// SPDX-License-Identifier: GPL-2.0+ // // Copyright (c) 2013-2014 Samsung Electronics Co., Ltd // http://www.samsung.com // // Copyright (C) 2013 Google, Inc #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/i2c.h> #include <linux/bcd.h> #include <linux/regmap.h> #include <linux/rtc.h> #include <linux/platform_device.h> #include <linux/mfd/samsung/core.h> #include <linux/mfd/samsung/irq.h> #include <linux/mfd/samsung/rtc.h> #include <linux/mfd/samsung/s2mps14.h> /* * Maximum number of retries for checking changes in UDR field * of S5M_RTC_UDR_CON register (to limit possible endless loop). * * After writing to RTC registers (setting time or alarm) read the UDR field * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have * been transferred. */ #define UDR_READ_RETRY_CNT 5 enum { RTC_SEC = 0, RTC_MIN, RTC_HOUR, RTC_WEEKDAY, RTC_DATE, RTC_MONTH, RTC_YEAR1, RTC_YEAR2, /* Make sure this is always the last enum name. */ RTC_MAX_NUM_TIME_REGS }; /* * Registers used by the driver which are different between chipsets. * * Operations like read time and write alarm/time require updating * specific fields in UDR register. These fields usually are auto-cleared * (with some exceptions). * * Table of operations per device: * * Device | Write time | Read time | Write alarm * ================================================= * S5M8767 | UDR + TIME | | UDR * S2MPS11/14 | WUDR | RUDR | WUDR + RUDR * S2MPS13 | WUDR | RUDR | WUDR + AUDR * S2MPS15 | WUDR | RUDR | AUDR */ struct s5m_rtc_reg_config { /* Number of registers used for setting time/alarm0/alarm1 */ unsigned int regs_count; /* First register for time, seconds */ unsigned int time; /* RTC control register */ unsigned int ctrl; /* First register for alarm 0, seconds */ unsigned int alarm0; /* First register for alarm 1, seconds */ unsigned int alarm1; /* * Register for update flag (UDR). Typically setting UDR field to 1 * will enable update of time or alarm register. Then it will be * auto-cleared after successful update. */ unsigned int udr_update; /* Auto-cleared mask in UDR field for writing time and alarm */ unsigned int autoclear_udr_mask; /* * Masks in UDR field for time and alarm operations. * The read time mask can be 0. Rest should not. */ unsigned int read_time_udr_mask; unsigned int write_time_udr_mask; unsigned int write_alarm_udr_mask; }; /* Register map for S5M8763 and S5M8767 */ static const struct s5m_rtc_reg_config s5m_rtc_regs = { .regs_count = 8, .time = S5M_RTC_SEC, .ctrl = S5M_ALARM1_CONF, .alarm0 = S5M_ALARM0_SEC, .alarm1 = S5M_ALARM1_SEC, .udr_update = S5M_RTC_UDR_CON, .autoclear_udr_mask = S5M_RTC_UDR_MASK, .read_time_udr_mask = 0, /* Not needed */ .write_time_udr_mask = S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK, .write_alarm_udr_mask = S5M_RTC_UDR_MASK, }; /* Register map for S2MPS13 */ static const struct s5m_rtc_reg_config s2mps13_rtc_regs = { .regs_count = 7, .time = S2MPS_RTC_SEC, .ctrl = S2MPS_RTC_CTRL, .alarm0 = S2MPS_ALARM0_SEC, .alarm1 = S2MPS_ALARM1_SEC, .udr_update = S2MPS_RTC_UDR_CON, .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK, .read_time_udr_mask = S2MPS_RTC_RUDR_MASK, .write_time_udr_mask = S2MPS_RTC_WUDR_MASK, .write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK, }; /* Register map for S2MPS11/14 */ static const struct s5m_rtc_reg_config s2mps14_rtc_regs = { .regs_count = 7, .time = S2MPS_RTC_SEC, .ctrl = S2MPS_RTC_CTRL, .alarm0 = S2MPS_ALARM0_SEC, .alarm1 = S2MPS_ALARM1_SEC, .udr_update = S2MPS_RTC_UDR_CON, .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK, .read_time_udr_mask = S2MPS_RTC_RUDR_MASK, .write_time_udr_mask = S2MPS_RTC_WUDR_MASK, .write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK, }; /* * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits * are swapped. */ static const struct s5m_rtc_reg_config s2mps15_rtc_regs = { .regs_count = 7, .time = S2MPS_RTC_SEC, .ctrl = S2MPS_RTC_CTRL, .alarm0 = S2MPS_ALARM0_SEC, .alarm1 = S2MPS_ALARM1_SEC, .udr_update = S2MPS_RTC_UDR_CON, .