/* * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * BSD LICENSE * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include "sas.h" #include #include "remote_device.h" #include "remote_node_context.h" #include "isci.h" #include "request.h" #include "task.h" #include "host.h" /** * isci_task_refuse() - complete the request to the upper layer driver in * the case where an I/O needs to be completed back in the submit path. * @ihost: host on which the the request was queued * @task: request to complete * @response: response code for the completed task. * @status: status code for the completed task. * */ static void isci_task_refuse(struct isci_host *ihost, struct sas_task *task, enum service_response response, enum exec_status status) { enum isci_completion_selection disposition; disposition = isci_perform_normal_io_completion; disposition = isci_task_set_completion_status(task, response, status, disposition); /* Tasks aborted specifically by a call to the lldd_abort_task * function should not be completed to the host in the regular path. */ switch (disposition) { case isci_perform_normal_io_completion: /* Normal notification (task_done) */ dev_dbg(&ihost->pdev->dev, "%s: Normal - task = %p, response=%d, " "status=%d\n", __func__, task, response, status); task->lldd_task = NULL; task->task_done(task); break; case isci_perform_aborted_io_completion: /* * No notification because this request is already in the * abort path. */ dev_dbg(&ihost->pdev->dev, "%s: Aborted - task = %p, response=%d, " "status=%d\n", __func__, task, response, status); break; case isci_perform_error_io_completion: /* Use sas_task_abort */ dev_dbg(&ihost->pdev->dev, "%s: Error - task = %p, response=%d, " "status=%d\n", __func__, task, response, status); sas_task_abort(task); break; default: dev_dbg(&ihost->pdev->dev, "%s: isci task notification default case!", __func__); sas_task_abort(task); break; } } #define for_each_sas_task(num, task) \ for (; num > 0; num--,\ task = list_entry(task->list.next, struct sas_task, list)) static inline int isci_device_io_ready(struct isci_remote_device *idev, struct sas_task *task) { return idev ? test_bit(IDEV_IO_READY, &idev->flags) || (test_bit(IDEV_IO_NCQERROR, &idev->flags) && isci_task_is_ncq_recovery(task)) : 0; } /** * isci_task_execute_task() - This function is one of the SAS Domain Template * functions. This function is called by libsas to send a task down to * hardware. * @task: This parameter specifies the SAS task to send. * @num: This parameter specifies the number of tasks to queue. * @gfp_flags: This parameter specifies the context of this call. * * status, zero indicates success. */ int isci_task_execute_task(struct sas_task *task, int num, gfp_t gfp_flags) { struct isci_host *ihost = dev_to_ihost(task->dev); struct isci_remote_device *idev; unsigned long flags; bool io_ready; u16 tag; dev_dbg(&ihost->pdev->dev, "%s: num=%d\n", __func__, num); for_each_sas_task(num, task) { enum sci_status status = SCI_FAILURE; spin_lock_irqsave(&ihost->scic_lock, flags); idev = isci_lookup_device(task->dev); io_ready = isci_device_io_ready(idev, task); tag = isci_alloc_tag(ihost); spin_unlock_irqrestore(&ihost->scic_lock, flags); dev_dbg(&ihost->pdev->dev, "task: %p, num: %d dev: %p idev: %p:%#lx cmd = %p\n", task, num, task->dev, idev, idev ? idev->flags : 0, task->uldd_task); if (!idev) { isci_task_refuse(ihost, task, SAS_TASK_UNDELIVERED, SAS_DEVICE_UNKNOWN); } else if (!io_ready || tag == SCI_CONTROLLER_INVALID_IO_TAG) { /* Indicate QUEUE_FULL so that the scsi midlayer * retries. */ isci_task_refuse(ihost, task, SAS_TASK_COMPLETE, SAS_QUEUE_FULL); } else { /* There is a device and it's ready for I/O. */ spin_lock_irqsave(&task->task_state_lock, flags); if (task->task_state_flags & SAS_TASK_STATE_ABORTED) { /* The I/O was aborted. */ spin_unlock_irqrestore(&task->task_state_lock, flags); isci_task_refuse(ihost, task, SAS_TASK_UNDELIVERED, SAM_STAT_TASK_ABORTED); } else { task->task_state_flags |= SAS_TASK_AT_INITIATOR; spin_unlock_irqrestore(&task->task_state_lock, flags); /* build and send the request. */ status = isci_request_execute(ihost, idev, task, tag); if (status != SCI_SUCCESS) { spin_lock_irqsave(&task->task_state_lock, flags); /* Did not really start this command. */ task->task_state_flags &= ~SAS_TASK_AT_INITIATOR; spin_unlock_irqrestore(&task->task_state_lock, flags); if (test_bit(IDEV_GONE, &idev->flags)) { /* Indicate