink_subdev(rproc, &qproc->glink_subdev);
detach_proxy_pds:
	q6v5_pds_detach(qproc, qproc->proxy_pds, qproc->proxy_pd_count);
free_rproc:
	rproc_free(rproc);

	return ret;
}

static void q6v5_remove(struct platform_device *pdev)
{
	struct q6v5 *qproc = platform_get_drvdata(pdev);
	struct rproc *rproc = qproc->rproc;

	if (qproc->bam_dmux)
		of_platform_device_destroy(&qproc->bam_dmux->dev, NULL);
	rproc_del(rproc);

	qcom_q6v5_deinit(&qproc->q6v5);
	qcom_remove_sysmon_subdev(qproc->sysmon);
	qcom_remove_ssr_subdev(rproc, &qproc->ssr_subdev);
	qcom_remove_smd_subdev(rproc, &qproc->smd_subdev);
	qcom_remove_glink_subdev(rproc, &qproc->glink_subdev);

	q6v5_pds_detach(qproc, qproc->proxy_pds, qproc->proxy_pd_count);

	rproc_free(rproc);
}

static const struct rproc_hexagon_res sc7180_mss = {
	.hexagon_mba_image = "mba.mbn",
	.proxy_clk_names = (char*[]){
		"xo",
		NULL
	},
	.reset_clk_names = (char*[]){
		"iface",
		"bus",
		"snoc_axi",
		NULL
	},
	.active_clk_names = (char*[]){
		"mnoc_axi",
		"nav",
		NULL
	},
	.proxy_pd_names = (char*[]){
		"cx",
		"mx",
		"mss",
		NULL
	},
	.need_mem_protection = true,
	.has_alt_reset = false,
	.has_mba_logs = true,
	.has_spare_reg = true,
	.has_qaccept_regs = false,
	.has_ext_cntl_regs = false,
	.has_vq6 = false,
	.version = MSS_SC7180,
};

static const struct rproc_hexagon_res sc7280_mss = {
	.hexagon_mba_image = "mba.mbn",
	.proxy_clk_names = (char*[]){
		"xo",
		"pka",
		NULL
	},
	.active_clk_names = (char*[]){
		"iface",
		"offline",
		"snoc_axi",
		NULL
	},
	.proxy_pd_names = (char*[]){
		"cx",
		"mss",
		NULL
	},
	.need_mem_protection = true,
	.has_alt_reset = false,
	.has_mba_logs = true,
	.has_spare_reg = false,
	.has_qaccept_regs = true,
	.has_ext_cntl_regs = true,
	.has_vq6 = true,
	.version = MSS_SC7280,
};

static const struct rproc_hexagon_res sdm845_mss = {
	.hexagon_mba_image = "mba.mbn",
	.proxy_clk_names = (char*[]){
			"xo",
			"prng",
			NULL
	},
	.reset_clk_names = (char*[]){
			"iface",
			"snoc_axi",
			NULL
	},
	.active_clk_names = (char*[]){
			"bus",
			"mem",
			"gpll0_mss",
			"mnoc_axi",
			NULL
	},
	.proxy_pd_names = (char*[]){
			"cx",
			"mx",
			"mss",
			NULL
	},
	.need_mem_protection = true,
	.has_alt_reset = true,
	.has_mba_logs = false,
	.has_spare_reg = false,
	.has_qaccept_regs = false,
	.has_ext_cntl_regs = false,
	.has_vq6 = false,
	.version = MSS_SDM845,
};

static const struct rproc_hexagon_res msm8998_mss = {
	.hexagon_mba_image = "mba.mbn",
	.proxy_clk_names = (char*[]){
			"xo",
			"qdss",
			"mem",
			NULL
	},
	.active_clk_names = (char*[]){
			"iface",
			"bus",
			"gpll0_mss",
			"mnoc_axi",
			"snoc_axi",
			NULL
	},
	.proxy_pd_names = (char*[]){
			"cx",
			"mx",
			NULL
	},
	.need_mem_protection = true,
	.has_alt_reset = false,
	.has_mba_logs = false,
	.has_spare_reg = false,
	.has_qaccept_regs = false,
	.has_ext_cntl_regs = false,
	.has_vq6 = false,
	.version = MSS_MSM8998,
};

static const struct rproc_hexagon_res msm8996_mss = {
	.hexagon_mba_image = "mba.mbn",
	.proxy_supply = (struct qcom_mss_reg_res[]) {
		{
			.supply = "pll",
			.uA = 100000,
		},
		{}
	},
	.proxy_clk_names = (char*[]){
			"xo",
			"pnoc",
			"qdss",
			NULL
	},
	.active_clk_names = (char*[]){
			"iface",
			"bus",
			"mem",
			"gpll0_mss",
			"snoc_axi",
			"mnoc_axi",
			NULL
	},
	.proxy_pd_names = (char*[]){
			"mx",
			"cx",
			NULL
	},
	.need_mem_protection = true,
	.has_alt_reset = false,
	.has_mba_logs = false,
	.has_spare_reg = false,
	.has_qaccept_regs = false,
	.has_ext_cntl_regs = false,
	.has_vq6 = false,
	.version = MSS_MSM8996,
};