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK, .read_time_udr_mask = S2MPS_RTC_RUDR_MASK, .write_time_udr_mask = S2MPS15_RTC_WUDR_MASK, .write_alarm_udr_mask = S2MPS15_RTC_AUDR_MASK, }; struct s5m_rtc_info { struct device *dev; struct i2c_client *i2c; struct sec_pmic_dev *s5m87xx; struct regmap *regmap; struct rtc_device *rtc_dev; int irq; enum sec_device_type device_type; int rtc_24hr_mode; const struct s5m_rtc_reg_config *regs; }; static const struct regmap_config s5m_rtc_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = S5M_RTC_REG_MAX, }; static const struct regmap_config s2mps14_rtc_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = S2MPS_RTC_REG_MAX, }; static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm, int rtc_24hr_mode) { tm->tm_sec = data[RTC_SEC] & 0x7f; tm->tm_min = data[RTC_MIN] & 0x7f; if (rtc_24hr_mode) { tm->tm_hour = data[RTC_HOUR] & 0x1f; } else { tm->tm_hour = data[RTC_HOUR] & 0x0f; if (data[RTC_HOUR] & HOUR_PM_MASK) tm->tm_hour += 12; } tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f); tm->tm_mday = data[RTC_DATE] & 0x1f; tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1; tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100; tm->tm_yday = 0; tm->tm_isdst = 0; } static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data) { data[RTC_SEC] = tm->tm_sec; data[RTC_MIN] = tm->tm_min; if (tm->tm_hour >= 12) data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK; else data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK; data[RTC_WEEKDAY] = 1 << tm->tm_wday; data[RTC_DATE] = tm->tm_mday; data[RTC_MONTH] = tm->tm_mon + 1; data[RTC_YEAR1] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0; if (tm->tm_year < 100) { pr_err("RTC cannot handle the year %d\n", 1900 + tm->tm_year); return -EINVAL; } else { return 0; } } /* * Read RTC_UDR_CON register and wait till UDR field is cleared. * This indicates that time/alarm update ended. */ static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info) { int ret, retry = UDR_READ_RETRY_CNT; unsigned int data; do { ret = regmap_read(info->regmap, info->regs->udr_update, &data); } while (--retry && (data & info->regs->autoclear_udr_mask) && !ret); if (!retry) dev_err(info->dev, "waiting for UDR update, reached max number of retries\n"); return ret; } static int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info, struct rtc_wkalrm *alarm) { int ret; unsigned int val; switch (info->device_type) { case S5M8767X: case S5M8763X: ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val); val &= S5M_ALARM0_STATUS; break; case S2MPS15X: case S2MPS14X: case S2MPS13X: ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2, &val); val &= S2MPS_ALARM0_STATUS; break; default: return -EINVAL; } if (ret < 0) return ret; if (val) alarm->pending = 1; else alarm->pending = 0; return 0; } static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info) { int ret; unsigned int data; ret = regmap_read(info->regmap, info->regs->udr_update, &data); if (ret < 0) { dev_err(info->dev, "failed to read update reg(%d)\n", ret); return ret; } data |= info->regs->write_time_udr_mask; ret = regmap_write(info->regmap, info->regs->udr_update, data); if (ret < 0) { dev_err(info->dev, "failed to write update reg(%d)\n", ret); return ret; } ret = s5m8767_wait_for_udr_update(info); return ret; } static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info) { int ret; unsigned int data; ret = regmap_read(info->regmap, info->regs->udr_update, &data); if (ret < 0) { dev_err(info->dev, "%s: fail to read update reg(%d)\n", __func__, ret); return ret; } data |= info->regs->write_alarm_udr_mask; switch (info->device_type) { case S5M8763X: case S5M8767X: data &= ~S5M_RTC_TIME_EN_MASK; break; case S2MPS15X: case S2MPS14X: case S2MPS13X: /* No exceptions needed */ break; default: return -EINVAL; } ret = regmap_write(info->regmap, info->regs->udr_update, data); if (ret < 0) { dev_err(info->dev, "%s: fail to write update reg(%d)\n", __func__, ret); return ret; } ret = s5m8767_wait_for_udr_update(info); /* On S2MPS13 the AUDR is not auto-cleared */ if (info->device_type == S2MPS13X) regmap_update_bits(info->regmap, info->regs->udr_update, S2MPS13_RTC_AUDR_MASK, 0); return ret; } static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm) { tm->tm_sec = bcd2bin(data[RTC_SEC]); tm->tm_min = bcd2bin(data[RTC_MIN]); if (data[RTC_HOUR] & HOUR_12) { tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f); if (data[RTC_HOUR] & HOUR_PM) tm->tm_hour += 12; } else { tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f); } tm->tm_wday = data[RTC_WEEKDAY] & 0x07; tm->tm_mday = bcd2bin(data[RTC_DATE]); tm->tm_mon = bcd2bin(data[RTC_MONTH]); tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100; tm->tm_year -= 1900; } static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data) { data[RTC_SEC] = bin2bcd(tm->tm_sec); data[RTC_MIN] = bin2bcd(tm->tm_min); data[RTC_HOUR] = bin2bcd(tm->tm_hour); data[RTC_WEEKDAY] = tm->tm_wday; data[RTC_DATE] = bin2bcd(tm->tm_mday); data[RTC_MONTH] = bin2bcd(tm->tm_mon); data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100); data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100); } static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm) { struct s5m_rtc_info *info = dev_get_drvdata(dev); u8 data[RTC_MAX_NUM_TIME_REGS]; int ret; if (info->regs->read_time_udr_mask) { ret = regmap_update_bits(info->regmap, info->regs->udr_update, info->regs->read_time_udr_mask, info->regs->read_time_udr_mask); if (ret) { dev_err(dev, "Failed to prepare registers for time reading: %d\n", ret); return ret; } } ret = regmap_bulk_read(info->regmap, info->regs->time, data, info->regs->regs_count); if (ret < 0) return ret; switch (info->device_type) { case S5M8763X: s5m8763_data_to_tm(data, tm); break; case S5M8767X: case S2MPS15X: case S2MPS14X: case S2MPS13X: s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode); break; default: return -EINVAL; } dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday); return 0; } static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct s5m_rtc_info *info = dev_get_drvdata(dev); u8 data[RTC_MAX_NUM_TIME_REGS]; int ret = 0; switch (info->device_type) { case S5M8763X: s5m8763_tm_to_data(tm, data); break; case S5M8767X: case S2MPS15X: case S2MPS14X: case S2MPS13X: ret = s5m8767_tm_to_data(tm, data); break; default: return -EINVAL; } if (ret < 0) return ret; dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday); ret = regmap_raw_write(info->regmap, info->regs->time, data, info->regs->regs_count); if (ret < 0) return ret; ret = s5m8767_rtc_set_time_reg(info); return ret; } static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct s5m_rtc_info *info = dev_get_drvdata(dev); u8 data[RTC_MAX_NUM_TIME_REGS]; unsigned int val; int ret, i; ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data, info->regs->regs_count); if (ret < 0) return ret; switch (info->device_type) { case S5M8763X: s5m8763_data_to_tm(data, &alrm->time); ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val); if (ret < 0) return ret; alrm->enabled = !!val; break; case S5M8767X: case S2MPS15X: case S2MPS14X: case S2MPS13X: s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode); alrm->enabled = 0; for (i = 0; i < info->regs->regs_count; i++) { if (data[i] & ALARM_ENABLE_MASK) { alrm->enabled = 1; break; } } break; default: return -EINVAL; } dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday); ret = s5m_check_peding_alarm_interrupt(info, alrm); return 0; } static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info) { u8 data[RTC_MAX_NUM_TIME_REGS]; int ret, i; struct rtc_time tm; ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data, info->regs->regs_count); if (ret < 0) return ret; s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode); dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday); switch (info->device_type) { case S5M8763X: ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0); break; case S5M8767X: case S2MPS15X: case S2MPS14X: case S2MPS13X: for (i = 0; i < info->regs->regs_count; i++) data[i] &= ~ALARM_ENABLE_MASK; ret = regmap_raw_write(info->regmap, info->regs->alarm0, data, info->regs->regs_count); if (ret < 0) return ret; ret = s5m8767_rtc_set_alarm_reg(info); break; default: return -EINVAL; } return ret; } static int s5m_rtc_start_alarm(struct s5m_rtc_info *info) { int ret; u8 data[RTC_MAX_NUM_TIME_REGS]; u8 alarm0_conf; struct rtc_time tm; ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data, info->regs->regs_count); if (ret < 0) return ret; s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode); dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday); switch (info->device_type) { case S5M8763X: alarm0_conf = 0x77; ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf); break; case S5M8767X: case S2MPS15X: case S2MPS14X: case S2MPS13X: data[RTC_SEC] |= ALARM_ENABLE_MASK; data[RTC_MIN] |= ALARM_ENABLE_MASK; data[RTC_HOUR] |= ALARM_ENABLE_MASK; data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK; if (data[RTC_DATE] & 0x1f) data[RTC_DATE] |= ALARM_ENABLE_MASK; if (data[RTC_MONTH] & 0xf) data[RTC_MONTH] |= ALARM_ENABLE_MASK; if (data[RTC_YEAR1] & 0x7f) data[RTC_YEAR1] |= ALARM_ENABLE_MASK; ret = regmap_raw_write(info->regmap, info->regs->alarm0, data, info->regs->regs_count); if (ret < 0) return ret; ret = s5m8767_rtc_set_alarm_reg(info); break; default: return -EINVAL; } return ret; } static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct s5m_rtc_info *info = dev_get_drvdata(dev); u8 data[RTC_MAX_NUM_TIME_REGS]; int ret; switch (info->device_type) { case S5M8763X: s5m8763_tm_to_data(&alrm->time, data); break; case S5M8767X: case S2MPS15X: case S2MPS14X: case S2MPS13X: s5m8767_tm_to_data(&alrm->time, data); break; default: return -EINVAL; } dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday); ret = s5m_rtc_stop_alarm(info); if (ret < 0) return ret; ret = regmap_raw_write(info->regmap, info->regs->alarm0, data, info->regs->regs_count); if (ret < 0) return ret; ret = s5m8767_rtc_set_alarm_reg(info); if (ret < 0) return ret; if (alrm->enabled) ret = s5m_rtc_start_alarm(info); return ret; } static int s5m_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) { struct s5m_rtc_info *info = dev_get_drvdata(dev); if (enabled) return s5m_rtc_start_alarm(info); else return s5m_rtc_stop_alarm(info); } static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data) { struct s5m_rtc_info *info = data; rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF); return IRQ_HANDLED; } static const struct rtc_class_ops s5m_rtc_ops = { .read_time = s5m_rtc_read_time, .set_time = s5m_rtc_set_time, .read_alarm = s5m_rtc_read_alarm, .set_alarm = s5m_rtc_set_alarm, .alarm_irq_enable = s5m_rtc_alarm_irq_enable, }; static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info) { u8 data[2]; int ret; switch (info->device_type) { case S5M8763X: case S5M8767X: /* UDR update time. Default of 7.32 ms is too long. */ ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON, S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US); if (ret < 0) dev_err(info->dev, "%s: fail to change UDR time: %d\n", __func__, ret); /* Set RTC control register : Binary mode, 24hour mode */ data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT); data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT); ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2); break; case S2MPS15X: case S2MPS14X: case S2MPS13X: data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT); ret = regmap_write(info->regmap, info->regs->ctrl, data[0]); if (ret < 0) break; /* * Should set WUDR & (RUDR or AUDR) bits to high after writing * RTC_CTRL register like writing Alarm registers. We can't find * the description from datasheet but vendor code does that * really. */ ret = s5m8767_rtc_set_alarm_reg(info); break; default: return -EINVAL; } info->rtc_24hr_mode = 1; if (ret < 0) { dev_err(info->dev, "%s: fail to write controlm reg(%d)\n", __func__, ret); return ret; } return ret; } static int s5m_rtc_probe(struct platform_device *pdev) { struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent); struct sec_platform_data *pdata = s5m87xx->pdata; struct s5m_rtc_info *info; const struct regmap_config *regmap_cfg; int ret, alarm_irq; if (!pdata) { dev_err(pdev->dev.parent, "Platform data not supplied\n"); return -ENODEV; } info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; switch (platform_get_device_id(pdev)->driver_data) { case S2MPS15X: regmap_cfg = &s2mps14_rtc_regmap_config; info->regs = &s2mps15_rtc_regs; alarm_irq = S2MPS14_IRQ_RTCA0; break; case S2MPS14X: regmap_cfg = &s2mps14_rtc_regmap_config; info->regs = &s2mps14_rtc_regs; alarm_irq = S2MPS14_IRQ_RTCA0; break; case S2MPS13X: regmap_cfg = &s2mps14_rtc_regmap_config; info->regs = &s2mps13_rtc_regs; alarm_irq = S2MPS14_IRQ_RTCA0; break; case S5M8763X: regmap_cfg = &s5m_rtc_regmap_config; info->regs = &s5m_rtc_regs; alarm_irq = S5M8763_IRQ_ALARM0; break; case S5M8767X: regmap_cfg = &s5m_rtc_regmap_config; info->regs = &s5m_rtc_regs; alarm_irq = S5M8767_IRQ_RTCA1; break; default: dev_err(&pdev->dev, "Device type %lu is not supported by RTC driver\n", platform_get_device_id(pdev)->driver_data); return -ENODEV; } info->i2c = i2c_new_dummy(s5m87xx->i2c->adapter, RTC_I2C_ADDR); if (!info->i2c) { dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n"); return -ENODEV; } info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg); if (IS_ERR(info->regmap)) { ret = PTR_ERR(info->regmap); dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n", ret); goto err; } info->dev = &pdev->dev; info->s5m87xx = s5m87xx; info->device_type = platform_get_device_id(pdev)->driver_data; if (s5m87xx->irq_data) { info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq); if (info->irq <= 0) { ret = -EINVAL; dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n", alarm_irq); goto err; } } platform_set_drvdata(pdev, info); ret = s5m8767_rtc_init_reg(info); device_init_wakeup(&pdev->dev, 1); info->rtc_dev = devm_rtc_device_register(&pdev->dev, "s5m-rtc", &s5m_rtc_ops, THIS_MODULE); if (IS_ERR(info->rtc_dev)) { ret = PTR_ERR(info->rtc_dev); goto err; } if (!info->irq) { dev_info(&pdev->dev, "Alarm IRQ not available\n"); return 0; } ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL, s5m_rtc_alarm_irq, 0, "rtc-alarm0", info); if (ret < 0) { dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n", info->irq, ret); goto err; } return 0; err: i2c_unregister_device(info->i2c); return ret; } static int s5m_rtc_remove(struct platform_device *pdev) { struct s5m_rtc_info *info = platform_get_drvdata(pdev); i2c_unregister_device(info->i2c); return 0; } #ifdef CONFIG_PM_SLEEP static int s5m_rtc_resume(struct device *dev) { struct s5m_rtc_info *info = dev_get_drvdata(dev); int ret = 0; if (info->irq && device_may_wakeup(dev)) ret = disable_irq_wake(info->irq); return ret; } static int s5m_rtc_suspend(struct device *dev) { struct s5m_rtc_info *info = dev_get_drvdata(dev); int ret = 0; if (info->irq && device_may_wakeup(dev)) ret = enable_irq_wake(info->irq); return ret; } #endif /* CONFIG_PM_SLEEP */ static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume); static const struct platform_device_id s5m_rtc_id[] = { { "s5m-rtc", S5M8767X }, { "s2mps13-rtc", S2MPS13X }, { "s2mps14-rtc", S2MPS14X }, { "s2mps15-rtc", S2MPS15X }, { }, }; MODULE_DEVICE_TABLE(platform, s5m_rtc_id); static struct platform_driver s5m_rtc_driver = { .driver = { .name = "s5m-rtc", .pm = &s5m_rtc_pm_ops, }, .probe = s5m_rtc_probe, .remove = s5m_rtc_remove, .id_table = s5m_rtc_id, }; module_platform_driver(s5m_rtc_driver); /* Module information */ MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>"); MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:s5m-rtc");