that the device * is gone. */ isci_task_refuse(ihost, task, SAS_TASK_UNDELIVERED, SAS_DEVICE_UNKNOWN); } else { /* Indicate QUEUE_FULL so that * the scsi midlayer retries. * If the request failed for * remote device reasons, it * gets returned as * SAS_TASK_UNDELIVERED next * time through. */ isci_task_refuse(ihost, task, SAS_TASK_COMPLETE, SAS_QUEUE_FULL); } } } } if (status != SCI_SUCCESS && tag != SCI_CONTROLLER_INVALID_IO_TAG) { spin_lock_irqsave(&ihost->scic_lock, flags); /* command never hit the device, so just free * the tci and skip the sequence increment */ isci_tci_free(ihost, ISCI_TAG_TCI(tag)); spin_unlock_irqrestore(&ihost->scic_lock, flags); } isci_put_device(idev); } return 0; } static struct isci_request *isci_task_request_build(struct isci_host *ihost, struct isci_remote_device *idev, u16 tag, struct isci_tmf *isci_tmf) { enum sci_status status = SCI_FAILURE; struct isci_request *ireq = NULL; struct domain_device *dev; dev_dbg(&ihost->pdev->dev, "%s: isci_tmf = %p\n", __func__, isci_tmf); dev = idev->domain_dev; /* do common allocation and init of request object. */ ireq = isci_tmf_request_from_tag(ihost, isci_tmf, tag); if (!ireq) return NULL; /* let the core do it's construct. */ status = sci_task_request_construct(ihost, idev, tag, ireq); if (status != SCI_SUCCESS) { dev_warn(&ihost->pdev->dev, "%s: sci_task_request_construct failed - " "status = 0x%x\n", __func__, status); return NULL; } /* XXX convert to get this from task->tproto like other drivers */ if (dev->dev_type == SAS_END_DEV) { isci_tmf->proto = SAS_PROTOCOL_SSP; status = sci_task_request_construct_ssp(ireq); if (status != SCI_SUCCESS) return NULL; } return ireq; } /** * isci_request_mark_zombie() - This function must be called with scic_lock held. */ static void isci_request_mark_zombie(struct isci_host *ihost, struct isci_request *ireq) { struct completion *tmf_completion = NULL; struct completion *req_completion; /* Set the request state to "dead". */ ireq->status = dead; req_completion = ireq->io_request_completion; ireq->io_request_completion = NULL; if (test_bit(IREQ_TMF, &ireq->flags)) { /* Break links with the TMF request. */ struct isci_tmf *tmf = isci_request_access_tmf(ireq); /* In the case where a task request is dying, * the thread waiting on the complete will sit and * timeout unless we wake it now. Since the TMF * has a default error status, complete it here * to wake the waiting thread. */ if (tmf) { tmf_completion = tmf->complete; tmf->complete = NULL; } ireq->ttype_ptr.tmf_task_ptr = NULL; dev_dbg(&ihost->pdev->dev, "%s: tmf_code %d, managed tag %#x\n", __func__, tmf->tmf_code, tmf->io_tag); } else { /* Break links with the sas_task - the callback is done * elsewhere. */ struct sas_task *task = isci_request_access_task(ireq); if (task) task->lldd_task = NULL; ireq->ttype_ptr.io_task_ptr = NULL; } dev_warn(&ihost->pdev->dev, "task context unrecoverable (tag: %#x)\n", ireq->io_tag); /* Don't force waiting threads to timeout. */ if (req_completion) complete(req_completion); if (tmf_completion != NULL) complete(tmf_completion); } static int isci_task_execute_tmf(struct isci_host *ihost, struct isci_remote_device *idev, struct isci_tmf *tmf, unsigned long timeout_ms) { DECLARE_COMPLETION_ONSTACK(completion); enum sci_task_status status = SCI_TASK_FAILURE; struct isci_request *ireq; int ret = TMF_RESP_FUNC_FAILED; unsigned long flags; unsigned long timeleft; u16 tag; spin_lock_irqsave(&ihost->scic_lock, flags); tag = isci_alloc_tag(ihost); spin_unlock_irqrestore(&ihost->scic_lock, flags); if (tag == SCI_CONTROLLER_INVALID_IO_TAG) return ret; /* sanity check, return TMF_RESP_FUNC_FAILED * if the device is not there and ready. */ if (!idev || (!test_bit(IDEV_IO_READY, &idev->flags) && !test_bit(IDEV_IO_NCQERROR, &idev->flags))) { dev_dbg(&ihost->pdev->dev, "%s: idev = %p not ready (%#lx)\n", __func__, idev, idev ? idev->flags : 0); goto err_tci; } else dev_dbg(&ihost->pdev->dev, "%s: idev = %p\n", __func__, idev); /* Assign the pointer to the TMF's completion kernel wait structure. */ tmf->complete = &completion; tmf->status = SCI_FAILURE_TIMEOUT; ireq = isci_task_request_build(ihost, idev, tag, tmf); if (!ireq) goto err_tci; spin_lock_irqsave(&ihost->scic_lock, flags); /* start the TMF io. */ status = sci_controller_start_task(ihost, idev, ireq); if (status != SCI_TASK_SUCCESS) { dev_dbg(&ihost->pdev->dev, "%s: start_io failed - status = 0x%x, request = %p\n", __func__, status, ireq); spin_unlock_irqrestore(&ihost->scic_lock, flags); goto err_tci; } if (tmf->cb_state_func != NULL) tmf->cb_state_func(isci_tmf_started, tmf, tmf->cb_data); isci_request_change_state(ireq, started); /* add the request to the remote device request list. */ list_add(&ireq->dev_node, &idev->reqs_in_process); spin_unlock_irqrestore(&ihost->scic_lock, flags); /* Wait for the TMF to complete, or a timeout. */ timeleft = wait_for_completion_timeout(&completion, msecs_to_jiffies(timeout_ms)); if (timeleft == 0) { /* The TMF did not complete - this could be because * of an unplug. Terminate the TMF request now. */ spin_lock_irqsave(&ihost->scic_lock, flags); if (tmf->cb_state_func != NULL) tmf->cb_state_func(isci_tmf_timed_out, tmf, tmf->cb_data); sci_controller_terminate_request(ihost, idev, ireq); spin_unlock_irqrestore(&ihost->scic_lock, flags); timeleft = wait_for_completion_timeout( &completion, msecs_to_jiffies(ISCI_TERMINATION_TIMEOUT_MSEC)); if (!timeleft) { /* Strange condition - the termination of the TMF * request timed-out. */ spin_lock_irqsave(&ihost->scic_lock, flags); /* If the TMF status has not changed, kill it. */ if (tmf->status == SCI_FAILURE_TIMEOUT) isci_request_mark_zombie(ihost, ireq); spin_unlock_irqrestore(&ihost->scic_lock, flags); } } isci_print_tmf(ihost, tmf); if (tmf->status == SCI_SUCCESS) ret = TMF_RESP_FUNC_COMPLETE; else if (tmf->status == SCI_FAILURE_IO_RESPONSE_VALID) { dev_dbg(&ihost->pdev->dev, "%s: tmf.status == " "SCI_FAILURE_IO_RESPONSE_VALID\n", __func__); ret = TMF_RESP_FUNC_COMPLETE; } /* Else - leave the default "failed" status alone. */ dev_dbg(&ihost->pdev->dev, "%s: completed request = %p\n", __func__, ireq); return ret; err_tci: spin_lock_irqsave(&ihost->scic_lock, flags); isci_tci_free(ihost, ISCI_TAG_TCI(tag)); spin_unlock_irqrestore(&ihost->scic_lock, flags); return ret; } static void isci_task_build_tmf(struct isci_tmf *tmf, enum isci_tmf_function_codes code, void (*tmf_sent_cb)(enum isci_tmf_cb_state, struct isci_tmf *, void *), void *cb_data) { memset(tmf, 0, sizeof(*tmf)); tmf->tmf_code = code; tmf->cb_state_func = tmf_sent_cb; tmf->cb_data = cb_data; } static void isci_task_build_abort_task_tmf(struct isci_tmf *tmf, enum isci_tmf_function_codes code, void (*tmf_sent_cb)(enum isci_tmf_cb_state, struct isci_tmf *, void *), struct isci_request *old_request) { isci_task_build_tmf(tmf, code, tmf_sent_cb, old_request); tmf->io_tag = old_request->io_tag; } /** * isci_task_validate_request_to_abort() - This function checks the given I/O * against the "started" state. If the request is still "started", it's * state is changed to aborted. NOTE: isci_host->scic_lock MUST BE HELD * BEFORE CALLING THIS FUNCTION. * @isci_request: This parameter specifies the request object to control. * @isci_host: This parameter specifies the ISCI host object * @isci_device: This is the device to which the request is pending. * @aborted_io_completion: This is a completion structure that will be added to * the request in case it is changed to aborting; this completion is * triggered when the request is fully completed. * * Either "started" on successful change of the task status to "aborted", or * "unallocated" if the task cannot be controlled. */ static enum isci_request_status isci_task_validate_request_to_abort( struct isci_request *isci_request, struct isci_host *isci_host, struct isci_remote_device *isci_device, struct completion *aborted_io_completion) { enum isci_request_status old_state = unallocated; /* Only abort the task if it's in the * device's request_in_process list */ if (isci_request && !list_empty(&isci_request->dev_node)) { old_state = isci_request_change_started_to_aborted( isci_request, aborted_io_completion); } return old_state; } static int isci_request_is_dealloc_managed(enum isci_request_status stat) { switch (stat) { case aborted: case aborting: case terminating: case completed: case dead: return true; default: return false; } } /** * isci_terminate_request_core() - This function will terminate the given * request, and wait for it to complete. This function must only be called * from a thread that can wait. Note that the request is terminated and * completed (back to the host, if started there). * @ihost: This SCU. * @idev: The target. * @isci_request: The I/O request to be terminated. * */ static void