static const struct rproc_hexagon_res msm8909_mss = {
	.hexagon_mba_image = "mba.mbn",
	.proxy_supply = (struct qcom_mss_reg_res[]) {
		{
			.supply = "pll",
			.uA = 100000,
		},
		{}
	},
	.proxy_clk_names = (char*[]){
		"xo",
		NULL
	},
	.active_clk_names = (char*[]){
		"iface",
		"bus",
		"mem",
		NULL
	},
	.proxy_pd_names = (char*[]){
		"mx",
		"cx",
		NULL
	},
	.need_mem_protection = false,
	.has_alt_reset = false,
	.has_mba_logs = false,
	.has_spare_reg = false,
	.has_qaccept_regs = false,
	.has_ext_cntl_regs = false,
	.has_vq6 = false,
	.version = MSS_MSM8909,
};

static const struct rproc_hexagon_res msm8916_mss = {
	.hexagon_mba_image = "mba.mbn",
	.proxy_supply = (struct qcom_mss_reg_res[]) {
		{
			.supply = "pll",
			.uA = 100000,
		},
		{}
	},
	.fallback_proxy_supply = (struct qcom_mss_reg_res[]) {
		{
			.supply = "mx",
			.uV = 1050000,
		},
		{
			.supply = "cx",
			.uA = 100000,
		},
		{}
	},
	.proxy_clk_names = (char*[]){
		"xo",
		NULL
	},
	.active_clk_names = (char*[]){
		"iface",
		"bus",
		"mem",
		NULL
	},
	.proxy_pd_names = (char*[]){
		"mx",
		"cx",
		NULL
	},
	.need_mem_protection = false,
	.has_alt_reset = false,
	.has_mba_logs = false,
	.has_spare_reg = false,
	.has_qaccept_regs = false,
	.has_ext_cntl_regs = false,
	.has_vq6 = false,
	.version = MSS_MSM8916,
};

static const struct rproc_hexagon_res msm8953_mss = {
	.hexagon_mba_image = "mba.mbn",
	.proxy_supply = (struct qcom_mss_reg_res[]) {
		{
			.supply = "pll",
			.uA = 100000,
		},
		{}
	},
	.proxy_clk_names = (char*[]){
		"xo",
		NULL
	},
	.active_clk_names = (char*[]){
		"iface",
		"bus",
		"mem",
		NULL
	},
	.proxy_pd_names = (char*[]) {
		"cx",
		"mx",
		"mss",
		NULL
	},
	.need_mem_protection = false,
	.has_alt_reset = false,
	.has_mba_logs = false,
	.has_spare_reg = false,
	.has_qaccept_regs = false,
	.has_ext_cntl_regs = false,
	.has_vq6 = false,
	.version = MSS_MSM8953,
};

static const struct rproc_hexagon_res msm8974_mss = {
	.hexagon_mba_image = "mba.b00",
	.proxy_supply = (struct qcom_mss_reg_res[]) {
		{
			.supply = "pll",
			.uA = 100000,
		},
		{}
	},
	.fallback_proxy_supply = (struct qcom_mss_reg_res[]) {
		{
			.supply = "mx",
			.uV = 1050000,
		},
		{
			.supply = "cx",
			.uA = 100000,
		},
		{}
	},
	.active_supply = (struct qcom_mss_reg_res[]) {
		{
			.supply = "mss",
			.uV = 1050000,
			.uA = 100000,
		},
		{}
	},
	.proxy_clk_names = (char*[]){
		"xo",
		NULL
	},
	.active_clk_names = (char*[]){
		"iface",
		"bus",
		"mem",
		NULL
	},
	.proxy_pd_names = (char*[]){
		"mx",
		"cx",
		NULL
	},
	.need_mem_protection = false,
	.has_alt_reset = false,
	.has_mba_logs = false,
	.has_spare_reg = false,
	.has_qaccept_regs = false,
	.has_ext_cntl_regs = false,
	.has_vq6 = false,
	.version = MSS_MSM8974,
};

static const struct of_device_id q6v5_of_match[] = {
	{ .compatible = "qcom,q6v5-pil", .data = &msm8916_mss},
	{ .compatible = "qcom,msm8909-mss-pil", .data = &msm8909_mss},
	{ .compatible = "qcom,msm8916-mss-pil", .data = &msm8916_mss},
	{ .compatible = "qcom,msm8953-mss-pil", .data = &msm8953_mss},
	{ .compatible = "qcom,msm8974-mss-pil", .data = &msm8974_mss},
	{ .compatible = "qcom,msm8996-mss-pil", .data = &msm8996_mss},
	{ .compatible = "qcom,msm8998-mss-pil", .data = &msm8998_mss},
	{ .compatible = "qcom,sc7180-mss-pil", .data = &sc7180_mss},
	{ .compatible = "qcom,sc7280-mss-pil", .data = &sc7280_mss},
	{ .compatible = "qcom,sdm845-mss-pil", .data = &sdm845_mss},
	{ },
};
MODULE_DEVICE_TABLE(of, q6v5_of_match);

static struct platform_driver q6v5_driver = {
	.probe = q6v5_probe,
	.remove_new = q6v5_remove,
	.driver = {
		.name = "qcom-q6v5-mss",
		.of_match_table = q6v5_of_match,
	},
};
module_platform_driver(q6v5_driver);

MODULE_DESCRIPTION("Qualcomm Self-authenticating modem remoteproc driver");
MODULE_LICENSE("GPL v2");