isci_terminate_request_core(struct isci_host *ihost, struct isci_remote_device *idev, struct isci_request *isci_request) { enum sci_status status = SCI_SUCCESS; bool was_terminated = false; bool needs_cleanup_handling = false; unsigned long flags; unsigned long termination_completed = 1; struct completion *io_request_completion; dev_dbg(&ihost->pdev->dev, "%s: device = %p; request = %p\n", __func__, idev, isci_request); spin_lock_irqsave(&ihost->scic_lock, flags); io_request_completion = isci_request->io_request_completion; /* Note that we are not going to control * the target to abort the request. */ set_bit(IREQ_COMPLETE_IN_TARGET, &isci_request->flags); /* Make sure the request wasn't just sitting around signalling * device condition (if the request handle is NULL, then the * request completed but needed additional handling here). */ if (!test_bit(IREQ_TERMINATED, &isci_request->flags)) { was_terminated = true; needs_cleanup_handling = true; status = sci_controller_terminate_request(ihost, idev, isci_request); } spin_unlock_irqrestore(&ihost->scic_lock, flags); /* * The only time the request to terminate will * fail is when the io request is completed and * being aborted. */ if (status != SCI_SUCCESS) { dev_dbg(&ihost->pdev->dev, "%s: sci_controller_terminate_request" " returned = 0x%x\n", __func__, status); isci_request->io_request_completion = NULL; } else { if (was_terminated) { dev_dbg(&ihost->pdev->dev, "%s: before completion wait (%p/%p)\n", __func__, isci_request, io_request_completion); /* Wait here for the request to complete. */ termination_completed = wait_for_completion_timeout( io_request_completion, msecs_to_jiffies(ISCI_TERMINATION_TIMEOUT_MSEC)); if (!termination_completed) { /* The request to terminate has timed out. */ spin_lock_irqsave(&ihost->scic_lock, flags); /* Check for state changes. */ if (!test_bit(IREQ_TERMINATED, &isci_request->flags)) { /* The best we can do is to have the * request die a silent death if it * ever really completes. */ isci_request_mark_zombie(ihost, isci_request); needs_cleanup_handling = true; } else termination_completed = 1; spin_unlock_irqrestore(&ihost->scic_lock, flags); if (!termination_completed) { dev_dbg(&ihost->pdev->dev, "%s: *** Timeout waiting for " "termination(%p/%p)\n", __func__, io_request_completion, isci_request); /* The request can no longer be referenced * safely since it may go away if the * termination every really does complete. */ isci_request = NULL; } } if (termination_completed) dev_dbg(&ihost->pdev->dev, "%s: after completion wait (%p/%p)\n", __func__, isci_request, io_request_completion); } if (termination_completed) { isci_request->io_request_completion = NULL; /* Peek at the status of the request. This will tell * us if there was special handling on the request such that it * needs to be detached and freed here. */ spin_lock_irqsave(&isci_request->state_lock, flags); needs_cleanup_handling = isci_request_is_dealloc_managed( isci_request->status); spin_unlock_irqrestore(&isci_request->state_lock, flags); } if (needs_cleanup_handling) { dev_dbg(&ihost->pdev->dev, "%s: cleanup isci_device=%p, request=%p\n", __func__, idev, isci_request); if (isci_request != NULL) { spin_lock_irqsave(&ihost->scic_lock, flags); isci_free_tag(ihost, isci_request->io_tag); isci_request_change_state(isci_request, unallocated); list_del_init(&isci_request->dev_node); spin_unlock_irqrestore(&ihost->scic_lock, flags); } } } } /** * isci_terminate_pending_requests() - This function will change the all of the * requests on the given device's state to "aborting", will terminate the * requests, and wait for them to complete. This function must only be * called from a thread that can wait. Note that the requests are all * terminated and completed (back to the host, if started there). * @isci_host: This parameter specifies SCU. * @idev: This parameter specifies the target. * */ void isci_terminate_pending_requests(struct isci_host *ihost, struct isci_remote_device *idev) { struct completion request_completion; enum isci_request_status old_state; unsigned long flags; LIST_HEAD(list); spin_lock_irqsave(&ihost->scic_lock, flags); list_splice_init(&idev->reqs_in_process, &list); /* assumes that isci_terminate_request_core deletes from the list */ while (!list_empty(&list)) { struct isci_request *ireq = list_entry(list.next, typeof(*ireq), dev_node); /* Change state to "terminating" if it is currently * "started". */ old_state = isci_request_change_started_to_newstate(ireq, &request_completion, terminating); switch (old_state) { case started: case completed: case aborting: break; default: /* termination in progress, or otherwise dispositioned. * We know the request was on 'list' so should be safe * to move it back to reqs_in_process */ list_move(&ireq->dev_node, &idev->reqs_in_process); ireq = NULL; break; } if (!ireq) continue; spin_unlock_irqrestore(&ihost->scic_lock, flags); init_completion(&request_completion); dev_dbg(&ihost->pdev->dev, "%s: idev=%p request=%p; task=%p old_state=%d\n", __func__, idev, ireq, (!test_bit(IREQ_TMF, &ireq->flags) ? isci_request_access_task(ireq) : NULL), old_state); /* If the old_state is started: * This request was not already being aborted. If it had been, * then the aborting I/O (ie. the TMF request) would not be in * the aborting state, and thus would be terminated here. Note * that since the TMF completion's call to the kernel function * "complete()" does not happen until the pending I/O request * terminate fully completes, we do not have to implement a * special wait here for already aborting requests - the * termination of the TMF request will force the request * to finish it's already started terminate. * * If old_state == completed: * This request completed from the SCU hardware perspective * and now just needs cleaning up in terms of freeing the * request and potentially calling up to libsas. * * If old_state == aborting: * This request has already gone through a TMF timeout, but may * not have been terminated; needs cleaning up at least. */ isci_terminate_request_core(ihost, idev, ireq); spin_lock_irqsave(&ihost->scic_lock, flags); } spin_unlock_irqrestore(&ihost->scic_lock, flags); } /** * isci_task_send_lu_reset_sas() - This function is called by of the SAS Domain * Template functions. * @lun: This parameter specifies the lun to be reset. * * status, zero indicates success. */ static int isci_task_send_lu_reset_sas( struct isci_host *isci_host, struct isci_remote_device *isci_device, u8 *lun) { struct isci_tmf tmf; int ret = TMF_RESP_FUNC_FAILED; dev_dbg(&isci_host->pdev->dev, "%s: isci_host = %p, isci_device = %p\n", __func__, isci_host, isci_device); /* Send the LUN reset to the target. By the time the call returns, * the TMF has fully exected in the target (in which case the return * value is "TMF_RESP_FUNC_COMPLETE", or the request timed-out (or * was otherwise unable to be executed ("TMF_RESP_FUNC_FAILED"). */ isci_task_build_tmf(&tmf, isci_tmf_ssp_lun_reset, NULL, NULL); #define ISCI_LU_RESET_TIMEOUT_MS 2000 /* 2 second timeout. */ ret = isci_task_execute_tmf(isci_host, isci_device, &tmf, ISCI_LU_RESET_TIMEOUT_MS); if (ret == TMF_RESP_FUNC_COMPLETE) dev_dbg(&isci_host->pdev->dev, "%s: %p: TMF_LU_RESET passed\n", __func__, isci_device); else dev_dbg(&isci_host->pdev->dev, "%s: %p: TMF_LU_RESET failed (%x)\n", __func__, isci_device, ret); return ret; } int isci_task_lu_reset(struct domain_device *dev, u8 *lun) { struct isci_host *isci_host = dev_to_ihost(dev); struct isci_remote_device *isci_device; unsigned long flags; int ret; spin_lock_irqsave(&isci_host->scic_lock, flags); isci_device = isci_lookup_device(dev); spin_unlock_irqrestore(&isci_host->scic_lock, flags); dev_dbg(&isci_host->pdev->dev, "%s: domain_device=%p, isci_host=%p; isci_device=%p\n", __func__, dev, isci_host, isci_device); if (!isci_device) { /* If the device is gone, stop the escalations. */ dev_dbg(&isci_host->pdev->dev, "%s: No dev\n", __func__); ret = TMF_RESP_FUNC_COMPLETE; goto out; } set_bit(IDEV_EH, &isci_device->flags); /* Send the task management part of the reset. */ if (dev_is_sata(dev)) { sas_ata_schedule_reset(dev); ret = TMF_RESP_FUNC_COMPLETE; } else ret = isci_task_send_lu_reset_sas(isci_host, isci_device, lun); /* If the LUN reset worked, all the I/O can now be terminated. */ if (ret == TMF_RESP_FUNC_COMPLETE) /* Terminate all I/O now. */ isci_terminate_pending_requests(isci_host, isci_device); out: isci_put_device(isci_device); return ret; } /* int (*lldd_clear_nexus_port)(struct asd_sas_port *); */ int isci_task_clear_nexus_port(struct asd_sas_port *port) { return TMF_RESP_FUNC_FAILED; } int isci_task_clear_nexus_ha(struct sas_ha_struct *ha) { return TMF_RESP_FUNC_FAILED; } /* Task Management Functions. Must be called from process context. */ /** * isci_abort_task_process_cb() - This is a helper function for the abort task * TMF command. It manages the request state with respect to the successful * transmission / completion of the abort task request. * @cb_state: This parameter specifies when this function was called - after * the TMF request has been started and after it has timed-out. * @tmf: This parameter specifies the TMF in progress. * * */ static void isci_abort_task_process_cb( enum isci_tmf_cb_state cb_state, struct isci_tmf *tmf, void *cb_data) { struct isci_request *old_request; old_request = (struct isci_request *)cb_data; dev_dbg(&old_request->isci_host->pdev->dev, "%s: tmf=%p, old_request=%p\n", __func__, tmf, old_request); switch (cb_state) { case isci_tmf_started: /* The TMF has been started. Nothing to do here, since the * request state was already set to "aborted" by the abort * task function. */ if ((old_request->status != aborted) && (old_request->status != completed)) dev_dbg(&old_request->isci_host->pdev->dev, "%s: Bad request status (%d): tmf=%p, old_request=%p\n", __func__, old_request->status, tmf, old_request); break; case isci_tmf_timed_out: /* Set the task's state to "aborting", since the abort task * function thread set it to "aborted" (above) in anticipation * of the task management request working correctly. Since the * timeout has now fired, the TMF request failed. We set the * state such that the request completion will indicate the * device is no longer present. */ isci_request_change_state(old_request, aborting); break; default: dev_dbg(&old_request->isci_host->pdev->dev, "%s: Bad cb_state (%d): tmf=%p, old_request=%p\n", __func__, cb_state, tmf, old_request); break; } } /** * isci_task_abort_task() - This function is one of the SAS Domain Template * functions. This function is called by libsas to abort a specified task. * @task: This parameter specifies the SAS task to abort. * * status, zero indicates success. */ int isci_task_abort_task(struct sas_task *task) { struct isci_host *isci_host = dev_to_ihost(task->dev); DECLARE_COMPLETION_ONSTACK(aborted_io_completion); struct isci_request *old_request = NULL; enum isci_request_status old_state; struct isci_remote_device *isci_device = NULL; struct isci_tmf tmf; int ret = TMF_RESP_FUNC_FAILED; unsigned long flags; int perform_termination = 0; /* Get the isci_request reference from the task. Note that * this check does not depend on the pending request list * in the device, because tasks driving resets may land here * after completion in the core. */ spin_lock_irqsave(&isci_host->scic_lock, flags); spin_lock(&task->task_state_lock); old_request = task->lldd_task; /* If task is already done, the request isn't valid */ if (!(task->task_state_flags & SAS_TASK_STATE_DONE) && (task->task_state_flags & SAS_TASK_AT_INITIATOR) && old_request) isci_device = isci_lookup_device(task->dev); spin_unlock(&task->task_state_lock); spin_unlock_irqrestore(&isci_host->scic_lock, flags); dev_dbg(&isci_host->pdev->dev, "%s: dev = %p, task = %p, old_request == %p\n", __func__, isci_device, task, old_request); if (isci_device) set_bit(IDEV_EH, &isci_device->flags); /* Device reset conditions signalled in task_state_flags are the * responsbility of libsas to observe at the start of the error * handler thread. */ if (!isci_device || !old_request) { /* The request has already completed and there * is nothing to do here other than to set the task * done bit, and indicate that the task abort function * was sucessful. */ spin_lock_irqsave(&task->task_state_lock, flags); task->task_state_flags |= SAS_TASK_STATE_DONE; task->task_state_flags &= ~(SAS_TASK_AT_INITIATOR | SAS_TASK_STATE_PENDING); spin_unlock_irqrestore(&task->task_state_lock, flags); ret = TMF_RESP_FUNC_COMPLETE; dev_dbg(&isci_host->pdev->dev, "%s: abort task not needed for %p\n", __func__, task); goto out; } spin_lock_irqsave(&isci_host->scic_lock, flags); /* Check the request status and change to "aborted" if currently * "starting"; if true then set the I/O kernel completion * struct that will be triggered when the request completes. */ old_state = isci_task_validate_request_to_abort( old_request, isci_host, isci_device, &aborted_io_completion); if ((old_state != started) && (old_state != completed) && (old_state != aborting)) { spin_unlock_irqrestore(&isci_host->scic_lock, flags); /* The request was already being handled by someone else (because * they got to set the state away from started). */ dev_dbg(&isci_host->pdev->dev, "%s: device = %p; old_request %p already being aborted\n", __func__, isci_device, old_request); ret = TMF_RESP_FUNC_COMPLETE; goto out; } if (task->task_proto == SAS_PROTOCOL_SMP || sas_protocol_ata(task->task_proto) || test_bit(IREQ_COMPLETE_IN_TARGET, &old_request->flags)) { spin_unlock_irqrestore(&isci_host->scic_lock, flags); dev_dbg(&isci_host->pdev->dev, "%s: %s request" " or complete_in_target (%d), thus no TMF\n", __func__, ((task->task_proto == SAS_PROTOCOL_SMP) ? "SMP" : (sas_protocol_ata(task->task_proto) ? "SATA/STP" : "") ), test_bit(IREQ_COMPLETE_IN_TARGET, &old_request->flags)); if (test_bit(IREQ_COMPLETE_IN_TARGET, &old_request->flags)) { spin_lock_irqsave(&task->task_state_lock, flags); task->task_state_flags |= SAS_TASK_STATE_DONE; task->task_state_flags &= ~(SAS_TASK_AT_INITIATOR | SAS_TASK_STATE_PENDING); spin_unlock_irqrestore(&task->task_state_lock, flags); ret = TMF_RESP_FUNC_COMPLETE; } else { spin_lock_irqsave(&task->task_state_lock, flags); task->task_state_flags &= ~(SAS_TASK_AT_INITIATOR | SAS_TASK_STATE_PENDING); spin_unlock_irqrestore(&task->task_state_lock, flags); } /* STP and SMP devices are not sent a TMF, but the * outstanding I/O request is terminated below. This is * because SATA/STP and SMP discovery path timeouts directly * call the abort task interface for cleanup. */ perform_termination = 1; } else { /* Fill in the tmf stucture */ isci_task_build_abort_task_tmf(&tmf, isci_tmf_ssp_task_abort, isci_abort_task_process_cb, old_request); spin_unlock_irqrestore(&isci_host->scic_lock, flags); #define ISCI_ABORT_TASK_TIMEOUT_MS 500 /* 1/2 second timeout */ ret = isci_task_execute_tmf(isci_host, isci_device, &tmf, ISCI_ABORT_TASK_TIMEOUT_MS); if (ret == TMF_RESP_FUNC_COMPLETE) perform_termination = 1; else dev_dbg(&isci_host->pdev->dev, "%s: isci_task_send_tmf failed\n", __func__); } if (perform_termination) { set_bit(IREQ_COMPLETE_IN_TARGET, &old_request->flags); /* Clean up the request on our side, and wait for the aborted * I/O to complete. */ isci_terminate_request_core(isci_host, isci_device, old_request); } /* Make sure we do not leave a reference to aborted_io_completion */ old_request->io_request_completion = NULL; out: isci_put_device(isci_device); return ret; } /** * isci_task_abort_task_set() - This function is one of the SAS Domain Template * functions. This is one of the Task Management functoins called by libsas, * to abort all task for the given lun. * @d_device: This parameter specifies the domain device associated with this * request. * @lun: This parameter specifies the lun associated with this request. * * status, zero indicates success. */ int isci_task_abort_task_set( struct domain_device *d_device, u8 *lun) { return TMF_RESP_FUNC_FAILED; } /** * isci_task_clear_aca() - This function is one of the SAS Domain Template * functions. This is one of the Task Management functoins called by libsas. * @d_device: This parameter specifies the domain device associated with this * request. * @lun: This parameter specifies the lun associated with this request. * * status, zero indicates success. */ int isci_task_clear_aca( struct domain_device *d_device, u8 *lun) { return TMF_RESP_FUNC_FAILED; } /** * isci_task_clear_task_set() - This function is one of the SAS Domain Template * functions. This is one of the Task Management functoins called by libsas. * @d_device: This parameter specifies the domain device associated with this * request. * @lun: This parameter specifies the lun associated with this request. * * status, zero indicates success. */ int isci_task_clear_task_set( struct domain_device *d_device, u8 *lun) { return TMF_RESP_FUNC_FAILED; } /** * isci_task_query_task() - This function is implemented to cause libsas to * correctly escalate the failed abort to a LUN or target reset (this is * because sas_scsi_find_task libsas function does not correctly interpret * all return codes from the abort task call). When TMF_RESP_FUNC_SUCC is * returned, libsas turns this into a LUN reset; when FUNC_FAILED is * returned, libsas will turn this into a target reset * @task: This parameter specifies the sas task being queried. * @lun: This parameter specifies the lun associated with this request. * * status, zero indicates success. */ int isci_task_query_task( struct sas_task *task) { /* See if there is a pending device reset for this device. */ if (task->task_state_flags & SAS_TASK_NEED_DEV_RESET) return TMF_RESP_FUNC_FAILED; else return TMF_RESP_FUNC_SUCC; } /* * isci_task_request_complete() - This function is called by the sci core when * an task request completes. * @ihost: This parameter specifies the ISCI host object * @ireq: This parameter is the completed isci_request object. * @completion_status: This parameter specifies the completion status from the * sci core. * * none. */ void isci_task_request_complete(struct isci_host *ihost, struct isci_request *ireq, enum sci_task_status completion_status) { struct isci_tmf *tmf = isci_request_access_tmf(ireq); struct completion *tmf_complete = NULL; struct completion *request_complete = ireq->io_request_completion; dev_dbg(&ihost->pdev->dev, "%s: request = %p, status=%d\n", __func__, ireq, completion_status); isci_request_change_state(ireq, completed); set_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags); if (tmf) { tmf->status = completion_status; if (tmf->proto == SAS_PROTOCOL_SSP) { memcpy(&tmf->resp.resp_iu, &ireq->ssp.rsp, SSP_RESP_IU_MAX_SIZE); } else if (tmf->proto == SAS_PROTOCOL_SATA) { memcpy(&tmf->resp.d2h_fis, &ireq->stp.rsp, sizeof(struct dev_to_host_fis)); } /* PRINT_TMF( ((struct isci_tmf *)request->task)); */ tmf_complete = tmf->complete; } sci_controller_complete_io(ihost, ireq->target_device, ireq); /* set the 'terminated' flag handle to make sure it cannot be terminated * or completed again. */ set_bit(IREQ_TERMINATED, &ireq->flags); /* As soon as something is in the terminate path, deallocation is * managed there. Note that the final non-managed state of a task * request is "completed". */ if ((ireq->status == completed) || !isci_request_is_dealloc_managed(ireq->status)) { isci_request_change_state(ireq, unallocated); isci_free_tag(ihost, ireq->io_tag); list_del_init(&ireq->dev_node); } /* "request_complete" is set if the task was being terminated. */ if (request_complete) complete(request_complete); /* The task management part completes last. */ if (tmf_complete) complete(tmf_complete); } static int isci_reset_device(struct isci_host *ihost, struct domain_device *dev, struct isci_remote_device *idev) { int rc; unsigned long flags; enum sci_status status; struct sas_phy *phy = sas_get_local_phy(dev); struct isci_port *iport = dev->port->lldd_port; dev_dbg(&ihost->pdev->dev, "%s: idev %p\n", __func__, idev); spin_lock_irqsave(&ihost->scic_lock, flags); status = sci_remote_device_reset(idev); spin_unlock_irqrestore(&ihost->scic_lock, flags); if (status != SCI_SUCCESS) { dev_dbg(&ihost->pdev->dev, "%s: sci_remote_device_reset(%p) returned %d!\n", __func__, idev, status); rc = TMF_RESP_FUNC_FAILED; goto out; } if (scsi_is_sas_phy_local(phy)) { struct isci_phy *iphy = &ihost->phys[phy->number]; rc = isci_port_perform_hard_reset(ihost, iport, iphy); } else rc = sas_phy_reset(phy, !dev_is_sata(dev)); /* Terminate in-progress I/O now. */ isci_remote_device_nuke_requests(ihost, idev); /* Since all pending TCs have been cleaned, resume the RNC. */ spin_lock_irqsave(&ihost->scic_lock, flags); status = sci_remote_device_reset_complete(idev); spin_unlock_irqrestore(&ihost->scic_lock, flags); if (status != SCI_SUCCESS) { dev_dbg(&ihost->pdev->dev, "%s: sci_remote_device_reset_complete(%p) " "returned %d!\n", __func__, idev, status); } dev_dbg(&ihost->pdev->dev, "%s: idev %p complete.\n", __func__, idev); out: sas_put_local_phy(phy); return rc; } int isci_task_I_T_nexus_reset(struct domain_device *dev) { struct isci_host *ihost = dev_to_ihost(dev); struct isci_remote_device *idev; unsigned long flags; int ret; spin_lock_irqsave(&ihost->scic_lock, flags); idev = isci_lookup_device(dev); spin_unlock_irqrestore(&ihost->scic_lock, flags); if (!idev || !test_bit(IDEV_EH, &idev->flags)) { ret = TMF_RESP_FUNC_COMPLETE; goto out; } ret = isci_reset_device(ihost, dev, idev); out: isci_put_device(idev); return ret; } int isci_bus_reset_handler(struct scsi_cmnd *cmd) { struct domain_device *dev = sdev_to_domain_dev(cmd->device); struct isci_host *ihost = dev_to_ihost(dev); struct isci_remote_device *idev; unsigned long flags; int ret; spin_lock_irqsave(&ihost->scic_lock, flags); idev = isci_lookup_device(dev); spin_unlock_irqrestore(&ihost->scic_lock, flags); if (!idev) { ret = TMF_RESP_FUNC_COMPLETE; goto out; } ret = isci_reset_device(ihost, dev, idev); out: isci_put_device(idev); return ret; }